La Historia de la Tabla Periódica Moderna Y Periodicidad COLEGIO MIXTO EVANGELICO NAZARENO

Preview:

Citation preview

La Historia de la Tabla

Periódica Moderna

Y PeriodicidadCOLEGIO MIXTO EVANGELICO NAZARENO

APRENDIZAJES ESPERADOS:

• Conocer la historia y la primeras clasificaciones de los elementos en un tabla periódica.

• Relacionar la configuración electrónica de los elementos con su ordenamiento en la tabla periódica.

• Distinguir las propiedades periódicas de los elementos.

• Comprender la configuración electrónica

ACTIVIDAD: Después de leer la presentación responder la siguientes preguntas.ACTIVIDAD: Después de leer la presentación responder la siguientes preguntas.

1. ¿Qué es la tabla periódica?

2. Describa brevemente la importancia de la tabla periódica de Mendeleev.

3. ¿Quienes fueron los creadores de la tabla periódica moderna?

4. ¿Qué tienen en común los elementos que forman parte de un mismo período?

5. ¿Qué tienen en común los elementos que forman parte de un mismo grupo o familia?

6. La construcción de la tabla periódica que conocemos en la actualidad es fruto de múltiples propuestas consolidadas a través de la historia. Mediante un esquema, explica algunas de estas propuestas justificando sus ventajas y desventajas en la organización periódica de los elementos químicos.

7. ¿Crees que es necesario memorizar las propiedades periódicas de cada elemento químico? ¿Por qué?

8. Imagina que eres un científico y has descubierto el elemento con Z =120. a) ¿En qué lugar de la tabla periódica lo ubicarías? b) ¿Qué propiedades presentaría? c) ¿Qué nombre le asignarías?

9. Escribe qué opinas acerca de la afirmación "tanto en el universo, en el planeta Tierra, como en los seres vivos se encuentran los mismos elementos químicos". Justifica tu respuesta.

ACTIVIDAD: Después de leer la presentación responder la siguientes preguntas.ACTIVIDAD: Después de leer la presentación responder la siguientes preguntas.

A. Identifica a que elemento pertenece cada una de las siguientes configuraciones:

1.1s2 2s2 2p1=

2. 1s2 2s2 2p4=

3. 1s2 2s2 2p6 3s2 3p6=

4. 1s2 2s2 2p6 3s2 3p6 4s2 3d1=

B. Escribe la configuración electrónica de los siguientes elementos:

1. Galio (Z=31)

2. Niquel (Z=28)

3. Circonio (Z=40)

4. Indio (Z=49)

ACTIVIDAD: Después de leer la presentación responder la siguientes preguntas.ACTIVIDAD: Después de leer la presentación responder la siguientes preguntas.

ACTIVIDAD: COMPLETA ACTIVIDAD: COMPLETA

Propiedad Grupo (desde arriba hacia abajo)

Período (desde derecha a izquierda)

Volumen Atómico

Radio Atómico

Potencial de Ionización

Electroafinidad

Electronegatividad

• Indica si aumenta o disminuye el comportamiento de la propiedad periódica en un grupo y período.

Un poco de historia

Durante el siglo XIX, los químicos comenzaron a

clasificar a los elementos conocidos de acuerdo a

sus similitudes de sus propiedades físicas y

químicas.

El final de aquellos estudios es la Tabla Periódica

Moderna

Tabla Periódica ¿Cuántos quedaban?

Se inicia la búsqueda por un orden

Johann Dobereiner

1780 - 1849

Modelo de las triadas

En 1829, clasificó algunos elementos en grupos

de tres, que denominó triadas.

Los elementos de cada triada tenían propiedades

químicas similares, así como propiedades físicas

crecientes.Ejemplos: Cl, Br, I

Ca, Sr, Ba)

John Newlands

1838 - 1898

Ley de las Octavas

En 1863 propuso que los elementos se ordenaran

en “octavas”, ya que observó, tras ordenar los

elementos según el aumento de la masa atómica,

que ciertas propiedades se repetían cada ocho

elementos.

La propuesta de Newland fue ridiculizada en

su momento por la comunidad científica.

Cuando intentó publicar su trabajo en la

Chemical Society, se le rechazó, aduciendo

que dicha propuesta era tan arbitraria como el

haber sugerido un orden alfabético de los

elementos.

