96
1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR: La respiración externa es la principal función del sistema respiratorio, esta se define como el proceso fisiológico por medio del cual los organismos vivos toman oxígeno del medio circundante (oxigenación) y desprenden dióxido de carbono hacia el mismo (ventilación). Este proceso fisiológico de intercambio de gases entre la atmósfera y el ser vivo requiere de la interacción armoniosa de todos los componentes que hacen parte del sistema respiratorio: pulmones, sistema nervioso central, vasos pulmonares, vía aérea superior e inferior, caja torácica y músculos. Finalmente, el sistema respiratorio interacciona con el sistema cardiovascular para el transporte de estos gases hacia y desde la célula. De esta manera se obtiene y transporta el oxígeno necesario para la producción de energía a nivel mitocondrial y se remueve el dióxido de carbono producto del metabolismo celular. 1.1.1. COMPONENTES DEL SISTEMA RESPIRATORIO: El sistema respiratorio está constituido por 5 componentes: pulmones, sistema nervioso central, vasos pulmonares, vía aérea superior e inferior, caja torácica y componente músculo- esquelético. A continuación se hace una descripción de cada uno de ellos haciendo énfasis en el papel que desempeñan durante los procesos de oxigenación y ventilación. 1.1.1.1. VÍAS AÉREAS: La función principal de las vías aéreas es la conducción de gases entre la atmósfera y los alvéolos pulmonares. Fisiológicamente, las vías aéreas se dividen en una zona de conducción denominada espacio muerto donde no hay intercambio gaseoso y en otra denominada zona de intercambio. En la primera se cumplen funciones importantes como olfación, fonación y adecuación de los gases inspirados. La zona de intercambio está conformada por los bronquíolos respiratorios, los conductos alveolares y el alvéolo pulmonar. En esta zona es posible el intercambio de oxígeno y de CO 2 entre la sangre capilar pulmonar y el espacio aéreo. A medida que la vía aérea avanza hacia el alvéolo se divide de manera dicotómica dando origen a ramas que se enumeran en términos de generaciones, siendo la generación cero la tráquea y la generación 23 el saco alveolar. La zona de intercambio está conformada por los bronquíolos respiratorios (generación 17 a 19), los conductos alveolares (generación 20 a 22) y el alvéolo pulmonar (generación 23 en adelante). En esta zona es posible el intercambio de oxígeno y de CO 2 entre la sangre capilar pulmonar y el espacio aéreo. Estas estructuras ofrecen una baja resistencia al paso de aire y brindan una amplia y extensa superficie para la difusión de los gases (50 a 100 m 2 ).

1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Embed Size (px)

Citation preview

Page 1: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR: La respiración externa es la principal función del sistema respiratorio, esta se define como el proceso fisiológico por medio del cual los organismos vivos toman oxígeno del medio circundante (oxigenación) y desprenden dióxido de carbono hacia el mismo (ventilación). Este proceso fisiológico de intercambio de gases entre la atmósfera y el ser vivo requiere de la interacción armoniosa de todos los componentes que hacen parte del sistema respiratorio: pulmones, sistema nervioso central, vasos pulmonares, vía aérea superior e inferior, caja torácica y músculos. Finalmente, el sistema respiratorio interacciona con el sistema cardiovascular para el transporte de estos gases hacia y desde la célula. De esta manera se obtiene y transporta el oxígeno necesario para la producción de energía a nivel mitocondrial y se remueve el dióxido de carbono producto del metabolismo celular. 1.1.1. COMPONENTES DEL SISTEMA RESPIRATORIO: El sistema respiratorio está constituido por 5 componentes: pulmones, sistema nervioso central, vasos pulmonares, vía aérea superior e inferior, caja torácica y componente músculo-esquelético. A continuación se hace una descripción de cada uno de ellos haciendo énfasis en el papel que desempeñan durante los procesos de oxigenación y ventilación. 1.1.1.1. VÍAS AÉREAS: La función principal de las vías aéreas es la conducción de gases entre la atmósfera y los alvéolos pulmonares. Fisiológicamente, las vías aéreas se dividen en una zona de conducción denominada espacio muerto donde no hay intercambio gaseoso y en otra denominada zona de intercambio. En la primera se cumplen funciones importantes como olfación, fonación y adecuación de los gases inspirados. La zona de intercambio está conformada por los bronquíolos respiratorios, los conductos alveolares y el alvéolo pulmonar. En esta zona es posible el intercambio de oxígeno y de CO2 entre la sangre capilar pulmonar y el espacio aéreo. A medida que la vía aérea avanza hacia el alvéolo se divide de manera dicotómica dando origen a ramas que se enumeran en términos de generaciones, siendo la generación cero la tráquea y la generación 23 el saco alveolar. La zona de intercambio está conformada por los bronquíolos respiratorios (generación 17 a 19), los conductos alveolares (generación 20 a 22) y el alvéolo pulmonar (generación 23 en adelante). En esta zona es posible el intercambio de oxígeno y de CO2 entre la sangre capilar pulmonar y el espacio aéreo. Estas estructuras ofrecen una baja resistencia al paso de aire y brindan una amplia y extensa superficie para la difusión de los gases (50 a 100 m2).

Page 2: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Al multiplicar cada uno de estos tres volúmenes por la frecuencia respiratoria en un minuto se obtiene respectivamente, la ventilación minuto, la ventilación del espacio muerto anatómico y la ventilación alveolar. Finalmente, es conveniente aclarar que en algunas circunstancias algunos segmentos de la zona de intercambio no pueden participar del intercambio gaseoso por presencia de alvéolos no funcionales o por disminución de su flujo sanguíneo. Por tanto, desde un punto de vista funcional, estos alvéolos deben considerarse como espacio muerto. Cuando el espacio muerto alveolar se incluye dentro del espacio muerto anatómico se denomina espacio muerto fisiológico.

Las vías aéreas dependen de un tono adecuado del músculo liso bronquial para que la resistencia al flujo de gases sea baja. Este tono resulta de la interacción de los sistemas nerviosos simpático y parasimpático; de manera que, el estímulo de los receptores B2 simpáticos en la vía aérea produce broncodilatación con disminución de la resistencia y el estímulo parasimpático por medio de receptores colinérgicos (o el antagonismo de los receptores B2 simpáticos) genera broncoconstricción y aumento de la resistencia al flujo de los gases.

Page 3: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

1.1.1.2. PULMÓN: El pulmón es un órgano que tiene la función de permitir que un volumen determinado de aire se ponga en contacto de manera transitoria e intermitente con la superficie de intercambio gaseoso. Para cumplir con esta función el pulmón posee dos características fundamentales: Una gran facilidad para deformarse (distensibilidad) y una gran capacidad para recuperar su forma inicial (elasticidad). En virtud de estas dos características y por acción de los músculos inspiratorios, el pulmón permite que un volumen determinado de aire lo distienda, entrando desde la atmósfera hasta el alvéolo para ponerse en contacto con la superficie de intercambio gaseoso. Luego, al suspenderse el estímulo inspiratorio y gracias a sus propiedades elásticas, el pulmón recupera su forma inicial expulsando el aire que lo distendía hacia la atmósfera. Éste fenómeno de entrada y salida de aire conforman el ciclo respiratorio o el ciclo de inspiración-espiración que se repite alrededor de 12 a 16 veces cada minuto en el sujeto adulto normal. La distensibilidad pulmonar está determinada por tres factores principales: primero por el volumen pulmonar, siendo inversamente proporcional a éste, es decir, entre más volumen tenga el pulmón más difícil será expandirlo y viceversa; segundo, por la presencia del surfactante pulmonar que logra disminuir la tensión superficial en el interior del alvéolo y de esta manera evita la tendencia natural de éste hacia el colapso; y finalmente, por la disposición geométrica de las fibras de elastina. 1.1.1.3. CIRCULACIÓN PULMONAR. Los pulmones tienen doble circulación: la bronquial y la pulmonar. La primera representa el 1% del gasto cardiaco y se origina en las arterias intercostales o directamente en la aorta por ello hace parte de la circulación sistémica originada en el corazón izquierdo e irriga al árbol traqueobronquial hasta el nivel de los bronquios respiratorios (generación 16). Además origina los vasa vasorum de las arterias pulmonares. Hecho importante debido a que la tensión arterial de oxígeno en éstos vasa vasorum es responsable en parte del tono arterial pulmonar, produciendo vasoconstricción por hipoxia moderda y vasodilatación pulmonar ante hipoxemia severa. A partir de la generación 17 en adelante, cada pulmón es irrigado por la circulación pulmonar a través de las arterias pulmonares derecha e izquierda que reciben la toda la sangre del corazón derecho. El drenaje venoso de los bronquios principales se realiza hacia las venas ázigos, hemiázigos y mediastinal. Los bronquios distales y el parénquima pulmonar drena su sangre a través de las venas pulmonares hacia la aurícula izquierda. La circulación pulmonar tiene las siguientes funciones: Primero, transporta la sangre desoxigenada desde el corazón derecho hasta el sitio de intercambio gaseoso a través de las arterias pulmonares. Segundo, produce una rica red capilar alrededor de los alvéolos lo que resulta en una amplia superficie de intercambio gaseoso. Y tercero, conduce la sangre oxigenada al corazón izquierdo por medio de cuatro venas pulmonares principales.

Page 4: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Por último, cabe resaltar el efecto gravitacional sobre el flujo sanguíneo del pulmón, el cual resulta en una mayor perfusión de las áreas basales o declives pulmonares y una menor irrigación de las áreas superiores o apicales. Este fenómeno tiene relevancia al observar que la distribución del flujo de aire en el pulmón sigue el mismo patrón, siendo mayor en las áreas declives y menor en las apicales lo que permite un acople excelente entre la ventilación y la perfusión pulmonar. 1.1.1.4. SISTEMA NERVIOSO CENTRAL Y PERIFÉRICO: El sistema nervioso central y periférico cumple con varias funciones: genera y transmite el estimulo para que se produzca la contracción de los músculos respiratorios, regula la frecuencia e intensidad de la contracción de éstos y regula el tono de los músculos lisos en la vía aérea y en los vasos pulmonares. El estímulo para la respiración se genera en el centro respiratorio que está conformado por tres grupos de neuronas a cada lado del tallo cerebral. Estos son: el grupo respiratorio dorsal que emite señales inspiratorias rítmicas, el centro neumotáxico que determina la frecuencia respiratoria al permitir una mayor o menor duración de la inspiración y el grupo respiratorio ventral que puede producir inspiración o espiración según las neuronas que sean estimuladas y que cobra importancia cuando se requiere aumentar la ventilación pulmonar.

Existe un cuarto grupo de neuronas que conforman el centro apnéusico cuya función es perpetuar el estímulo inspiratorio en cuyo caso los pulmones se llenan de aire casi por completo apareciendo breves y esporádicos jadeos espiratorios. Sin embargo, en condiciones normales el centro apnéusico es inhibido por el centro neumotáxico y sólo regula la profundidad de la inspiración. Además, existe un área quimiosensible situada en la superficie ventral del bulbo raquídeo que responde a cambios tanto de la presión de dióxido de carbono como de la concentración de

Page 5: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

hidrogeniones. Estas neuronas son mucho más sensibles a los iones hidrógeno que al dióxido de carbono, sin embargo, el hidrógeno difunde poco a través de la barrera hematoencefálica y por eso el dióxido de carbono se constituye en el principal estímulo químico de ésta área.

Finalmente, existe un control periférico de la respiración ejercido por el oxígeno a través de receptores quimiosensibles localizados en los cuerpos carotìdeos y aórticos. Los cambios en la presión arterial de oxígeno son censados en dichos quimiorreceptores y ésta información es enviada a través de los nervios vago e hipogloso hacia el centro respiratorio para aumentar la ventilación pulmonar. El sistema nervioso también participa en el control del tono del músculo liso bronquial para que la resistencia al flujo de gases sea baja. Este tono resulta de la interacción de los sistemas nerviosos simpático y parasimpático; en consonancia, el estímulo de los receptores B2 simpáticos en la vía aérea produce bronco dilatación con disminución de la resistencia y el estímulo parasimpático por medio de receptores colinérgicos (o el antagonismo de los receptores B2 simpáticos) genera bronco constricción y aumento de la resistencia al flujo de los gases. 1.1.1.5. COMPONENTE MÚSCULO ESQUELÉTICO: El componente músculo esquelético tiene la función de generar un gradiente de presión entre la atmósfera y el alvéolo lo que permite la entrada y salida de gases; este gradiente de presión se genera por la contracción muscular. En condiciones de reposo, existen dos fuerzas opuestas en el sistema respiratorio, una generada por la retracción elástica del pulmón que tiende hacia el colapso del pulmón y otra generada en la caja torácica que intenta expandirlo. Estas dos fuerzas encuentran su equilibrio cuando termina la espiración normal no forzada, es decir, cuando el pulmón está en su capacidad funcional residual. Los músculos inspiratorios se

Page 6: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

encargan de romper este equilibrio, aumentando la fuerza que se opone al retroceso elástico del pulmón haciendo que éste se expanda. El músculo inspiratorio más importante es el diafragma, al contraerse, el diafragma desplaza el contenido abdominal en sentido caudal y, en consecuencia, el diámetro vertical de la caja torácica aumenta. Además, los bordes de las costillas se levantan y se desplazan hacia fuera, haciendo que también aumente el diámetro transversal del tórax. Los músculos inspiratorios que le siguen en importancia son los intercostales externos que cuando se contraen, desplazan las costillas hacia arriba y adelante, aumentando los diámetros lateral y anteroposterior del tórax. Los músculos accesorios de la inspiración sólo participan cuando se requiere complementar la acción de los primeros. Estos músculos comprenden los escalenos que elevan las dos primeras costillas y los esternocleidomastoideos que elevan el esternón.

En conclusión, las fuerzas de contracción muscular logran cambiar las dimensiones de la caja torácica expandiéndola. Al expandirse, se genera una fuerza de distensión que se transmite a través del parénquima pulmonar hasta el alvéolo donde la presión cae por debajo de la presión atmosférica, generándose de esta manera una diferencia de presión suficiente para vencer la resistencia al flujo de aire en la vía aérea y permitir la entrada de gases hasta el alvéolo. Finalmente, cuando los músculos entran en reposo y predomina el retroceso elástico del

Page 7: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

pulmón, la presión intraalveolar será superior a la atmosférica y habrá salida de gases hacia la atmósfera. 1.1.2. INTERACCIÓN DE LOS COMPONENTES DEL SISTEMA RESPIRATORIO: FLUJO DE AIRE. Como se mencionó al principio, la función principal del sistema es la respiración externa; esto es, el intercambio de oxígeno y dióxido de carbono entre la sangre y la atmósfera denominados oxigenación y ventilación respectivamente. Sin embargo, para que esto suceda debe generarse una diferencia de presión entre la atmósfera y el alvéolo. Así, durante la inspiración la presión alveolar debe ser menor que la presión atmosférica para permitir la entrada de aire, lo cual se logra a través de un proceso activo de contracción muscular. Por el contrario, durante la espiración, la presión alveolar debe ser superior a la atmosférica para posibilitar la salida del gas, este proceso es pasivo y se realiza por medio de la retracción elástica del pulmón. Como punto de partida hay que tener en cuenta cuatro aspectos fundamentales: Primero, los gases fluyen desde un sitio de mayor presión a otro con menor presión. Segundo, en estado de reposo al abrir la boca, la presión en el alvéolo será igual a la presión atmosférica y por tanto, no existirá diferencia de presión para el flujo de aire. Tercero, el alvéolo por si mismo no puede expandirse, requiere la ayuda externa de los músculos inspiratorios. Cuarto, la expansión alveolar hace caer la presión en su interior por debajo de la atmosférica permitiendo el flujo de gas (ley de Boyle). A continuación se describen los fenómenos que explican las diferencias de presión entre alvéolo y atmósfera durante el ciclo respiratorio y que son el resultado de la interacción de cada uno de los componentes del sistema. El pulmón es una estructura elástica; de ahí que, si no existieran fuerzas que lo mantengan distendido este colapsa como un globo y elimina todo su aire a través de la tráquea. Por otra parte, al no existir uniones entre el pulmón y las paredes de la caja torácica, este flota en la cavidad torácica rodeado por una fina capa de líquido pleural que lubrica sus movimientos. Este líquido pleural es bombeado continuamente por los linfáticos, lo que genera una fuerza de succión entre las dos hojas pleurales (hoja visceral pulmonar y hoja parietal de la cavidad torácica) del orden de -5 cm de agua (lleva el signo menos por tratarse de una presión inferior a la atmosférica). Esta fuerza de succión hace que el pulmón esté en permanente contacto con la pared torácica cuando ésta se expande o se contrae. No obstante, West propone que la presión negativa intrapleural es el resultado de dos fuerzas que se oponen, la de la caja toráxica que ejerce presión hacia fuera y la del pulmón que ejerce presión hacia adentro. Como ya se ha descrito, existe normalmente una ligera succión que produce una presión negativa con un valor de -5 cm de agua suficiente para mantener los pulmones abiertos en su posición de reposo (capacidad funcional residual). Luego, durante la inspiración normal, la expansión de la caja torácica tracciona de la superficie de los pulmones con una fuerza mayor que produce una presión negativa de -7,5 cm de agua. Esta ganancia de presión negativa del orden de -2,5 cm es transmitida a través de todo el parénquima pulmonar (presión transpulmonar). Por fenómenos físicos esta presión es de -1 cm de H2O en el alvéolo, la cual es suficiente para producir la entrada de 500 ml de aire en cada inspiración. Después,

Page 8: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

durante la espiración el proceso se invierte; es decir, el retroceso elástico condiciona que la presión alveolar sea mayor que la atmosférica; en consecuencia, el flujo de aire sale del alveolo a la atmósfera. Ley de Boyle: A temperatura constante, la presión (P) de un gas varía inversamente con el volumen (V) o P1V1 = P2V2. Considere dos recipientes de diferente tamaño a los cuales se les introdujo una cantidad igual del mismo gas. En el recipiente más grande las moléculas del gas estarán más dispersas y distanciadas unas de las otras generando menor presión sobre las paredes del recipiente. En el recipiente más pequeño, las moléculas estarán mucho más juntas aumentando la velocidad de colisión sobre las paredes del recipiente lo que produce el aumento de presión en su interior. Ahora imagine que el recipiente es el alvéolo durante la inspiración (recipiente grande) y durante la espiración (recipiente pequeño). En el primer caso, las moléculas contenidas en el alvéolo estarán más dispersas, disminuyendo la presión dentro del mismo hasta niveles subatmosféricos y, por diferencia de presiones, el gas viajará desde el sitio de mayor presión al de menor presión, es decir, desde la atmósfera hasta el alvéolo. En el segundo caso, el volumen alveolar reducido por el retroceso elástico del pulmón durante la espiración hace que las moléculas de gas dentro del alvéolo estén más juntas. El aumento de presión intraalveolar resultante expulsa al gas hacia la atmósfera. A continuación se resumen la serie de eventos que se producen en el sistema respiratorio durante cada ciclo de inspiración – espiración. Tabla Eventos involucrados en una respiración normal (interacciones). Los pasos 4 a 8 (*) de la inspiración ocurren simultáneamente; y los pasos 3 a 5 de la expiración ocurren simultáneamente. Inspiración

1. El cerebro inicia el comando inspiratorio. 2. Los nervios transmiten el impulso a los músculos inspiratorios. 3. El diafragma (y los músculos intercostales externos) se contraen. 4. El volumen torácico se aumenta cuando la pared torácica se expande.(*) 5. La presión pleural cae a valores más negativos.(*) 6. La diferencia de presión entre la pleura y el alvéolo aumenta.(*) 7. Los alvéolos pulmonares se expanden en respuesta al aumento de esta diferencia.(*) 8. La presión alveolar cae por debajo de la presión atmosférica cuando aumenta el volumen alveolar, entonces establece un gradiente

de presión para la entrada de aire.(*) 9. El aire entra al alvéolo hasta cuando la presión alveolar nuevamente se equilibra con la presión atmosférica.

Espiración 1. El cerebro cesa el comando inspiratorio. 2. Los músculos inspiratorios se relajan. 3. El volumen torácico disminuye al hacerse menos negativa la presión pleural,(*) 4. Disminuye la diferencia de presión entre pleura y alvéolo, lo que permite un aumento del retroceso elástico retornando el alvéolo a

sus volúmenes preinspiratorios.(*) 5. La disminución del volumen alveolar aumenta la presión alveolar por encima de la presión atmosférica, entonces establece un

gradiente de presión para la salida de aire.(*) 6. El aire sale del alvéolo hasta cuando la presión alveolar se equilibra con la presión atmosférica.

Page 9: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

1.1.3. PROPIEDADES EMERGENTES DEL SISTEMA RESPIRATORIO: El resultado final de las interacciones de cada uno de los componentes del sistema respiratorio o propiedades emergentes más importantes de éste, son la oxigenación y la ventilación (el equilibrio ácido básico es otra propiedad emergente). Todos los componentes del sistema pulmonar interactúan con la finalidad de permitir la entrada de oxígeno de la atmósfera, la entrega de este al sistema cardiovascular para que lo transporte a la célula y la eliminación del dióxido de carbono producto del metabolismo celular a la atmosfera. Atrás analizamos que para cumplir con esta función el sistema respiratorio debe establecer una diferencia de presión entre el alvéolo y la atmósfera, y lo hace en condiciones normales disminuyendo la presión alveolar a niveles infra-atmosféricos. A continuación se describe en detalle y de manera separa los procesos de oxigenación y ventilación. 1.1.3.1. OXIGENACIÓN GLOBAL: UN VIAJE HASTA LA MITOCONDRIA. La oxigenación pulmonar es una de las propiedades emergente del sistema respiratorio; es decir, es una propiedad que “emerge cuando todos sus componentes interactúan”. Esta puede definirse como todos los procesos químicos y físicos implicados en la entrega de oxigeno a la célula, para ello, el sistema debe generar un gradiente de oxigeno entre el alvéolo y la sangre de los capilares para permitir la entrada de oxigeno desde el alvéolo a la sangre (hematosis). El oxigeno que difunde a través de la membrana alvéolo capilar es transportado a la célula por la hemoglobina y el sistema cardiovascular para que ocurra la oxigenación celular. Cuando hablamos de oxigenación global nos referimos tanto a la oxigenación pulmonar y celular como a los mecanismos implicados en el transporte de oxigeno desde la atmósfera hasta la célula. Este proceso es denominado por algunos autores como “la cascada del oxigeno”. Algunos autores denominan la oxigenación pulmonar y la oxigenación celular como respiración externa y respiración interna respectivamente. Los organismos unicelulares (de los reinos Protistas y Móneras) están en contacto directo con su medio externo y en la mayoría este es agua oceánica. Parece ser que por esto no tienen mecanismos respiratorios especializados sino que realizan el intercambio de oxígeno y dióxido de carbono por difusión a través de la membrana celular. La presión de oxígeno en el interior del organismo es menor que la del medio exterior (aéreo o acuático), mientras que la presión de dióxido de carbono es mayor. Como resultado, el oxígeno penetra en el organismo por difusión (a favor del gradiente de presiones) y el dióxido de carbono sale por el mismo sistema. La respiración de las plantas y las esponjas utiliza un mecanismo muy parecido. Pero, en los seres multicelulares como el hombre, las células están alejadas del medio externo rico en oxígeno y por ello, la evolución ha dotado a estos organismos de sistemas capaces de transportar este gas desde la atmósfera hasta la célula, éstos son los sistemas respiratorio y cardiovascular. Sin embargo, la descripción anterior resulta demasiado simplista para entender

Page 10: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

todo el fenómeno. Se trata de un proceso que inicia en la atmósfera, donde el oxigeno esta regido por las leyes de los gases, continúa a nivel alveolar donde debe mezclarse con el vapor de agua y el dióxido de carbono; luego el oxígeno debe atravesar la barrera alvéolo capilar cuyas características también determinan la facilidad del tránsito a través suyo, posteriormente debe viajar disuelto en la sangre y unido a la hemoglobina impulsado por la fuerza del corazón en cada contracción y finalmente debe atravesar la membrana celular para ser utilizado por la mitocondria en la síntesis de ATP. Todo este proceso esta regido por un principio común: la difusión del oxígeno desde un sitio de mayor presión hasta uno de menor presión. Así, la presión de oxígeno irá disminuyendo progresivamente en su recorrido desde la atmósfera hasta la mitocondria. En los siguientes párrafos se hará una descripción detallada de cada uno de los acontecimientos durante el viaje de una molécula de oxígeno desde la atmósfera hasta la mitocondria. 1.1.3.1.1. EL OXÍGENO EN EL GAS ATMOSFÉRICO: La atmósfera terrestre está compuesta por moléculas de gas que tienen masa y son atraídas hacia el centro de la tierra por la gravedad. En la superficie terrestre y a nivel del mar, las moléculas de gas atmosférico ejercen una presión suficiente para elevar una columna de mercurio a 760 mm de altura. Esta es la presión atmosférica a nivel del mar. La presión atmosférica total resulta de la suma de las presiones individuales de cada uno de los gases que conforman la atmósfera. Este fenómeno se entiende a través de la ley de Dalton que establece que en una mezcla de gases la presión total es igual a la suma de las presiones parciales de cada componente de la mezcla. El aire ambiente (aire atmosférico) es una mezcla de gases compuesta de un 20,84% de Oxígeno, un 78,62% de Nitrógeno, 0,04% de dióxido de carbono y un 0.5% de vapor de agua. La concentración de vapor de agua y de dióxido de carbono es tan baja que se desprecian, de manera que podemos considerar la composición atmosférica como 21% de Oxígeno y 79% de Nitrógeno. Si aplicamos la ley de Dalton a las moléculas que componen la atmósfera encontramos que la presión parcial de oxígeno al nivel del mar será el 21% de 760 mm Hg, es decir, 159,6 mm Hg y la presión parcial de Nitrógeno el 79% de 760 mm Hg, o sea, 600,4 mm Hg. Para fines prácticos seguiremos trabajando con los valores aproximados de estos resultados, 160 mm de Hg para el Oxígeno y 600 mm Hg para el Nitrógeno. Observe que la suma de las presiones parciales de estos dos gases es igual a la presión atmosférica total.

