63
Diseño Materiales Sustentabilidad y Cuerpo Académico 381_Innovación Tecnológica para el Diseño Alberto Rossa Sierra, Dr. Ing.

Materiales y sustentabilidad 2013

Embed Size (px)

DESCRIPTION

Presentación para la UdeG donde se expone la importancia del conocimiento de materiales y sustentabilidad para el diseño de productos

Citation preview

Page 1: Materiales y sustentabilidad 2013

DiseñoMaterialesSustentabilidad y

Cuerpo Académico 381_Innovación Tecnológica para el DiseñoAlberto Rossa Sierra, Dr. Ing.

Page 2: Materiales y sustentabilidad 2013

Nuevas tecnologías

Nuevos materialesEstructuraFunciónCompuestosMulti-materiales

Nuevos procesosFormadoUniones

Superficies

Nuevos productosMenor pesoMenor costoMayor ciclo de vidaNuevas funcionesMenor impacto ambientalApariencia visualApariencia táctil

El rol de la ciencia

Page 3: Materiales y sustentabilidad 2013

Briefing de diseño

Concepto

Desarrollo

Detalle

Especificaciones del producto

Producción, Uso y Residuo

Pro

ceso

de

dise

ño

100,000 materiales

Límites en atributos mecánicos, térmicos y otros:10-50 materiales

De acuerdo a su desempeño reducir una lista corta5-10 materiales

Prototipado virtual y real, AEF, CAD y modelos físicos

1 o 2 materiales

Dise

ño

técn

ico

100,000 materiales

Estética deseada, percepciones y asociaciones10-50 materiales

Exploración en colecciones de muestras y en otros productos5-10 materiales

Prototipado de superficies en renders 3D, prototipado rápido, modelos tradicionales

1 o 2 materiales

Dise

ño

ind

ustrial

Materiales en el proceso de diseño

Page 4: Materiales y sustentabilidad 2013

CompositesSandwiches

HíbridosEstructuras segmentadas

Espumas

PE, PP, PETPC, PS, PEEKPA (nylons)

PolímerosPoliéstersFenólicosEpóxicos

IsoprenoNeopreno

Caucho natural

ElastómerosCaucho sintético

SiliconasEVA

Cristales de sodaBorosilicatos

CristalesCristal sílico

Cristales-cerámicos

AluminasCarburos de silicio

CerámicosNitritos de silicio

Zirconias

AceroAleaciones de AlCaucho natural

MetalesAleaciones de Cu

Aleac. de ZnAleac. de Ti

Menú de materiales

Page 5: Materiales y sustentabilidad 2013

Clasificación de materiales (Di)

Materiales metálicos (Acero hierro,fundición, aluminio, estaño, plomo, etc.)

Materiales pétreos y cerámicos No aglomerantes (Rocas, arena, grava) Aglomerantes (Cemento, yeso, mortero, hormigón) Cerámicos (Arcilla, barro, loza, refractario, gres y porcelana) Vidrio

Fibras textiles Vegetal (Algodón, lino, papel) Animal (lana, seda, cuero) Mineral (Amianto, oro, plata, cobre) Sintéticas (Rayón, lycra)

Madera Dura (Haya,roble, cerezo, caoba) Blandas (Pino, abeto, chopo) Prefabricadas (Contrachapado, aglomerado, MDF) Celulósicos (Papel, cartón, cartulina) Corcho

Plásticos Termoplásticos (PET, PVC, PE, PS, PMMA, etc.) Termoestables (PU, Melamina) Elastómeros (TPO, caucho, látex)

Compuestos (Fibra de vidrio, ablativos)

Page 6: Materiales y sustentabilidad 2013

Clasificación de materiales

Clasificación de materiales basada en el una concepción científica de la naturaleza de los átomos que contienen y la cohesión entre ellos. La columna final muestra una lista de posibles atributos para un material específico

Familia

MetalesPolímerosCerámicosComposites

Clase

ElastómerosTermoplásticosTermoestables

Miembro

ABSPoliamidaPolicarbonatoPolietilenoPolipropilenoPoliestirenoPoliuretanoPTFEPVC

Perfil técnico

Propiedades físicasPropiedades mecánicasPropiedades térmicasPropiedades eléctricasPropiedades ópticasEco-propiedadesPropiedades de procesoPropiedades acústicasPropiedades tactiles

Page 7: Materiales y sustentabilidad 2013

Caracterización del PP

Propiedades físicasDensidad, kg/m3

Propiedades mecánicasMódulo elástico, GPaMódulo a cedencia, MPaMódulo a tracción, MPaMódulo a compresión, MPaElongación, %Límite de fatiga, MPaDureza, Vickers