John Newlands

Alexander Emile Beguyer Chancoutrois Beguyer ordéno de forma muy similar los elementos y los distribuyó en un gráfico cilíndrico, sin embargo sus trabajos pasaron inadvertidos a pesar de señalar semejanzas como las que había mencionado Newlands

Dmitri Mendeleev

1834 - 1907

En 1869 publicó una Tabla de los

elementos organizada según la

masa atómica de los mismos.

Mendelevio

Lothar Meyer

1830 - 1895

Al mismo tiempo que Mendeleeiev, Meyer publicó

su propia Tabla Periódica con los elementos

ordenados de menor a mayor masa atómica.

Elementos conocidos hasta entonces

• Tanto Mendeleev como Meyer ordenaron los elementos

según sus masas atómicas

• Ambos dejaron espacios vacíos donde deberían encajar

algunos elementos entonces desconocidos

Entonces, ¿porqué se considera a Mendeleev

el padre de la Tabla Periódica Moderna, y no

a Meyer, o a ambos?

• Propuso que si el peso atómico de un elemento

lo situaba en el grupo incorrecto, entonces el

peso atómico debía estar mal medido. Así

corrigió las masas de Be, In y U.

• Estaba tan seguro de la validez de su Tabla que

predijo, a partir de ella, las propiedades físicas

de tres elementos que eran desconocidos

Mendeleev...

La Tabla de Mendeleev...

Tras el descubrimiento de estos tres elementos

(Sc, Ga, Ge) entre 1874 y 1885, que

demostraron la gran exactitud de las

predicciones de Mendeleev, su Tabla Periódica

fué aceptada por la comunidad científica.

Henry Moseley

1887 - 1915

En 1913, mediante estudios de rayos X,

determinó la carga nuclear (número atómico)

de los elementos. Reagrupó los elementos

en orden creciente de número atómico y no

por masa atomica .“Existe en el átomo una cantidad

fundamental que se incrementa en

pasos regulares de un elemento a otro.

Esta cantidad sólo puede ser la carga

del núcleo positivo central”

Glenn T. SeaborgTras participar en el descubrimiento de 10 nuevos

elementos, en 1944 sacó 14 elementos de la

estructura principal de la Tabla Periódica proponiendo

su actual ubicación debajo la serie de los Lántanidos,

siendo desde entonces conocidos como los actínidos.

1912 - 1999

Glenn T. Seaborg

Es la única persona que ha tenido un elemento

que lleva su nombre en vida.

1912 - 1999

“Este es el mayor honor que he

tenido, quizas mejor, para mí, que el

haber ganado el Premio Nobel”

La “Geografía” de la Tabla Periódica

29

El conjunto de elementos que ocupan una línea horizontal se denomina PERIODO.

Las columnas verticales de la Tabla Periódica se

denominan GRUPOS (o FAMILIAS)

Los elementos que

conforman un mismo grupo

presentan propiedades

físicas y químicas similares.

La Tabla Periódica

Los elementos del mismo grupo tienen la misma configuración

electrónica del último nivel energético.

Bloques s y d: nº e valencia = nº grupo

Bloque p: nº e valencia = nº grupo - 10

IIA

1

2

3

4

5

6

7

6

7

sd p

f

IA

IIIB IVB VB VIB VIIB VIIIB IB IIB

Elementos de transición

Alc

alin

os

Alc

alin

otér

reos

Térr

eos

IIIA

Car

bono

ideo

s

IVA

Nitr

ogen

oide

os

VA

Anf

igen

os

VIA

Hal

ogen

os

VIIA

Gas

es n

oble

s

VIIIA

Tierras raras

Tabla Periódica por Bloques de Orbitales

Metales alcalinos

Metales alcalinotérreos

Metales de transición

Metales de transición internos

Estos elementos se

llaman también tierras

raras.

Halógenos

Gases Nobles

La Tabla Periódica es la herramienta más

importante en la “caja de herramientas” de un

Químico!

Estructura Atómica Moderna> Partículas subatómicas:

> Núcleo: protones (+)neutrones

> Espacial: electrones (-)1.602x10-19 C

> Propiedades básicas:

Masa: unidades de masa atómica (uma) 1 uma = 1.66053x10-24 g

Radio atómico (rat): angstrom (Å); 1 Å = 1x10-10 m

Localización de partículas sub-atómicas

protón

neutrónrat

• Es la mitad de la distancia entre los centros de dos átomos vecinos o es la distancia promedio entre el último electrón del nivel más externo y el núcleo.