A medida que se asciende por arriba del nivel del mar, la columna de aire por encima de la superficie terrestre será más pequeña y la presión atmosférica resultante será menor (las presiones parciales de los gases atmosféricos descenderán de manera proporcional). Así, la presión atmosférica y la presión parcial de oxígeno pasarán de 760 mm Hg y 160 mm Hg a nivel del mar a 674 mm Hg y 141 mm Hg a los 1000 metros, 405 mm Hg y 85 mm Hg a los 5000 metros y a 198 mm Hg y 41 mm Hg a los 10.000 metros por encima del nivel del mar, respectivamente. Note la importante caída que sufre la presión parcial de oxigeno cuando pasamos desde el nivel del mar hasta los 5000 metros de altura. En estas condiciones, la

Page 11: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

disponibilidad de oxígeno es menor y el sistema respiratorio y cardiovascular tendrán que adaptarse para trabajar en una situación desfavorable. Recuerde que la entrada de gas es un fenómeno que obedece a la diferencia de presiones entre la atmósfera y el alvéolo, por lo tanto, la caída de la presión parcial de oxígeno con la altura hace que ingrese menos cantidad del mismo al alvéolo con cada inspiración; esto se compensa en condiciones normales aumentado la frecuencia respiratoria. Cuando se administra oxígeno al 100% con fines terapéuticos, cambiamos la composición de la atmósfera que respira el paciente, y entonces, la presión de Oxígeno inspirado será de 760 mm Hg (a nivel del mar). Esto aumentará el gradiente de presiones para la difusión de oxígeno desde el alvéolo hasta la sangre, explicando su efecto terapéutico en algunas circunstancias de hipoxia. 1.1.3.1.2. EL OXÍGENO EN EL GAS ALVEOLAR: Como vimos, el gas atmosférico es pobre en vapor de agua y dióxido de carbono, sin embargo, en su trayecto desde el medio ambiente hasta el alvéolo se mezclará con los gases que normalmente se encuentran en las vías aéreas: vapor de agua y dióxido de carbono. A pesar de ello, la presión del gas alveolar será siempre igual a la presión atmosférica, es decir, 760 mm de Hg si nos encontramos a nivel del mar o 405 mm Hg a los 5000 metros de altitud. La ganancia de vapor de agua en el gas alveolar se debe a la humidificación del aire seco durante su tránsito por las vías aéreas superiores, alcanzando una presión de 47 mm Hg a nivel alveolar. Por otro lado, el aumento en la presión de dióxido de carbono se explica por su paso desde la sangre hacia el alvéolo a favor de su gradiente de presión; Debido a su alta solubilidad la presión de dióxido de carbono en el aire alveolar (PACO2) se equilibra rápidamente con la sanguínea (PaCO2). Así, PACO2 = PaCO2. El valor normal de ambas presiones a nivel del mar es de 40 mm Hg. Debido a que la presión de una mezcla de gas es igual a la sumatoria de las presiones de los gases que lo conforma (ley de Dalton) y teniendo en cuenta que la presión atmosférica y alveolar son iguales, la aparición de vapor de agua y dióxido de carbono en el gas alveolar determinan una disminución en la presión de oxígeno a dicho nivel (ver tabla). Por lo tanto, la difusión de oxígeno entre el alvéolo y la sangre se establece por la presión que este gas ejerce en el alvéolo y no en la atmósfera. Para calcular la presión alveolar de oxígeno (PAO2) se agrupan los factores que la determinan en la siguiente ecuación: PAO2 = (PB – PH2O) x FIO2 – PaCO2. Donde PAO2 es la presión alveolar de oxígeno, PB la presión atmosférica, PH2O, la presión de vapor de agua en el alvéolo, FIO2 la fracción de oxígeno en el gas inspirado y PaCO2 la presión arterial de dióxido de carbono Así, a nivel del mar el valor de la PACO2 es:

Page 12: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

PAO2 = (760 – 47) x 0,21 – 40, es decir: 109,7 mm Hg. Si el paciente está respirando oxígeno al 100%, entonces: PAO2 = (760 - 47) x 1 – 40, es decir: 673 mm Hg.

En realidad, el gas alveolar no se renueva completamente con cada inspiración; es decir, lo hace de una manera gradual y progresiva. Esto se explica porque el aire que ingresa durante la inspiración hasta la zona de intercambio gaseoso (350 ml), se mezcla con el gas de la capacidad funcional residual (2300 ml); por lo tanto, con cada ciclo respiratorio sólo se renueva la séptima parte del gas alveolar. Este fenómeno evita aumentos o descensos bruscos en la oxigenación de los tejidos cuando la respiración se modifica temporalmente, y lo convierte en un factor de protección frente a la hipoxia. Por lo anterior, en la practica clínica cuando se administra oxigeno suplementario y se desea medir el impacto de la intervención a través del análisis de los gases en una muestra de sangre arterial, se debe esperar 20 minutos para que todo el gas alveolar sea reemplazado por esta nueva mezcla de oxígeno. PO2 PCO2 PN2 PH2O Nivel

del mar Bogotá Nivel

del marBogotá Nivel

del marBogotá Nivel

del mar Bogotá

Aire atmosférico

159 117 0,3 0.2 593 442 variable variable

Aire alveolar

100 72 40 35 573 406 47 47

*Los valores se dan en mm de Hg.

Page 13: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

1.1.3.1.3. LA MEMBRANA ALVEOLO CAPILAR: 1.1.3.1.3.1. Aspectos estructurales de la membrana alveolo capilar: La membrana alveolo capilar es una fina capa de tejido que separa el gas alveolar de la sangre que circula alrededor de los capilares alveolares. Esta membrana esta constituida por varias capas a saber:

1. Una capa de líquido que reviste el alvéolo. 2. El epitelio alveolar constituido por células muy delgadas. 3. La membrana basal epitelial. 4. Un delgado espacio intersticial entre el epitelio alveolar y la membrana capilar. 5. La membrana basal capilar, que en muchos lugares se fusiona con la membrana basal

del epitelio alveolar. 6. La membrana endotelial capilar.

A pesar del gran número de capas, el espesor de la membrana respiratoria es en promedio de 0,63 micras y llega en algunos lugares a ser de tan sólo 0,2 micras. Además, la superficie total de la misma es cercana a los 160 m2 en un adulto normal. En adición, la cantidad total de sangre que existe en los capilares pulmonares en un momento determinado es de unos 60 a 140 ml. Ahora, si se considera el espesor de la membrana y además en forma hipotética se intenta esparcir este volumen de sangre en un área de 160 m2, se entenderá lo fácil que es para cualquier gas pasar a través de la membrana alvéolo capilar. Los glóbulos rojos entran en estrecho contacto con las paredes de los capilares pulmonares, pues el diámetro de los primeros es de 7,5 micras mientras el de los segundos es de 8 micras. En consecuencia, el oxígeno y el dióxido de carbono no necesitan atravesar el plasma cuando difunden entre el eritrocito y el alvéolo y la velocidad de difusión es mayor.

Page 14: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

1.1.3.1.3.2. Difusión del oxígeno a través de la membrana alveolo capilar: El movimiento de un gas a través de una membrana semipermeable se denomina DIFUSIÓN. La difusión ocurre en respuesta a diferencias (gradientes) de presión: el gas pasa desde el punto de mayor presión hacia el de menor presión hasta lograr un equilibrio a cada lado de la membrana. Sin embargo, para que la difusión ocurra debe existir una fuente de energía que es proporcionada por el movimiento cinético de las moléculas del gas. Este movimiento continuo hace que las moléculas impacten unas con otras ejerciendo una determinada presión según el volumen o recipiente en el que estén contenidas (ley de Boyle). En consecuencia, las moléculas serán impulsadas desde el sitio de mayor presión o colisión hacia el de menor presión. Además, la velocidad de difusión dependerá de la magnitud del gradiente de presión; cuanto mayor sea el gradiente, más rápida será la difusión. En condiciones normales el gradiente de presión para la difusión de oxígeno en un sujeto respirando aire y a nivel del mar es de unos 65 mm Hg, porque a nivel alveolar la PAO2 es aproximadamente de 105 mm Hg y la PaO2 de 40 mm Hg. El paso del oxígeno a través de la membrana alveolo capilar hace que éste gas pase de un ambiente gaseoso (alvéolo) a uno líquido (sangre). El gas en la sangre también ejercerá una presión parcial, pues las moléculas de oxígeno seguirán su movimiento al azar por su energía cinética de igual manera a como lo hacen en la fase gaseosa. Esta presión estará determinada por el número de moléculas (cantidad de gas) y por el grado de solubilidad del gas en el líquido (coeficiente de solubilidad). Es decir, algunos tipos de moléculas, especialmente el dióxido de carbono, son atraídas física o químicamente por las moléculas de agua, mientras que otras son repelidas. Así, cuando existe atracción se disolverán muchas más moléculas sin provocar un aumento excesivo de la presión de la solución (dióxido de carbono). Por otra parte, en el caso de las moléculas repelidas, muchas menos moléculas disueltas desarrollarán una gran presión (oxígeno). Este fenómeno puede explicarse mediante la ley de Henry que se sintetiza en la siguiente fórmula: Presión = Concentración del gas disuelto/coeficiente de solubilidad. La tabla x muestra los coeficientes de solubilidad en agua a temperatura corporal de los gases respiratorios más importantes. Note que el dióxido de carbono es 23,75 veces más soluble que el oxígeno y que éste a su vez es más soluble que los otros tres gases.

Gas. Coeficiente de solubilidad

Oxígeno. 0,024 Dióxido de carbono. 0,57 Monóxido de carbono. 0,018 Nitrógeno. 0,012 Helio 0.008

Además del gradiente de presión y del coeficiente de solubilidad del gas en agua, otros factores afectan la difusión de los gases a través de la membrana alvéolo capilar, ellos son:

Page 15: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

1. El área de sección transversal de la membrana. 2. La distancia a través de la cual debe difundir el gas. 3. El peso molecular del gas. 4. La temperatura, que en el cuerpo es constante y por lo tanto no es necesario tenerla en

cuenta. En consecuencia, entre más grande sea el área para la difusión y más corta la distancia del recorrido, mayor será la difusión del gas y entre menos peso molecular tenga la molécula mayor será su movimiento cinético y más fácil su difusión. Todos estos factores pueden expresarse en una sola fórmula: D = ∆P x A x S/ d x √MW. Donde D = Velocidad de difusión, ∆P es la diferencia de presión entre los dos extremos de la membrana, A es el área transversal de la membrana, S es el coeficiente de solubilidad, d la distancia de difusión (espesor de la membrana) y MW el peso molecular del gas. De acuerdo con esta ecuación las características del gas brinda dos de los factores de la fórmula: solubilidad y peso molecular, que en conjunto se denominan coeficiente de difusión del gas. (coeficiente de difusión = S/√MW). La siguiente tabla muestra los coeficientes de difusión de los gases respiratorios.

Gas Coeficiente de difusión

Oxigeno. 1 Dióxido de carbono 20,3 Monóxido de carbono 0.81 Nitrógeno 0.53 helio 0.95

El volumen de oxígeno que atravesará la membrana alveolo capilar, estando el sujeto en reposo es de 21 ml de Oxígeno por minuto por cada mm Hg de gradiente de presión. Este es la llamada capacidad de difusión del oxígeno a través de la membrana alveolo capilar. Así, en el caso hipotético de que exista un gradiente de presión para el oxígeno de 10 mm Hg a cada lado de la membrana, podrán pasar 210 ml de este gas en un minuto.

Page 16: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Es importante resaltar el papel de la inspiración y espiración para el paso de oxígeno a través de la membrana alvéolo capilar. Durante la inspiración, el oxígeno atmosférico ingresa hasta el alvéolo para ponerse en contacto con el área de difusión, sin embargo, debido a su baja solubilidad el proceso de difusión por la membrana se presenta principalmente durante la fase espiratoria del ciclo respiratorio. Finalmente, durante el flujo sanguíneo pulmonar normal la sangre logra cargarse con oxígeno cuando ha transitado tan solo la tercera parte de la longitud del capilar pulmonar. Dicho de otra manera, la sangre permanece normalmente en el pulmón un tiempo tres veces mayor del necesario para lograr una oxigenación adecuada. Esto se convierte en un mecanismo de protección frente a la hipoxia pudiendo aprovechar en ciertas situaciones toda la longitud del capilar. Por ejemplo, el rápido flujo sanguíneo pulmonar durante el ejercicio, deja poco tiempo para la difusión del oxígeno. Entonces, el proceso de difusión se realiza en toda la extensión del capilar lográndose una oxigenación adecuada. 1.1.3.1.3.3. Efecto de la Relación ventilación/perfusión sobre la oxigenación arterial: En condiciones ideales, todos los alvéolos serán ventilados y todos los capilares pulmonares perfundidos, sin embargo, y como se explicó al principio de este capítulo, tanto la entrada de aire a los alvéolos como la irrigación de los capilares pulmonares están sujetos a los efectos gravitacionales, siendo menor en los ápices y mayor en las bases pulmonares cuando el sujeto está erguido. A pesar de ello, se mantiene una relación paralela y constante entre la irrigación y la ventilación alveolar, de tal manera que no se desvíe flujo sanguíneo hacia los alvéolos que no pueden participar del intercambio gaseoso.

Page 17: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Esta relación entre la ventilación y la perfusión pulmonar se expresa mediante el siguiente símbolo: V/Q, donde V es la ventilación alveolar en un minuto y Q el flujo sanguíneo pulmonar en un minuto. Para conocer el valor normal de la relación V/Q es necesario saber los valores normales de la ventilación alveolar y del flujo sanguíneo pulmonar en un minuto. La ventilación alveolar en un minuto es el producto de la ventilación alveolar (350 ml) por la frecuencia respiratoria en un minuto (12), es decir 4200 ml. El flujo sanguíneo pulmonar es igual al gasto cardiaco, el cual es el producto del volumen latido (70 ml) y la frecuencia cardiaca por minuto (72 x min), es decir, 5000 ml por minuto. Ahora sólo queda reemplazar los valores en la fórmula así: V/Q = 4200/5000, entonces, V/Q = 0,8. En conclusión, cuando existe un acople adecuado entre la ventilación y la perfusión pulmonar, la relación resultante será muy cercana a 1. Sin embargo, en algunas condiciones la ventilación alveolar estará disminuida y el valor de V/Q próximo al cero. En otras, la ventilación será normal pero el flujo sanguíneo bajo, luego el valor de V/Q será mucho mayor de 1. Con base en lo anterior, algunos autores han establecido cuatro estados fisiológicos posibles en la relación V/Q. Tales estados se fundamentan en el funcionamiento de la unidad respiratoria básica, o sea el alvéolo con su capilar pulmonar, ellos son:

a. Unidad normal: Donde la perfusión y ventilación alveolar son normales. (V/Q = 1) b. Unidad de espacio muerto: Aquí, el alvéolo ventila pero no es prefundido. Esto

produce un desperdicio del proceso respiratorio, pues el aire alveolar no difunde hacia la sangre. El volumen de aire de este alvéolo pasa a aumentar el volumen de aire del espacio muerto. (V/Q > 1)

c. Unidad con shunt: está formada por un alvéolo colapsado u obstruido con una perfusión normal. Aquí, la sangre pasará por un alveolo sin gas y saldrá hacia la circulación sistémica sin haberse oxigenado. En cierta forma se puede expresar que la sangre pasa por un atajo, o por un puente; es decir, se desvía sin ponerse en contacto con el ambiente que le facilita la toma de oxigeno. Esta situación es grave ya que la administración de oxígeno no soluciona el problema, pues la sangre no podrá ponerse en contacto nunca con este gas. (V/Q < 1).

d. Unidad no funcional o silenciosa: en ella el alveolo está colapsado, sin ventilación y tampoco tiene perfusión.

El 98% de la sangre pasa por los capilares alveolares donde es oxigenada hasta una PaO2 de 100 mm Hg. Como puede verse, la presión sanguínea de oxígeno no alcanza a igualar a la presión alveolar del mismo (105 mm Hg). La razón para esta diferencia es la baja solubilidad de este gas. El 2% de sangre restante no es oxigenada, ya que pasa por la circulación bronquial que irriga el espacio muerto anatómico. Por lo tanto, este 2% representa un flujo de sangre desviado de la zona de intercambio gaseoso conocido con el nombre de Shunt intrapulmonar anatómico. Esta sangre no oxigenada tendrá una presión arterial de oxígeno igual a la venosa de 40 mm Hg. Luego, al salir del pulmón la sangre oxigenada con 100 mm Hg (98%) y la sangre desviada con 40 mm Hg (2%) se mezclan y finalmente la sangre que llega a la aurícula

Page 18: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

izquierda tiene una presión de oxígeno de 95 mm Hg. Esta es la presión de Oxígeno que genera gradiente de presión para la difusión hacia las células. Finalmente, si comparamos la PAO2 de 105 mm Hg con la PaO2 de 95 mm Hg encontramos una diferencia de 10 mm Hg, esta es la diferencia alvéolo arterial de oxígeno normal, que como vimos es explicada por la baja solubilidad del oxígeno y el shunt intrapulmonar anatómico. Esta diferencia se puede calcular con la siguiente ecuación: D(A-a)O2 = PAO2 – PaO2, luego, D(A-a)O2 = 105 – 95 = 10 mm Hg. 1.1.3.1.4. TRANSPORTE DE OXÍGENO POR LA SANGRE: Luego de pasar la membrana alvéolo capilar el oxígeno es transportado hacia los tejidos de dos formas que sumadas representan el contenido total de oxígeno en la sangre.

a. El 98% del oxígeno es transportado en combinación química con la hemoglobina de los glóbulos rojos.

b. El 2% restante es transportado disuelto en el agua del plasma y de las células. Debido a su poca solubilidad en agua sólo una pequeña proporción de oxígeno viaja disuelto, sin embargo, esta pequeña cantidad es la que produce la presión parcial de este gas en la sangre. El oxígeno mezclado con la hemoglobina no ejerce presión parcial. 1.1.3.1.4.1. Transporte de oxígeno por la hemoglobina: La concentración normal de hemoglobina del adulto (HbA) oscila entre 12 y 16 gr por cada 100 ml de sangre y cada gramo de hemoglobina tiene la capacidad de transportar 1,34 ml de oxígeno. La razón para este excelente desempeño de la hemoglobina en cuanto al transporte de oxígeno se refiere yace en su estructura química. 1.1.3.1.4.1.1. Estructura química de la Hemoglobina: La hemoglobina es una proteína que resulta de la unión de cuatro moléculas de hem y una molécula de globina. A continuación se describen cada uno de sus dos componentes.

Page 19: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

1.1.3.1.4.1.1.1. Molécula hem: La molécula de hem resulta de la unión de un ión ferroso con una molécula de porfirina. La porfirina es una estructura conformada por cuatro anillos pirrol unidos a través de puentes de metileno. Esta estructura deja un átomo de nitrógeno libre en cada anillo de pirrol capaz de formar enlace covalente con un metal. Es decir, quedan 4 átomos de nitrógeno libres en cada molécula de porfirina con esta facultad. El ión ferroso es un metal que tiene en su órbita externa 6 electrones disponibles para formar enlaces covalentes. Un ión ferroso se combina con una molécula de porfirina por medio de uniones covalentes con los 4 átomos de nitrógeno que están libres (uno por cada anillo pirrol), formando una molécula de Hem. Note que aún quedan disponibles dos electrones en el ión ferroso para enlace covalente; éstos son usados para unirse a una de las cuatro cadenas polipeptídicas de la molécula de globina como se verá enseguida. 1.1.3.1.4.1.1.2. Globina: La globina es una proteína formada por la unión de cuatro cadenas polipeptídicas, dos alfa y dos beta, cada una de éstas con dos átomos de nitrógeno libres, uno en cada extremo. Es decir, la proteína de globina tiene 8 átomos de nitrógeno libres para formar enlaces covalentes.

Page 20: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Los dos extremos de cada cadena polipeptídica forman enlaces covalentes con los dos electrones libres de cada ión ferroso, de esta manera cada cadena se une con un grupo hem. Uno de estos sitios de unión entre el hierro y la cadena polipeptídica es capaz de combinarse reversiblemente con el oxígeno. Al existir cuatro cadenas polipeptídicas en una molécula de globina, ésta se unirá con cuatro grupos hem para constituir la molécula de hemoglobina. Con base en lo anterior se deduce que una molécula de hemoglobina puede transportar 4 átomos de oxígeno En resumen:

• 4 pirroles forman una porfirina. • 1 porfirina más 1 ión ferroso forman 1 molécula de hem. • 2 cadenas alfa + 2 cadenas beta forman una molécula de globina. • 4 porfirinas + 1 globina forman la Hemoglobina.

Un solo glóbulo rojo contiene 280 millones de moléculas de hemoglobina; si considera los 5 millones de eritrocitos que tiene un adulto promedio y los 4 átomos de oxígeno que puede transportar cada molécula de hemoglobina, encontrará que en un momento determinado este sistema transporta 5.600 millones de moléculas de este gas o dicho de otra manera, 1000 ml de oxígeno. No cabe duda de la importancia de la hemoglobina para el transporte de oxígeno en los seres humanos 1.1.3.1.4.1.2. Variantes de la hemoglobina: Algunas variantes normales de la molécula de hemoglobina humana adulta (HbA) tienen relevancia clínica por lo que se discutirán a continuación:

a. Hemoglobina fetal (HbF): Al nacer, cerca del 85% de la hemoglobina está conformada por moléculas de globina formada por dos cadenas alfa y dos gamma. Las cadenas gamma aumentan la afinidad de la molécula de hemoglobina por el oxígeno. Esta propiedad de la HbF hace que capture muy bien el oxígeno desde el alvéolo pero a su vez hace que su entrega a los tejidos periféricos no sea tan eficiente.

b. Carboxihemoglobina: la hemoglobina es 200 a 250 veces más afín por el monóxido

de carbono que por el oxígeno. El monóxido de carbono forma enlaces covalentes con el ión ferroso imposibilitando la unión de los grupos hem con el oxígeno. Sin embargo, la afinidad de la hemoglobina por estos gases está determinada por las presiones parciales de los mismos en la sangre, así, al aumentar la PaO2 disminuye la afinidad de la hemoglobina por el monóxido de carbono; por tal razón, la administración suplementaria de oxígeno en la intoxicación con monóxido de carbono constituye una excelente alternativa.

1.1.3.1.4.1.2. Curva de disociación de la hemoglobina: Al difundir por la membrana alvéolo capilar el oxígeno puede unirse a la hemoglobina o quedar disuelto en la sangre. Al inicio, la mayor parte del gas se une a la hemoglobina hasta saturar su capacidad de transporte completamente y tan sólo una pequeña proporción del oxígeno queda

Page 21: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

disuelto en la sangre. Sin embargo, a partir de este momento la fracción de oxígeno disuelto aumenta progresivamente pues el oxígeno no encontrará sitio de unión disponible con la hemoglobina. Recuerde que la fracción de oxígeno disuelto es quien determina la presión sanguínea de este gas, por tal motivo, el aumento del oxigeno disuelto produce un aumento progresivo de la presión sanguínea de este gas hasta que finalmente se equilibra con la presión alveolar de oxígeno y se detiene la difusión entre el alvéolo y la sangre. De acuerdo con lo anterior existe una relación entre la saturación de la hemoglobina y la presión sanguínea de oxígeno. Esta relación se puede graficar comparando el porcentaje de saturación de la hemoglobina en el eje vertical (eje y) con la presión sanguínea de oxígeno en el eje horizontal (eje X). La curva resultante es conocida como curva de disociación de la hemoglobina o curva de Severinghaus .

Como puede verse la curva tiene dos porciones, una empinada y otra plana, ambas son el reflejo de las diferencias en la afinidad de la hemoglobina por el oxígeno a medida que la presión sanguínea de este cambia. El inicio de la curva representa la exposición inicial de la sangre a la PAO2, momento en el cual la saturación de hemoglobina aumenta vertiginosamente mientras que la presión sanguínea de oxígeno lo hace poco; esto produce la parte empinada de la curva, en esta parte cuando la saturación alcanza el 50% existe una presión de oxígeno de 27 mm Hg, este es la llamada P50. Luego, al alcanzar una saturación del 90% la curva toma una forma plana, porque a partir de esta saturación la presión de oxígeno aumenta significativamente mientras que la saturación de hemoglobina lo hace en mucha menor proporción. La explicación de estos fenómenos es la alta afinidad de la hemoglobina por el oxígeno, lo que hace que inicialmente esta sea la forma preferida para su transporte; después, cuando está casi completamente cargada, la hemoglobina deja pocos sitios para la fijación del oxígeno y este difundirá preferiblemente hacia el plasma aumentado la presión sanguínea del gas.

Page 22: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

A nivel del mar la presión venosa de oxígeno es de 40 mm Hg lo que de acuerdo con la curva equivale a una saturación de hemoglobina del 75%. Por otra parte la presión arterial de oxígeno es cercana a los 100 mm Hg lo que produce una saturación de hemoglobina del 97%. 1.1.3.1.4.1.1. Desviación de la curva de hemoglobina: La curva de disociación de hemoglobina anterior es la de la sangre normal, donde la P50 es de 27 mm Hg. Sin embargo, diversos factores como el pH sanguíneo, el dióxido de carbono, la temperatura y el 2,3 difosfoglicerato pueden desplazar esta curva en una u otra dirección, cambiando el valor de la P50. Si la curva se desvía hacia la izquierda la P50 disminuye, esto significa que con menores presiones sanguíneas de oxígeno se alcanza una mayor saturación de la hemoglobina que en condiciones normales. Esto resulta en un aumento del contenido total de oxígeno sanguíneo (ver figura). Sin embargo, esta mayor afinidad de la hemoglobina por el oxígeno hace que la entrega a los tejidos periféricos esté reducida. Los factores que desplazan la curva de disociación de la hemoglobina hacia la izquierda son: La alcalosis, la hipotermia, la disminución de la presión sanguínea de dióxido de carbono y el descenso del 2,3 difosfoglicerato (DPG). Un trastorno que desvía la curva de disociación hacia la izquierda es la presencia en la sangre de grandes cantidades de hemoglobina fetal (HbF), tipo de hemoglobina que se presenta normalmente en el feto antes del nacimiento. Este efecto tiene importancia para la liberación de oxígeno hacia los tejidos fetales bajo las condiciones hipóxicas en las que vive el feto. Si la curva se desvía a la derecha la P50 aumenta, lo anterior resulta en una menor saturación de la hemoglobina con una determinada presión sanguínea de oxígeno. Así, el contenido total de oxígeno en la sangre disminuye. Esta menor afinidad de la hemoglobina por el oxígeno produce una mejor entrega del mismo a los tejidos. Los factores que desvían la curva de disociación de la hemoglobina hacia la derecha son: la acidosis, la hipercapnia y el aumento de la temperatura y del 2,3 DPG.

