Metales, sus características, clasificación y modo de obtención

Preview:

Citation preview

MetalesINDUSTRIA Y PROCESOS DE MANUFACTURAKARLA CARBALLO VALDERRABANO

Características de los MetalesoEstado sólido a temperatura normal (excepto el mercurio)

oOpacos

oBuenos conductores eléctricos y térmicos

oBrillantes

oEstructura cristalina al solidificarse

oCapacidad para deformarse plásticamente

oForman aleaciones entre si o unidos a no metales

Pruebas mecánicasoEnsayo a Tensión en la Máquina Universal

oDureza ( Brinell, Rockwell, Vickers, Shore, etc.)

oTorsión

oFlexión

oImpacto (Charpy e Izod )

oFatiga (viga rotatoria)

oTenacidad a la fractura

oDilatación y conductividad térmica

oEfectos de la temperatura

oMaquinabilidad

oTemplabilidad

Ensayo a TensiónoMódulo de Elasticidad: Medida de rigidez

oEsfuerzo de Fluencia

oResistencia Máxima a la Tensión

oPorcentaje de alargamiento

oMétodo de corrimiento, compensación o desplazamiento.

Gráfica Esfuerzo-Deformación Unitaria de acero estructural A-36

Relación de Poisson Deformaciones

◦ Axiales◦ Laterales

Relación dentro del rango elástico

Entre 0.25 y 0.35

Módulo de rigidez o elasticidad a cortante

Dureza Capacidad para resistir una deformación permanente.

Método de resistencia a la penetración◦ Rockwell (HR)

◦ Bola de acero de 1/16” para materiales blandos ◦ Cono de diamante de 120° en la punta para materiales

duros. ◦ Más usado en la industria

◦ Brinell (HB o BHN)◦ Esfera de 10 mm de acero templado.◦ En laboratorios.◦ Resistencia a la Tensión en psi(acero)= 500 * BHN

◦ Vickers◦ Penetrador de forma prismática.◦ Mide la marca de la diagonal mayor.

◦ Escleroscópio Shore◦ Caída de un martinete de diamante de 2,3 g◦ Mide la altura del rebote.

Aceros Aleación de hierro y carbono (0.03-1.7%), Mn (1.65% ), Si (0.60%) y algo de P y S.

Clasificación AISI/ SAE◦ 4 dígitos

◦ 1: Elemento predominante de aleación◦ 1= carbón, 2= níquel, 3= níquel cromo, 4= molibdeno, 5= cromo, 6= cromo-vanadio, 8= triple aleación, y el 9= silicio-magnesio.

◦ 2: Porcentaje aproximado en peso del elemento del primer dígito.◦ 3 y 4: contenido de carbón en 0.01%

◦ AISI – Prefijos◦ B acero Bessemer ácido◦ C acero Siemens Martin básico◦ D acero Siemens Martin ácido◦ E acero de horno eléctrico, etc.

Aceros Clasificación ASTM:

◦ De aceros estructurales ◦ p/e: A-36: dúctil, soldable, 60% de viguetas, resistencia a fluencia de 36000psi

Clasificación ASTM-SAE◦ Prefijo UNS + Letra + 5 dígitos

◦ F hierro fundido◦ G aceros al bajo carbono y de baja aleación◦ K aceros especiales◦ S inoxidables,◦ T aceros de grado herramienta

Clasificación Aceros al carbón 90% del tonelaje total en la industria son aceros simples al carbono.

Bajo C◦ Hasta 0.30% C y 0.4% Mn◦ Fáciles de estirar, troquelar, embutir, maquinar y soldar◦ Utilizados como láminas o tiras, como CR y recocido. ◦ Carrocerías, línea blanca y alambres. ◦ No aceptan tratamientos térmicos.◦ Estructurales (hasta 0.3% C y a 1.5% Mn )◦ Perfiles o placas en forjas, tubos sin costura y calderas.

Clasificación Aceros al carbón Medio C

◦ De 0.30 a 0.55% C, y de 0.6 a 1.65% Mn. ◦ Piezas forjadas y mecanizadas como flechas, rieles, coples y cigüeñales◦ Mayor resistencia mecánica◦ Rolado en caliente ◦ Ductilidad y maquinabilidad◦ Con un ulterior tratamiento térmico.

Alto C◦ De 0.60 a 0.95% C◦ Excelentes propiedades al desgaste o para filos cortantes. ◦ Herramientas sencillas de corte (buriles, brocas, machetes), formones, resortes y equipo agrícola. ◦ Siempre con tratamiento térmico

Aceros Dulce

◦ Ha sido laminado, estirado o procesado en frío◦ De muy bajo contenido de C.