• LOS RADIOS ATOMICOS AUMENTAN EN TERMINOS GENERALES HACIA ABAJO EN UN GRUPO Y DISMINUYEN A LO LARGO DE UN PERIODO

Potencial o Energía de Ionización Otra propiedad periódica muy importante para entender las propiedades químicas de los elementos es la energía de ionización, la cual se define como:

Al adicionar energía al átomo, provoca que el electrón más externo se mueva hacia niveles de energía más alejados del núcleo. Es posible que este electrón por encontrarse débilmente unido al átomo, sea el primero en perderse, formándose así un catión o ion positivo.

Afinidad electrónica o electroafinidad

Tanto el potencial de ionización como la afinidad electrónica se ven afectadas por el tamaño atómico. Entre mayor sea la afinidad electrónica de un elemento, mayor será su tendencia a ganar electrones.

Electronegatividad

La electronegatividad es una propiedad molecular que se manifiesta cuando los átomos se encuentran unidos y es importante para predecir el tipo de enlace formado.

Los átomos de los elementos más electronegativos son los que ejercen mayor atracción sobre los electrones compartidos en un enlace covalente.

VOLUMEN ATÓMICO (V.A.) VOLUMEN ATÓMICO (V.A.)

• Es la relación entre la masa atómica y la densidad electrónica de un elemento.

• En la Tabla periódica, el volumen disminuye en un período de izquierda a derecha.

• Aumenta en un grupo de acuerdo con el incremento de su número atómico.

Estructura Atómica Moderna

> Todos los átomos de un elemento tienen el mismo número de protones, número al cual se le denomina NUMERO ATOMICO.(Z)

> Atomos de un mismo elemento que difieren en el número de neutrones, y por tanto en su masa, se denominan ISOTOPOS.

> El número total de protones más neutrones en el átomo, se denomina NUMERO DE MASA.(M)

Estructura Atómica Moderna

Algunos de los isótopos del átomo de carbono (C)

símbolo nº protones nº electrones nº neutrones

11C 6 6 5

12C 6 6 6

13C 6 6 7

14C 6 6 8

La Tabla Periódica > Importantes esfuerzos de observación y clasificación de

propiedades de los elementos, culminan en 1869 en el desarrollo de la tabla periódica

> Varios elementos exhiben fuertes similitudes, p. ej., Li, Na y K son todos metales muy reactivos. He, Ne y Ar son gases inertes. El arreglo en orden creciente de su N.A., muestra regularidades periódicas de sus propiedades.

Númeroatómico

Símbolo

gas inerte metal gas inerte metal gas inerte metal muy reactivo muy reactivo muy reactivo

El arreglo de elementos en orden creciente de Z con elementos teniendo propiedades similares ubicadas en columnas verticales, se conoce como:

Tabla Periódica Moderna

Metal

Metaloide

No metal

Número atómico

Nombre SímboloPeriodo,Grupo

Masa atómica(g/Mol)

Densidad(g/cm³)a 20°C

Fusión (°C)

Ebullición (°C)