Page 23: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

1.1.3.1.4.1.1.1. Efecto Bohr: El efecto Bohr hace referencia a los desplazamientos de la curva de disociación de la hemoglobina de acuerdo a las concentraciones de dióxido de carbono y pH sanguíneos. El dióxido de carbono que viaja en la sangre difunde hacia los alvéolos al pasar por los pulmones, ello disminuye la presión de CO2 sanguínea y produce alcalosis. Ambos factores desvían la curva de disociación hacia la izquierda y aumentan la captación de oxígeno por la hemoglobina. El resultado es un mayor transporte de oxígeno en la sangre desde los pulmones hacia los tejidos. Posteriormente, cuando la sangre llega a la periferia, recibe CO2 de los tejidos, lo que aumenta la presión de CO2 sanguínea y produce acidosis. Esto desvía la curva hacia la derecha facilitando la entrega de oxígeno a los tejidos. 1.1.3.1.4.1.1.2. El 2,3 – difosfoglicerato: El ambiente interno del eritrocito también influye sobre la curva de disociación de la hemoglobina. El 2,3-DPG es un producto final del metabolismo del glóbulo rojo. La concentración de esta sustancia aumenta en la hipoxia crónica, por ejemplo, en presencia de enfermedad pulmonar crónica y al vivir en grandes alturas. Al aumentar la concentración de 2,3-DPG en el glóbulo rojo, la curva se desplaza hacia la derecha lo que mejora la entrega de oxígeno en la periferia. Por el contrario, la sangre almacenada en el banco de sangre tiene disminuida su concentración de 2,3-DPG lo que hace difícil la descarga de oxígeno a los tejidos. 1.1.3.1.4.2. Transporte de oxígeno disuelto en la sangre:

Page 24: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Como hemos visto, la mayor parte de oxígeno es transportado unido a la hemoglobina; sin embargo, la presión parcial de este gas es determinada por la pequeña cantidad de oxígeno que queda disuelta en la sangre y como sabemos, es la diferencia de presiones la que permite su difusión desde el alvéolo a la sangre y desde ésta a la célula. Además, la presión parcial de oxígeno determina el grado de saturación de la hemoglobina como se analizó previamente en lo referente a la curva de Severinghaus. Al observar esta curva, es notorio el aumento de la presión de oxígeno en la sangre cuando la hemoglobina esta saturada cerca al 100%. La explicación es obvia, cuando se agotan los sitios disponibles para la fijación de oxígeno en la hemoglobina la cantidad de oxígeno disuelto aumenta en relación directa con la presión alveolar a la que sea expuesta. La presión de oxígeno en la sangre varía de acuerdo al sitio de medición. En la periferia, el alto consumo celular de oxígeno genera una presión venosa de 40 mm Hg; esta sangre al llegar al pulmón se expone a la presión alveolar del gas que es de 105 mm Hg lo que determina un gradiente de difusión de 65 mm Hg. Al salir del pulmón completamente oxigenada la presión arterial de oxígeno es cercana a los 100 mm Hg (recuerde que la diferencia en las presiones alveolares y arteriales de oxígeno son explicadas por el shunt intrapulmonar y por el bajo coeficiente de difusión del oxígeno). El siguiente ejemplo ilustra mejor esta situación: Un sujeto normal a nivel del mar respirando aire (FIO2 del 21%) tiene una PAO2 de 105 mm Hg, sin embargo por efecto del shunt intrapulmonar y de la poca difusión del oxígeno como se mencionó antes, la presión sanguínea de este gas es del orden de 100 mm Hg. Con esta PaO2 la saturación de la hemoglobina es del orden del 97%. Ahora suponga que el mismo individuo tiene una FIO2 del 100%, su PAO2 será de 673 mm Hg y la saturación de hemoglobina del 100%. Sin embargo, si multiplica las presiones parciales en cada uno de estos ejemplos por el coeficiente de solubilidad del oxígeno notará el importante cambio en la cantidad de oxigeno disuelto por el cambio en la PAO2. En el primer caso la cantidad de oxígeno disuelto es de 0,3 ml en cada 100 ml de sangre, mientras que el segundo caso es de 2 ml por cada 100 ml de sangre. 1.1.3.1.4.3. Impacto del transporte de oxígeno disuelto en la sangre y unido a la hemoglobina en el contenido total de oxigeno de la sangre: El siguiente ejemplo da una clara idea del impacto de las dos formas de transportar oxígeno sobre el contenido total del mismo en la sangre: Un individuo a nivel del mar respirando aire tendrá una PaO2 de 100 mm Hg. Si este individuo tiene una hemoglobina de 14 gr/dl y además una saturación de hemoglobina del 97% ¿cuanto es la cantidad total de oxígeno en su sangre? Para responder esta pregunta hay que recordar que el contenido total de oxígeno en la sangre es igual a la cantidad de oxígeno disuelto más la cantidad de oxígeno unido a la hemoglobina. Así:

Page 25: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Oxigeno unido a la hemoglobina = Hb x 1,34 x SpO2, al reemplazar 14 x 1,34 x 0,97 = 18,19 ml de oxígeno en cada 100 ml de sangre. Oxígeno disuelto = PaO2 x coeficiente de solubilidad del oxígeno, al reemplazar 100 mm Hg x 0,003 = 0,3 ml de oxígeno en cada 100 ml de sangre. Finalmente, contenido total de oxígeno en la sangre = 18,19 + 0, 3 = 18,49 ml de oxígeno en cada 100 ml de sangre. El anterior ejemplo ilustra claramente que la mayor cantidad de oxígeno es transportado unido a la hemoglobina y que sólo una pequeña proporción lo hace disuelto, 18,19 contra 0,3 ml respectivamente. En otras palabras, del contenido total de oxígeno en la sangre, el 98,4% está unido a la hemoglobina mientras que solo el 1,6% está disuelto. 1.1.3.1.5. APORTE DE OXÍGENO A LOS TEJIDOS: El aporte de oxígeno a los tejidos depende de un adecuado contenido de oxígeno en la sangre y de un adecuado gasto cardiaco que lo lleve a los tejidos. Durante cada contracción cardiaca 70 ml de sangre oxigenada son expulsados del corazón izquierdo hacia la periferia con el fin de llevar oxígeno a los tejidos. La misma cantidad de sangre sale durante la sístole del ventrículo derecho para ser oxigenada por el pulmón. En otras palabras, el corazón se encarga de llevar la sangre oxigenada a la periferia para la producción celular de energía y de traerla de regreso a los pulmones para ser nuevamente oxigenada. Si consideramos que un adulto normal tiene un gasto cardiaco de 5 litros por minuto (gasto cardiaco = volumen latido x frecuencia cardiaca, 70 x 72 respectivamente) y lo multiplicamos por el contenido arterial de oxígeno, encontramos que en un minuto el corazón lleva a los tejidos periféricos unos 1000 ml de oxígeno. El aporte de oxígeno (DO2) a los tejidos se calcula de la siguiente manera: DO2 = contenido arterial de oxigeno x gasto cardíaco x 10. Se multiplica por 10 para igualar las unidades ya que el contenido arterial de oxígeno está dado en ml de oxígeno por 100 ml (1 dl) de sangre y el gasto cardiaco en litros (1L = 1000ml = 10 dl). De acuerdo con el ejemplo anterior: DO2 = 18,49 x 5 x 10 = 924,5 ml en un minuto. De acuerdo con la fórmula anterior cualquier alteración en el contenido de oxígeno o en el gasto cardiaco puede comprometer el aporte de oxígeno a los tejidos. Así, en situaciones de anemia o de baja presión de oxígeno atmosférico como en las grandes alturas, el contenido arterial de oxígeno puede estar disminuido afectando el DO2. De igual manera, patologías como la cardiopatía isquémica pueden comprometer el volumen latido y el gasto cardiaco afectando el aporte de oxígeno a los tejidos. Sin embargo, en condiciones normales existe un acople entre el sistema cardiovascular y respiratorio que permite mantener el DO2 en rangos

Page 26: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

normales a pesar de existir alguna alteración en los determinantes de la ecuación. Recuerde que el cuerpo está dotado de quimiorreceptores periféricos localizados en la bifurcación de las arterias carótidas interna y externa y en el cayado de la aorta que detectan cualquier disminución en la PaO2, enviando información hacia el sistema nervioso central quien responde con señales hacia el sistema respiratorio y cardiovascular para aumentar la ventilación alveolar y el gasto cardiaco. Por ejemplo, ante un déficit de hemoglobina por anemia, el gasto cardiaco aumentará por incremento de la frecuencia cardiaca y mantendrá un aporte de oxígeno adecuado. De igual forma, ante una baja presión alveolar de oxígeno como en las grandes alturas, la frecuencia respiratoria y cardiaca aumenta para incrementar la ventilación minuto y el gasto cardiaco elevando el aporte de oxígeno a los tejidos. Desafortunadamente la compensación respiratoria a un déficit en el DO2 es ineficiente porque consume grandes cantidades de energía, lo que convierte a la compensación cardiovascular en el mejor mecanismo de compensación en tales circunstancias. Por tal razón, cuando se documenta un aporte de oxígeno disminuido a los tejidos existirá inexorablemente un compromiso del sistema cardiovascular para compensar la causa. 1.1.3.1.6. DIFUSIÓN DEL OXÍGENO DESDE LA SANGRE HASTA LA CÉLULA: RESPIRACIÓN INTERNA. El intercambio de oxígeno y dióxido de carbono entre la sangre del capilar tisular y las células se denomina respiración interna y sirve para diferenciarlo del proceso de intercambio gaseoso a nivel de la membrana alvéolo capilar denominado respiración externa. La difusión de oxígeno a nivel periférico se realiza en el capilar tisular. Como se ha explicado, debe existir un gradiente de presión para la difusión de oxígeno. A nivel periférico, el oxigeno difunde primero entre el capilar y el intersticio tisular y luego desde allí hasta la célula. Por tal motivo, existe un gradiente de presiones entre estos tres lugares para permitir la difusión de oxígeno. Cuando la sangre llega al capilar periférico trae una presión de oxígeno de 95 mm Hg. Por otra parte, a nivel tisular la presión de este gas es de 40 mm Hg. En estas condiciones existe una gran diferencia de presión a favor de la difusión de oxígeno hacia el intersticio (55 mm Hg). En el líquido intersticial la presión de oxígeno se mantiene constantemente baja (40 mm Hg) porque las células lo utilizan para sus funciones metabólicas. Una vez en el intersticio, el oxígeno difunde hacia las células a favor de un gradiente de presión. Esto genera una disminución progresiva en la presión intersticial de oxígeno a medida que se aleja del capilar tisular quedando una menor cantidad de oxígeno disponible para las células más distales. . Sin embargo, como las células siempre están consumiendo oxígeno, la presión parcial intracelular de este gas se conserva más baja que la del líquido intersticial a pesar de estar lejos del capilar lo que permite la difusión de oxígeno. El valor promedio de la presión de oxígeno intracelular es de 23 mm Hg, oscilando entre valores tan bajos como 5 mm Hg y otros tan altos como 60 mm Hg de acuerdo a la proximidad o distanciamiento que exista con el capilar tisular. Ya que normalmente son suficientes valores tan bajos de presión intracelular de oxígeno como de 4 mm Hg para mantener los procesos metabólicos intracelulares, resulta claro que incluso valores tan bajos

Page 27: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

como 23 mm Hg a nivel intracelular, ofrecen un factor de seguridad considerable frente a la hipoxia. Sin embargo, en la medida que la célula se distancia del capilar este factor se seguridad es menor y la célula es más susceptible ante condiciones de isquemia, este es el caso de las células centrolobulillares del hígado. Esto se complica un poco más ya que el consumo celular de oxígeno es diferente en los diferentes órganos, siendo más alto en el corazón y cerebro y menor en el tejido adiposo y óseo. Sin embargo, esto se compensa con un mejor aporte de oxígeno hacia los tejidos con mayor actividad metabólica a través de una mayor irrigación sanguínea. Aunque el sistema respiratorio es esencial para la respiración externa, el sistema cardiovascular es fundamental para la respiración externa e interna, ya que si la perfusión tisular es insuficiente para satisfacer las necesidades de oxígeno celulares, la respiración interna se verá afectada a pesar de un sistema respiratorio sano. Finalmente, al salir la sangre del capilar tisular hacia las venas con dirección al ventrículo derecho la presión sanguínea de oxígeno es de 40 mm Hg. 1.1.3.1.7. CONSUMO INTRACELULAR DE OXÍGENO: La célula es la principal unidad funcional de todo ser vivo. Ella cumple funciones especializadas que demandan un consumo intenso y constante de oxígeno para la producción de energía, el cual varía entre los diferentes órganos en relación directa con su metabolismo, siendo mayor en órganos como el cerebro y el corazón. Las sustancias fundamentales que proveen energía a las células son los carbohidratos, las proteínas y las grasas procedentes de la dieta. Inicialmente estas sustancias tienen vías metabólicas diferentes hasta alcanzar con su degradación un metabolito común que es el acetil CoA. A partir de este punto entran al ciclo de Kreps en las mitocondrias, con producción de CO2 e hidrogeniones. Estos últimos se transportan por oxido reducción a la cadena respiratoria donde se forma adenosin trifosfato (ATP) y agua. Por ejemplo, durante su metabolismo, la glucosa reacciona con 6 moléculas de oxígeno para la producción de 36 moléculas de ATP. Es decir, la energía de los alimentos es transformada por medio de reacciones químicas de oxidoreducción hacia un compuesto común final, el ATP. Finalmente, el ATP se emplea por las células para suministrar energía a las diferentes reacciones metabólicas intracelulares. En todo este proceso, el oxígeno actúa como comburante en las reacciones. El ATP se utiliza para el desarrollo de tres funciones principales de las células: a. Transporte a través de las membranas: El transporte iónico y de otras sustancias es realizado por proteínas a través de cambios en su conformación estructural que requieren energía. Dentro de estas proteínas se destaca la bomba de sodio-potasio-ATP fundamental para el mantenimiento del potencial de membrana intracelular. El transporte de membrana es tan importante para la función celular, que algunas células como las células de los túbulos renales utilizan cerca del 80% del ATP que sintetizan sólo para este fin.

Page 28: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

b. Síntesis de productos químicos: Las células sintetizan proteínas, fosfolípidos, purinas, pirimidinas y gran cantidad de otras sustancias. La síntesis de casi todo producto químico consume energía. Por ejemplo, para sintetizar una proteína, miles de aminoácidos deben ser unidos entre sí por medio de enlaces peptídicos. Cada uno de estos enlaces consume 4 ATP. Así, sobre todo durante el proceso de crecimiento celular, algunas células consumen hasta el 75% de su ATP para el desarrollo de esta función. c. Trabajo mecánico: El ATP es fundamental para las células que desempeñan trabajo mecánico. Para que la fibra muscular se contraiga se requiere de cantidades enormes de ATP. Por ejemplo, el músculo cardiaco destina 90% de su ATP para la contracción cardiaca. Otras células desarrollan un tipo de trabajo mecánico diferente, a saber, movimientos ciliares (células del tracto respiratorio y de las trompas de Falopio) y ameboides (leucocitos), en los cuales también es necesario el ATP. El consumo de oxígeno de los diferentes órganos varía de acuerdo con su tasa metabólica. El corazón por ejemplo consume entre 8 y 10 ml de oxígeno por cada 100 gr de tejido en un minuto, los riñones 6 ml, el hígado 4 ml y el cerebro 3,5 ml. Sumando el consumo de oxígeno en todos los órganos se determina el consumo total de oxígeno en el cuerpo que en un adulto de 70 Kg. es de 250 ml por minuto, es decir, 3,5 ml/Kg/min. Sin embargo, este valor se modifica con la edad, siendo de 6 a 8 ml/Kg/min en el recién nacido y disminuyendo a valores entre 2,5 y 3 ml/Kg/min en el anciano. Además, algunas condiciones como el ejercicio físico, la fiebre, el dolor, el sueño o la anestesia modifican estos valores. De acuerdo con lo anterior, es claro que la ausencia de oxígeno perturba gravemente la producción de ATP con consecuencias devastadoras en las diferentes funciones celulares de todo el cuerpo. En condiciones de hipoxia las mitocondrias no pueden utilizar las vías bioquímicas normales para la producción de energía, debiendo recurrir a vías bioquímicas no oxidativas (sin participación de oxígeno) o vías metabólicas anaerobias. Si bien estas vías de metabolismo no oxidativo se constituyen en un factor de protección ante condiciones anaerobias, son poco eficientes para la producción energética y sus metabolitos finales tóxicos para las células. En circunstancias normales la mitocondria puede funcionar de manera adecuada con presiones de oxígeno intracelulares cercanas a los 4 mm Hg. 1.1.3.1.7.1. Normoxia, hipoxia y disoxia: Es claro que la producción de ATP necesita un aporte constante y suficiente de oxígeno para satisfacer las necesidades energéticas de la célula. Se ha estimado que una presión de oxígeno intracelular mayor de 15 mm Hg es suficiente para la síntesis de ATP, lo que corresponde a un estado de normoxia intracelular. Cuando la presión intracelular de oxígeno cae a rangos entre 15 mm Hg y 4 mm Hg la célula es capaz de mantener una producción adecuada de ATP pero necesita de algunos mecanismos de adaptación como cambios en la fosforilación y reclutamiento redox en el transporte de electrones mitocondrial. En estas condiciones la célula

Page 29: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

esta en un estado de hipoxia adaptada, es decir, mantiene la producción de ATP a través de mecanismos compensatorios sin acudir al metabolismo anaerobio. Cuando la presión de oxígeno intracelular es inferior a los 4 mm Hg la célula entra en un estado de disoxia, donde la producción de ATP a través de la fosforilación oxidativa mitocondrial es insuficiente y los mecanismos adaptativos iniciales no logran satisfacer las necesidades de ATP. En esta situación, la célula acude a otros mecanismos de producción de energía como la glicólisis anaerobia, que a pesar de ser un mecanismo adaptativo importante resulta ineficiente, pues cada molécula de glucosa sólo produce 2 de ATP. Además, este mecanismo depende de un transporte rápido de glucosa desde la sangre hasta el interior de la célula que en realidad es lento en el cerebro, riñón e hígado. En estas condiciones la célula sacrifica su función para mantener indemne su estructura, es decir, utiliza la poca energía disponible para el mantenimiento del gradiente iónico a través de las membranas, y olvida su función, por ejemplo, la transmisión axonal de las neuronas. Este fenómeno a nivel cerebral puede verse en los cambios progresivos del nivel de consciencia de un paciente hipóxico. A pesar de ser un mecanismo ineficiente, el metabolismo anaerobio permite a la célula vivir durante un determinado tiempo sin que haya deterioro de su estructura, esto se denomina disoxia sin daño celular, y si el aporte de oxígeno de la célula vuelve a valores normales, la función celular retorna sin verse afectada (el paciente recupera la consciencia). Finalmente, cuando este mecanismo se agota y las necesidades energéticas de la célula no pueden ser satisfechas, habrá disoxia con daño celular. Aquí el aporte de ATP es insuficiente para mantener la función y la integridad celular (el paciente queda con déficit neurológico permanente). Esto sucede con presiones de oxígeno intracelulares menores de 1 mm Hg.

1.1.3.1.8. Determinación de la diferencia arteriovenosa de oxígeno y consumo celular de oxígeno: Cuando la sangre llega al capilar tisular trae un contenido arterial de oxígeno, el cual, al transitar por el capilar disminuye, pues éste gas difunde por el líquido intersticial en dirección de la célula. Por tal razón, al salir del capilar el contenido venoso de oxígeno es inferior al arterial. Si calculamos la diferencia entre el oxigeno que llega por el extremo arterial del capilar

Page 30: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

y el que sale por el extremo venoso conoceremos con cuanto oxígeno se quedó la célula. Esto se ha denominado diferencia arterio venosa de oxígeno D(a – v)O2. En condiciones de reposo, la diferencia arterio venosa de oxígeno es de 5 ml de oxígeno por cada 100 ml de sangre.

Sin embargo, este valor normal no es aplicable a sujetos enfermos con aumento del consumo de oxígeno porque en aquellos con reservas cardiovasculares adecuadas el aumento del volumen minuto cardiaco supera al aumento de consumo de oxígeno. El efecto neto es una disminución en la D(a-v)O2, es decir, se extrae menos oxígeno por cada 100 ml de sangre pese al mayor consumo de oxígeno. El paciente en estado crítico cuyo corazón ya no puede mantener niveles compensatorios del gasto cardiaco manifestará valores crecientes en la D(a-v)O2 inicialmente hacia rangos normales y por último hacia valores más altos que los normales cuando se produzca una descompensación franca. En adulto de 70 kg en condiciones basales consume 250 ml de oxígeno por minuto. La extracción de oxígeno se calcula restando el contenido arterial de oxígeno del venoso mediante la fórmula: D(a-v)O2 = contenido arterial de oxígeno – contenido venoso de oxígeno. D(a-v)O2 = [(Hb x 1,34 x Saturación arterial de oxígeno) + PaO2 x 0,003] – [(Hb x 1,34 x saturación venosa de oxígeno) + PvO2 x 0,003]. D(a-v)O2 = 20 – 15. D(a-v)O2 = 5 ml de oxigeno por 100 ml de sangre. El consumo de oxigeno (VO2) puede ser calculado multiplicando la extracción de oxígeno por el gasto cardiaco (GC). Así: VO2 = D(a-v)O2 x GC x 10. Se multiplica por 10 para igualar las unidades ya que la D(a-v)O2 se da en decilitros y el gasto cardíaco en litros. Esta fórmula resalta que la extracción de oxígeno y el consumo de oxígeno son dos fenómenos diferentes. De acuerdo con la fórmula, para cualquier VO2 dado, la D(a-v)O2 varía

Page 31: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

inversamente con el gasto cardiaco. Dicho de otra manera, la D(a-v)O2 expresa la adecuación con que el gasto cardiaco responde a los requerimientos de oxígeno. Algunos prefieren expresar la extracción de oxígeno como el porcentaje del contenido arterial de oxígeno que salió hacia la célula. La siguiente fórmula expresa esta relación: Extracción de oxígeno = [D(a-v)O2 / contenido arterial de oxígeno] x 100 Extracción de oxígeno = [5/20] x 100, es decir 25% Recuerde que el aporte total de oxígeno a los tejidos en un minuto es de 1000 ml de oxígeno y que el consumo basal celular es de 250 ml de oxígeno, es decir el 25% de lo que recibe en cada minuto. Esta gran diferencia entre lo que recibe y lo que consume la célula es un importante factor de seguridad frente a la hipoxia y una fuente adicional de oxígeno durante el ejercicio. Es importante resaltar que en condiciones con aumento del consumo celular de oxígeno la D(a-v)O2 aumenta bastante tiempo antes de que se observe un deterioro significativo en la oxigenación arterial o haya manifestaciones clínicas. 1.1.3.2. VENTILACIÓN: UN VIAJE HACIA LA ATMÓSFERA. La ventilación es una de las propiedades emergentes del sistema respiratorio y puede definirse como la capacidad que tiene dicho sistema para llevar dióxido de carbono desde la célula hasta la atmósfera en un proceso que requiere la cooperación permanente y eficaz del sistema cardiovascular. El dióxido de carbono es un producto final del metabolismo celular aerobio que si se acumula puede comprometer seriamente las funciones celulares. Por tratarse de un gas, los organismos se valen del sistema cardiovascular y respiratorio para llevarlo desde su sitio de producción (célula) hasta la atmósfera y evitar que se acumule dentro del cuerpo. Además, al igual que sucede con el proceso de oxigenación, la salida del dióxido de carbono desde la célula hasta la atmósfera describe un largo recorrido, regido siempre por un gradiente de concentración. Sin embargo, como se discutirá adelante, estas diferencias de presión son menores debido a la alta solubilidad del dióxido de carbono. A continuación se describe en detalle los fenómenos más relevantes de este recorrido, lo cual incluye la producción de CO2 a nivel celular, su difusión hacia la sangre, su tránsito hasta los pulmones, su difusión por la barrera alvéolo capilar y finalmente, su salida hacia la atmósfera. 1.1.3.2. 1. PRODUCCIÓN INTRACELULAR DE DIOXIDO DE CARBONO: El destino de los componentes de la dieta después de su digestión y absorción, constituye el metabolismo intermedio. Las vías metabólicas de los componentes de la dieta pueden clasificarse en tres categorías:

Page 32: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

1. Vías anabólicas que se ocupan de la síntesis de los compuestos que constituyen la estructura y la maquinaria corporal. Una de ellas es la síntesis de proteínas. La energía requerida por estos procesos proviene de la categoría siguiente.

2. Vías catabólicas que son las que realizan procesos oxidativos que producen

energía libre, por lo general, en forma de fosfatos de alta energía o de equivalentes reductores, por ejemplo, la cadena respiratoria y la fosforilación oxidativa.

3. vías anfibólicas que tienen más de una función y que suceden en las

“encrucijadas” del metabolismo, actuando como enlace entre las vías anabólicas y catabólicas, por ejemplo, el ciclo del ácido cítrico.

En el hombre, la glucosa, los ácidos grasos, el glicerol y los aminoácidos (productos de la digestión de los alimentos) son procesados por sus vías metabólicas respectivas hacia un producto final común: acetil-CoA, que luego se oxida en forma total en el ciclo del ácido cítrico.

Tanto aminoácidos, ácidos grasos, como glucosa son metabolizados hacia acetilCoA para ingresar en el ciclo de ácido cítrico con el fin de producir ATP. Durante cada vuelta del ciclo del ácido cítrico se producen 12 moléculas de ATP, 2 de CO2 y 2 moléculas de agua. A diferencia de los otros compuestos, el metabolismo de una molécula de glucosa produce una molécula adicional de dióxido de carbono cuando el piruvato es convertido en acetil-CoA. La velocidad de las enzimas para regular e ciclo de Kreps depende básicamente de la cantidad de ATP a nivel intracelular. Si hay demasiado, la velocidad del ciclo disminuye y, si por el contrario hay déficit del mismo, la velocidad aumenta.

Page 33: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:
Page 34: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

En conclusión, el ciclo del ácido cítrico representa la vía metabólica final común de los compuestos de la dieta (proteínas, lípidos y carbohidratos) que inexorablemente lleva a la producción de CO2. La magnitud de la producción de CO2 será, por tal motivo, proporcional a la tasa metabólica de la célula.