Propiedades térmicasTemperatura máxima de uso, ºCConductividad térmica, W/m*CExpansión térmica, /C*10-6

Temperatura de molde, ºC

Propiedades eléctricasConstante dieléctricaPérdida dieléctrica, %Resistencia, ohm*cm

900-910

1.14-1.5531-3533-3637-45100-35010-1111-159.2-11

90-1050.11-0.12145-180210-250

2.2-2.30.05-0.083.1022-3.1023

Page 8: Materiales y sustentabilidad 2013

Fecha

Imp

ort

anci

a re

lati

va

Metales

Polímeros y elastómeros

Cerámicos yvítreos

Compuestos

Oro

Cobre

Bronce

Hierro

Acero

Aleaciones de acero

Aleaciones ligeras

Super aleaciones

TitanioZirconiaetc

Metales cristalinosAl-Li

Aceros de fase dualAceros microaleados

Nuevas super aleaciones

Lento desarrollo:Mejora en la calidad,control y procesamiento

MaderaPielesFibras

Adhesivos

Caucho

Bakelita

Nylon

PE PCPMMA PS

PP

Acrílicos

Epóxis

Poliesteres

Pollímeros de alto módulo

Pollímeros de alta temperatura

Papel

GFRP

CFRP

Kevlar-FRP

Compuestos Metal-matriz

Compuestos Cerámicos

Piedra

Cerámica

Vidrio

Cemento

Refractarios

Cemento portland Sílica

fundidaPyro-cerámica

Cerámica de ingeniería

Evolución histórica de los materiales

Page 9: Materiales y sustentabilidad 2013

MaterialTimeline

From pre-historic times to the present National Academy of Engineering (US) and‘Lightness: The Inevitable Renaissance of Minimum Energy Structures’Ed van Hinte & Adriaan Beukers010 Uitgeverij, 1998

Source:

70 — INGREDIENTS NO. 2 INGREDIENTS NO. 2 — 71

Línea de tiempo de

uso de los materiales

De la prehistoria al presente

Metales

Madera

Otros naturales

Cerámicos

Vidrio

Plásticos

Composites

Importancia relativa

Fuente: Academia Nacional de Ingeniería (US)

Traducción: Alberto Rosa Sierra, CA_381, UdeG

Herramientas

de piedra

Terracota

Arcilla

Primeros textiles

Herramientas

de pedernal

Anzuelos

de hueso

Grasa

animal

Cobre

Latón

Oro

Loza de barro

500,000 AC 5000 AC 1000 AC 0 1000 1500

Carpintería

Concreto

Seda

Níquel

Bronce

Aceites

vegetales

Papiro

Cáñamo

Vidrio Hierro

Hule natural

Ladrillo

Chapa

Acero Carbón

Vidrio soplado

Pergamino

Plomo

Papel

Imanes

Porcelana

Mercurio

PetróleoLoza de China Yeso

Platino

Tungsteno

Molibdeno

1975 20001950192519001800

Grafito

Magnesio

Zirconia

Aluminio

TriplayCemento

Portland

Electromagnetos

Caucho vulcanizado

Plástico

sintético

Titanio

Baquelita

Fibra

sintética

Acero

inoxidable

Vidrio de

borosilicato

Caucho sintético

Poliestireno (PS)

Polietileno (PE)

Poliamida (PA)

Fibra de Vidrio

Super-aleaciones

basadas en Níquel

Poliesteres (PE)

PET

Acrílico

Aramidas

Siliconas

HDPE

Triplay

curvado

Plástico biodegradable

Plástico de

almidón (PLA)

Transistor molecular

Piel sintética

Nanotecnología

Imanes de tierras raras

SuperconductoresPoliuretano (PU)

Polipropileno

ABS

Aleaciones de

metales amorfos

Aleación NiTi

Vidrio flotado

Fibra de Ca

Cristal

de Silicio

Línea de tiempo de uso de materiales

Page 10: Materiales y sustentabilidad 2013

CHAPTER 1: Introduction: material dependence8

This perception has now changed: warning fl ags are fl ying, danger sig-nals fl ashing. The realization that we may be approaching certain funda-mental limits seems to have surfaced with surprising suddenness, but warnings that things can’t go on forever are not new. Thomas Malthus,