Año de sudescubrimiento

Descubridor

1 Hidrógeno H 1, 11.00794(7)(2) (3) (4) 0.084 g/l -259.1 -252.69 1766 Cavendish

2 Helio He 1, 184.002602(2)(2) (4) 0.17 g/l -272.2 -268.9 1895

Ramsay y Cleve

3 Litio Li 2, 16.941(2)(2) (3) (4) (5) 0.53 180.5 1317 1817 Arfwedson

4 Berilio Be 2, 2 9.012182(3) 1.85 1278 2970 1797 Vauquelin

5 Boro B 2, 1310.811(7)(2) (3) (4) 2.46 2300 2550 1808

Davy y Gay-Lussac

6 Carbono C 2, 14 12.0107(8)(2) (4) 3.51 3550 4827 PrehistoriaDesconocido

7 Nitrógeno N 2, 15 14.0067(2)(2) (4) 1.17 g/l -209.9 -195.8 1772 Rutherford

8 Oxígeno O 2, 16 15.9994(3)(2) (4) 1.33 g/l -218.4 -182.9 1774Priestly y Scheele

9 Flúor F 2, 17 18.9984032(5) 1.58 g/l -219.6 -188.1 1886 Moissan

10 Neón Ne 2, 18 20.1797(6)(2) (3) 0.84 g/l -248.7 -246.1 1898Ramsay y Travers

11 Sodio Na 3, 122.98976928(2)

0.97 97.8 892 1807 Davy

12 Magnesio Mg 3, 2 24.3050(6) 1.74 648.8 1107 1755 Black

13 Aluminio Al 3, 13 26.9815386(8) 2.70 660.5 2467 1825 Oersted

14 Silicio Si 3, 14 28.0855(3)(4) 2.33 1410 2355 1824 Berzelius

15 Fósforo P 3, 15 30.973762(2) 1.82 44 (P4) 280 (P4) 1669 Brand

16 Azufre S 3, 16 32.065(5)(2) (4) 2.06 113 444.7 PrehistoriaDesconocido

17 Cloro Cl 3, 1735.453(2)(2) (3) (4) 2.95 g/l -34.6 -101 1774 Scheele

18 Argón Ar 3, 18 39.948(1)(2) (4) 1.66 g/l -189.4 -185.9 1894Ramsay y Rayleigh

19 Potasio K 4, 1 39.0983(1) 0.86 63.7 774 1807 Davy20 Calcio Ca 4, 2 40.078(4)(2) 1.54 839 1487 1808 Davy

¿Qué es periodicidad?

Configuración ElectrónicaPrincipio AUFBAU O de construcción

Para construir la configuración electrónica de un átomo se siguen las siguientes reglas:

1) Principio de mínima energía.

Los electrones se irán añadiendo a orbitales en el sentido de menor a mayor energía de los mismos.

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s<5f<6d<7p

Regla del serrucho (basada en el Diagrama de Moeller)

Otra forma de visualizar la regla del serrucho

Orbitales

2) Principio de exclusión de Pauli.

En 1925 el Físico Wolfgang Pauli enuncio el principio de exclusión según el cual en un átomo no puede haber dos electrones cuyos números cuánticos sean todos iguales, es decir, cada orbital acepta como máximo dos electrones, que deben tener espines contrarios.

3) Principio de máxima multiplicidad de Hund.

Esta regla establece que los electrones de un determinado subnivel de energía no se aparean en un orbital hasta que todos los orbitales del subnivel tengan por los menos un electrón cada uno. Los electrones apareados tendrán espín opuesto, pero los no apareados tienen el mismo espín.

La Tabla Periodica: propiedades > Los elementos en una columna de la tabla se conocen como un grupo y,

de acuerdo a la IUPAC (International Union of Pure and Applied Chemistry), la nueva convención numera los grupos de 1 a 18 sin designaciones adicionales de A o B.

> Los elementos de un mismo grupo exhiben similitud en sus propiedades físicas y químicas. Algunos grupos presentan un nombre específico:

Grupo Nombre Elementos

1A Metales alcalinos Li, Na, K, Rb, Cs, Fr

2A Metales alcalino-terreos Be, Mg, Ca, Sr, Ba,Ra

6A Calcógenos O, S, Se, Te, Po

7A Halógenos F, Cl, Br, I, At

8A Gases nobles (o raros) He, Ne, Ar, Kr, Xe,Rn

Moléculas y Compuestos Moleculares

> Sólo los elementos de gases nobles se encuentran en la naturaleza como átomos aislados. La mayoría de la materia se compone de moléculas o iones, los cuales a su vez estan formados de átomos.

> Una molécula es una unión de dos o más átomos estrechamente enlazados unos a otros.

> A resultas de la unión, el ensamble de átomos se comporta como una única entidad de propiedades diferentes.

Moléculas y Compuestos Moleculares> Moléculas elementales. Dos o más átomos de la misma clase se combinan entre

sí. Un caso típico lo constituye el oxígeno, cuyas fórmulas son:

O2 : oxígeno “normal”, esencial para la vida, gas incoloro e inodoro;

O3 : ozono, tóxico, de olor picante e irritante de las mucosas.

> Los elementos más comunes que existen como moléculas diatómicas son:

H2 N2 O2 F2

Cl2 Br2I2

5A 6A 7A

Compuestos moleculares> Compuestos moleculares. Contienen más

de un tipo de átomos : por ej., la molécula de agua:

H2O : combinación de 2 átomos de H y 1

átomo de O, o bien;

H2O2 : Hidrógeno y Oxígeno en diferente

proporción relativa.

> Algunas moléculas comunes simples se presentan en el esquema. Es importante observar que:

> La composición de cada compuesto esta dada por su fórmula química;

> Las sustancias aquí mostradas se com-ponen de elementos no-metálicos.