La producción normal de dióxido de carbono en condiciones de reposo es de 200 ml en un minuto. Si se compara la producción de CO2 con el consumo de oxígeno (250 ml) se obtiene el denominado cociente respiratorio (CR) que normalmente es de 0.8 (200/250). El valor normal del cociente respiratorio cambia según las condiciones metabólicas. Cuando una persona utiliza carbohidratos para el metabolismo corporal, el CR se eleva hasta 1. Por otra parte, cuando la persona usa casi exclusivamente grasas para su consumo metabólico, el valor cae hasta 0.7. El motivo de esta diferencia es que cuando se metaboliza oxígeno junto con hidratos de carbono se forma una molécula de dióxido de carbono por cada molécula de oxígeno consumida, en tanto que si el oxígeno reacciona con las grasas, gran parte del mismo se combina con átomos de hidrógeno para formar agua en vez de producir monóxido de carbono. 1.1.3.2.2. DIFUSIÓN DEL DIÓXIDO DE CARBONO HACIA LA SANGRE: En su recorrido desde la célula hasta la sangre capilar tisular, el CO2 debe difundir primero hacia el líquido intersticial y luego desde éste hasta la sangre capilar. Este recorrido obedece a diferencias en la presión parcial de CO2 en estos tres compartimientos (célula, líquido intersticial y sangre capilar). Sin embargo, a diferencia de lo estudiado con respecto a la difusión de oxígeno, la difusión de dióxido de carbono se hace con diferencias de presión muy bajas entre estos tres compartimientos y es posible gracias a la alta solubilidad en el agua de este gas.

Page 35: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

A nivel intracelular la presión de dióxido de carbono es de 46 mm Hg y la presión de CO2 en el intersticio de 45 mm Hg; por tanto, sólo hay una diferencia de 1 mm Hg de presión a favor de la difusión del dióxido de carbono desde la célula hacia el intersticio. Sin embargo, al ser altamente soluble el CO2, con un coeficiente de solubilidad de 0,57 (23 veces más que el oxígeno), el proceso se realiza de manera eficiente. La presión de CO2 de la sangre venosa que sale de los tejidos es de 45 mm Hg; por tanto, la sangre capilar tisular entra en un equilibrio muy preciso con la presión de dióxido de carbono intersticial, que también es de 45 mm Hg. Una vez en la sangre el dióxido de carbono puede ser transportado de varias formas como se explica a continuación. 1.1.3.2.3. TRANSPORTE DE DIOXIDO DE CARBONO EN LA SANGRE: El transporte de dióxido de carbono no constituye un problema tan grande como el transporte de oxígeno, porque aún en las condiciones más anormales suele ser transportado por la sangre en mayores cantidades que éste. Sin embargo, la cantidad de dióxido de carbono en la sangre tiene que ver mucho con el equilibrio ácido-básico de los líquidos orgánicos, como se discute en el apartado correspondiente. En condiciones normales en cada 100 ml de sangre se transportan 4 ml de dióxido de carbono desde los tejidos hacia los pulmones. El dióxido de carbono puede viajar en la sangre de tres formas: disuelto en la sangre como dióxido de carbono, unido a la hemoglobina y a las proteínas plasmáticas y como ión bicarbonato, siendo éste último el mecanismo más importante.

Al empezar su recorrido el dióxido de carbono difunde hacia el plasma en forma de CO2 disuelto. Al ingresar en los capilares inicia una serie de reacciones físicas y químicas que son esencialmente para su transporte y que se describen a continuación.

Page 36: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

1.1.3.2.3.1. Transporte de dióxido de carbono en forma disuelta: Una pequeña fracción de este gas se transporta de esta manera hacia los pulmones. En la sangre venosa, una presión de CO2 de 45 mm Hg es generada por 2,7 ml/100 ml disueltos en la sangre. (recuerde que el gas disuelto es el responsable de la presión parcial del mismo en la sangre y además que entre más soluble sea un gas en la sangre, mayor número de moléculas podrán existir unidas al agua sin generar presión). Por otro lado, en la sangre arterial la presión de CO2 de 40 mm Hg es producida por 2,4 ml de dióxido de carbono disueltos. En consecuencia, sólo 0,3 ml de este gas se transporta disuelto en cada 100 ml de sangre, cifra que corresponde sólo al 7,5% de todo el dióxido de carbono transportado (0,3/4). Sin embargo, si se compara este valor con el porcentaje de oxígeno que viaja disuelto en la sangre encontrará que esta cifra es significativa. Una vez más, la diferencia en el porcentaje disuelto de estos dos gases en la sangre obedece a su diferente coeficiente de solubilidad. 1.1.3.2.3.2. Transporte de dióxido de carbono en forma de bicarbonato: El dióxido de carbono disuelto en la sangre puede reaccionar con el agua para formar ácido carbónico (CO2 + H2O = H2CO3). Sin embargo, esta reacción se realiza de forma muy lenta a nivel plasmático, por lo que carece de importancia clínica. No obstante, en el interior de los glóbulos rojos se encuentra la enzima anhidrasa carbónica, que cataliza esta reacción multiplicando su rapidez unas 5000 veces. En consecuencia, en vez de necesitar varios segundos o minutos como ocurre en el plasma, la reacción alcanza su equilibrio en el interior de los eritrocitos en fracciones de segundo. Posteriormente, y también en fracciones de segundo, el ácido carbónico formado en el interior de eritrocito se disocia en iones de bicarbonato e hidrógeno. La mayor parte del hidrógeno aprovecha las propiedades amortiguadoras de la hemoglobina y se une a ella. A su vez, la mayor parte del bicarbonato sale del eritrocito hacia el plasma gracias a una bomba de la membrana celular que lo intercambia por el ión cloro. Así pues, el contenido de cloro de los glóbulos rojos en la sangre venosa es mayor que en la sangre arterial, fenómeno que se conoce como desplazamiento o desviación de cloruros. Este mecanismo de conversión de dióxido de carbono hacia ácido carbónico por medio de la anhidrasa carbónica, transporta el 70% de todo el dióxido de carbono hacia los pulmonares (2,8 ml por 100 ml de sangre). Es obviamente el mecanismo más importante. 1.1.3.2.3.3. Transporte de dióxido de carbono en combinación con la hemoglobina y con proteína plasmáticas: formación de carbaminohemoglobina: El dióxido de carbono reacciona también con la hemoglobina para formar el compuesto llamado carbaminohemoglobina (HgbCO2). Esta reacción se produce por medio de un enlace muy laxo entre a hemoglobina y el CO2, de modo que el CO2 se libera fácilmente al llegar al alvéolo a favor de su gradiente de presión. Una pequeña cantidad de CO2 reacciona de igual manera con las proteínas plasmáticas, pero es cuantitativamente mucho menos importante por que la cantidad de estas proteínas en la sangre es tan sólo la cuarta parte de la hemoglobina.

Page 37: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

La cantidad teórica de CO2 que se transporta unido a la hemoglobina y a las proteínas plasmáticas es del 30% (1,2 ml por cada 100 ml de sangre). Sin embargo, esta reacción es mucho más lenta que la reacción del dióxido de carbono con agua dentro de los glóbulos rojos. Por tanto, es difícil que este mecanismo transporte más del 15 – 25% de la cantidad total de dióxido de carbono. La mayor parte del transporte de dióxido de carbono en la sangre se realiza en forma de bicarbonato; sin embargo, éste es muy poco difusible a través de la membrana celular. Por tal motivo, el dióxido de carbono difundirá inicialmente hacia la sangre y posteriormente hacia el interior del glóbulo rojo donde por acción de la anhidrasa carbónica se asociará con agua para producir ácido carbónico, el cual, posteriormente se disocia en bicarbonato e hidrógeno 1.1.3.2.3.4. Efecto Haldane: La fijación de oxígeno a la hemoglobina tiende a desplazar dióxido de carbono hacia la sangre y la desoxigenación de la hemoglobina tiende a aumentar su afinidad por el CO2, este es el denominado efecto Haldane. La explicación a este efecto es la siguiente: Cuando el oxígeno se combina con la hemoglobina a nivel alveolar, hace que ésta se vuelva mucho más ácida. Esto, a su vez, expulsa CO2 hacia el alvéolo por dos mecanismos: el primero se debe a la pérdida de afinidad de la hemoglobina por el CO2 cuando la primera se torna ácida. El segundo, es producido porque la acidez aumentada de la hemoglobina hace que ésta libere un exceso de iones hidrógeno, que a su vez se fijan con iones bicarbonato para formar ácido carbónico; a continuación, éste se disocia en agua y dióxido de carbono, y éste último se libera desde la sangre hacia los alvéolos. Finalmente, los mecanismos que hacen que el CO2 salga hacia los alvéolos, se invierten a nivel tisular, cuando la hemoglobina está desoxigenada y tiende a ser menos ácida. En la periferia, y por efecto de la difusión de oxígeno hacia los tejidos, la hemoglobina se vuelve mucho más ávida por el CO2 aumentando el transporte de este gas desde los tejidos hacia el alvéolo. 1.1.3.2.3.5. Cambio de la acidez de la sangre durante el transporte de dióxido de carbono: El ácido carbónico formado por el dióxido de carbono penetra en la sangre a nivel de los tejidos. Por fortuna, la reacción de este ácido con los amortiguadores de la sangre impide la excesiva elevación de la concentración de iones hidrógeno. En condiciones normales, el pH de la sangre arterial es de 7,41 y cuando la sangre se carga con dióxido de carbono en los tejidos, el pH cae aproximadamente a 7,37. Es decir el pH cambia en 0,04. 1.1.3.2.4. DIFUSIÓN DE DIÓXIDO DE CARBONO ENTRE LA SANGRE Y EL ALVÉOLO: La presión de dióxido de carbono en la sangre venosa que ingresa a los capilares pulmonares es de 45 mm Hg, y la presión de CO2 en el alvéolo (PACO2) de 40 mm Hg. Por tanto, existe sólo una diferencia de presión de 5 mm Hg entre la sangre capilar y el gas alveolar para la difusión de CO2. Sin embargo, gracias a su alto coeficiente de difusión, las presiones entre alvéolo y

Page 38: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

sangre se equilibran antes de que ésta haya transitado un tercio de la longitud del capilar pulmonar. Esta diferencia de presiones entre sangre y alvéolo puede verse alterada por cambios en la ventilación de la zona de intercambio gaseoso, la cual determina a su vez la presión de este gas en el alvéolo. En condiciones de reposo, la presión sanguínea de CO2 que llega a los pulmones es de de 45 mm Hg (PvCO2) y la PAO2 es de 40 mm Hg, lo que produce un gradiente para la difusión de 5 mm Hg como se explicó previamente; al salir del pulmón, la sangre tendrá una presión de dióxido de carbono de 40 mm Hg (PaO2). Ahora, si se mantiene fijo el gasto cardiaco pero se aumenta la ventilación alveolar, la PACO2 disminuirá porque habrá mayor salida de gas hacia la atmósfera. Esta disminución de la PACO2 aumenta el gradiente de difusión y por ende existirá mayor paso de CO2 desde la sangre al alveolo. Así, la PaCO2 disminuye. En el caso contrario, si se disminuye la ventilación alveolar sin modificar el gasto cardiaco, la PACO2 aumenta, pues habrá menor salida de CO2 hacia la atmósfera, por tal motivo el gradiente de difusión disminuye y existirá menor paso de CO2 desde la sangre hacia el alveolo. Finalmente, la PaCO2 aumenta. Por otra parte, el gradiente de difusión puede verse alterado por cambios en el gasto cardiaco. Si no se modifica la ventilación alveolar y se eleva el gasto cardiaco, la cantidad de CO2 que llega a los capilares pulmonares será mayor y por consiguiente su paso a los alvéolos también. Si la ventilación alveolar no aumenta y por ende no se produce un mayor recambio del gas en el alveolo, la PACO2 aumenta progresivamente y limita la posterior difusión de CO2 desde la sangre hacia el alveolo. El resultado final es un aumento en la PaCO2. Por el contrario, si se mantiene constante la ventilación alveolar y se disminuye el gasto cardiaco, la cantidad de CO2 que llega al alveolo será baja, luego la cantidad de CO2 que difunde hacia el alvéolo también lo es. La ventilación alveolar en estas circunstancias removerá mayor cantidad de CO2 hacia la atmósfera que la que ingresa desde la sangre, a pesar de no haberse modificado la ventilación alveolar. El efecto final será una disminución de la PaCO2. Finalmente, es pertinente aclarar como se produce el tránsito de CO2 a través de la membrana alveolocapilar y desde el alvéolo hacia la atmósfera durante la inspiración y la espiración. Durante la inspiración, el alvéolo está abierto y permite la difusión de CO2 desde la sangre hacia el alvéolo a través de la membrana alvéolo capilar. Luego, durante la espiración, el CO2 alveolar es expulsado hacia la atmósfera. La medición del CO2 expirado es de gran utilidad clínica, pues la presencia de CO2 en el gas que sale a la atmósfera desde los pulmones es, necesariamente, el reflejo de unos tejidos metabolitamente activos (que producen CO2), de un sistema cardiovascular competente (que transporta el CO2 hasta los pulmones) y de un sistema respiratorio que lo recoge de la sangre y lo lleva a la atmósfera. Es decir, la medición del CO2 espirado informa sobre el metabolismo celular, la función cardiovascular y la respiratoria.

Page 39: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

2. EQUILIBRIO ACIDO BASE

El equilibrio ácido base hace referencia, en realidad, a un complejo sistema de reacciones químicas que regula la concentración de iones hidrógeno en los líquidos corporales. Esta concentración de iones hidrógeno debe mantenerse dentro de un estrecho margen porque pequeños cambios en la misma pueden producir grandes alteraciones en las reacciones químicas celulares, aumentando unas e inhibiendo otras con impacto importante en la fisiología corporal. Por este motivo, el equilibrio ácido base es uno de los aspectos más importantes de la homeostasis. 2.1. El ión hidrógeno: El hidrógeno en estado libre sólo se encuentra en muy pequeñas cantidades en la atmósfera, aunque en el espacio interestelar abunda en el Sol y otras estrellas siendo de hecho el elemento más común en el Universo. En combinación con otros elementos se encuentra ampliamente distribuido en la Tierra donde hace parte del compuesto más importante para la vida, el agua. El hidrógeno se halla en todos los componentes de la materia viva y de muchos minerales. También es parte esencial de todos los hidrocarburos y de una gran variedad de otras sustancias orgánicas como los ácidos. El cuerpo humano se compone de unos cuantos elementos combinados para formar una extensa variedad de moléculas. El carbono, el hidrógeno, el nitrógeno y el oxígeno son los constituyentes principales de casi todas las biomoléculas. Sin embargo, la concentración de iones hidrógeno libres en las soluciones biológicas es extremadamente bajo. El hidrógeno es un protón, y como tal ellos se encuentran en los líquidos orgánicos asociados a otras moléculas y reaccionando con el agua circundante. Davis en 1958 observó que prácticamente todos los compuestos intermedios de las vías metabólicas tienen al menos un grupo que puede ser ionizado con un pH fisiológico, sea este un ácido o una base. Estos grupos son el fosfato, el amonio y el ácido carbónico. Sólo algunas macromoléculas, lípidos insolubles en agua y productos de desecho escapan a esta generalización. Davis destaca la ventaja que representa para la célula la ionización de sustancias dependiente de la concentración de iones hidrógeno ya que le permite retener en su interior a estos compuestos ionizados para su utilización. Además, la carga neta de las proteínas también

Page 40: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

depende del pH y su función depende de esta carga por que ésta determina la forma tridimensional de la molécula y sus características asociadas. 2.2. Impacto del exceso de iones hidrógeno: El control de la concentración de hidrogeniones en el organismo es de importancia central porque los hidrogeniones se unen ávidamente a las proteínas alterando su forma y función. El impacto es grande si se considera la amplia distribución de las proteínas en todos los compartimientos corporales y sobre todo a nivel intracelular, donde se desempeñan como enzimas, receptores, canales iónicos, entre otros. Además, como se explica de manera detallada más adelante, en casos de acidosis severa las proteínas se convierten en un importante sistema tampón uniéndose a los iones hidrógeno y amortiguando los cambios en le pH. La protonación de las proteínas afecta de manera severa su función ya que existe una estrecha relación entre función y estructura, y al cargarse con H+ las proteínas pierden su forma. Por ejemplo, en medio de la acidosis los receptores adrenérgicos sufren cambios estructurales que los hacen resistentes al estímulo de la adrenalina y noradrenalina con efecto deletéreo sobre la función contráctil del corazón. De ahí que, la acidificación del músculo cardíaco tiene un efecto inotrópico negativo directo con disminución de la contractibilidad hasta en un 40 a 50% porque compromete la sensibilidad de la troponina C por el calcio, inhibe el intercambio entre el sodio y el calcio en la célula y altera la unión entre actina y miosina. Otros efectos producidos por el aumento de los iones hidrógeno son la disminución del gasto cardíaco con hipotensión, la disminución del flujo sanguíneo renal y hepático, la aparición y el aumento de la susceptibilidad a las arritmias. Generalmente estos efectos aparecen cuando el pH esta por debajo de 7.25. De lo anterior se deduce que el organismo debe controlar muy cuidadosamente la concentración de hidrogeniones para mantener la homeostasis. Otro efecto importante del aumento de la concentración de los iones hidrógeno es la depresión del sistema nervioso central, en estos casos se presenta somnolencia y desorientación e incluso coma cuando el pH sanguíneo desciende por debajo de 7.0. 2.3. Definición de términos: acido, base y buffer. Un ácido (HA) es una molécula que se disocia en iones hidrógeno (H+) y una base conjugada (A-). HA ↔ H+ + A-

Cuando el ácido esta en una solución entrega iones hidrógeno a la misma. Así, el ácido clorhídrico (HCl) disuelto en agua, se disocia en iones hidrógeno y cloruro (H+ y Cl- respectivamente); éstos iones hidrógeno son donados a la solución. Si la molécula es capaz de entregar gran cantidad de iones hidrógeno se denomina ácido fuerte, como en el caso del ácido clorhídrico. Los ácidos con una capacidad de disociación menor como el ácido carbónico reciben el nombre de ácidos débiles. Es decir, la fuerza de un ácido es proporcional a su grado de disociación.

Page 41: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Una base es una molécula que dentro de una solución recibe iones hidrógeno. Por ejemplo, el bicarbonato (HCO3

-) es una base porque disuelto en agua puede aceptar un hidrógeno para formar ácido carbónico (H2CO3). Una base fuerte es aquella que se une rápidamente con los iones hidrógeno eliminándolos de la solución. Un ejemplo típico es el ión hidroxilo (OH-). Por su parte, el ión bicarbonato (HCO3

-) es una base débil, ya que su capacidad de ligar hidrogeniones es mucho menor. Así, la fuerza de una base es proporcional a su capacidad para aceptar iones hidrógeno. Es importante anotar que las proteínas funcionan como bases porque algunos de sus aminoácidos tienen la capacidad de ligar o aceptar iones hidrógeno, constituyendo de esta manera uno de los mecanismos más importantes para el equilibrio ácido base. La mayor parte de las moléculas implicadas en el equilibrio ácido base son ácidos y bases débiles, siendo los más importantes el ión bicarbonato y el ácido carbónico. Un buffer es una sustancia que acepta o dona fácilmente iones hidrógeno a una solución. Esto permite mantener una concentración de iones hidrógeno libres estable a pesar de existir cambios importantes en la concentración total de hidrogeniones. 2.4. Constante de disociación: El proceso por el cual una molécula se fraccionada en iones dentro de una solución recibe el nombre de disociación o ionización. Por ejemplo, el ácido carbónico (H2CO3) se disocia en hidrógeno (H+) y bicarbonato (HCO3

-): [H2CO3] ↔ [H+]+ [HCO3

-] Sin embargo, el grado de disociación o ionización no es igual para todas las sustancias, ya que es directamente proporcional a la fuerza de la molécula. Así, un ácido fuerte tendrá un grado mayor de disociación que uno débil. Lo anterior produce una constante de disociación, que es la proporción entre la cantidad ionizada y no ionizada de una molécula en solución, y que como vimos, depende de la fuerza de la molécula. La ley de acción de masas dicta que en la ecuación anterior, el producto de las concentraciones de la derecha dividido por la concentración de la izquierda es igual a una constante KA, esta constante, es la constante de disociación. KA = [H+] x [HCO3-]/[H2CO3]. De la fórmula anterior se deduce que si la constante de ionización es de uno, el 50% de la sustancia estará ionizada. Si es mayor de 1, entonces habrá una mayor proporción de la sustancia ionizada con respecto a la no ionizada, y finalmente, si es menor de 1, la mayor fracción de la sustancia estará sin ionizarse. 2.5. pK:

Page 42: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Se define el pK como el valor del pH en el cual, la mitad de la sustancia esta disociada, es decir, si el pK y el pH son iguales, la sustancia estará 50% ionizada y 50% no ionizada. El pK se determina con el logaritmo negativo de la constante de disociación: pK = - log10KA Como el pK de una sustancia es una constante física, el pH de la solución es quien determina la proporción entre la fracción ionizada y no ionizada de la misma. De acuerdo con lo anterior, si el pH de la solución es mayor que el pK de la molécula, ésta se disocia entregando hidrogeniones y la solución se vuelve ácida. Por el contrario, si el pH es menor que el pK, la molécula recibe hidrogeniones de la solución y ésta se torna básica o alcalina. 2.6. Concentración de iones hidrogeno, y pH de los líquidos corporales: La concentración de iones hidrógeno libres en el plasma es del orden de 40 nmol/L. Un nanomol es la millonésima parte de un mol (mol x 10-9). Estas cifras son llamativamente pequeñas, especialmente si se las compara con la concentración de otras sustancias del plasma como el sodio, cuya concentración es de 140 mmol/dl, es decir, la concentración de sodio es 3.500.000 veces mayor que la de iones hidrógeno. A pesar de ello, mantener esta baja concentración de iones hidrógeno es fundamental para las funciones celulares. Resulta evidente la incomodidad de expresar la concentración de iones hidrógeno con valores numéricos tan pequeños (0,00000040 mol/L). Por tal razón, se expresa dicho valor con una escala logarítmica a través del pH. Por lo tanto, el pH expresa la concentración real de hidrogeniones mediante la siguiente fórmula: pH = log10{1/[H+]} = -log10[0,000000040], pH = 7.4. A pesar de ser más cómoda, la expresión logarítmica de la concentración de hidrogeniones (pH) puede generar una falsa sensación sobre el cambio real en la concentración de iones hidrógeno. Por ejemplo, el cambio de pH desde 7.4 a 7.1 puede interpretarse como un cambio pequeño (0.3) cuando en realidad está expresando una alteración en la concentración de hidrogeniones desde 40 nmol/L hasta 80nmol/L, es decir, una diferencia del 100% El pH normal de la sangre arterial es de 7.4. Valores inferiores reflejan un aumento de la concentración de iones hidrógeno, lo que se denomina acidosis. Por el contrario, el aumento del pH es el resultado de la disminución en la concentración de hidrogeno y recibe el nombre de alcalosis. 2.7. MECANISMOS PARA MANTENER EL PH CORPORAL: Para evitar la aparición de acidosis o alcalosis, existen diversos sistemas de control, ellos son:

Page 43: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

1. Sistemas buffers que al combinarse rápidamente con un ácido o una base, evitan

cambios excesivos en la concentración de iones hidrógeno libres. Este mecanismo actúa en fracciones de segundos pero su capacidad es limitada y no puede corregir totalmente las alteraciones del pH.

2. El sistema respiratorio puede responder a cambios en el pH plasmático modificando la

excreción de CO2. Su respuesta es rápida, estableciéndose en pocos minutos y el sistema tiene una gran capacidad de reserva.

3. El sistema renal puede modificar la concentración de bicarbonato en el plasma y actúa

produciendo orina ácida o alcalina dependiendo del pH plasmático. Este mecanismo permite la corrección completa de las alteraciones de pH pero su capacidad de respuesta es lenta, en orden de días.

2.7.1. Sistemas Buffer: Los buffer son sustancias que tienen la capacidad de aceptar o entregar un ión hidrógeno a una solución cuando a esta se le suma un ácido o una base fuerte. Un buffer puede ser representado de la siguiente manera: HA ↔ H+ + A- donde HA es un ácido débil no disociado y A- es su base conjugada. Los ácidos débiles no están completamente disociados ya que su pK es muy cercano al pH de la solución en los cuales actúan, esto les otorga su capacidad de amortiguación ante cambios súbitos en la concentración de iones hidrógeno. Si se adiciona un ácido a la solución (H+) éste se asocia con la base (A-) para formar HA que es un ácido débil. De esta manera el buffer logra transformar un ácido fuerte en otro débil y mantener estable la concentración de iones hidrógeno libres dentro de la solución. De igual manera, si se adiciona una base (A-) el buffer amortigua el cambio del pH donando iones hidrógeno y de esta forma el pH de la solución se mantiene estable. El poder de los sistemas buffer depende del pK del mismo y de la concentración de sus componentes. Es máximo cuando el pH del fluido corporal es igual al pK del buffer ya que en esta situación los ácidos y las bases de éste están presentes en iguales concentraciones, y pueden amortiguar con eficiencia la adición de un ácido o de un álcalis fuerte. Por otra parte, si el pH de la solución se distancia del pK, el balance entre los componentes del buffer se pierde y se reduce su capacidad de respuesta. Así, cuando la concentración de un componente es más de 8 veces la concentración del otro la capacidad del sistema es muy limitada. Esto se puede representar gráficamente.

Page 44: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Los componentes de un buffer deben estar presentes en cantidades suficientes para operar de una manera efectiva. Si la concentración del buffer es muy baja, los componentes serán fácilmente desbordados ante cambios del pH. Esto explica porque un sistema buffer puede ser efectivo en un fluido corporal y no en otro. Por ejemplo, el fosfato es el mayor buffer intracelular pero tiene una limitada eficacia en la sangre donde su concentración es mucho menor. Los tres sistemas buffers principales del organismo son el bicarbonato, el fosfato y las proteínas. 2.7.1.1. Sistema buffer del bicarbonato: El sistema buffer bicarbonato (HCO3

-) consiste en una mezcla de ácido carbónico (H2CO3) y bicarbonato de sodio (NaHCO3) en la misma solución. Cuando se añade un ácido fuerte como el ácido clorhídrico (HCl) al sistema buffer del bicarbonato ocurre la siguiente reacción: HCl + NaHCO3 → H2CO3 + NaCl Como se puede observar, el ácido fuerte (HCl) es convertido en un ácido débil (H2CO3). De esta manera la adición de ácido clorhídrico a la solución baja sólo ligeramente el pH.