Date

100,000 BC

10,000 BC

1,000 BC

0 BC / AD

1000 AD

500 AD

1500 AD

1800 AD

1900 AD

1850 AD

1920 AD

1940 AD

1960 AD

1980 AD

2000 AD

Dependence on non-renewable materials0% 100%

Dependence on non-renewable materials0% 100%

Oil-based polymers displace natural fibers,

pottery and wood

Cast iron, steel displace wood and stone in

structures

The “dark ages” —little materialdevelopment

Start of theindustrial revolution

Concrete displaceswood in large structures

Metals become the dominant materials

of engineering

Total dependenceon renewable

materials

Near-totaldependence on non-renewable

materials

Copper, bronzedisplace bone and stone tools

Wrought irondisplaces bronze

Aluminum displaceswood in light-weight

design

MFA 08

Silicon-basedcommunication

controls all commerceand life

FIGURE 1.2 The increasing dependence on nonrenewable materials over time, unimportant when they are plentiful but an emerging problem as they become scarce.

Page 11: Materiales y sustentabilidad 2013

17

Ann

ual w

orld

pro

duct

ion

(ton

nes/

year

)

104

102

103

105

106

107

108

109

1010

1011

1012

Steel

Al-alloys

Zn alloysCu alloys

Pb alloys

Mg alloys

Silver

Wood

GlassBrickPE

PPPVC

C-fiber

Asphalt

Oil and coal

Ni alloys

Gold

Ti alloys

Concrete

PET

MFA 08

Man-madefibers

Naturalfibers

Metals Polymers Ceramics Other

FIGURE 2.1 The annual world production of 23 materials on which industrialized society depends. The scale is logarithmic.

Resou

rce consu

mption

Producción anual mundial de los principales 23 materiales de los que depende la sociedad industrializada. La escala es logarítmica

Metales Polímeros Cerámicos Otros

Prod

ucci

ón a

nual

mun

dial

(Ton

s/añ

o)Producción mundial de los materiales

Page 12: Materiales y sustentabilidad 2013

10-2

10-1

1

10

102

103

104

105

106

Precio por kg de materiales de ingenieríaP

reci

o d

el m

ater

ial p

or u

nid

ad d

e m

asa

($/k

g)

Diamante

Platino

Oro

Exóticos

Zafiro

Iridio

Berilio

PlataCFFP

Composites estructurales

GFRP

Nitrito-AlCarburo

Carburo de boro

Carburo de silicio

Cerámicas

técnicas y

vidrio

AluminaPyrexVidrio

PEEK

PTFE

Siliconas

Polímeros

Epoxies

Nylons

PMMA

EVA, PS

PP, PE

Aleac. de TiAleac. de Ni

Acero inoxidableAleac. de Mg.

MetalesAleac. de Al

AcerosHierros

VidrioAcero estructural

ConstrucciónLadrillo

Concreto

Petróleo

Combustibles

Carbón

Costo típico de los materiales estructurales

Page 13: Materiales y sustentabilidad 2013

10-2

10-1

1

10

102

103

104

105

106

Lentes de contacto

Válvula cardíaca

Aros de gafas

Biomedicos

Implante de cadera

Cepillo de dientes

Precio por kg de producto manufacturadoP

reci

o p

or k

g un

idad

de

mas

a ($

/kg)

Nave espacial

Avión militar

Aeroespacial

Avión comercial

Avioneta

Caña de pescar

Raqueta de badminton

Equipo deportivo

Raqueta de tenis

Palos de golf

Zapatos tenis

Skies

Laptop

Lámpara de escritorio ejecutiva

Electrodomésticos

Secador de pelo

Aspirador

Lavaropas

Refrigerador

Ferrari

Rolls-Royce

Automóviles

Minivan

Sedán

Subcompacto

Yate de lujo

Lancha rápida

Marinos

Bote

Plataforma

Hoja de metal

Vidrio

Envases

Plástico

PapelEdificio

inteligente

Casa particular

Construcción

Bodega

Parking

Costo típico de los materiales estructurales

Page 14: Materiales y sustentabilidad 2013

Interacción producto-medio ambiente

Incremento en la educación

Diseño industrialNuevas tecnologías

Reuso al alzaMas largo el ciclo de vida

Miniaturización

Nuevas funcionalidades

Mejora en el reciclaje Crecimiento poblacional

Incremento en el nivel de salud

Mejora en la calidad de vida

Consumo de energía

Gran requerimiento de nvos. materiales

Consumo de materiales

Page 15: Materiales y sustentabilidad 2013

Energía consumida en los productos

Producción Manufactura Uso Residuo

Silla sencilla de madera

Bicicleta

Automóvil sedán

Aspiradora Dyson

Page 16: Materiales y sustentabilidad 2013

Relación producción-energía

15

Resource consumption and its drivers

2.1 Introduction and synopsis

You can’t understand or reach robust conclusions about human infl uence on the environment without a feel for the quantities involved. This chapter

The Bingham Canyon copper mine in Utah, now 1.2 km deep and 4 km across, and a Caterpiller truck that is part of the excavation equipment. (Images courtesy of Kennecott Utah Copper.)