HR◦ Surtidos en placa, barra o perfil◦ Se reciben como sale del laminado

◦ Torcidos, con la cascarilla del decarburado y no son exactos dimensionalmente .

CR ◦ Barras estiradas a través de dados en frío en el acabado◦ A la medida nominal◦ Acabado pulido.◦ Por el estirado aumenta la resistencia.

Aceros Baja aleación y alta resistencia (HSLA)

◦ Resistencia mecánica y a la corrosión◦ Más baratos◦ Tratamiento especial= soldables y resistencia > ac. al carbono◦ Misma resistencia, más delgados◦ Para estructuras, vagones◦ 0.1-0.3% C y hasta 5% de contenido de aleación (Mo, Cr, Ti, Mn, Cu, Ni)

Aleados◦ Va, Mo, [Mn, Si, Cu]>ac. al carbono◦ Engranes de transmisión, ejes, baleros, cuchillos de corte

Aceros AISI 8620

◦ Dureza superficial y buenas propiedades de corazón◦ Aceptable profundidad de temple◦ No zonas no duras en parte cementada◦ Baja distorsión◦ Flechas estiradas, pasadores de pistón, bujes, piñones, engranes cementados.

AISI 4140◦ Buena penetración de temple◦ Estabilidad en caliente hasta 400°C◦ No fragilidad de revenido◦ Apto para fatiga y torsión◦ Cigüeñales, bielas, engranes, espárragos y tornillos (trabajo a 150-300°C: calderas, turbinas de vapor)

Aceros Grado herramienta

◦ Aleados◦ 0.6-1.3% C◦ Tratamientos térmicos◦ Condiciones extremas de trabajo, muy altas temperaturas o velocidades◦ Resistencia a impactos, desgaste y abrasión◦ Dados de forja, troquelado, extrusión, moldes de inyectoras, cuchilla de cizallas◦ HSS-alta velocidad

◦ Altos en tungsteno o molibdeno, con vanadio y algo de cobalto para mejorar dureza al rojo

Aceros Inoxidables

◦ Al menos 10.5% Cr, Ni y otros elementos◦ Capa de CrO2= brillantes, resistencia a herrumbre y oxidación◦ Algunos son muy duros, resistentes, resistentes a temperaturas extremas.◦ Tuberías y tanques de refinerías, fuselajes de aviones, equipos quirúrgicos, sustituir huesos rotos,

utensilios de cocina◦ Martensíticos

◦ Templables◦ 1% C, 4-6% Cr◦ Cuchillería, resortes, tornillos, baleros◦ Menos resistentes a corrosión

Aceros Inoxidables◦ Ferríticos

◦ Bajo de C pero 30% Cr◦ Trabajo en frío (estirado y troquelado)◦ Embutidos en utensilios de cocinas, molduras de autos, partes de motor a reacción.◦ Algunos son magnetizables

◦ Austeníticos◦ 70% del inoxidable◦ Contienen Cr y Ni, menos de 0.1% de C◦ Endurecimiento por trabajo en frío◦ Más soldables◦ Mejor ductilidad y tenacidad◦ No templables◦ No maquinables◦ Equipos de procesos químicos y alimenticios, turbinas de gas.◦ Alta resistencia a corrosión a altas temperaturas

Estructura del hierro aleado con carbono

Estados alotrópicos◦ Cúbica de cuerpo centrado (bcc)

◦ Duros y fuertes◦ 9 átomos◦ Hierro a temperatura ambiente (hierro α). Cr, Mo, Va, W

◦ Cúbica de cara centrada (fcc)◦ Hierro a 910°C (hierro γ)◦ 14 átomos◦ Metales dúctiles: Al, Ag, Cu, Au, Ni, Pb,

◦ Hexagonal compacta◦ 17 átomos◦ Be, Cd, Mg, Ti◦ Endurecimiento por trabajo en frío◦ No maleables ni dúctiles ◦ Frágiles

Fabricación de AcerosAlto horno

Minerales de Hierro

Gases obtenidos del coque◦ Amoniaco◦ Azufre◦ Aceites◦ Alquitranes

Alquitranes◦ Colorantes◦ Plásticos◦ Perfumes◦ Sulfas

Fabricación de Aceros Alto HornooDiámetro: 8 a 10 m y Altura superior de los 30 m

oDe lámina de acero con un forro de 3 a 5 pies de ladrillo y asbesto refractario de alta calidad.

oTiempo de vida dependiente de refractario

oIncluyeo Toberas: paso de aire (parte inferior). o Respiraderos para los gases de escape (parte superior)

o Tolvas redondas, cerradas por válvulas en forma de campana, para la carga en el horno