Page 45: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Si se considera ahora lo que sucede cuando una base fuerte como el hidróxido de sodio (NaOH) se añade a una solución que contiene ácido carbónico, se observa la siguiente reacción: NaOH + H2CO3 → NaHCO3 + H2O. En la reacción anterior, se produjo un intercambio de una base fuerte (NaOH) por una débil como el bicarbonato de sodio (NaHCO3). El sistema bicarbonato no es muy poderoso por dos motivos. En primer lugar, el pH del líquido extracelular es de 7.4 mientras que el pK del bicarbonato es de 6.1. En estas circunstancias existe 20 veces más ión bicarbonato que anhídrido carbónico disuelto. Por este motivo, el sistema funciona en una porción de la curva de taponamiento poco eficaz. En segundo lugar, las concentraciones de anhídrido carbónico y de bicarbonato no son muy altas. A pesar de lo anterior, éste es el sistema buffer más importante del organismo en el líquido extracelular porque sus dos componentes fundamentales pueden ser estrechamente regulados, el ácido carbónico por los pulmones, y el ión bicarbonato por los riñones. En consecuencia, el pH de la sangre puede ser modificado por éstos órganos. 2.7.1.2. Sistema buffer fosfato: El sistema buffer fosfato consta de los siguientes elementos H2PO4 y HPO4

=. Cuando se añade un ácido fuerte a este sistema, ocurre la siguiente reacción: HCL + Na2HPO4 → NaH2PO4 + NaCL. El resultado neto es que el ácido clorhídrico desaparece, formándose en su lugar fosfato monosódico que es un ácido débil y por ende el pH de la solución se modifica escasamente.

Page 46: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Por el contrario, cuando se añade una base fuerte tiene lugar la siguiente reacción: NaOH + NaH2PO4 → Na2HPO4 + H2O. Aquí, la base fuerte (NaOH) ha sido reemplazada por una débil Na2HPO4 modificando discretamente el pH. El sistema fosfato tiene un pK de 6.8 que es muy cercano al pH de los líquidos orgánicos; esto permite al sistema operar cerca de su máximo poder de tampón. Sin embargo, su concentración en el líquido extracelular es dos veces más baja que la del bicarbonato y por esta razón su poder de buffer es menor que la de éste en dicho compartimiento. El tampón fosfato es muy importante en los túbulos renales por dos razones: en primer lugar, su concentración aumenta significativamente a nivel tubular. En segundo lugar, el líquido tubular es mucho más ácido que el extracelular acercando el pH de la solución al pK del fosfato, permitiendo al sistema operar en la porción óptima de la curva de tamponamiento. Este sistema opera también de manera óptima a nivel intracelular ya que su concentración dentro de la célula es mayor y el pH intracelular es más ácido y cercano al pK del fosfato. 2.7.1.3. Sistema buffer de las proteínas: El sistema buffer de las proteínas tiene un gran poder de amortiguación gracias a su pK de 7.4 y a su amplia distribución por todo el cuerpo. Este sistema buffer proporciona tres cuartas partes de la capacidad tampón química total del organismo. El sistema buffer de las proteínas tiene un papel muy importante en la regulación ácido base a nivel intracelular donde ellas son abundantes. Sin embargo, su capacidad de respuesta a cambios del pH extracelular es lenta por que las moléculas cargadas de los fluidos extracelulares como el hidrógeno y el bicarbonato difunden lentamente a través de las membranas antes de ser amortiguados por las proteínas en el interior de la célula.

Page 47: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

2.7.1.4. Sistema buffer de la hemoglobina: Los residuos de histidina en las cadenas de globina de la hemoglobina contienen grupos imidazol. Estos grupos cargados se disocian en solución y actúan como un importante buffer dentro del eritrocito. Los grupos imidazol de la desoxihemoglobina se disocian menos rápido (pK 7.8) que aquellos de la oxihemoglobina (pK 6.6), convirtiendo a la desoxihemoglobina en un ácido débil y así en un mejor buffer (recuerde que el pH intracelular es más ácido que el plasmático). Esta diferencia en la capacidad buffer de la hemoglobina oxigenada y desoxigenada da origen al efecto Haldane (que se explicó en la sección de transporte de oxígeno por la hemoglobina). La anhidrasa carbónica y el cambio de cloro por bicarbonato permiten a este sistema buffer responder efectiva y rápidamente a cambios del pH plasmático. 2.7.1.5. Principio isohidrico: A pesar de haber sido discutidos de forma separada, todos los sistemas tapón actúan conjuntamente ya que los iones hidrógeno son comunes a todas las reacciones químicas. Por tal razón, existe un equilibrio constante entre todos los sistemas buffer del organismo lo cual se conoce con el nombre de principio isohidrico. La importancia de este principio es que los cambios en un determinado sistema buffer determinan cambios en los restantes pues todos ellos se amortiguan entre sí, transfiriéndose hidrogeniones unos a otros. Este principio permite también examinar todos los sistemas buffer por medio de la medición de uno sólo. Así, la capacidad buffer del organismo se valora fácilmente con la medición del bicarbonato y el dióxido de carbono en una muestra de sangre. 2.8. CONTROL RESPIRATORIO DEL BALANCE ACIDO BASE: El metabolismo intracelular genera alrededor de 12.000 mmol de iones hidrógeno en 24 horas. El 98% de esta carga ácida consiste en dióxido de carbono que como se explicó en el apartado sobre ventilación, es transportado por la sangre hasta el alvéolo para ser expulsado hacia la atmósfera por el sistema respiratorio. CO2 + H2O ↔ H2CO3 ↔ HCO3

- + H+

Gracias al carácter reversible de la ecuación, cambios en la PaCO2 rápidamente producen modificaciones en la [H+] y cambios en la concentración de hidrogeniones a su vez, generan alteraciones en la presión de dióxido de carbono. Estos cambios en el equilibrio ácido base son detectados por quimiorreceptores a nivel central (sensibles al pH) y periférico (sensibles a la PaCO2) quienes envían información hacia el centro respiratorio del tallo cerebral causando los ajustes necesarios en la ventilación alveolar. Este sistema de retroalimentación es capaz de responder a perturbaciones del pH en cuestión de minutos. Sin embargo, como todo sistema de retroalimentación, a medida que éste corrige el problema el estímulo que genera el cambio diminuye y la corrección no alcanza a ser completa logrando una eficacia del 75%. Es decir, si

Page 48: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

la concentración de hidrogeniones disminuye bruscamente de 7.4 a 7, el sistema respiratorio en un lapso de 3 a 12 minutos restaura el pH hasta un valor de 7.3. Por este motivo, el sistema respiratorio no puede corregir completamente los cambios en el pH. A pesar de ello, la regulación respiratoria del pH tiene un poder buffer una o dos veces mayor que el de todos los sistemas tampón químicos del organismo juntos. 2.9. CONTROL RENAL DEL BALANCE ACIDO BASE: Los riñones eliminan el 2% de la carga ácida producida por el metabolismo celular, esto representa unos 70 -100 mmol de ácido no volátil cada día. Esta cantidad es muy pequeña si se compara con los 12.000 mmol/día eliminados por el sistema respiratorio, pero muy grande con respecto a la concentración de iones hidrógeno en el plasma (40 nmol/L). La participación del riñón es fundamental para el equilibrio ácido base porque es la única vía de eliminación para los ácidos no volátiles y para otros patológicos como los cetoácidos, los fosfatos y el lactato; El riñón regula la concentración de hidrogeniones en los líquidos corporales excretando orina ácida o básica según sea necesario a través de mecanismos reguladores sobre la eliminación de iones H+ y reabsorción de HCO3

-. Estos mecanismos son diferentes en las partes proximales y distales del sistema tubular renal por lo que serán descritos de manera separada. 2.9.1. Segmentos tubulares proximales: El dióxido de carbono existente en el interior de las células tubulares, es la suma del CO2 que difunde desde el líquido extracelular, más el que lo hace desde la luz del túbulo, más el CO2 que se produce en el interior de la célula. Este dióxido de carbono reacciona con el agua por acción de la anhidrasa carbónica ntracelular para formar ácido carbónico (H2CO3) el cual da origen al bicarbonato (HCO3

-) e hidrógeno (H+). CO2 + H2O ↔ H2CO3 ↔ HCO3

- + H+ Este H+ que se produce en el interior de la célula tubular es contratransportado hacia la luz del túbulo con el sodio que de la luz tubular se transporta en dirección opuesta hacia la célula a favor de su gradiente de concentración. Así, en los túbulos proximales, porción ascendente gruesa del asa de Henle y en la parte proximal de los túbulos distales se secretan iones hidrógeno hacia la luz tubular por medio de transporte activo secundario. Este mecanismo es responsable de la secreción del 90% de hidrogeniones hacia la luz tubular pero es limitado cuando la concentración de H+ intraluminales es elevada.

Page 49: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

2.9.2. Segmentos tubulares distales: La porción final de los túbulos distales y los tubos colectores sobre todo los medulares son ricos en células intercaladas donde la secreción de iones H+ se realiza por transporte activo en contra de un gradiente de concentración a través de la ATPasa de hidrógeno (bomba de H+ATP). Este mecanismo es responsable del 5% de la secreción de hidrogeniones por el riñón y permite aumentar la [H+] en más de 900 veces en el interior de la luz tubular. 2.9.3. Reabsorción de bicarbonato: En condiciones normales, el 20% de la sangre que fluye por las nefronas es filtrada a nivel del glomérulo determinando el paso de un ultrafiltrado de plasma hacia la luz tubular. Este ultrafiltrado tiene básicamente las mismas sustancias que la sangre exceptuando las proteínas y hematíes, siendo rica en bicarbonato y sodio entre otras. De acuerdo con lo anterior, la cantidad de bicarbonato filtrado es el producto de la tasa de filtración glomerular (180L/día) por la concentración de bicarbonato en el plasma (24 mmol/L), esto es, entre 4000 y 5000 mmol/día (180 x 24 = 4320mmol/día). Luego durante su recorrido por el sistema de túbulos renales, el riñón reabsorbe gran cantidad de estas sustancias (HCO3

- y Na+) y secreta otras como H+. Cerca del 90% del bicarbonato filtrado es reabsorbido en el túbulo proximal y el resto en el túbulo contorneado distal y los conductos colectores. La reabsorción del bicarbonato no puede realizarse de manera directa ya que esta es una molécula grande y los túbulos resultan impermeables a ella. Por esta razón, el bicarbonato filtrado proximalmente por el glomérulo reacciona a nivel de la luz tubular con los iones H+ secretados a dicho nivel para formar ácido carbónico que posteriormente se disocia en dióxido de carbono y agua. El CO2 así producido difunde fácilmente hacia el interior de la célula y el agua queda a nivel tubular. En resumen, a nivel intracelular el ácido carbónico se disocia en bicarbonato e hidrógeno. El bicarbonato formado pasa al líquido extracelular y el hidrógeno se secreta a la luz tubular donde reacciona con el bicarbonato procedente del glomérulo para formar agua y CO2. Este

Page 50: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

CO2 formado difunde a la célula donde por medio de la anhidrasa carbónica forma bicarbonato. Es decir, el efecto neto de estas reacciones químicas es que por cada ión hidrógeno que se secreta se reabsorbe un ión bicarbonato desde la luz tubular. De acuerdo con lo anterior, la cantidad de hidrógeno y bicarbonato producido es igual lo que resulta en su neutralización a nivel tubular y en la formación de dióxido de carbono y agua. Sin embargo, esta neutralización no es completa porque debe permanecer cierta cantidad de hidrogeniones en la luz tubular para ser excretados por la orina (60 -100 mmol/día). Además, la producción de bicarbonato supera en algunas ocasiones a la de hidrogeniones debiendo ser eliminado por la orina. Por esta razón, el riñón controla el estado ácido base por medio de la neutralización incompleta a nivel tubular del hidrógeno y el bicarbonato permitiendo que uno u otro sea eliminado por la orina, lo que finalmente, produce su disminución en el líquido extracelular. Durante la acidosis cada ión excretado de hidrógeno produce la absorción de bicarbonato y sodio. Es decir, la compensación renal de la acidosis se realiza mediante la excreción de ácido y la reabsorción de base. Durante la alcalosis el aumento del bicarbonato en la sangre lleva a su mayor filtración por el glomérulo aumentando su concentración a nivel tubular. Esto produce una ganancia de bicarbonato con respecto a la de iones hidrógeno y la mayor excreción de base por la orina pues el hidrógeno no será suficiente para reaccionar con todo el bicarbonato filtrado. 2.9.4. Transporte de hidrógeno en la orina: La cantidad de hidrógeno libre en la orina es muy bajo, siendo excretado de esta manera menos del 1% del H+ secretado a nivel tubular. La razón es que a medida que su concentración aumenta se disminuye su secreción siendo totalmente inhibida al alcanzar un pH urinario de 4.5. Por tal motivo, los iones hidrógeno son eliminados por la orina a través de sistemas buffer. El líquido tubular tiene dos sistemas buffer muy importantes: el sistema buffer fosfato y el tampón amonio. 2.9.5. Transporte de iones hidrógeno en la orina por el sistema buffer fosfato: El sistema buffer fosfato se compone de una mezcla de HPO4- y H2PO4=. Este buffer aumenta su concentración significativamente ya que permanece en la luz tubular mientras el agua es reabsorbida. Además, tiene un pK de 6.8 que es muy cercano al pH urinario. Por estas razones este sistema es muy efectivo para transportar hidrogeniones en la orina. La reacción química de este sistema es la siguiente: H+ + HPO4

= ↔ H2PO4

-

Estos iones H+ provienen de la disociación del ácido carbónico en el interior de las células tubulares de tal manera que por cada ión hidrógeno que se tampona en la luz del túbulo, se

Page 51: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

produce un ión bicarbonato a nivel intracelular. Esto contribuye aún más a la corrección del desequilibrio ácido base.

2.9.6. Transporte de iones hidrógeno en la orina por el sistema buffer amoniaco: Este sistema buffer está conformado por el ión amonio (NH4

+) y por el amoníaco (NH3). Todas las células tubulares excepto las de la porción delgada del asa de Henle sintetizan de forma continua amoníaco que difunde hacia la luz tubular. El amoniaco reacciona con el ión hidrógeno para formar iones amonio. H++ NH3 ↔ NH4

+

Este sistema buffer es especialmente importante por dos razones:

1. A medida que el amoniaco se combina con el hidrógeno para formar ión amonio, la concentración de amoníaco en la luz del túbulo disminuye, lo que aumenta su difusión desde la célula epitelial hacia la luz del túbulo. De esta forma, la secreción de amoníaco está controlada por la concentración de hidrogeniones en exceso que deben ser tamponados. Es decir, el ión hidrógeno contribuye con la excreción de amoníaco.

Page 52: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

2. El cloro es el ión de carga negativa más abundante en la luz tubular, si éste se combina con el hidrógeno se produce ácido clorhidrico (HCl) que al ser un ácido fuerte produce una gran disminución del pH en la orina. Como se mencionó antes, la disminución del pH a valores cercanos a 4.5 inhibe la secreción de hidrogeniones. El sistema buffer amoníaco evita que el pH de la orina descienda significativamente, ya que el H+ se combina con el amonio y no con el cloro evitando la formación de ácido clorhidrico. De esta manera este sistema tampón permite que se pueda seguir excretando iones hidrógeno por la orina.

En estados de acidosis crónica las células tubulares sintetizan mayores cantidades de glutaminasa, enzima que se encarga de liberar amoníaco a partir de glutamina. Este mecanismo permite aumentar la secreción de amoníaco desde unos 30 mmol/día hasta 300 – 450 mmoles/día, demostrando que este sistema buffer se puede adaptar para manejar grandes cantidades de hidrogeniones.

2.10. RESPUESTA RENAL AL DESEQUILIBRIO ÁCIDO BASE: 2.10.1. Acidosis metabólica: La disminución de bicarbonato plasmático genera menor disponibilidad de bicarbonato en el líquido tubular para la excreción de hidrogeniones. Se utilizan entonces los buffers fosfato y amonio para optimizar la excreción de hidrógeno. Estos mecanismos requieren niveles plasmáticos adecuados de sodio y fosfato. 2.10.2. Acidosis respiratoria: El aumento de PaCO2 incrementa el nivel de PCO2 de las células tubulares, aumenta la concentración intracelular de hidrogeniones y estimula los mecanismos de excreción, resultando en una mayor excreción de H+ y mayor absorción de HCO3

- hacia la sangre. Estos mecanismos requieren niveles sanguíneos adecuados de sodio y fosfato. 2.10.1. Alcalosis metabólica: La capacidad del riñón para disminuir la reabsorción de HCO3

- de la orina y de reducir la excreción de H+ es muy efectiva para proteger contra la alcalosis metabólica, siempre y cuando, no se requiera una mayor reabsorción de sodio y potasio de lo normal. La hiponatremia provoca aumento de la reabsorción renal de sodio, lo que exige mayor excreción de H+ y retención de HCO3

- (empeora la alcalosis). Los altos niveles de aldosterona (tratamiento con mineralocorticoides) aumentan la reabsorción de sodio en los túbulos dístales. La hipopotasemia aumenta la reabsorción de K+ y utiliza los mismos mecanismos involucrados en la reabsorción de sodio. 2.10.2.Alcalosis respiratoria: Los bajos niveles de PaCO2 en los túbulos renales disminuyen la producción de H+ por el sistema de anhidrasa carbónica, reduciendo la recuperación de HCO3

- y la excreción de H+.

Page 53: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

2.11. MECANISMOS ELECTROLÍTICOS RENALES: 2.11.1. Ión Potasio: Gracias a la acción de la Na-K-ATPasa, existe una alta concentración intracelular de potasio y una alta concentración extracelular de sodio. En caso de deficiencia significativa de potasio plasmático, éste saldrá de la célula y se mantendrán niveles plasmáticos normales a pesar de la depleción del mismo a nivel intracelular. Para mantener el equilibrio eléctrico, la salida de K+ será compensada por el ingreso a la célula de H+ y salida adicional de HCO3

- hacia la sangre. De esta manera, la hipopotasemia genera una alcalosis metabólica extracelular (exceso de HCO3

-) y una acidosis intracelular (exceso de H+). Finalmente, el potasio en reabsorbido desde la luz tubular a cambio de la secreción de hidrogeniones. Como se explico antes, la secreción de H+ produce la reabsorción de ión bicarbonato lo que contribuye más al desarrollo de alcalosis metabólica generada por la hipopotasemia. 2.11.2. Ion Sodio: La hiponatremia exige reabsorción renal de sodio lo que aumenta la recuperación de HCO3

- y la excreción de H+, de esta manera, la hiponatremia produce alcalosis metabólica. 2.11.3. Ion cloruro: El Cl- es intercambiado libremente a través de casi todas la las membranas celulares y por lo tanto se distribuye por igual adentro y afuera de la célula. Cuando el Cl- disminuye, se afecta el intercambio de cationes a nivel tubular renal porque se deben usar o producir otros aniones como el HCO3

-.

Page 54: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

3. ANÁLISIS DE LOS GASES SANGUÍNEOS Los datos obtenidos de los gases sanguíneos son utilizados para valorar las siguientes funciones vitales: 1. Oxigenación. 2. Ventilación. 3. Equilibrio ácido base. 4. Perfusión periférica. A continuación se describe detalladamente la interpretación de los gases sanguíneos en función de cada uno de estas cuatro funciones. 3.1. ANÁLISIS DE LA OXIGENACION. Se debe valorar la oxigenación para descartar la presencia de hipoxia y de hipoxemia. Esta última se define como la disminución en la PaO2 por debajo del valor normal esperado (el valor de normalidad depende de la altura sobre el nivel del mar y de la FiO2).

Page 55: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

El pronóstico de los pacientes críticos depende más de una adecuada oxigenación que de cualquier otro factor. La oxigenación anormal es el centro fisiopatológico de la falla respiratoria aguda y todos los intentos de manejo se centran en su corrección. Son 4 los mecanismos fisiopatologicos que pueden generar hipoxemia.

• Baja presión de oxígeno inspirado. • Hipoventilación alveolar. • Alteración V/Q. • Shunt intrapulmonar.

3.1.1. Baja presión de oxígeno inspirado: La baja PO2 inspirada es una causa poco común de falla respiratoria aguda, pero puede aparecer en incendios importantes debido al consumo de O2 ambiental, en las grandes altitudes, o en las unidades de cuidados intensivos cuando se interrumpe el flujo de O2 en un paciente que lo requiere. 3.1.2. Hipoventilacion alveolar: En la presencia de un gradiente alveolo arterial de oxígeno normal D(A-a O2) la hipoventilación alveolar produce una caída en la PaO2 que es paralela con un aumento de la PaCO2. Como la presión de CO2 arterial y alveolar son prácticamente idénticas, la PaCO2 es usada para determinar la presencia y magnitud de la hipoventilación alveolar. (ver figuras paginas siguientes).

La figura muestra como la PaO2 y la PaCO2 cambian en direcciones opuestas en presencia de una D(A-a) O2 normal y un RQ de 0.8. La hipoventilación alveolar aumenta la PaCO2 por encima de 40 mmHg y disminuye la PaO2 proporcionalmente. La hiperventilación (línea punteada) produce el efecto opuesto. 3.1.3.Alteracion en la ventilacion/perfusion (V/Q) como causa de hipoxemia. Aunque la relación V/Q normalmente varía en las diferentes regiones pulmonares, el efecto general aproxima la relación entre ambas a 1. Cuando la ventilación promedio se disminuye

Page 56: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

en proporción a la perfusión (V/Q < 1) aparece hipoxemia (ver figura). Las áreas de baja relación V/Q tienen alguna ventilación pero no logran saturar plenamente la hemoglobina. Las alteraciones de la V/Q son la causa más común de hipoxemia en enfermos tanto críticos como estables. Aún en pacientes con EPOC e hipoventilación alveolar la alteración de la V/Q es generalmente la causa que más contribuye a disminuir la PaO2. Esta causa de hipoxia mejora fácilmente aumentando la FiO2 ya que eleva la PAO2 en los alvéolos hipoventilados y permite saturar completamente los capilares pulmonares. Esta es la razón por la cual los pacientes con EPOC y asma aguda pueden ser manejados con modestas cantidades de oxígeno suplementario a diferencia de los pacientes cuya hipoxemia se debe a shunt en donde la administración de oxígeno no corrige el problema. (ver figura).

Page 57: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

El diagrama muestra la hipoxemia debido a hipoventilación alveolar. Ambas graficas idealizan unidades pulmonares con representación de la oxigenación al lado izquierdo y ventilación al lado derecho. En este ejemplo la P (A-a)O2 se asume como cero. A. intercambio normal de gases. B. hipoventilación alveolar.

Page 58: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

En el lado izquierdo se ilustra una unidad pulmonar normal con relación V/Q normal y en el lado derecho una unidad con la relación V/Q baja (<1). La D(A-a)O2 se asume como cero. Durante la respiración, el oxígeno con una presión inspirada de 150 mm Hg no es capaz de alcanzar el alveolo pobremente ventilado y de saturar plenamente el capilar sanguíneo. En la figura B al dar una fracción inspirada de oxigeno mas alta (40%) con PiO2 de 285 mm Hg se alcanza en el alvéolo con hipoventilación una PAO2 suficiente para que la PaO2 sea cercana a lo normal. 3.1.4.Shunt de derecha a izquierda como causa de hipoxemia: Si la sangre circula a través de unidades pulmonares sin ventilación como ocurre cuando el alveolo está colapsado o lleno de líquido no puede oxigenarse. Esta sangre hipóxica se

Page 59: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

mezclará con sangre oxigenada en otras unidades pulmonares sanas. A la salida del pulmón la presión de oxígeno alcanzado será inferior a la esperada pues una porción de la misma no pudo oxigenarse; el resultado será una disminución de la PaO2. Esta hipoxemia no cede con el aumento del suplemento del O2, y se necesitan terapias como el PEEP para mejorar la oxigenación. La remoción de CO2 no esta usualmente afectada cuando la hipoxemia es ocasionada por alteraciones de la ventilación/perfusión, y la PaCO2 es normal o más baja a menos que haya otra razón para la hipoventilación. Esto se explica por la curva de disociación del CO2 que hace que el CO2 salga fácil del capilar sanguíneo, y porque el paciente típicamente aumenta la ventilación en respuesta a la hipercapnia. Lo mismo ocurre cuando sucede shunt de derecha a izquierda excepto cuando la magnitud del shunt es demasiado grande. El SDRA, el edema pulmonar cardiogénico y la neumonía lobar son causas comunes de hipoxia generada en la presencia de shunt intrapulmonar. La gráfica siguiente diagrama unidades pulmonares con shunt de derecha a izquierda, e ilustra como el aumento de la fracción inspirada de oxigeno que aumenta la PiO2 no contribuye a corregir la hipoxemia. La medición del de la porción de sangre que se desvía por la circulación pulmonar sin oxigenarse (shunt intrapulmonar) se puede hacer con el análisis de los gases sanguíneos mediante el cálculo del Qs/Qt que es el índice de oro para tal efecto. 3.2. MEDICIÓN DE LA HIPOXIA: Para valorar la oxigenación se han diseñado índices basados en la tensión de oxígeno, en el contenido de oxígeno y en la saturación de la hemoglobina. 3.2.1. INDICES PARA EVALUAR LA OXIGENACION a. Índices basados en la tensión de oxígeno - Presión arterial de oxigeno. - Diferencia alveolo arterial de oxigeno. - Relación entre la presión arterial de oxigeno y la presión alveolar de oxigeno. - Indice de oxigenación (Pa/FI). b. Índices basados en los contenidos y en la saturación de oxígeno: - Saturación arterial de oxigeno. - Indice de aporte de oxigeno a los tejidos. - Diferencia arteriovenosa de oxigeno. - Indice de consumo de oxigeno - Saturación venosa mezclada de la hemoglobina. - Cálculo del shunt intrapulmonar (Qs/Qt). - Fracción de la saturación arterial de oxigeno.

Page 60: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

- Diferencia de la saturación arteriovenosa de oxigeno. - Indice de ventilación/perfusión. 3.2.1.1. PRESION ARTERIAL DE OXIGENO (PaO2): En un adulto sano a nivel del mar respirando aire ambiente, la PaO2 es usualmente de 97 mmHg con un gradiente alveolo-arterial de oxigeno de 4 mmHg. Se puede definir el grado de hipoxemia según la presión arterial de oxígeno medida (PaO2). Para esto existe una tabla de valores aplicable al nivel del mar:

• Hipoxemia leve: PaO2 entre 80 mm Hg y 60 mm Hg. • Hipoxemia moderada: PaO2 entre 60 mm Hg y 40 mm Hg. • Hipoxemia severa: PaO2 < 40 mm Hg.