2.1 Introduction and synopsis

2.2 Resource consumption

2.3 Exponential growth and doubling times

2.4 Reserves, the resource base, and resource life

2.5 Summary and conclusion

2.6 Further reading

2.7 Exercises

CONTENTS

CHAPTER 2

15

Resource consumption and its drivers

2.1 Introduction and synopsis

You can’t understand or reach robust conclusions about human infl uence on the environment without a feel for the quantities involved. This chapter

The Bingham Canyon copper mine in Utah, now 1.2 km deep and 4 km across, and a Caterpiller truck that is part of the excavation equipment. (Images courtesy of Kennecott Utah Copper.)

2.1 Introduction and synopsis

2.2 Resource consumption

2.3 Exponential growth and doubling times

2.4 Reserves, the resource base, and resource life

2.5 Summary and conclusion

2.6 Further reading

2.7 Exercises

CONTENTS

CHAPTER 2

Page 17: Materiales y sustentabilidad 2013

Análisis del ciclo de vida (LCA)

39

The materials life cycle

CHAPTER 3

Image of casting courtesy of Skillspace; image of car making courtesy of U.S. Department of Energy EERE program; image of cars courtesy of Reuters.com; image of junk car courtesy of Junkyards.com.

CONTENTS

3.1 Introduction and synopsis

3.2 The material life cycle

3.3 Life-cycle assessment: details and diffi culties

3.4 Streamlined LCA

3.5 The strategy for eco-selection of materials

3.6 Summary and conclusion

3.7 Further reading

3.8 Appendix: software for LCA

3.9 Exercises 3.1 Introduction and synopsis

The materials of engineering have a life cycle. They are created from ores and feedstock. These are manufactured into products that are distributed and used. Like us, products have a fi nite life, at the end of which they become scrap. The materials they contain, however, are still there; some (unlike us) can be resurrected and enter a second life as recycled content in a new product.

Life-cycle assessment (LCA) traces this progression, documenting the resources consumed and the emissions excreted during each phase of life. The output is a sort of biography, documenting where the materials have been, what they have done, and the consequences for their surroundings.

Material

Manufacture

Use

Disposal

Resources

Manufactura

UsoMaterial

Disposición

Recursos

Page 18: Materiales y sustentabilidad 2013

sold, and used. Products have a useful life, at the end of which they are dis-carded, a fraction of the materials they contain perhaps entering a recycling loop, the rest committed to incineration or landfi ll.

Energy and materials are consumed at each point in this cycle, deplet-ing natural resources. Consumption brings an associated penalty of car-bon dioxide (CO 2), oxides of sulfur (SO x), and of nitrogen (NO x), and other emissions in the form of low-grade heat and gaseous, liquid, and solid waste. In low concentrations, most of these emissions are harmless, but as their concentrations build, they become damaging. The problem, simply put, is that the sum of these unwanted by-products now often exceeds the capacity of the environment to absorb them. For some the damage is local and the creator of the emissions accepts the responsibility and cost of con-taining and remediating it (the environmental cost is said to be internal-ized). For others the damage is global and the creator of the emissions is not held directly responsible, so the environmental cost becomes a burden on society as a whole (it is externalized). The study of resource consump-tion, emissions, and their impacts is called life-cycle assessment (LCA).

Materialproduction

Productmanufacture

Productuse

Productdisposal

Natural resources

CO2, NOx, SOx

ParticulatesToxic wasteLow grade heat

Emissions

Energy

Feedstocks

Transport

FIGURE 3.1 The material life cycle. Ore and feedstock are mined and processed to yield a mate-rial. This material is manufactured into a product that is used, and at the end of its life, it is discarded, recycled, or, less commonly, refurbished and reused. Energy and materials are consumed in each phase, generating waste heat and solid, liquid, and gaseous emissions.

The material life cycle 41

Recursos

Materia prima

Transporte

Energía

Recursos naturales Producción deMateriales

Manufactura deproductos

Uso de losproductos

DisposiciónfinalCO2 NOx SOx

PartículasBasura tóxicaCalor

Emisiones

Page 19: Materiales y sustentabilidad 2013

?