Agua, H2O

Monóxido decarbono, CO

Ozono, O3

Metano CH4

Peróxido dehidrógeno, H2O2

Oxígeno, O2

Dióxido de carbono, CO2

Etileno C2H4

Moléculas y Compuestos Moleculares> Fórmula Molecular: Indica el número y tipo real de átomos en la

molécula. Las fórmulas anteriores son moleculares. Los subíndices son siempre multiplos enteros de los subíndices de las fórmulas empíricas correspondientes.

> Fórmula Empírica: Indica sólo el número relativo de átomos de cada tipo en la molécula. Aquí, los subíndices indican siempre la relación de números enteros más pequeña.

Fórmula Molecular Fórmula Empírica

H2O2 HO

C2H4 CH2

Moléculas y Compuestos Moleculares> Fórmula Estructural: Muestra qué átomos estan unidos a cuales dentro

de la molécula. Las líneas entre los símbolos de los elementos representan las uniones químicas entre átomos.

> Una fórmula estructural no exhibe la geometría real de la molécula, esto es, los ángulos verdaderos a los cuales están unidos los átomos. Sin embargo, se puede representar como un dibujo en perspectiva para dar un sentido tridimensional.

Agua Peróxido de hidrógeno Metano

Representaciones Moleculares

estructural

perspectiva

modelo

esferas

Iones y Compuestos Iónicos

El núcleo de un átomo permanece inalterado en los procesos químicos, pero el átomo puede ganar o perder electrones con facilidad originando partículas cargadas denominadas IONES. Si la carga es positiva se llama CATION, si la carga es negativa se llama ANION.

Sea, por ejemplo, el átomo de sodio:

Ahora, el átomo de cloro:

pierde un

gana un

electron

electron

átomo de Na ion de Na+

átomo de Cl ion de Cl-

Iones y Compuestos Iónicos> En general, los átomos de metales pierden electrones con facilidad y

los átomos de los no metales tienden a ganar electrones.

Dé el símbolo químico completo de: a) un ion con 26 p, 30 n y 24 e –; b) el ion fósforo con 16 n y 18 e –.

a) El elemento con 26 p (nº atómico = 26) es: Fe, cuyo nº de masa = 26 p + 30 n = 56. Hay 2 cargas (+) en exceso, por tanto, la carga neta del ion es 2+ . El símbolo completo será:

b) El P tiene un nº atómico de 15, luego entonces tiene 15 p, y un nº de masa de (15 p + 16 n) =31. Tiene además una carga neta de 18 e – - 15 p = 3 e –,o sea 3- , así que el símbolo será:

2656Fe2

1531P3

Iones y Compuestos Iónicos

> Iones Poliatómicos.- Consisten de átomos unidos como en una molécu-la, pero con una carga neta positiva o negativa, p. ej.:

> ¿Cómo se predicen las cargas ionicas?Se parte de la idea de que la ganancia o pérdida de electrones conduce a un átomo a adquirir una configuración de gas noble, como en el caso del Na y del Cl.

(NO3 )- o (SO4 )2

Iones y Compuestos IónicosLa tabla periodica es una herramienta útil para recordar las cargas de los iones, en especial los de los extremos de la misma.

Metales de transición

Metales alcalinos (+1)

Metales alcalinos (+2)

Halógenos (-1)

Calcógenos (-2)

gases nobles

Iones y Compuestos IónicosCompuestos iónicos.- Aquellos que contienen iones cargados positivamen-

te y iones cargados negativamente.

De la composición podemos saber, frecuentemente, si es compuesto iónico (constituido por iones) o molecular (constituido por moléculas).

Atomo de Naneutro

Atomo de Clneutro

pierde un electron

gana un electron

Iones y Compuestos Iónicos

En general, los metales forman catiónes y los no-metales aniónes. Por tanto, los compuestos iónicos son en general combinaciones de metales y no-metales (p.ej. NaCl), en tanto que los moleculares se componen en general únicamente de no-metales (H2O).

> ¿Qué especies se espera sean iónicas?: N2O, Na2O, CaCl2 y SF4.

> ¿Qué especies se espera sean moleculares?: Cl2, FeS, PbF2 y P4O6.

Iones y Compuestos Iónicos

> Sólo se pueden escribir fórmulas empíricas para los compuestos iónicos, y si no estan en forma iónica, siempre son eléctricamente neutros, así que las cargas deberán estar balanceadas.

> ¿Cuáles son las fórmulas empíricas de los compuestos formados por los iones?: a) Al3+ y Cl- ; b) Al3+ y O2- ; c) Mg2+ y NO3

-

Orbitales de los átomos modelo cuántico

Tabla periódica circular