Fabricación de AcerosAlto Hornoo Coque- combustible (hasta 1650° para fundir el metal) y ayuda en el proceso de reducción (libera CO)

o Caliza –sustancia fundente y separador de escoria Funcionamiento continuo. o Inyección de aire caliente a 550° reduciendo consumo de coque un 70%o Presurización de los hornos.o Después de la segunda guerra mundialo Mejor combustión del coque y mayor producción de hierro (hasta 25%)

o Alimentación por intervalos de 10 y 15 minutoso Sangrado de hierro cinco veces al día (orificio al fondo)o Retiro de escoria cada dos horas (por arriba del sangrado)o Por cada tonelada de hiero se produce ½ de escoia

Fabricación de Aceros Arrabio o hierro crudo

Poca calidad: duro y frágil

Composición:◦ 92% de hierro◦ 3-4% de carbono◦ 0,5-3% de silicio◦ 0,25- 2,5% de manganeso◦ 0,04-2% de fósforo◦ Algunas partículas de azufre.

Producto de la fusión primaria del hierro

Materia prima de los hierros y aceros comerciales.

Fabricación de Aceros Reducción directa del material

Agentes reactivos reductores ◦ gas natural, coque, aceite combustible,

monóxido de carbono, hidrógeno o grafito.

Proceso (HYL)◦ Triturar la mena de hierro ◦ Paso por un reactor con los agentes reductores,

eliminando elementos no convenientes para la fusión.

◦ Produce hierro esponja: pelets de hierro

Fabricación de Aceros Refinación

Fabricación de Aceros Horno de hogar abierto o Siemens-Martin

Flama directa sobre la carga: horno de reverbero.

Combustible: gas, brea o petróleo

Chimeneas laterales:◦ Expulsar los gases ◦ Calientan al aire y al combustible (horno regenerativo)

Recubrimientos◦ Línea básica: Controla o elimina P, S, Si, Mn y C, más cara◦ Línea ácida: Controla C

Cada vez menos utilizado por costo y tamaño

Carga con arrabio (fundido o sólido) puro o con chatarra de acero

Fundición en 10h, con oxígeno menos de 7h

Fabricación de Aceros Horno Bessemer

Obsoleto

Forma de pera, refractario de línea básica o ácida

Carga: chatarra fría y arrabio derretido

Inyección de aire a alta presión=eleva temperatura y el hierro hierve

Acero de regular calidad

Fabricación de Aceros Horno básico de Oxígeno

El más utilizado

Parecido al Bessemer pero inyecta oxígeno de alta pureza a 180 psi cerca del nivel de carga

Carga: arrabio fundido y hasta 30% chatarra

Temperatura hasta 1650°

Aceros de la mejor calidad, p/e: acero para herramientas

Ciclo completo 50 minutos, produce 300 toneladas por horneada

Fabricación de Aceros Horno de arco eléctrico

Chatarra de acero de alta calidad

Fusión de aceros para herramientas, alta calidad, resistentes a la temperatura e inoxidables.

Recubrimiento de ladrillo de línea básica

Inyección de oxígeno con lanza.

115 ton- 3 hrs – 50 000 kwh

3 electrodos de grafito a 40 V y 12000 A

Crisol de acero y bóveda sostenida por cincho de acero enfriado con agua

Industrias pequeñas y medianas.

Fines determinados p/e: varilla corrugada

Fabricación de Aceros Desoxidación

Eliminar sopladuras de CO, CO2, H y N en la solidificación.

Parcial: Acero agrio o efervescente para laminados finos y línea blanca

Con Aluminio y Ferromagneso en el horno: Acero calmado o apagado: mejores características

Ferromagneso en horno, ferrosilicio en caldero y aluminio en lingote: acero semicalmado parcialmente desoxidado, bordeado con soplete.

Fabricación de Aceros Colada continua

El metal fundido en moldes = planchones (palanquillas para solera, cuadrados o rendondos)

Lingotes (cilindros de diferentes extremos) o lupias (lingotes con secciones rectangulares) de diferentes tamaños

Rolado: paso de material por rodillos, aplicando presión para dar la forma.

Colada continua◦ Dosificar material fundido a un molde debajo de un crisol.◦ Molde enfriado por sistema de agua, pasa el metal fundido, se convierte pastoso y

adquiere la forma.◦ Serie de rodillos lo conforman y arrastran al exterior◦ Forma de planchón o bilet◦ Corte y almacenamiento◦ Para material de sección constante: perfiles, varillas, barras, láminas o placas

Fabricación de Acero

Fundición Gris (Hierro Colado) 2.6-4% C o hasta 6.67%

Color a la fractura

Es frágil y de baja ductilidad

Moldeado con facilidad

Maquinado en seco y soldadura eléctrica y autógena no muy difícil.