CHAPTER 9: Eco-informed materials selection200

Before starting, there’s something to bear in mind. There are no simple, single-answer solutions to environmental questions. Material substitution guided by eco-objectives is one way forward, but it is not the only one. It might sometimes be better to abandon one way of doing things (the IC engine vehicle, for example) and replacing it with another (fuel cell or electric power, perhaps). So, though change of material is one option, another is change of concept. And of course there is a third: change of lifestyle (no vehicle at all).

This book is about materials so, in Chapters 1 through 8, we stuck with them as the central theme. In this and the next two chapters we venture a little outside this envelope.

9.2 Which bottle is best? selection per unit of function

Drink containers coexist that are made from many different materials: glass, polyethylene, PET, aluminum, steel —Figure 9.1 shows them. Surely one must be a better environmental choice than the others? The audit of a PET bottle in Chapter 7 delivered a clear message: the phase of life that dominates energy consumption and CO 2 emission is that embodied in the material of which a product is made. Embodied energies for the fi ve mater-ials are plotted in the upper part of Figure 9.2 (a plot of CO 2 shows the same distribution). Glass has values of both that are by far the lowest. It would seem that glass is the best choice.

But hold on. These are energies per kg of material. The containers differ greatly in weight and volume. What we need are values per unit of function . So let’s start again and do the job properly, listing the design requirements. The material must not corrode in mildly acidic (fruit juice) or alkali (milk) fl uids. It must be easy to shape, and —given the short life of a container —itmust be recyclable. Table 9.1 lists the requirements, including the objective of minimizing embodied energy per unit volume of fl uid contained .

Glass PE PET Aluminum Steel

FIGURE 9.1 Containers for liquids: glass, polyethylene, PET, aluminum, and steel; all can be recycled. Which carries the low penalty of embodied energy?

Vidrio PE PET Aluminio Acero

Cuál de estos envases implicará menor gasto energético

Page 20: Materiales y sustentabilidad 2013

201

The masses of fi ve competing container types, the material of which they are made, and the embodied energy of each are listed in Table 9.2 . All fi ve materials can be recycled. For all fi ve, cost-effective processes exist for making containers. All but one —steel—resist corrosion in the mildly acidic or alkaline conditions characteristic of bottled drinks. Steel is easily pro-tected with lacquers.

Em

bodi

ed e

nerg

y (M

J/kg

)

100

Ene

rgy/

unit

vol (

MJ/

liter

)

10

0

200

50

150

0

2

4

6

8

PEPET

Stee

l

Gla

ss

Alum

inum

PE

PET

Stee

l

Gla

ss

Alum

inum

Energy per kg

Energy per liter

FIGURE 9.2 Top: the embodied energy of the bottle materials. Bottom: the material energy per liter of fl uid contained.

Table 9.1 Design requirements for drink containers

Function Drink container

Constraints Must be immune to corrosion in the drink Must be easy and fast to shape Must be recyclable

Objective Minimize embodied energy per unit capacity

Free variables Choice of material

Selection per unit of function

201

The masses of fi ve competing container types, the material of which they are made, and the embodied energy of each are listed in Table 9.2 . All fi ve materials can be recycled. For all fi ve, cost-effective processes exist for making containers. All but one —steel—resist corrosion in the mildly acidic or alkaline conditions characteristic of bottled drinks. Steel is easily pro-tected with lacquers.

Em

bodi

ed e

nerg

y (M

J/kg

)

100

Ene

rgy/

unit

vol (

MJ/

liter

)

10

0

200

50

150

0

2

4

6

8

PEPET

Stee

l

Gla

ss

Alum

inum

PE

PET

Stee

l

Gla

ss

Alum

inum

Energy per kg

Energy per liter

FIGURE 9.2 Top: the embodied energy of the bottle materials. Bottom: the material energy per liter of fl uid contained.

Table 9.1 Design requirements for drink containers

Function Drink container

Constraints Must be immune to corrosion in the drink Must be easy and fast to shape Must be recyclable

Objective Minimize embodied energy per unit capacity

Free variables Choice of material

Selection per unit of function

Energía por kg Energía por lt

Alumini

o

Alumini

o

Vidrio

Acero

Vidrio Ac

ero

Ener

gía/

unid

ad d

e vo

lum

en (M

J/lt)

Gas

to e

nerg

étic

o (M

J/kg

)

Tipo de contenedor

Botella PET 400 mlBotella PE 1 ltBotella vidrio 750 mlLata Al 440 mlLata acero 440 ml

Material

PETPE HDVidrio de sodaAl serie 5000Acero plano

Masa, gms

25383252045

Gasto energético MJ/kg848115.520832

Energía/litroMJ/lt5.33.86.79.53.3

Page 21: Materiales y sustentabilidad 2013

Hipócritas!!