Por cada año de edad por encima de 60 años se resta 1 mm Hg a los límites de hipoxemia leve y moderada. En Bogota y Manizales con altura sobre el nivel del mar de 2660 mts y de 2153 mts respectivamente, la PaO2 normal es de aproximadamente 65 mm de Hg de tal manera que el margen entre la normalidad y la hipoxemia severa es de solo 20 mm Hg. En cualquier sitio y por cualquier motivo una PaO2 de 40 mm Hg o menor se califica como hipoxemia severa. Un alto valor de la PaO2 con un bajo nivel de suplemento de oxigeno indica muy probablemente una muy buena función de oxigenación pulmonar. Sin embargo, evaluar la PaO2 como indicador de buena oxigenación pulmonar en presencia de una FiO2 alta o terapias como el PEEP (presión positiva al final de la expiración) es impreciso porque la PaO2 puede estar en rangos normales por efecto de estas terapias en presencia de alteración pulmonar. En estas circunstancias se deben utilizar otros índices de oxigenación, tales como el índece de oxigenación (PAO2/FiO2) y el Qs/Qt. 3.2.1.2. CÁLCULO DEL EFECTO DEL SHUNT INTRAPULMONAR (Qs/Qt). Uno de los factores determinantes de la oxigenación sanguínea es el grado de apertura alveolar que se puede calcular mediante el índice de shunt intrapulmonar o Qs/Qt. Este índice cuantifica el grado de desequilibrio entre la ventilación y perfusión pulmonar y es utilizado de manera frecuente para el seguimiento de los pacientes. El shunt intrapulmonar no debe ser mayor del 10%. Este grado de shunt medido con el Qs/Qt corresponde a una Pa/Fi > de 280. Si el shunt está entre el 10-15% es considerado anormal leve y equivale a una Pa/Fi entre 220-280.

Page 61: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

La ecuación del shunt intrapulmonar puede ser mejor entendida por medio de la siguiente figura:

La sangre llega a los pulmones después de haber entregado el oxígeno a los tejidos periféricos. El contenido de oxígeno que le queda es el llamado contenido venoso de oxígeno (CvO2). La línea de base representa la sangre con contenido venoso de oxígeno. Esta sangre después de pasar por el alveolo queda con un contenido capilar de oxígeno (CcO2) que depende directamente de la presión alveolar de oxígeno (PAO2). La línea v-c representa el ascenso en el contenido de oxígeno de la sangre venosa si toda fuera oxigenada al pasar por el alvéolo. Como siempre existe una porción de sangre que no pasa por los pulmones, o pasa pero no se oxigena, el contenido arterial de oxígeno (CaO2) es menor que el CcO2. La línea v-a representa el aumento real en el contenido de oxígeno desde el punto venoso hasta el arterial. La línea c-a representa la diferencia entre el resultado ideal y el real. Como esta diferencia se debe al efecto del shunt, la línea c-a representa entonces la porción del gasto cardíaco total que no se sometió al intercambio gaseoso (Qs), mientras que la línea v-c representa el gasto cardíaco total (Qt). Cone esta información se puede deducir entonces la ecuación para el cálculo del Qs/Qt. Qs = gasto cardíaco desviado (shunt). Qt = gasto cardiaco total. Qs/Qt = c-a/c-v La línea c-v representa la diferencia entre los contenido capilar y venoso de oxígeno, mientras que la línea a-c representa la diferencia entre le contenido capilar y arterial. Reemplazando estos valores tenemos la ecuación para el cálculo del efecto del shunt:

Page 62: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Qs/Qt = CcO2 - CaO2/CcO2 - CvO2

Donde, CcO2 es contenido capilar de oxógeno, CaO2 es contenido arterial de oxígeno y CvO2 corresponde al contenido venoso de oxígeno. La manera de calcular los contenidos de O2 de la sangre se discutirán mas adelante (ver perfusión), tanto arterial y venoso. Cuando se desea medir el shunt verdadero, hay que hacer desaparecer el efecto de shunt producido por las desigualdades en la relación V/Q. Esto se logra haciendo respirar al paciente una atmósfera del 100% de oxígeno (FiO2 de l). Solo las áreas no ventiladas en absoluto se manifestarán. El cálculo del CcO2 se realiza así: • Primero se calcula la presión alveolar de oxígeno (PAO2); PAO2 = (PB - PH2O) x FiO2 - PaCO2/RQ (El RQ normal es de 0.8). PB: Presión barométrica. PH2O: Presión de vapor de agua en la vía aérea (47 mm Hg). FiO2 : Fracción inspirada de oxígeno. RQ: Indice o cociente respiratorio. NOTA: Un cálculo aproximado de la presión barométrica se puede realizar con la siguiente fórmula: PB = 760 x 2.7183 (-0.00012 x altura en metros)

• Luego se calcula el contenido capilar de oxígeno (CcO2) como sigue: CcO2 = Hb x 1.36 x SaO2 + PAO2 X 0.003. Donde: CcO2: Contenido capilar de oxigeno. Hb: concentración de hemoglobina (gr/dl). SaO2: Es la saturación arterial de la hemoglobina con oxígeno. Es un valor dado por el analizador de gases y se anota en la fórmula como parte de la unidad. Por ejemplo si la saturación es del 98%, en la fórmula se consigna como 0.98. PAO2: Presión alveolar de oxígeno (calculado al inicio). 1.36 es la cantidad de ml de oxígeno que puede transportar 1 gr de hemoglobina. 0.003 es el coeficiente de solubilidad del oxígeno en la sangre. A continuación se calcula el contenido arterial de oxígeno (CaO2) con la siguiente fórmula:

Page 63: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

3.2.1.3. ÍNDICES ALTERNOS DEL EFECTO DEL SHUNT: La literatura médica disponible incluye una serie de sistemas alternos menos complejos que el cálculo del Qs/Qt, para la evaluación de la oxigenación pulmonar y que según los diferentes autores pueden estimar cercanamente el grado de compromiso pulmonar. Sin embargo existe aún controversia acerca de cuál de ellos será la alternantiva mejor, teniendo siempre presente que el estandar de oro sigue siendo el calculo del Qs/Qt. Estos índices alternos son: Indice ventilación perfusión: (VQI) CcO2

VQI = 1.36 x Hb x SvO2 + PAO2 X 0.003 Donde SvO2 es el valor de la saturación de la hemoglobina con oxígeno en sangre venosa. Este valor es medido directamente por el analizador de gases y también se consigna en la nota como una fracción de la unidad. El cálculo del shunt intrapulmonar con este índice se aproxima bastante al realizado mediante el Qs/Qt y se considera la segunda opción para su medición. La fórmula puede simplificarse para hacer el cálculo con la saturación arterial y venosa de oxígeno de la siguiente manera: 1 - SaO2 VQI= 1 - SvO2 Shunt estimado (Qs/Qt est ): CcO2 - CaO2 Qs/Qt est = -------------------------------------- D(a-v) + (CcO2 - CaO2) x (3.5). Donde D(a-v) es la diferencia entre el contenido arterial y venoso de oxígeno. Este índice tiene limitada utilidad clínica porque sus valores pierden precisión cuando la FiO2 está en rangos entre el 21% y el 100%. Indice arterioalveolar de oxígeno: Valor normal mayor de 0,8 I a/A = PaO2/PAO2 Diferencia alveolo arterial de oxígeno D(A – a)O2:

Page 64: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

El valor normal con una FiO2 de 0.21 es de 5 a 15 mm Hg; con oxígeno al 100% es de 80 -150 mm Hg. D(A - a)O2 = PAO2 - PaO2 Este índice es útil para saber la magnitud de la alteración en la oxigenación secundaria a hipoventilación. No se puede utilizar para analizar el shunt cuando el paciente respira FiO2 entre el 21% y el 100%. Además, está alterado en situaciones donde el consumo de oxígeno celular esta elevado porque se disminuye el CvO2 Relación PaO2/FiO2: (Pa/Fi o índice de oxigenación). A nivel del mar el valor normal es mayor de 380. A la altura de Manizales debe ser mayor de 310. Es el índice preferido por muchos debido a su excelente correlación para todas las FiO2 y por lo sencillo de su determinación. 3.2. ANÁLISIS DE LA VENTILACION ALVEOLAR (PaCO2). Se puede evaluar desde le punto de vista químico con la PaCO2. Los valores normales a nivel del mar son de 40 – 45 mm Hg y a la altura de Santa Fé de Bogotá de 30 a 35 mm Hg. Como la presión de CO2 arterial y alveolar es idéntica por la rápida difusión de este gas a través de las membranas, la PaCO2 es usada para determinar la presencia y magnitud de la hipoventilación alveolar. De esta manera cualquier valor inferior al normal se puede catalogar como hiperventilación alveolar y alcalosis respiratoria y un valor superior al normal como insuficiencia ventilatoria causante de acidosis respiratoria. 3.2.1. VENTILACION ALVEOLAR (VA). Los trastornos en la ventilación alveolar son fácilmente diagnosticados por el valor de la PaCO2. La ventilación alveolar se puede calcular con cualquiera de las siguientes dos fórmulas. VA = VCO2 x 0.863/PaO2

VA = (Vt x FR) – VD. Donde: VA: ventilación alveolar. VCO2: Cantidad de ml de CO2 producido en un minuto. Vt: Volumen corriente. VD: ventilación de espacio muerto.

Page 65: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

FR: frecuencia respiratoria. Lo más importante es que la ventilación alveolar se correlaciona inversamente con la PaCO2 y como se ve en la primera fórmula, la ventilación alveolar es directamente proporcional a la producción de CO2 e inversamente proporcional a la PaCO2.

3.3. ANÁLISIS DEL ESTADO ACIDO-BASE. En la sección correspondiente al equilibrio ácido base se analizaron en detalle los factores involucrados en la producción de hidrogeniones por el organismo y el papel de los sistemas buffers y del sistema respiratorio y renal para el mantenimiento del pH en los líquidos biológicos. El estudio de las alteraciones acido base puede ser realizado desde dos perspectivas que aunque excluyentes en algunos aspectos pueden ser complementarias en otros. Estos dos puntos de vista del equilibrio ácido base hace referencia a la teoría de Henderson Hesselbalch y a la teoría de Peter Stewart sobre la regulación del pH que a continuación se describen. 3.3.1. MODELOS PARA INTERPRETAR EL EQUILIBRIO ÁCIDO BASE: Como hemos visto, la concentración de hidrogeniones determina el equilibrio ácido base. Sin embargo, ¿cuales son los factores que determinan una mayor o menor concentración de iones hidrógeno en el plasma? o en otras palabras, ¿qué determina el pH? Para responder esta pregunta se ha enfocado el equilibrio ácido base desde dos modelos. El primero es el modelo de Henderson – Hasselbalch que sostiene que el pH es establecido por la relación entre las concentraciones de CO2 y HCO3. El segundo, es el modelo de Peter Stewart quien argumenta que la concentración de hidrogeniones (pH) está determinada por el grado de disociación del agua. 3.3.1.2. MODELO DE HENDERSON – HASSELBALCH: Este modelo toma al bicarbonato y al dióxido de carbono como variables independientes y asume que la relación existente entre ambas es la determinante del pH en los fluidos corporales. Así, las alteraciones acido base de origen metabólico son causadas por cambios en la concentración de bicarbonato y aquellas de origen respiratorio por variaciones de la PaCO2. De acuerdo con este modelo la concentración de hidrógeno [H+] en agua puede ser descrita por la reacción química de hidratación del dióxido de carbono que produce ácido carbónico y posteriormente bicarbonato e hidrógeno: CO2 + H2O ↔ [H2CO3

-] ↔ [HCO3-] + [H+]

Page 66: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

La dirección de las reacciones químicas que se expresan en la ecuación anterior está influenciada por el pH de la solución en la cual se suceden. En condiciones normales, un pH sanguíneo de 7.4 desvía la ecuación hacia la derecha, ya que el pK del ácido carbónico (6.1) es muy inferior al pH de la solución lo que produce la ionización de la molécula hacia bicarbonato e hidrógeno. Como resultado final, la mayor parte del CO2 producido es transportado en la sangre en forma de bicarbonato. Las reacciones químicas descritas se producen en fracciones de segundo por el efecto acelerador de la anhidrasa carbónica presente en los hematíes. Esto trae como consecuencia una muy rápida disociación del ácido carbónico haciendo prácticamente imposible su medición. Por tal motivo, la determinación del pH desde el modelo de Henderson Hesselbalch se hace como una función de la PaCO2 y del bicarbonato según la siguiente fórmula: pH = pK + log10{[HCO3

-]/[PaCO2 x 0.0301]} Reemplazando en la fórmula los valores normales al nivel del mar tenemos: pH = 6.1 + log10{[24]/[40 x 0.0301]} pH = 7.4. En la ecuación, el pK es la constante de disociación del acido carbónico (6.1), como se explicó antes. La PaCO2 se multiplica por el coeficiente de solubilidad de este gas (0.0301) para hallar el CO2 disuelto. Finalmente, como sólo se mide en la muestra sanguínea la presión de CO2 y el pH, la determinación de la concentración de bicarbonato se realiza reemplazando los valores conocidos de la fórmula. 3.3.1.2.1. ANALISIS DEL COMPONENTE METABOLICO. Se evalúa con: • Medida de los delta hidrogeniones. • Cálculo del exceso/deficít de bases. • Cálculo del anión GAP para diferenciar los tipos de acidosis. a. Cálculo de los delta hidrogeniones: Sabemos que pH = 1/Log10[H

+]. También que el pH = pK + Log10 HCO3-/H2CO3, por lo

tanto [H+] = antiLog10 pH = nanomoles por litro. La fórmula anterior permite analizar las alteraciones acido base con los valores absolutos de la concentración de iones H+ en los líquidos corporales lo cual es útil para algunos cálculos matemáticos. Normalmente los hidrogeniones del organismo provienen del dióxido de carbono que es transformado hacia ácido carbónico y de la producción de ácidos no volátiles.

Page 67: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

El ácido carbónico (H2CO3) es un ácido volátil que fácilmente es regulado por el sistema ventilatorio. Todas las demás fuentes potenciales de hidrogeniones son ácidos no volatiles (o fijos) y por ello son regulados por los riñones y el hígado. Considerando que la cantidad total de hidrogeniones en el organismo es la suma de los regulados por la parte metabólica más los controlados por la parte respiratoria, se puede decir: H+ TOTALES = H+ del CO2 + H+ metabólicos. De donde: H+ metabólicos = H+totales – H+del CO2. Los H+ totales son calculados con el antilogaritmo del pH (el valor del pH es medido por la máquina de gases sanguineos). Otra forma de calcular los H+ totales es restarle a 80 la mantisa del pH. Ejemplo: La maquina de gases reporta un pH de 7.40, entonces: H+ TOTALES = antiLog10(pH) → H+ TOTALES = antiLog10(7.4). H+ TOTALES = 40 nmol/L De otra forma: H+ TOTALES = 80 - mantisa del pH → H+totales = 80 – 40 H+ TOTALES = 40 nmol/L. La fórmula de 80 menos la mantisa del pH se puede utilizar con valores de pH entre 7.55 y 7.26. Si el pH es menor a 7.26 se utiliza la regla del cambio de pH de 0.1 así: Por cada 0.1 unidad de aumento de pH se multiplica la concentración de hidrogeniones por 0.8, dado que un pH de 7.00 es igual a una concentración de 100 nmol/litro. Por ejemplo, con un pH 7.1 (el pH aumentó en 0.1 por encima de 7.00) se multiplica 100 x 0.8 = 80 nmol/L de concentración de hidrogeniones por litro. Cuando cae por debajo de 7.00 en vez de multiplicar por 0.8 se divide por 0.8 o se multiplica por 1.25. Los valores intermedios son calculados por interpolación.

pH Factor de conversión Concentración de H+

6.9 100 x 1.25 125 7.0 100 x 1 100 7.1 100 x 0.8 80 7.2 100 x 0.8 x 0.8 64

Después de haber conocido la forma de calcular los H+ totales, miremos la forma de calcular los hidrogeniones aportados por la parte respiratoria:

Page 68: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

La ecuación para calcular los H+ del CO2 es diferente en situaciones agudas y crónicas, considerando agudos a los cambios en la concentración de hidrógeno ocurridos en menos de 3 días y crónicos a los sucedidos en un tiempo mayor. Los hidrogeniones del CO2 se calculan: Cambios AGUDOS: H+ del CO2 = 0.75 x PaCO2 + 10 = nmoles/L Cambios CRONICOS: H+ del CO2 = 0.24 x Pa CO2 + 27 = nmoles/L. Ahora conocemos los H+ totales y los H+ respiratorios. Los H+ metabólicos se pueden determinar restando los H+ respiratorios de los H+, como se expresó antes. H+ METABOLICOS = H+totales - H+respiratorios = nmol/L. Normalmente los H+ metabólicos arteriales durante cambios agudos están entre 0 y +5 nmol/L. Por encima de 5 indican estados de acidosis metabólica y valores iguales o menores a 0 alcalosis metabólica. En caso de pacientes con cambios que se han hecho crónicos, es decir no intervenidos por más de 3 días, los valores normales están entre -3 a +8 nmol/L y se interpretan de manera similar. El dato de los delta hidrogeniones (H+ metabólicos) dará información acerca de lo adecuado de la perfusión para mantener el metabolismo oxidativo sin anaerobiosis y con síntesis de ATP. La fuente de los hidrogeniones en la hipoperfusión tisular es la hidrólisis del ATP. Cuando hay hidrólisis de ATP se forman H+ y en presencia de AEROBIOSIS la ecuación hidrolítica se invierte y el H+ no entra a la escena del desequilibrio acidobásico. ATP ADP + Pi + H+

Por ello, la [H+] aumentada y la elevación del lactato indican hipoperfusión. b. Base Exceso y Base exceso estándar: La aproximación de Henderson y Hesselbalch es limitada para detectar alteraciones ácido base metabólicas, por que la cantidad de bicarbonato está determinada de manera indirecta por la producción de CO2 en razón al pK del ácido carbónico (6.1) y al pH de la sangre (7.4): CO2 + H2O ↔ [H2CO3

-] ↔ [HCO3-] + [H+].

Por tal motivo, algunos autores han introducido la base exceso como una medida para cuantificar el componente metabólico de un disturbio ácido base con independencia de la PaCO2. La base exceso (BE) es definida como la cantidad de ácido o de base necesaria para conseguir que 1 litro de sangre con una determinada concentración de hemoglobina (Hb) y a 37 °C tenga un pH de 7.4.

Page 69: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

BE = (1 - 0.014 x Hb) x (HCO3

- – 24) + [9.5 + (1.63 x Hb)] x (pH – 7.4). De acuerdo con la fórmula anterior, si la Hb es de 15 g/dl, el pH de 7.4 y la PaCO2 de 40 mm Hg, la BE es de cero. Como se puede observar en la fórmula, el valor de la BE es fuertemente influenciado por la concentración de hemoglobina en la sangre, sin embargo, el efecto buffer de esta sólo se produce a nivel intravascular, mientras que el bicarbonato se distribuye en todo el líquido extracelular (intersticio y espacio intravascular). Por tal motivo, se utiliza un valor para la hemoglobina de 5 g/dl que refleja la concentración promedio de la misma en el volumen en el cual se distribuye el bicarbonato (líquido extracelular). Al usar este valor de hemoglobina en la fórmula anterior se determina la llamada base exceso estándar. La base exceso estándar define si las alteraciones ácido base son producidas por un factor metabólico, sin embargo, no precisa cual es el componente metabólico implicado en la alteración. La base exceso es reportado por las maquinas que miden los gases sanguíneos y con su valor se puede cuantificar el déficit de bicarbonato para remplazarlo: Déficit de base es la cantidad de bicarbonato que falta en cada litro de líquido extracelular. Aproximadamente el 25% del peso de un ser humano es igual al líquido extracelular, entonces: DEFICIT DE BICARBONATO = Déficit de bases x Peso (Kg) /4. c. El anión Gap (brecha aniónica): La concentración normal de electrolitos o iones del plasma es la siguiente:

CATIONES mEq/L ANIONES mEq/LSodio 142 Bicarbonato 27 Potasio 5 Cloro 103 Calcio 5 Fosfato 1 Magnesio 2 Sulfato 1 Ácidos orgánicos 5 Proteínas 16 TOTAL 154 TOTAL 154

Como se observa en la tabla anterior, el resultado de la suma de los cationes y los aniones siempre es igual en obediencia a la ley del equilibrio o neutralidad eléctrica. La composición del plasma puede ser expresada en forma simplificada incluyendo solamente los cationes y los aniones principales, aquellos que se miden en la práctica clínica diaria de la siguiente manera:

Page 70: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

CATIONES (C+) = Na+ + K+ + CATIONES RESIDUALES O NO MEDIBLES (RC+)

C+ = 142 + 5 + RC+

C+ = 147 + RC+

ANIONES (A-) = Bicarbonato-+ Cl- + ANIONES RESIDUALES O NO MEDIBLES (RA-) A- = 27 + 103 + RA- A- = 130 + RA-

De la comparación entre los cationes y aniones medibles en el plasma tiene utilidad clínica al considerar la siguiente relación:

Esto quiere decir que entre la suma de los cationes y de los aniones principales o medibles, hay una diferencia de 17 mEq/L de aniones no medibles. O sea que: (Na+ + K+ ) - ( HCO3

- + Cl- ) = diferencia de aniones (142 + 5 ) - ( 27 + 103 ) = 147 - 130 = 17 mEq/L. Esta diferencia de 17 mEq/L es la llamada brecha aniónica o anión gap representado generalmente por los aniones que no se miden, los aniones inorganicos y organicos del plasma, que pueden estar aumentados en la acidosis metabólicas. El valor normal de la brecha es de l7 mEq/L. Valores de -9 son improbables y generalmente son error de laboratorio. Cuando existe una acidosis metabólica el HCO3

- siempre estará disminuido y en la columna de los aniones habrá aumento del cloro o de los aniones no medibles para llenar el vacío del

Page 71: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

HCO3- y mantener la neutralidad eléctrica (suma iguales de cationes y aniones totales ). Por

consiguiente la acidosis metabólica es de dos tipos: • Con anión gap normal o disminuido: en el cual forzosamente el cloro estará aumentado

para llenar el déficit de bicarbonato. Esta es la acidosis hipercloremica. • Con anión gap aumentado (>22 mEq/L): lo que significa que hay acumulación de aniones

no medibles que llenan el déficit de bicarbonato. El ejemplo típico es la acidosis láctica, que resulta en la acumulación metabólica de iones lactato. Otros ejemplos son la cetoacidosis diabética, la azoemia renal donde se acumulan iones ácidos orgánicos, fosfóricos y sulfúricos; también la intoxicación por salicilatos donde se acumula ácido láctico y piruvico; o alcohol metílico donde se acumula ácido fórmico.

Así pues, la brecha aniónica ha sido útil para clasificar los estados de acidosis, pero también es un buen parámetro para el control de calidad del laboratorio. Debido a que es un reflejo de diferentes componentes, un valor demasiado alto o demasiado bajo o un valor negativo en un contexto clínico específico, traduciría un error en la determinación de uno cualquiera de los componentes necesarios para su cálculo, y por lo tanto, debe motivar una revisión de los procedimientos y de los equipos involucrados en el proceso. Descartando un error de laboratorio o una dilución de la muestra sanguínea, existen solo dos posibles explicaciones para la presencia de un valor bajo de la brecha aniónica: la hipoproteinemia y el mieloma multiple. En el primer caso, la situación se explica por el hecho de que las proteínas contribuyen en cerca del 10 % de la carga aniónica total del plasma, por lo cual una disminución significativa de su concentración implica reducción del valor de la brecha. En el mieloma múltiple aumenta la concentración de IgG que es un catión produciendo un aumento de los iones de carga positiva no medibles y una disminución de la brecha aniónica. En la actualidad, y por la disponibilidad de técnicas que facilitan la medición de sustancias como lactato, acetoacetato, hidroxibutirato y otra serie de aniones, la utilidad de la determinación de la brecha se ha visto reducida. 3.3.1.2.2. ANÁLISIS DEL COMPONENTE RESPIRATORIO. Los trastornos en la ventilación alveolar son fácilmente diagnosticados por el valor de la PaCO2. Con estos pueden deducirse los trastornos ácido-base de origen respiratorio. De acuerdo con la PaCO2 del paciente se debe calcular el pH sanguíneo del paciente ignorando los demás factores concomitantes. El pH varia según lo hace la PaCO2 con base en una relación logarítmica, pero, dentro de los márgenes útiles clínicamente, puede aplicarse la siguiente regla: por cada 10 mm Hg que suba la PaCO2 por encima de 40 el pH baja 0.05 y por cada 10 mm de Hg que baje por debajo de 40 el pH aumenta en 0.1. El valor obtenido se utiliza en el siguiente paso:

Page 72: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

- Con el valor del pH obtenido por el analizador de gases sanguíneos defina si hay o no acidemia o alcalemia. - Compare el valor medido en el paciente con el calculado en el paso anterior. Si el valor coincide se trata entonces de cambios explicables exclusivamente por los cambios respiratorios sin que existan componentes metabólicos. Si no coincide existe un componente metabólico actuando. Si la alteración ácido base es mixta (acidosis + alcalosis) hay que descubrir cual de los dos trastornos es el primario y cual es el que intenta compensarlo. Como regla general, ningún componente sobrecompensa al otro, podemos suponer con un buen margen de seguridad que el componente primario será aquel hacia el cual tienda el pH sanguíneo. Para valorar el estado ácido base de la sangre se puede emplear la gasometría venosa, miremos: PaCO2 de 60 mm Hg y pH de 7.3. mirando la PaCO2 podemos decir que se trata de una insuficiencia ventilatoria y de una acidosis respiratoria. Como la PaC02 ha subido 20 mm Hg el pH debe bajar a 7,3 , lo que en efecto ha sucedido. Podemos agregar entonces que el efecto es respiratorio y por lo tanto es agudo. Además hay acidema porque el pH está en 7,3. Analicemos: PaCO2 de 20 mm Hg, pH de 7,3. Mirando la PaCO2 podemos afirmar que existe una hiperventilación alveolar y una alcalosis respiratoria. Como la PaCO2 ha bajado 20 mm Hg el pH debe subir a 7.6, pero el real es de 7.3. Existe por lo tanto acidosis metabólica que está siendo compensada con hiperventilación alveolar. 3.3.1.3. MODELO DE PETER STEWART: Este modelo se está imponiendo en la práctica clínica porque ayuda a clarificar el mecanismo de muchos problemas del equilibrio ácido- base en pacientes críticos que no pueden ser explicados desde la perspectiva de Henderson Hesselbalch. Peter Stewart plantea que las reacciones químicas que mantienen el equilibrio ácido base se realizan en una solución conformada por un solvente: el agua, y varios solutos: iones fuertes, ácidos débiles y algunas macromoléculas. La interacción de estos solutos con el agua genera la disociación de ésta en iones hidrógeno e hidroxilo. Es decir, en este modelo los iones hidrógeno se originan de la disociación del agua. Además, estas reacciones deben respetar los principios de la electroneutralidad y del mantenimiento de la masa. Por tal motivo, para entender este modelo hay que partir conociendo algunas características de sus protagonistas: el agua y los solutos. 3.3.1.3.1. El agua: El agua tiene tres propiedades importantes que afectan el equilibrio ácido base: 1. Posee una alta concentración molar. 2. La molécula de agua es un dipolo eléctrico. 3. Tiene una muy pequeña pero importante constante de disociación.