Buena resistencia a la compresión, unas 4 veces su resistencia a tensión.

Poroso

Capacidad de amortiguación: bancadas y armaduras sujetas a vibración y engranes grandes.

Resistencia a la fricción por deslizamiento: cojinetes planos de alta carga y baja velocidad

Horno de Cubilote Fundición de hierros colados.

Tubo de más de 4 metros de longitud y 0.8-1.4 m de diámetro

Carga con camas de chatarra de hierro, coque y piedra caliza o con pelets de mineral de hierro o pedacería de arrabio sólido.

Inyección de aire con ventiladores de alta presión por toberas en la parte inferior.

20 ton cada 3 hrs

Parecido al alto horno

Equipo de control de emisiones muy costoso- no se controla – operación desautorizada

Fundición blanca Enfriado bruscamente al fundir

Extremadamente dura (500 HB)

Casi imposible maquinarlo

Rodillos de laminación, dados de extrusión.

Al mantenerla a 930°F por 40 hrs y se enfría lentamente hasta 704° se genera fundición maleable.

Pedales de frenos, soportes para motor, accesorios para tubería y partes de ferrocarriles

Fundición nodular o hierro dúctil Hierro fundido con un poco de magnesio o cerio en el cucharón.

Grafito libre forma esferas o nódulos en lugar de escamas como en el hierro gris-

Más dúctil, resistente, tenaz y menos porosa que la fundición gris

Resistente a corrosión.

Cigüeñales pequeños, pistones, engranes…

Aluminio Segundo metal más utilizado

Elevada proporción resistencia-peso: aviones, cohetes, vagones, automóviles…

Endurecimiento por precipitación ó envejecimiento.

Elevada conductividad térmica: utensilios de cocina y pistones de motores de combustión interna.

63% de la conductividad eléctrica del cobre pero pesa menos de la mitad

Usado con propósitos estructurales y ornamentales.

Aislantes.

Fácil moldeo.

Resistencia a la corrosión al agua de mar: mecanismos acuáticos.

Obtenido maquinado (velocidades moderadas, buen refrigerante y herramientas afiladas), extruído, vaciado, forjado, laminado, estampado,…

Mala resistencia a desgaste y baja resistencia a la fatiga

Producción de Aluminio (Bayer) Bauxita de minas de depósito abierto, se pulveriza y somete a espumado.

Digestor con sosa cáustica bajo presión y alta temperatura.

Se forma aluminato de sodio

Las impurezas se filtran y el licor con alúmina se bombea a depósitos.

Se agregan cristales de hidróxido de aluminio (simientes que van creciendo).

Hidróxido de aluminio se calcina arriba de 900°C.

Alúmina producto de los hornos de calcinado

Procesado en tinas electrolíticas con un baño de ciolita (fluoruro de aluminio sódico)◦ Ánodo = electrodo de carbón, cátodo= tina

Aluminio metálico

Moldeo y procesado en hornos de concentración para hacer Al de alta calidad

Cobre, latón y bronce Elevada conductividad del calor y electricidad: Uso más común en la industria eléctrica

Resistencia a la corrosión: uso en plomería

Maleabilidad y ductilidad

Aproximadamente 250 aleaciones de cobre.

Latón.- Cu y 5-10% Zn◦ Más duro, es dúctil y puede forjarse en planchas finas.◦ Piezas mecánicas: levas, poleas, vástagos, tuercas y varillas aleadas para soldadura autógena.

Bronce◦ Cobre, Estaño + Zn, Pb y otros◦ Resistente al desgaste y poroso◦ Piezas fundidas de válvulas, bielas, engranes, cojinetes planos◦ Bronce al aluminio, al manganeso, al berilio, al fósforo

Obtención del cobre Mineral calco pirita (Cu, S, Fe)

Mezclada con cal y materiales silicos y pulverizados

En tinas estratificadoras, el mineral es extraído al flotar con la espuma que viene de una mezcla agitada de agua y aceite

El mineral pasa por un horno de tostado para eliminar azufre

De los polvos de los gases producto se obtiene plata, antimonio y sulfuros

Los concentrados son derretidos en horno de reverbero, eliminando la escoria de hierro

Se obtiene ganga, es introducido al convertidor Bessemer, y sus gases se usan para obtener ácido sulfúrico

Vaciado = cobre Blister (98%)

Refinado por métodos electrolíticos

Recommended