Hipócritas!!

Page 22: Materiales y sustentabilidad 2013

ABS allows detailed moldings, accepts color well, and is nontoxic and tough .

Ecoproperties: material Annual world production *5.6 ! 106 – 5.7 ! 106 tonne/yr Reserves *1.48 ! 108 – 1.5 ! 108 tonne Embodied energy, primary production *91 – 102 MJ/kg CO 2 footprint, primary production *3.3 – 3.6 kg/kg Water usage *108 – 324 l/kg Eco-indicator 380 – 420 millipoints/kg

Ecoproperties: processing Polymer molding energy *10 – 12 MJ/kg Polymer molding CO 2 footprint *0.8 – 0.96 kg/kg Polymer extrusion energy *3.2 – 4.6 MJ/kg Polymer extrusion CO 2 footprint *0.31 – 0.37 kg/kg

Recycling Embodied energy, recycling *38 – 43 MJ/kg CO 2 footprint, recycling *1.39 – 1.5 kg/kg Recycle fraction in current supply 0.5 – 1 % Recycle mark

7Other

Typical uses. Safety helmets; camper tops; automotive instrument panels and other interior components; pipe fi ttings; home-security devices and hous-ings for small appliances; communications equipment; business machines; plumbing hardware; automobile grilles; wheel covers; mirror housings; refrig-erator liners; luggage shells; tote trays; mower shrouds; boat hulls; large com-ponents for recreational vehicles; weather seals; glass beading; refrigerator breaker strips; conduit; pipe for drain-waste-vent (DWV) systems.

Polymers 295

Acrylonitrile butadiene styrene (ABS)

The material. Acrylonitrile butadiene styrene, or ABS, is tough, resilient, and easily molded. It is usually opaque, although some grades can now be transparent, and it can be given vivid colors. ABS-PVC alloys are tougher than standard ABS and, in self-extinguishing grades, are used for the cas-ings of power tools.

Composition (CH 2 —CH— C 6 H 4 ) n

General properties Density 1010 – 1210 kg/m 3

Price 2.3 – 2.6 USD/kg

Mechanical properties Young’s modulus 1.1 – 2.9 GPa Yield strength (elastic limit) 18.5 – 51 MPa Tensile strength 27.6 – 55.2 MPa Elongation 1.5 – 100 % Hardness—Vickers 5.6 – 15.3 HV Fatigue strength at 10 7 cycles 11 – 22.1 MPa Fracture toughness 1.19 – 4.29 MPa.m 1/2

Thermal properties Glass temperature 88 – 128 °C Maximum service temperature 62 – 77 °C Thermal conductor or insulator? Good insulator Thermal conductivity 0.188 – 0.335 W/m.K Specifi c heat capacity 1390 – 1920 J/kg.K Thermal expansion coeffi cient 84.6 – 234 µ strain/ °C

Electrical properties Electrical conductor or insulator? Good insulator Electrical resistivity 3.3 ! 1021 – 3 ! 1022 µ ohm.cm Dielectric constant 2.8 – 3.2 Dissipation factor 0.003 – 0.007 Dielectric strength 13.8 – 21.7 106 V/m

CHAPTER 12: Material profiles294

RecoveryWaste, whether melt or used parts, consisting solely of Terlux® can berecovered, i.e. can be fed back to the process as regrind (cf. Repro-cessing, above). Depending on the age and wear of the used parts tobe mechanically recycled, certain properties may have changed. It istherefore important to check whether the recycled material is suitablefor the intended application.

C!smetics packa"in"

THePr

oCeS

SIngoFTe

rlu

Vacuum cleaner housing

!1

ABSacrilonitrilo-butadieno-estireno

Nueva caracterización de materiales

Page 23: Materiales y sustentabilidad 2013

257

and on the way it is governed. But Figure 11.6 provides some perspective: if all the countries plotted here could achieve the performance shown by France, global carbon emissions and energy consumption would fall by a factor of 2 straight away.

11.4 Gathering clouds: threats 6

Now back to forces for change. Figure 11.7 is the road map for this section and the next. The central spine represents the design or redesign process, moving from market need through the steps of development (including choice of material and process) to the specifi cation and ultimate production of products. The radial boxes summarize, on the left, some of the threats; those on the right, some of the opportunities.