Page 73: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

a. Alta concentración molar La alta concentración molar permite que exista una fuente inagotable de iones hidrógeno para la solución. Un mol de agua (H2O) pesa 18 gramos (1 gramo del hidrógeno + 1 gramo de hidrogeno + 16 gramos de oxígeno). Si 1000 ml de agua (1L) pesan 1000 gramos (1Kg), la cantidad de moles de agua en 1 litro es de 55,5 moles (1000/18 = 55,5 M/L). Esta concentración es 400 veces mayor que la segunda sustancia más concentrada del cuerpo, el sodio (0,14 M/L). Por tal motivo, esta alta concentración de moléculas de agua funciona como una fuente infinita de iones hidrógeno para los líquidos biológicos. b. El agua es un dipolo eléctrico El agua es un dipolo, es decir, una molécula con dos cargas eléctricas. La estructura del agua es un tetraedro asimétrico constituido por una molécula de oxígeno y dos de hidrógeno cuya distribución genera dos polos eléctricos. Uno con carga negativa generado por el oxígeno (rico en electrones) y el otro, con carga positiva producido por los iones hidrógeno (pobres en electrones). Esta característica permite al agua desdoblar los compuestos iónicos de una solución en aniones y cationes, atrayendo cargas negativas hacia su extremo positivo y cargas positivas hacia su extremo negativo, fenómeno conocido como solvatación iónica y que convierte al agua en un gran medio disolvente de compuestos iónicos como las sales minerales. Como puede advertirse, esta característica permite también mantener las cargas eléctricas de una solución en equilibrio. c. Constante de disociación El agua pura tiene una constante de disociación muy baja (Kw = 4,3 x 10-16 mmol/L), de cada 107 moléculas de agua sólo una se encuentra ionizada (H2O ↔ H+ + OH-). Esto explica que la concentración de iones Hidrógeno [H+] y de iones hidroxilo (OH-) sea muy pequeña. Sin embargo, estos niveles bajos de H+ y de OH- cambian bruscamente si se añade un ácido o una base a la solución. 3.3.1.3.2. Los solutos: Los solutos dentro de los líquidos corporales se pueden agrupar de acuerdo con su grado de ionización en tres grandes grupos: iones fuertes, iones débiles y sustancias no electrolíticas. a. Iones fuertes: Los iones fuertes son aquellos que en una solución están totalmente ionizados. Hacen parte de los iones fuertes aquellas moléculas con una constante de disociación menor de 10-4 Eq/L como el Na+, Cl-, K+ y el Lactato-. b. Iones débiles: son aquellos que en una solución se disocian parcialmente. Así, al disolverse en agua, existirá una proporción de la molécula ionizada y otra sin disociarse. Son iones débiles aquellos con una constante de ionización o disociación de 10-12 Eq/L como el dióxido de carbono. Sustancias no electrolíticas: Son aquellas que en agua nunca se disocian, siendo importantes para la osmolaridad de la solución pero sin impacto en la carga iónica de la misma. Hacen parte de este tipo de sustancias aquellas con constate de disociación mayor a 10-4 Eq/L.

Page 74: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

c. Principio de electroneutralidad y de conservación de la masa: Cuando el agua en estado puro se disocia produce cantidades iguales de cargas positivas (H+) y de cargas negativas (OH-), esto mantiene el equilibrio eléctrico de la solución. El H+ es la parte ácida de la molécula y el OH- la parte básica de la misma. Por tal motivo, al generar cantidades iguales de ácido y de base la carga eléctrica no se modifica permaneciendo neutra. H2O ↔ [H+] x [OH-] luego, [H+] = [OH-] Es importante resaltar que la disociación del agua no aumenta la masa de la solución. Si tenemos 1 litro de agua sin disociarse (100% en forma de H2O) y luego el 5% de esta cantidad se ioniza, la cantidad total de agua seguirá siendo de 1 litro sólo que su constitución será diferente: 95% en forma de H2O, 5% en forma de H+ y OH-. Este 5% estará constituido por cantidades iguales de hidrógeno y de iones hidroxilo. No obstante, las proporciones existentes entre H+ y OH- pueden variar según se le adicione a este litro de agua cargas positivas o negativas. Si al agua se le adiciona una sal (NaCl-), la solución resultante debe mantener en equilibrio las cargas eléctricas así: [Na+] + [H+] = [Cl-] + [OH-] Como se sumaron cantidades iguales de iones positivos y negativos, la ionización del agua produce sendas sumas de iones H+ y OH-. Sin embargo, la cantidad total de agua no se modifica por el principio de conservación de la masa. Si a un litro de agua se le adiciona un ión, por ejemplo el ión cloro cuya carga es negativa (Cl-), el agua dona mayor cantidad de H+ para conservar la electroneutralidad de la solución. En este ejemplo, la [H+] es mayor que la de [OH-], sin embargo también puede decirse con certeza que la [OH-] disminuyó con respecto a la [H+]. Lo importante del asunto es que la proporción entre [H+] y [OH-] se modificó produciéndose una alteración en el equilibrio ácido base dentro de la solución. De esta manera los iones H+ y OH- logran mantener la electroneutralidad de la solución si otro ión con carga eléctrica es sumado a la mezcla. Sin embargo, la proporción entre ambos se modifica determinando alteraciones en el equilibrio ácido base denominados acidosis o alcalosis. Así, la acidosis es producida por un aumento de ácidos (H+) o una disminución de las bases (OH-) y la alcalosis refleja una disminución de los ácidos (H+) o un aumento de las bases (OH-). De acuerdo con lo anterior, las alteraciones ácido base pueden ser descritas en términos de la concentración de hidrogeniones [H+] o de la concentración de iones hidroxilo [OH-]. En adelante las alteraciones ácido base serán descritas en términos de la concentración de iones hidroxilo [OH-].

Page 75: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

3.3.1.4. Variable dependiente y variable independiente: Finalmente, la teoría de Stewart considera las soluciones biológicas como sistemas, en donde la propiedad emergente, es decir, el valor que se mide, es el resultado de la interacción de todas las variables que conforman el sistema. Estas variables fueron definidas como dependientes o independientes al sistema. Una variable independiente tiene valores que son determinados por procesos o condiciones que son externos, es decir, ellos son impuestos al sistema más que establecidos por el mismo. Por el contrario, la variable dependiente tiene valores que son determinados internamente por el sistema y sólo pueden ser alterados por cambios en las variables independientes. Por ello, si se conoce el valor de las variables independientes se puede determinar el valor de una variable dependiente. La importancia de esta distinción, es que Stewart considera al ión hidrógeno como una variable dependiente y no independiente como lo hace la aproximación de Henderson Hesselbalch. Para Stewart, las variables independientes son el dióxido de carbono, la diferencia de iones fuertes y los ácidos débiles totales y las variables dependientes el bicarbonato, los iones hidrógeno e hidroxilo. Note que para la teoría de Henderson Hasselbalch el bicarbonato es una variable independiente mientras que para Stewart no lo es. 3.3.1.5. Cálculo del pH: Conociendo ya el panorama general de la teoría de Peter Stewart podemos pasar ahora a describir cada uno de sus componentes. Los cambios en la concentración de iones hidrógeno o hidroxilo sólo pueden ser producidos según la teoría de Stewart por tres variables que son independientes: El dióxido de carbono, la diferencia de iones fuertes (DIF) y los ácidos débiles (ATOT). pH = [carga de CO2] + [DIF] + [ATOT]. La carga de CO2 es calculada por la PaCO2 y el coeficiente de solubilidad del dióxido de carbono (0.0301), es decir, carga de CO2 = PaCO2 x 0.0301. Los iones fuertes son aquellos que están completamente disociados ¨sueltos¨ a pH fisiológico. Esto incluye a la mayoría de los electrolitos y al lactato porque éste con el pH sanguíneo se encuentra completamente ionizado. El bicarbonato no hace parte de los iones fuertes. La diferencia de iones fuertes (DIF) es la brecha entre cationes y aniones: DIF = [Na+] + [K+] – [Cl-] – [lactato-] Normalmente se calcula la DIF considerando la diferencia entre el sodio y el cloro, ya que los valores del potasio y del lactato son semejantes y se anulan en la fórmula. Por tal razón, la DIF medida es de +30 mEq/L (140 mEq del Na+ menos 110 mEq del CL-). Debido a que debe mantenerse la neutralidad eléctrica dentro de la solución, la existencia de 30 mEq de cationes origina la disociación del agua que aporta 30 mEq de iones hidroxilo con carga negativa (OH-), equilibrando de esta manera las cargas eléctricas dentro de la solución.

Page 76: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

La solución queda con carga neutra de la siguiente manera:

Carga

positivaCarga negativa

Na+ 140 - Cl- - 110 OH- - 30 Total 140 140

Finalmente, la ecuación incluye como ácidos débiles (ATOT) a la albúmina y a los fosfatos. La carga negativa de la albúmina se debe a sus residuos de histidina. Así la ecuación de Stewart para calcular el pH es como sigue: pH = [PaCO2 x 0.0301] + [(Na+ + K+) – (Cl- - lactacto-)] – [albumina-] – [fosfato-] El equilibrio ácido base respiratorio está representado en la fórmula por la PaCO2 mientras que la regulación metabólica del pH por la DIF y los ATOT. La PaCO2 puede cambiar rápidamente gracias a cambios agudos en la ventilación. Por el contrario, los cambios en la DIF son mucho más lentos, porque la variación en la concentración de los iones fuertes se realiza a través de cambios en su absorción por el intestino y en su excreción renal. Por último, las proteínas que son el principal constituyente de los ATOT varían de una manera mucho más lenta que los iones fuertes, lo que deja a la DIF como la principal responsable de las alteraciones ácido base metabólicas. Por lo anterior, las alteraciones ácido base respiratorias y metabólicas pueden ser analizadas en términos de cambios del CO2 y del DIF respectivamente, siendo esta última determinada principalmente por los iones cloro y sodio. Las alteraciones ácido base respiratorias se explican con la teoría de Stewart de la misma manera que lo hace el modelo de Henderson Hesselbach por lo que no se discute en esta sección. Las alteraciones metabólicas del pH pueden ser fácilmente entendidas partiendo del principio de la neutralidad eléctrica que se describió con anterioridad. Así, cualquier cambio en la carga eléctrica de la solución producirá una modificación del equilibrio entre iones hidrógeno e hidroxilo para mantener la neutralidad eléctrica. En un sujeto sano con concentraciones plasmáticas de sodio y cloro en rango normal, la diferencia de iones fuertes es de 30 mEq/L a favor de cargas positivas (140mEq de Na+ – 110mEq de Cl-) por ello la ionización del agua aporta 30 mEq/L de iones hidroxilo (OH-) para mantener la electroneutralidad de la solución.

Page 77: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Cuando se modifica este equilibrio como en el caso de la hiperclorémia, la DIF disminuye por el aumento del ión Cl-. Esto produce una disminución paralela en la [OH-] que como se explicó antes se traduce en acidosis. En otras palabras, la disminución de la DIF produce acidosis y el aumento de la misma alcalosis. Esto explica la acidosis hiperclorémica.

Paciente normal Carga

positivaCarga negativa

Na+ 140 - Cl- - 110 OH- - 30 Total 140 140 DIF = 30 mEq/l

Acidosis hiperclorémica Carga

positivaCarga negativa

Na+ 140 - Cl- - 130 OH- - 10 Total 140 140 DIF = 10 mEq/l

De acuerdo con lo anterior se puede afirmar que los cambios ácido base agudos son el resultado de cambios en el DIF. Estos se producen a través de tres grande mecanismos:

1. Cambios en el contenido del agua del plasma (alcalosis por contracción y acidosis dilucional).

2. Cambios en la [Cl-] (acidosis hiperclorémica y alcalosis hipoclorémica) 3. Aumento en la concentración de un ión no identificado (acidosis orgánica).

3.3.1.5.1. Cambios en el agua libre: Acidosis dilucional y alcalosis por contracción.

a. Acidosis dilucional: Al adicionar agua libre a una solución se produce la dilución de los iones fuertes dentro de la misma lo que produce una disminución de la DIF con disminución del ión OH-. Por ejemplo, si en 1 litro de agua hay 140 mEq de sodio y 110 mEq de cloro, la DIF y la [OH-] de esta solución es de 30 mEq cada una. Si a esta mezcla se le suma 1 litro de agua libre, la concentración de sodio resultante será de 70 mEq/L, la de Cl- de 55 mEq/L y la DIF al igual que la [OH-] disminuirá a 15 mEq/litro lo que como ya se explicó produce acidosis. b. Alcalosis por contracción:

Page 78: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

Si se pierde agua libre de una solución, la DIF y la [OH-] aumentan y se produce alcalosis. Por ejemplo, si 1 litro de agua contiene 140 mEq de sodio y 110 mEq de cloro, la DIF de esta solución es de 30 mEq y la [OH-] de 30 mEq. Ahora, si se pierde 500 ml de agua pura de esta mezcla, la concentración resultante de Na+ será de 280 mEq/l y de CL- de 220 mEq/l. Esto produce un aumento de la DIF y de la [OH-] hasta 60 mEq/L lo que explica la alcalosis metabólica en este caso. 1. Cambios en el cloro: Hipocloremia: Este caso generalmente ocurre por vómitos a repetición con la pérdida de Cl- desde el jugo gástrico. Al disminuir la [Cl-], la DIF y la [OH-] aumentan lo que produce alcalosis metabólica. Hipercloremia: El incremento en iones Cl- produce una disminución de la DIF con el consiguiente disminución de la [OH-] y el desarrollo de acidosis. 2. Aniones no identificados: Si existe un ácido orgánico no medido, como el lactato o los cetoácidos, la DIF estará disminuida y la [OH-] también lo que produce acidosis. 3.3.1.6. Ion Gap fuerte: La ventaja de la teoría de Stewart es que se puede calcular le pH si todas las variables independientes se conocen. La diferencia existente entre el pH calculado y el medido es debido a la presencia de un ión no medido. Esto puede ser cuantificado por el cálculo del ión Gap fuerte (SIG por sus siglas en ingles de strong ion Gap): SIG = [DIF] – [carga de CO2] – [ATOT] SIG = [DIF] – [HCO3

-] – [albumina] – [fosfato]. El ión Gap fuerte representa la cantidad de iones no medidos diferentes al lactato (si este es medido se incluye dentro de la DIF). La SIG es usualmente de cero. 3.3.1.7. Equilibrio ácido base en los diferentes compartimientos corporales: El agua corporal está distribuida en tres grandes compartimientos: el intracelular, el intersticial y el intravascular. Dentro de cada uno de estos compartimientos existe una concentración de hidrogeniones determinada por las variables independientes de cada compartimiento. Estos compartimientos se relacionan entre sí por medio de membranas (membrana celular y

Page 79: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

membrana capilar); a través de ellas también existen interacciones ácido base entre los compartimientos. Sin embargo, los cambios en la concentración de iones hidrógeno en cada compartimiento sólo son producidas por cambios existentes dentro del mismo de las variables independientes descritas. Por esta razón, para que una alteración acido base de un compartimiento afecte la concentración de hidrogeniones del adyacente, debe modificar primero alguna de las variables independientes en su vecino. El dióxido de carbono es una molécula altamente difusible a través de las membranas biológicas, por lo que cambios en su concentración producidas por modificaciones en la ventilación, encontrarán rápidamente su equilibrio entre todos los compartimientos. Por el contrario, las proteínas corporales son macromoléculas que por su tamaño difícilmente pueden atravesar las membranas biológicas, lo que hace que como variables independientes sólo puedas tener impacto en el compartimiento en el cual se hallan. A diferencia de las anteriores variables, los iones fuertes pueden atravesar membranas gracias a canales iónicos y bombas de ATP que permiten modificar su concentración a cada lado de las membranas celulares, lo cual hace que esta sea la variable más importante para producir modificaciones ácido base a través de las membranas. En otras palabras, de las tres variables descritas sólo los cambios en las concentración de electrolitos dentro de un compartimiento afectar el estado ácido base de su vecino gracias a la difusión de dichos electrolitos entre los diferentes compartimientos corporales. 4. ANALISIS DE LA PERFUSION PERIFERICA. La perfusión es una función cardiovascular y respiratoria que tiende a mantener la vida eficientemente mediante la producción aeróbica de ATP. Esta función cardiorrespiratoria depende de la presencia de sustratos energéticos, transportadores de electrones y oxígeno. El resultado final del metabolismo energético es la producción de ATP que es estimado en función del consumo de oxígeno. El sistema cardiovascular tiene como función básica aportar una cantidad adecuada de oxígeno a los tejidos de tal manera que les permita desarrollar sus complejas tareas metabólicas. En tal sentido entendemos su evaluación en función del acople entre la cantidad de oxígeno que se aporta a la célula y la cantidad del mismo que ella consume. En otros términos, evaluamos el sistema cardiovascular no solo como la cantidad de sangre que el corazón eyecta en 1 minuto (gasto cardíaco) sino como la cantidad de oxígeno que ella entrega a la célula en 1 minuto (aporte de oxígeno a la célula o DO2). El oxígeno es transportado en la sangre de dos maneras: unido a la hemoglobina y disuelto en la sangre. Sabemos que 1 gr de hemoglobina puede transportar aproximadamente 1.36 ml de O2 si ésta estuviese saturada en un 100% con O2. Para determinar la cantidad de oxígeno transportado por la hemoglobina basta con multiplicar la cantidad de la misma por la SaO2 por 1.36. CaO2 = Hb x 1.36 x SaO2.

Page 80: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

La pequeña cantidad de oxígeno que va disuelto en la sangre depende básicamente de la PaO2 y de su constante de solubilidad. O2 DISUELTO = PaO2 x 0.003. Para determinar el contenido arterial de oxígeno (CaO2) sumamos el oxígeno transportado por la hemoglobina y el disuelto en la sangre: CaO2 = Hb x 1.36 x SaO2 + PaO2 x 0.003. = ml de O2 em cada 100 ml de sangre. Note que el CaO2 está dado en ml por cada 100 c.c. de sangre y el gasto cardíaco en litros por minuto. Para integrarlos debemos entonces igualar las unidades así: multiplicamos el CaO2 por 10 obteniendo la cantidad de oxígeno transportado en un litro de sangre. Para calcular el aporte de oxígeno que el corazón hace a los tejidos en un minuto (DO2) multiplicamos el gasto cardiaco por el contenido arterial de oxígeno: DO2 = GASTO CARDIACO x CaO2 x 10 De lo anterior se deduce que la función cardiovascular puede entenderse como aporte de oxígeno a los tejidos y que esta depende de 2 factores: Gasto cardiaco y contenido arterial de oxígeno. A su vez el CaO2 depende básicamente de la hemoglobina y de su saturación. Por este motivo se puede entender la función cardiovascular de la siguiente manera: APORTE DE OXIGENO A LOS TEJIDOS GASTO CARDIACO CONTENIDO ARTERIAL DE O2 Hb Sat % PaO2 El principal regulador del aporte de oxígeno a los tejidos es el consumo de este en los mismos. Es decir, si la célula necesita más oxígeno hace que el sistema cardiovascular recubra estos requerimientos. Según lo anterior podemos decir que el sistema cardiovascular funciona adecuadamente cuando es capaz de cubrir las necesidades tisulares, sean estas normales o aumentadas y sólo en este sentido aceptaremos el desempeño de esta función; como puede verse no solo depende del gasto cardíaco sino también del O2 contenido en la sangre. Ahora bien, como saber si la célula está cubierta en más necesidades y por lo tanto conocer el grado de acoplamiento con lo aportado?... Introduciremos aquí algunos conceptos que nos ayudarán a responder esta pregunta.

Page 81: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

CONSUMO CELULAR DE OXIGENO (VO2): Cantidad de oxígeno que la célula consume en un minuto. Su cálculo es sencillo: VO2 = G.C. x D(a-v) O2 x 10

Al llegar la sangre arterial a la célula ésta saca el oxígeno que necesita y por supuesto quedará un sobrante de oxígeno que sigue hacia la vena, el denominado contenido venoso de oxígeno (CvO2). Se establece así una diferencia de contenidos entre la arteria y la vena denominada diferencia arterio venosa de oxígeno (D(a-v)O2), que está dada en mililitros de oxígeno por cada 100 cc de sangre y representan la cantidad de oxígeno en ml que la célula extrae de 100cc de sangre. Para calcular cuanto le extrae a un litro se debe multiplicar por 10. Finalmente, para saber cuanto oxígeno extrae la célula en un minuto se multiplica el resultado anterior por el gasto cardiaco: VO2 = G.C. x D(a-v)O2 x 10 Con esta sencilla formula se conoce la cantidad de oxígeno consumida por la célula en un minuto. Hasta aquí sabemos cuando O2 es llevado a la célula en un minuto y cuando O2 consume la misma en este periodo de tiempo, sin embargo, para conocer el acople entre el sistema cardiovascular y las necesidades celulares hay que determinar el porcentaje de oxígeno que extrae la célula de lo que le aporta el sistema cardiovascular mediante la fórmula de la extracción tisular de oxígeno (Ext O2).

Page 82: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

D(a-v)O2 Ext O2 = -------------- Ca O2 Nótese que en la fórmula no se involucra el G.C puesto que como factor de multiplicación arriba y abajo se anula. De esta forma obtendremos un dato que sin mediciones complejas (solo gases arteriales) nos brinda una idea del grado de acople entre el aporte y el consumo de oxígeno celular. Supongamos que la extracción normal es del 30%. Esto significa que del aporte a la célula esta tomará el 30%. Si un paciente tiene en un momento dado una extracción del 50%, nos informa que la célula esta extrayendo más de lo normal y esta situación se sucede en 2 ocasiones: 1. Cuando se aumenta el consumo de O22. Cuando se disminuye el aporte a la célula. En cualquiera de las dos situaciones hay un desacople entre oferta y consumo y por lo tanto existe una deficiencia del sistema cardiovascular, bien porque ha disminuido su aporte o porque no fue capaz de aumentarlo cuando se le requirió. Como se ve, este parámetro sencillo nos da una buena información sobre el grado de acoplamiento entre el consumo y el aporte tisular, que en últimas es el parámetro de evaluación de la función cardiovascular. 4.1. PRESION VENOSA MEZCLADA DE OXIGENO: (PvO2) Es la presión de oxígeno en la arteria pulmonar (en su defecto puede utilizarse la de la aurícula derecha.) y representa el oxígeno que le sobró al organismo después de extraerle a la arteria lo que necesitó. Normalmente su valor es de 35 mm Hg a 45 mm Hg y es talvez el parámetro aislado que mejor nos informa sobre el acoplamiento de aporte y consumo de oxígeno celular. En gracia de la brevedad solo daremos algunas pautas de interpretación de este parámetro. PvO2 = 35-35 mm Hg rango normal PvO2 = 28-35 mm Hg desacople compensado: implica que hay disminución del aporte en relación al requerimiento celular, bien sea por falla en el aporte o por exceso en el consumo que no se compensó. En general no hay una descompensación metabólica y por ende rara vez habrá acidosis metabólica. PvO2 = 20 -28 mm Hg desacople descompensado: hay desacople severo y generalmente causa un metabolismo anaeróbico traducido en acidosis metabólica. Es una urgencia terapéutica. PvO2= menos de 20 mm Hg severísimo desacople: si no se actúa rápido el paciente fallecerá .

Page 83: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

PvO2 = mayor de 45 mm Hg esceso de aporte o disminución en el consumo. Rara vez lo aceptamos de entrada como un exceso del gasto cardíaco. Más frecuentemente lo vemos en casos de disminución del consumo de oxígeno como hipotermia, choque de cualquier etiología, implica que el aporte de oxígeno no está siendo utilizado por las células y por lo tanto es un signo ominoso. Como la SvO2 central y la PvO2 central son, respectivamente, saturación y tensión en sangre venoso mezclada central. Una disminución de la saturación venosa mezclada puede también tomarse como una evidencia que el aporte está disminuido o que el consumo está aumentado, y más hoy que se puede medir a través de un catéter fibro óptico en la arteria pulmonar (oximetrix) Recapitulando: el sistema cardiovascular tiene a su cargo el llevar una cantidad determinada de O2 a la célula (aporte de 02) consistente en el oxígeno de la sangre y la cantidad del flujo de la misma (CaO2 x G.C. x 10). Este aporte de oxígeno es presentado a la célula, la cual en condiciones basales, extrae un 25-30% (Ext O2) que le es necesario para su trabajo metabólico (VO2). Este proceso de extracción establece una diferencia de contenido de O2 entre la arteria y la vena (D (a-v) O2). Una vez extraído el oxígeno por la célula, quedará un sobrante en la vena denominada reserva venosa de O2 y que está bien expresada por la PvO2. Ahora conociendo el cálculo de estos datos hablaremos algo del síndrome de hipoperfusión periferica: La hipoperfusión la establecemos cuando podemos identificar un desacople entre el aporte y el consumo. Tenemos dos grandes tipos de hipoperfusión: a.POR DEFECTO EN EL APORTE: Los vemos en aquellos casos en las que hay una disminución real en el aporte de oxígeno a la célula o en el que el aumento en el consumo no es suficientemente compensado por un aumento en el aporte. En ambos casos, la constante es una extracción de O2 aumentada (+ del 30%), PvO2 baja (-35 mm Hg) y una D(a-v)O2 amplia, su diferencia está dada por el consumo de oxígeno bajo en el primer caso (150 ml/m2 SC /min) y en el segundo aumentado (+ de 150 ). b.DEFECTO DE CAPTACION CELULAR: Se aprecia en casos de intensa respuesta venosa que shuntea la sangre periféricamente o cuando el deterioro celular es tan severo que se han bloqueado más vías metabolicas. Sus características son: Ext O2 disminuido (25%), D(a-v)O2 estrecha (3 vol %), VO2 bajo, PvO2 elevada (45%). De lo anterior establecido podemos concluir:

Page 84: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

1. La insuficiencia cardiovascular se caracteriza por una hipoperfusión periférica y su diagnostico se basa exclusivamente en los datos de la perfusión. 2. La insuficiencia cardiovascular debe verse no solo como una disminución absoluta del aporte de O2 al tejido sino también (quizás con mayor frecuencia)como una elevación no paralela del aporte en relación con el incremento de O2. 3. La insuficiencia cardiovascular puede originarse en cualquier de los tres factores constituidos del aporte de O2 al tejido: Gasto cardíaco, Hb, sat de la Hb arterial; la orientación terapeutica será entonces al factor alterado. 4. La insuficiencia cardíaca es uno de los componentes del síndrome y no necesariamente restringiremos a este factor el análisis de la hipoperfusión. 5. Con el diagnóstico y la terapéutica cardiovascular debemos pues sugerir una secuencia lógica: -Hay hipoperfusión? -Es por defecto del aporte o por defecto celular? -En defectos por aporte es por corazón? o por sangre? -El defecto en el corazón es por ICC o por hipovolemía? -El defecto en la sangre es por falta de sangre (Hb) o por falta de oxígeno (pulmón)? (22). Para finalizar quiero exponer los objetivos terapéuticos planteados en el grupo de Consenso en Medicina Crítica de “Hospitales del Sur”de Bogotá D.E. para mantener la perfusión: 1. Mantener el paciente sin acidosis metabólica asegurando un adecuado aporte de sustratos energéticos y de oxigenación. 2. Mantener la Extracción de Oxígeno (%ExtO22) entre 20-30% 3. Asegurar un índice de aporte de oxigeno por aumento del gasto cardíaco, con presiones de llenado normales < o igual a 12 mm Hg, Hb mayor o igual a 12 gr/dl y saturación arterial mayor del 90%. 4.Mantener un índice de consumo de oxígeno mayor o igual a 150 ml/min/m2, lo cual se correlaciona con una mejor recuperación funcional y supervivencia. El paciente en fase crítica es HIPERMETABOLICO por el intento de pago de la DEUDA de oxígeno, por lo tanto debe asegurarse un aporte suficiente de sustratos para sus necesidades metabólicas. De lo contrario las lesiones inflamatorias a nivel microcirculatorio y celular llevarán a DISFUNCIÓN ORGANICA MULTIPLE y de allí a SEPSIS.