Population. For most of the history of man the population has been small and rising only very slowly (Figure 1.3), but in the last 70 years of the 20th

FIGURE 11.7 Forces for change: threats on the left, opportunities on the right.

Concern-driveninfluences

Concern-driveninfluences

Opportunity-driveninfluences

Opportunity-driveninfluences

Approaching energy,water and food crisis

Marketneed

Materialsand design

New orredesigned

product

Global warmingand climate change

Diminishing land resources

Terrorism and national security

The population explosion

Increased wealthof nations

The digital economy

Predicitive modelling,anticipate, not react

Economics of carbon-free energy

Advancing scienceand technology

MFA 09

6 For full documentation and analysis of the facts listed in this section, see the book by Nielsen (2005) and the IPCC (2007) report listed under Further Reading.

Gathering clouds: threats

Page 24: Materiales y sustentabilidad 2013

Ok....y nosotros que podemos hacer ?

Page 25: Materiales y sustentabilidad 2013

Diseñar materiales?

Gracias al desarrollo de la tecnología es posible diseñar nuevos materiales....aunque no se necesita ser químico (ni premio nobel) para esta nueva frontera del diseño.

Page 26: Materiales y sustentabilidad 2013

Diseñar materiales?

Estrategia de diseño a través

de nuevos materiales

FUTURO

TENDENCIAS

ESCENARIOS

INNOVACIÓN

Page 27: Materiales y sustentabilidad 2013

Fuentes

Adaptación de otros ambientes/usos

Creación de nuevos compuestos

Nuevas aplicaciones a materiales conocidos

Reciclaje de materiales

Page 28: Materiales y sustentabilidad 2013

Adaptación de otros ambientes/usos

Page 29: Materiales y sustentabilidad 2013

Creación de nuevos compuestos

Eco-c1

Page 30: Materiales y sustentabilidad 2013

Nuevas aplicaciones a materiales conocidos

Page 31: Materiales y sustentabilidad 2013

Nuevas aplicaciones a materiales (poco) conocidos

Kenaf

Guadua

Page 32: Materiales y sustentabilidad 2013

Reciclaje de materiales

Alkemi

Page 33: Materiales y sustentabilidad 2013

Reciclaje de materiales

Bici-rug

Page 34: Materiales y sustentabilidad 2013

Kovalex

Reciclaje de materiales

Page 35: Materiales y sustentabilidad 2013

El Futuro de los Materiales

Nanomateriales

Inteligentes

Biomiméticos

Page 36: Materiales y sustentabilidad 2013

Nanomateriales

Nanotubos de carbón

E= 1,3 a 1,8 Tpa

Acero alta resistencia = 0.2Tpa

Page 37: Materiales y sustentabilidad 2013

Materiales inteligentes

Cierre craneal fabricado con material con memoria de forma (nitinol, Ni-Ti)

Page 38: Materiales y sustentabilidad 2013

38

Materiales inteligentes

Page 39: Materiales y sustentabilidad 2013

39

Materiales inteligentes

Page 40: Materiales y sustentabilidad 2013

Materiales inteligentes

Pintura absorvente de la radiación electromagnética, contiene microhilos magnéticos

Page 41: Materiales y sustentabilidad 2013

DEFAULT STYLES

BioMateriales

Obtención de material biocompatible a partir de la reacción de las proteinas globulares del plasma y un agente entrecruzante

Page 42: Materiales y sustentabilidad 2013

Para ir conociendo...

Lammax

Page 43: Materiales y sustentabilidad 2013

Para ir conociendo...

Hularo

Page 44: Materiales y sustentabilidad 2013

Para ir conociendo...

Corian

Page 45: Materiales y sustentabilidad 2013

Sifón PermaFlowABS+caucho sintéticoEvita el uso de destapa-caños

Page 46: Materiales y sustentabilidad 2013

46

Espuma de Al

Alusion©100% reciclablePuede ser post-formada usando calorDensidades variables

Page 47: Materiales y sustentabilidad 2013

47

Extrusión por impactoProceso desarrollado por Sigg©, 2004Tolera variaciones de espesores de paredesProducción rápidaBajo costo unitarioBajo costo de herramental

Page 48: Materiales y sustentabilidad 2013

Renault DesignAvantime, 2001Primer automovil comercial de carrocería de composite