Page 85: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

5. TOMA DE MUESTRAS DE SANGRE PARA LA MEDICIÓN DE LOS GASES SANGUÍNEOS:

La muestra de sangre para la medición de los gases sanguíneos puede ser obtenida por punción de una arteria, una vena o un capilar. Para ello, debe seguirse algunas recomendaciones técnicas que a continuación se describen con el fin de obtener mediciones confiables que permitan tomar decisiones correctas sobre el cuidado del paciente. 5.1. MUESTRA ARTERIAL: 5.1.1. Composición gasimétrica de la sangre arterial: Las arterias son vasos de conducción que permiten el transporte de la sangre entre el corazón y los tejidos periféricos sin participar del intercambio gaseoso el cual se realiza en los capilares tisulares periféricos y pulmonares. Por esta razón, una muestra de gases sanguíneos de una arteria tiene el mismo contenido gaseoso que el ventrículo cardiaco de la cual proviene. Gracias a esto, se puede valorar la eficiencia del sistema cardiorrespiratorio en el intercambio de gases con la atmósfera y el aporte se oxígeno a los tejidos con una muestra de sangre tomada en una arteria periférica, pues el contenido de esta es igual a la del ventrículo izquierdo. De igual manera, se puede valorar la perfusión tisular y el metabolismo celular con una muestra de sangre de la arteria pulmonar pues ésta tiene igual contenido que el ventrículo derecho donde converge todo el CO2 producido en los tejidos corporales. 5.1.2. Complicaciones de la punción arterial: Las complicaciones que se presentan son consecuencia de la alteración de la integridad del vaso o de la lesión de estructuras adyacentes a la arteria. Las muestras de sangre arterial pueden ser obtenidas por punción directa de la arteria o por aspiración a través de un catéter arterial previamente implantado para monitorización invasiva de la presión arterial, en ambas situaciones pueden aparecer complicaciones por la perforación del vaso o por daño a estructuras cercanas durante el procedimiento. Las complicaciones que se pueden presentar durante la punción arterial son:

1. Hemorragia y hematoma. 2. Trombosis del vaso. 3. Infección en el sitio de punción. 4. Lesión de un nervio. 5. Espasmo arterial. 6. Isquemia distal al sitio de punción.

5.1.3. Sitios de punción arterial: El sitio ideal para la punción arterial debe reunir las siguientes características:

1. Ser fácilmente accesible. 2. Tener relaciones anatómicas claras para su identificación.

Page 86: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

3. Gozar de una rica circulación colateral. 4. Estar lejos de los vasos venosos. 5. Permitir la compresión externa en caso de hemorragia o de hematoma. 6. Interferir poco con la comodidad del paciente.

De acuerdo con los criterios anteriores la arteria radial a nivel de la muñeca es el mejor sitio para obtener una muestra de sangre arterial porque:

1. Su localización es superficial siendo fácil de palpar y fijar. 2. La circulación colateral a través de la arteria cubital suele ser excelente. 3. La arteria no está adyacente a grandes venas. 4. La punción con una aguja será relativamente indolora si se evita el periostio del hueso

adyacente. Por lo anterior será la punción de la arteria radial la que se describe con mayor detalle, sin embargo, cabe mencionar otros sitios para la punción arterial como son la arteria cubital en la muñeca, la arteria humeral en la fosa antecubital, la arteria femoral por debajo del ligamento inguinal y la arteria pedia en el antepie. 5.1.4. Punción de la arteria radial: La irrigación de la mano está dada por arcos palmares derivados de la arteria cubital y de la arteria radial. El arco palmar superficial es irrigado principalmente por la arteria cubital y brinda el mayor aporte sanguíneo a la mano y los dedos. De otro lado, la arteria radial irriga el arco palmar profundo y el arco dorsal de la mano que participa poco en la irrigación de las estructuras mencionadas, sin embargo, el 1 al 2% de la población tendrá arcos palmares incompletos y dependerá completamente de la circulación a través de la arteria radial para su irrigación. Por tal motivo, es necesario valorar clínicamente cual de las dos arterias es la dominante en la circulación palmar a través de la prueba de Allen modificada.

5.1.5.Prueba de Allen: La prueba de Allen fue descrita para confirmar la obstrucción del flujo sanguíneo a través de la arteria radial; para su correcta realización se deben seguir dos pasos. El primero consiste en

Page 87: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

comparar el color de ambas manos luego de ocluir la arteria radial a nivel de la muñeca durante 3 minutos. Si la mano no cambia de color durante la prueba indica la existencia de suficiente flujo sanguíneo colateral a través de la arteria cubital. Si por el contrario se torna pálida indica obstrucción del flujo sanguíneo a través de esta arteria. El Segundo paso consiste en ocluir la arteria cubital durante 3 minutos sin hacer compresión sobre la arteria radial. Si se observa palidez en la mano habrá oclusión importante del flujo sanguíneo a través de la arteria radial. La prueba de Allen se interpreta como positiva cuando se detecta obstrucción del flujo sanguíneo en la arteria radial y contraindica la canalización de esta arteria. 5.1.6. Prueba de Allen modificada: El propósito de la prueba de Allen modificada es evaluar el flujo colateral de la mano a través de la arteria cubital. Para realizarla de una manera correcta siga los siguientes pasos:

1. Se solicita al paciente que cierre el puño con fuerza para desalojar la sangre de la mano. 2. Se aplica presión en la muñeca para ocluir el flujo sanguíneo tanto de la arteria cubital

como de la arteria radial. 3. Se elimina la presión de la arteria cubital mientras se mantiene la compresión en la

arteria radial. 4. Se valora la coloración de la mano. El enrojecimiento de la palma y los dedos incluido

el pulgar en menos de 10 segundos demuestra un adecuado flujo sanguíneo colateral a través de la arteria cubital y se interpretará como una prueba de Allen modificada positiva. Esta sugiere que la canalización o punción de la arteria radial no afectará la irrigación de la mano y se puede seguir con el procedimiento. Por el contrario, si el tiempo de enrojecimiento es igual o mayor a los 15 segundos la prueba de Allen modificada será negativa e indica insuficiencia del flujo sanguíneo a través de la arteria cubital lo que contraindica la punción o canalización de la arteria radial.

5.1.7. Limitaciones de la prueba de Allen modificada: A pesar de la utilidad de la prueba de Allen modificada para valorar el flujo sanguíneo colateral de la mano existen algunas circunstancias clínicas que limitan su uso, ellas son:

1. Requiere la colaboración del paciente, por ello es limitada en pacientes en estado de inconsciencia, bajo efectos de sedación o en la población pediátrica.

2. Los pacientes con shock e insuficiencia circulatoria severa, ictericia y palidez intensas plantean problemas particulares para evaluar el tiempo de reperfusión.

3. Las quemaduras de la muñeca o de la palma imposibilitan su interpretación. 4. El resultado de la prueba no es confiable si el enrojecimiento de la mano tarda entre 10

y 15 segundos. En las circunstancias anteriores el flujo colateral cubital puede valorarse colocando un pulsioxímetro en el pulgar del paciente para monitorizar señal del pulso y el valor de la oximetría durante la prueba de Allen. La desaparición de la onda pletismográfica y la desaturación a medida que se aplica presión sobre la arteria cubital indica obstrucción al flujo

Page 88: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

sanguíneo en esta arteria. La liberación de la presión determinará una recuperación inmediata de la pulsioximetría. 5.1.8.Técnica de punción de la arteria radial:

1. Evalúe primero el flujo colateral de la mano con la prueba de Allen. 2. Proteja sus manos con guantes limpios. 3. Ubique al paciente de tal manera que esté en una posición cómoda y segura. 4. Explíquele al paciente el procedimiento que se le va a realizar. 5. Identifique el sitio de punción y examine la piel en busca de erupción o signos de

infección que contraindiquen el procedimiento. 6. Deje el antebrazo del paciente sobre una superficie dura y firme en abducción y

supinación. 7. Coloque la muñeca sobre una compresa enrollada con una flexión dorsal de 30

grados. 8. Ubique con la mano no dominante el pulso radial en la cara externa del antebrazo

entre 2,5 y 5 cm. proximales al plegue de la muñeca. 9. Limpie la piel alrededor del sitio de punción elegido con una torunda impregnada de

solución antiséptica. 10. Si se advierte que la punción será difícil infiltre la piel y el tejido celular subcutáneo

con lidocaína al 2% sin epinefrina teniendo cuidado de no puncionar la arteria. Espere que se logre la anestesia de la zona infiltrada durante 2 minutos. Esto evita el espasmo arterial y mejora la comodidad y la colaboración del paciente durante el procedimiento.

11. Utilice para la punción una aguja No 21 conectada a una jeringa de 1 cc. o una jeringa de insulina previamente lavada con heparina. No deje más de 0,1 cc. de heparina dentro de la jeringa para evitar la acidificación de la muestra.

12. Palpe el pulso radial con una mano y sostenga la jeringa con la mano dominante como si fuera un lápiz. Realice la punción con el bisel de la aguja hacia abajo penetrando la piel en ángulo de 60 grados con respecto al plano horizontal del antebrazo en dirección al pulso radial, avance lentamente la aguja hasta observar retorno sanguíneo a través de la misma. Sostenga en esta posición la aguja y permita que la presión arterial empuje la sangre al interior de la jeringa. Llene la jeringa con 1 cc. de sangre.

13. Retire la aguja y aplique presión directa sobre la arteria en el sitio de punción durante 5 minutos o más si el paciente está recibiendo anticoagulantes o tiene diátesis hemorrágica.

14. Saque las burbujas de aire y aísle la jeringa de la atmósfera conectando la aguja de la misma en un corcho.

15. Rotule la muestra y envíela al laboratorio para su procesamiento en menos de 10 minutos.

5.1.9. CANALIZACIÓN ARTERIAL: La canalización arterial consiste en la introducción de un catéter dentro de la luz de una arteria. Una arteria canalizada es útil en pacientes en estado crítico porque permite:

Page 89: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

1. Monitorizar de forma invasiva la presión arterial a través de transductores de presión

electrónicos en pacientes cuya condición clínica y estado hemodinámico lo ameritan. 2. Tomar muestras sanguíneas arteriales frecuentes en pacientes en estado crítico lo que

brinda mayor comodidad al paciente toda vez que disminuye el número de punciones. 3. Ahorrar tiempo por parte del personal de enfermería en la recolección de las muestras.

Sin embargo, al igual que con la punción arterial pueden presentarse complicaciones dentro las cuales se destacan la trombosis arterial, la embolia aérea cerebral, la necrosis de dedos en el caso de la canalización de la arteria radial o pedia y la infección. Estos eventos se relacionan con la circulación colateral presente en la extremidad elegida y con el tiempo que se deje insertado el catéter. Otras complicaciones que pueden aparecer son la hemorragia, el hematoma, la aparición de fístulas arteriovenosas y la formación de pseudo aneurismas. Las arterias susceptibles de ser canalizadas cumplen los mismos requisitos que para la punción arterial:

1. Fácil acceso. 2. Estar lejos de un vaso venoso. 3. Ser fácilmente compresible. 4. Estar en una extremidad con rico flujo colateral. 5. Tener una identificación anatómica confiable.

Las arterias que cumplen estos requisitos son: la arteria radial, pedia, femoral, humeral y la axilar. Sin embargo, sólo se describirá la canalización de la arteria radial por ser la más comúnmente utilizada. 5.1.10. CANALIZACIÓN DE LA ARTERIA RADIAL Existen varias técnicas para la canalización de la arteria radial, todas ellas efectivas y con una tasa de éxito similar. Las más comunes son la canalización directa con catéter de teflón sobre aguja, la canalización con técnica de Seldinger y la técnica transfixiante con guía de alambre que es la que a continuación se describe. Técnica transfixiante con guía de alambre para la canalización de la arteria radial:

1. Evalúe previamente el flujo colateral de la mano con la prueba de Allen modificada. 2. Realice la canalización de la arteria radial con técnica estéril. 3. Ubique al paciente de tal manera que esté en una posición cómoda y segura. 4. Explíquele al paciente el procedimiento que se le va a realizar. 4. Identifique el sitio de punción y examine la piel en busca de erupción o signos de

infección que contraindiquen el procedimiento. 5. Deje el antebrazo del paciente sobre una superficie dura y firme en abducción y

supinación. 6. Coloque la muñeca sobre una compresa enrollada con una flexión dorsal de 30 grados.

Page 90: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

7. Ubique con la mano no dominante el pulso radial en la cara externa del antebrazo entre 2,5 y 5 cm. proximales al plegue de la muñeca.

8. Limpie la zona de piel alrededor del sitio de punción elegido con una gasa impregnada con solución antiséptica .

9. Infiltre la piel y el tejido celular subcutáneo con lidocaína al 2% sin epinefrina teniendo cuidado de no puncionar la arteria. Espere durante 2 minutos mientras se anestesia la zona infiltrada. Esto evita el espasmo arterial y mejora la comodidad y la colaboración del paciente durante el procedimiento.

10. Utilice para la punción un catéter de teflón sobre aguja No 18 (angiocath) y una guía de alambre que avance fácilmente por dentro del catéter.

11. Palpe el pulso radial con una mano y sostenga el angiocath con la mano dominante como un lápiz. Realice la punción de la piel con el bisel de la aguja hacia abajo en dirección al pulso radial, con un ángulo de 45 grados respecto al plano horizontal del antebrazo, avance lentamente la aguja hasta observar retorno sanguíneo a través de la misma. Siga avanzando hasta transfixiar la pared posterior del vaso. En este momento el flujo sanguíneo por el angiocath se detiene. Retire la aguja sin mover el catéter de teflón; a continuación tome con la mano no dominante el catéter y con la dominante la guía de alambre. Ahora retire lentamente el catéter de teflón hasta encontrar flujo sanguíneo pulsátil y entonces, introduzca la guía de alambre a través del catéter de tal manera que la punta de la guía avance 1 o 2 cm. dentro del vaso. A continuación avance el catéter sobre la guía en dirección de la arteria y por último retire la guía de alambre teniendo la precaución de no retirar el catéter durante esta maniobra.

12. Conecte el angiocath a un sistema de transducción de presión por medio de extensiones rígidas de anestesia. Deje conectada en el circuito una jeringa de 10 cm. para la toma de muestras sanguíneas

13. Asegure el catéter a la piel con micropore. 5.2. TOMA DE MUESTRAS DE SANGRE CAPILAR Se puede tomar muestras de sangre capilar en circunstancias clínicas en las que no es posible obtener con facilidad o no están indicadas las muestras arteriales. Esta situación se observa sobre todo en el lactante bien prefundido en el que conviene efectuar una determinación del pH, PaCO2 y PaO2 pero no hasta el punto de justificar punciones o canalización arteriales. En un lactante bien prefundido la sangre capilar arterializada mostrará una buena correlación con la PCO2 y el pH arteriales y reflejará un valor de PO2 aproximadamente de 15 mm Hg menor a la arterial. Técnica para tomar muestras capilares: 1. Seleccione un lecho capilar ricamente vascularizado como el lóbulo de la oreja, el talón, el

gran artejo del pie o un dedo de la mano.

Page 91: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

2. Caliente el sitio de punción elegido durante 10 minutos con una lámpara o con toallas calientes.

3. Limpie con solución antiséptica el sitio de punción. 4. Practique una punción de 2 a 3 mm. de profundidad con una hoja de bisturí de tal modo

que aparezca un flujo de sangre libre sin necesidad de exprimir el área de punción. No realice compresión porque desarterializa la muestra.

5. Elimine la primera gota y a continuación recoja las siguientes con un tubo capilar heparinizado. La sangre fluirá con facilidad hacia el tubo por capilaridad. Dos tubos capilares aportan una muestra ideal.

6. Los tubos deben ser sellados de inmediato y colocados en hielo. 7. Marque los tubos con los datos del paciente y envíelos inmediatamente al laboratorio para

su análisis en los siguientes 10 minutos. 5.3. MUESTRAS DE SANGRE VENOSA Con respecto a la interpretación de los gases sanguíneos venosos hay que tener en cuenta algunos aspectos:

1. El contenido de gases sanguíneos en venas periféricas está determinado por la tasa metabólica de cada tejido en particular siendo distinto en todas las venas del organismo debido a que el consumo de oxígeno y la actividad metabólica de los órganos es diferente.

2. La sangre proveniente de los tejidos periféricos se mezcla en las cavidades derechas del corazón y sale por la arteria pulmonar para ser oxigenada por el pulmón.

3. La determinación del contenido de oxígeno y dióxido de carbono en sangre venosa brinda información valiosa sobre la actividad metabólica de las células y de la perfusión tisular.

En la práctica clínica se utiliza la medición de gases venosos mezclados tomados por medio de un catéter de flotación en la arteria pulmonar con el fin de valorar la perfusión de los tejidos periféricos a través de la medición del CO2, PvO2 y SvO2.

5.3.1. RECOLECCIÓN DE LA MUESTRA: Es necesario una correcta obtención y manipulación de la muestra para evitar errores preanalíticos que alteren los resultados obtenidos. Las siguientes recomendaciones apuntan a disminuir esta fuente de error en la determinación de los gases sanguíneos. 5.3.1.1. Anticoagulantes: Para el análisis de los gases sanguíneos se agrega sangre fresca total a una jeringa impregnada con heparina para evitar la coagulación de la muestra. Sin embargo, este medicamento posee un pH de 7 que puede alterar el pH de la muestra si se agrega en exceso. Los otros

Page 92: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

anticoagulantes que se utilizan para las demás muestras sanguíneas como el ácido etilendiaminotetraacético (EDTA) y el citrato no son recomendados por alterar significativamente las mediciones sanguíneas. Para lograr la anticoagulación de la muestra sin afectar el pH se recomienda lavar la jeringa con heparina sódica de tal manera que no quede anticoagulante en la misma. 5.3.1.2. Jeringa: Existen dudas sobre si el plástico de las jeringas altere los valores de los gases sanguíneos. En esencia el pH y PCO2 no son afectados, mientras que los valores de PaO2 mayores a 400 mm Hg caen con más rapidez en la jeringas de plástico que en las de vidrio pero esta modificación carece de relevancia clínica. 5.3.1.3. Condiciones anaerobias: No se debe permitir la existencia de burbujas de aire en la muestra sanguínea. Los gases contenidos en la burbuja de aire buscan equilibrio con los gases sanguíneos de acuerdo con sus gradientes de presión lo que resulta en una disminución en la muestra sanguínea de la PCO2 y una elevación del pH. La PaO2 será cercana a 150 mm Hg. Para mantener las condiciones anaerobias de la muestra la jeringa debe sellarse de inmediato con una tapa. 5.3.1.4. Demora en el análisis: Como regla general, las muestras de sangre arterial deben ser analizadas en término de 10 minutos o ser enfriadas de inmediato. La sangre es un tejido vivo y metabólicamente activo que continua consumiendo O2 y produciendo CO2 incluso después de haber sido extraída. Si la jeringa es colocada de inmediato en agua helada la temperatura de la muestra cae con rapidez a 4°C y los cambios de la PaCO2 y el pH son insignificantes durante varias horas. Por el contrario, si la muestra no es enfriada de inmediato los cambios en estas variables puedes ser representativos.

Page 93: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

6. EL ANALIZADOR DE GASES SANGUÍNEOS

El análisis de los gases sanguíneos involucra la medición directa que la máquina hace del pH, PO2 y PCO2; a partir de estas mediciones se puede calcular de manera matemática otros parámetros como el bicarbonato, el exceso y déficit de base, la base exceso estándar, la saturación de oxígeno, el contenido total de oxígeno entre otros. En la mayoría de los sistemas, la muestra de sangre arterial es aislada del medio aerobio en jeringas con heparina selladas que deben ser trasportadas hasta el laboratorio para su procesamiento. Los analizadores de gases sanguíneos usan tres tipos de electrodos para determinar el pH, PCO2 y PO2 en la sangre. Debido a que los cambios en la temperatura afectan las mediciones, los electrodos y la cámara reservorio de la muestra están localizadas dentro de un ambiente controlado a temperatura constante de 37 ºC (igual a la temperatura corporal). Antes de la introducción de las muestras sanguíneas, los electrodos son calibrados con concentraciones conocidas de buffers estándar y de soluciones calibradoras. La forma de calibración varía entre las diferentes máquinas disponibles en el comercio y por ello es importante conocer la forma particular de realizar la calibración con el aparato que se esté trabajando. Una vez realizada la calibración, la muestra sanguínea es inyectada o aspirada dentro de la recámara de muestras para su medición. Algunas máquinas demoran el análisis hasta que la temperatura de la muestra se equilibra con la de la recámara, otros inician el análisis antes de que el equilibrio ocurra. Típicamente, cuando la muestra sanguínea entra en contacto con los electrodos en la recámara, se produce una salida de electricidad que corresponde a un valor de pH o a una presión parcial. Los analizadores de gases sanguíneos automáticamente monitorizan la respuesta del electrodo continuamente y, después de un periodo predeterminado de estabilización, informan o imprimen los valores medidos. Al terminar el análisis, algunas máquinas bombean la muestra hacia un contenedor y limpian el sistema con

Page 94: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

soluciones acuosas, otros utilizan un cartucho desechable que se retira para ser desechado al terminar el proceso. La medición del pH se realiza utilizando dos electrodos separados: un electrodo medidor del pH y un electrodo de referencia. Cada electrodo representa la mitad de una celda en la cual se desarrolla un potencial eléctrico. El electrodo medidor es un electrodo de plata –cloruro de plata rodeado por una solución de pH constante y encerrado por una membrana permeable a iones hidrógeno. Cuando la muestra pasa la membrana de gas, la diferencia en la concentración a cada lado de la membrana cambia el potencial (voltaje) del electrodo. El electrodo de referencia de mercurio de cloro o de plata – cloruro de plata produce un potencial constante sin importar el pH de la muestra. Una solución electrolítica saturada (cloruro de potasio) en el electrodo de referencia y una delgada membrana, permite el flujo de corriente desde el electrodo de referencia a través de la muestra dentro de la recámara hasta el electrodo medidor. La diferencia de potencial es registrada en un voltímetro calibrado en unidades de pH.

EL sistema de electrodos para la medición de la PCO2 usa principios similares a aquellos descritos con el medidor de pH. Este utiliza un electrodo medidor de PCO2 de Severinghaus, que combina un electrodo de vidrio medidor de pH y un electrodo de plata – cloruro de plata de referencia. Una membrana permeable al CO2 pero no a los iones hidrógeno separa la muestra del sistema medidor. El electrodo de PCO2 también contiene un espaciador (generalmente una membrana porosa de dacrón o nylon) que actúa como un soporte para una placa acuosa de bicarbonato. Cuando el CO2 difunde a través de la membrana y dentro del soporte, el pH del electrodo cambia debido al cambio en la concentración de bicarbonato de acuerdo con la ecuación: H2O + CO2 ↔ H2CO3 ↔ H+ + HCO3 La corriente de salida de este electrodo modificado de pH es proporcional a la PCO2 presente en la muestra.

Page 95: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

La PO2 es medida usando un sistema de electrodo polarográfico que consiste en un cátodo de platino (en el centro del cilindro de vidrio) y un ánodo de plata - cloruro de plata. Una membrana permeable al oxígeno separa la muestra sanguínea del sistema de medición. El oxígeno que difunde a través de la membrana es reducido por el cátodo cuando un potencial de 0.7 V es aplicado entre el ánodo y el cátodo (voltaje polarizante). Las siguientes reacciones representan las reacciones que ocurren en el cátodo. O2 + 2H2O + 4e 4 OH El circuito es completado cuando la plata es oxidad por el ánodo: 4 Ag 4 Ag+ + 4e-

La corriente desarrollada por estas reacciones es directamente proporcional a la PO2 de la muestra sanguínea. Los analizadores de gases sanguíneos pueden también corregir resultados de acuerdo a la temperatura que tenía el paciente en el momento de recolección de la muestra. Otros parámetros como la hemoglobina y la fracción inspirada de oxígeno (FiO2) deben ser ingresados para ayudar con las mediciones de los instrumentos. Los parámetros adicionales son derivados matemáticamente a partir de los valores de pH, PO2 y PCO2 medidos. Los analizadores con interfaces de computador pueden enviar sus datos automáticamente a un

Page 96: 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA …telesalud.ucaldas.edu.co/telesalud/Anestesia/Documentos/Gases... · 1. SISTEMA RESPIRATORIO: 1.1. MECÁNICA DE LA VENTILACIÓN PULMONAR:

sistema de información del laboratorio. Algunos pueden además imprimir sus datos usando impresoras convencionales.