Page 49: Materiales y sustentabilidad 2013

Philippe Starck2002, GF+PP

Page 50: Materiales y sustentabilidad 2013

Zirconia + Alumina

Más ligero que el acero50% más duro que el aceroQuímicamente inerteLa hoja se puede obtener por variedad de procesos

Page 51: Materiales y sustentabilidad 2013

Drip, Popsy, Silicone Zone, 2006, Silicona

Drip popsy, Silicone Zone2006, Silicona

Page 52: Materiales y sustentabilidad 2013

Black honey, Materialise2005, Epoxi

Page 53: Materiales y sustentabilidad 2013

Accoya©Madera especialpara exteriores50 años de vida

Page 54: Materiales y sustentabilidad 2013

54

Drivable grass©Fabricado de piezas de concreto de 2 x 2Flexible, se adapta a la topografía

Page 55: Materiales y sustentabilidad 2013

55

Armstrong© TierraPlafones bio-acústicosFabricados de plantas cosechadas a los 90 díasSin formaldehídos, diseñadas para reciclarse 100%

Page 56: Materiales y sustentabilidad 2013

56

Uruku™ Cosmet ic Packaging | Aveda Estée Lauder An unexpected materia l leads to an award-winning susta inable packaging

Fbased products that are healthy for consumers as well as for the planet. When it developed the Uruku line of makeup, inspired by the cosmetic practices of an indigenous South American tribe, the company was compelled to create a cosmetic packaging made entirely of recycled materials. Tsourcing a material that was visually appealing as well as compatible with Aveda’s sustainability requirements and existing injection and compression moulds. Until Allen re-envisioned it as lipsttubes and compact cases, the low-cost, post-industrial polypropylene our materials specialists recommended had been used primarily in outdoor applications such as decking. The vegetable that lent the polymer its strength also gave it a pleasing, earthy texture. Aappeal of organic cosmetics, the design also earned Aveda praise for its vanguard effort to lessen negative impact of cosmetic packaging on the environment. In 2003, the Uruku packaging won the International Package Design Award "Cosmetic Category Leader," given in conjunction with the Healtand Beauty America show. N

or over thirty years, Aveda has been providing the beauty industry with high performance, botanically

o find the right solution, Aveda’s design consultant Harry Allen asked Material ConneXion for help

ick

fibers

veda’s new packaging not only helped to broaden the company’s consumer-base and widen the the

h

eed help sourcing a sustainable material solution? Ask our experts >

Material ConneXion® 60 Madison Avenue, 2nd Floor, New York, NY 10010 T. 212-842-2050 F. 212-842-1090 www.materialconnexion.com Every Idea Has A Material Solution: New York · Bangkok · Cologne · Daegu · Milan

Uruku©PP de post-consumo con fibras naturalesTextura “terrenal”

Page 57: Materiales y sustentabilidad 2013

57

Espuma de AlNaoron ©RPF (Recycled PET Fiber), papel con textura de piel,fabricado usando la técnica “ washi-suki”, ya en fase comercial por ONAO, Co.

Page 58: Materiales y sustentabilidad 2013

Para ir conociendo...

02

materialexplorer.com

Page 59: Materiales y sustentabilidad 2013

59

Material

Other naturals

Country of origin

United States

Product code

ONA017

Sensorial

Glossiness Glossy

Translucence 0 %

Structure Open

Texture Coarse

Hardness Soft

Temperature Warm

Acoustics Moderate

Odeur None

Technical

Fire resistance None

UV Resistance Moderate

Weather resistance Moderate

Scratch resistance Moderate

Weight Light

Chemical resistance Poor

Renewable Yes

No rights can be claimed on the basis of this document. Materia and the manufacturers will not accept anyresponsibillity for information presented in this document and on the website www.materialexplorer.com andwww.materia.nl. All copyright on this information, e.g. texts, images, software, or information of any otherkind, belongs to Materia, and / or her suppliers. If you encounter an image that you believe belongs to you,or you own the copy right please contact us at [email protected]. Information from Materia, despite itsappearance, such as texts, images, software, or information of any other kind, may not be altered,reproduced or linked to without prior written authorisation from Materia.

Page 60: Materiales y sustentabilidad 2013

60

ecolect.com

Page 61: Materiales y sustentabilidad 2013

61

Page 62: Materiales y sustentabilidad 2013

A modo de conclusión

Aquí no hay conclusión.....

Hay una invitación a adentrarse al mundo de los materiales y desarrollar nuevas aplicaciones, o mejor aún nuevos materiales....

Page 63: Materiales y sustentabilidad 2013

Gracias por su atención