50
 

1939 2013

Embed Size (px)

Citation preview

Page 1: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 1/50

 

Page 2: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 2/50

 

Agradecimientos 

A mis padres, por el apoyo incondicional, el cariño brindado, el esfuerzo y la dedicaciónque tuvieron hacia mí.

A mi familia, por su apoyo y compresión.

A Anayansi, por su apoyo moral y su paciencia.

“LA TÉCNICA AL SERVICIO DE LA PATRIA” 

“Porque no es el final, solamente es el inicio” 

Page 3: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 3/50

 

i

Tabla de contenidoGlosario de términos. ........................................................................................................ iii

Glosario de acrónimos. ...................................................................................................... iii

Lista de tablas y figuras. ............................................... ......................... .......................... ... ivFiguras. .......................................................................................................................... iv

Tablas. ............................................................................................................................v

Resumen. .......................................................................................................................... vi

Introducción. .................................................................................................................... vii

Objetivo. ....................................................................................................................... vii

Justificación. ................................................................................................................. vii

Alcance. ........................................................................................................................ vii

Metodología. ............................................................................................................... viii

Antecedentes. ............................................................................................................. viii

Capítulo I: Pasado, presente y futuro. ................................................................................ 1

1.1 Inicios de la motocicleta Eléctrica ........................... ......................... .................... 2

1.2 Tiempos modernos ........................... ......................... .......................... ............... 3

1.3 Actualidad ........................... .......................... ......................... ........................... .. 5

1.4 Empresas en América ........................ ......................... .......................... ............... 5

Capítulo II: La motocicleta y sus componentes. .................................................................. 7

2.1 Definiciones ........................ .......................... ......................... ........................... .. 8

2.2 Geometría básica de la motocicleta ........................ ......................... .................... 8

2.3 Tipos de Chasis ......................... .......................... ......................... ........................ 9

2.3.1 Chasis simple cuna cerrado................................ ......................... .................... 9

2.3.2 Chasis simple cuna abierto o interrumpido ......................... .......................... .. 9

2.3.3 Chasis simple cuna desdoblado ......................... ......................... .................... 9

2.3.4 Chasis doble cuna ......................... ......................... .......................... ............. 10

2.3.5 Chasis multitubular............................................ ......................... .................. 10

2.3.6 Chasis doble viga perimetral .......................... ......................... ...................... 10

2.3.7 Chasis doble viga perimetral cerrado .......................... ......................... ......... 11

2.3.8 Chasis monocasco ........................ ......................... .......................... ............. 11

2.3.9 Chasis Mono viga o de espina central ......................... ......................... ......... 11

Page 4: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 4/50

 

ii

2.4 Sistema eléctrico. ......................... .......................... ......................... .................. 12

Capítulo III: Diseño preliminar. ......................... ......................... .......................... ............. 13

3.1 Consideraciones para el dimensionado inicial .......................... .......................... 14

3.2 Fenotipo mexicano. ........................... ......................... .......................... ............. 14

3.2.1 Antropometría ........................ .......................... ......................... .................. 14

3.2.2 La posición del conductor. ........................ ......................... ........................... 16

3.3 Rendimiento de la motocicleta ........................... ......................... ...................... 16

3.4 Volumen requerido para el sistema eléctrico............................................ ......... 16

Capítulo IV: Diseño estructural......................................................................................... 19

4.1 Diseño en 2D. ........................... .......................... ......................... ...................... 20

4.1.1 Dimensiones de partida. ........................... .......................... .......................... 20

4.1.2 Dimensiones del chasis. ........................ .......................... ......................... ..... 214.2 Modelado 3D del chasis. ........................... .......................... ......................... ..... 22

Capítulo V: Análisis estructural......................................................................................... 24

5.1 Introducción al análisis de elementos finitos. .......................... .......................... 25

5.1.1 Etapas de la metodología ......................... .......................... .......................... 25

5.2 Pre-Procesamiento. ........................... ......................... .......................... ............. 26

5.2.1 Consideraciones iniciales. ......................... .......................... .......................... 26

5.2.2 Elementos. .......................... .......................... ......................... ...................... 27

5.2.3 Propiedad de los materiales. ......................... ......................... ...................... 27

5.2.4 Mallado. ......................... .......................... ......................... ........................... 28

5.2.5 Condiciones de frontera. .......................... .......................... .......................... 28

5.3 Procesamiento y Post-Procesamiento. ....................... .......................... ............. 29

Conclusiones y recomendaciones. ................................................................................... 31

Conclusiones ................................................................................................................ 32

Recomendaciones ........................................................................................................ 32

Bibliografía ...................................................................................................................... 34Suplementos.................................................................................................................... 36

A. Datos del aluminio por el fabricante. .......................... .......................... ............. 37

B. Planos ......................... ......................... ........................... ......................... ......... 39

Page 5: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 5/50

 

iii

Glosario de términos.

Antropometría Tratado de las proporciones y medidas del cuerpo humano.

Basculante es el componente principal de la suspensión trasera de la mayoría de

motocicletas modernas. Se utiliza para mantener el eje trasero firme, mientras se mueve

verticalmente, además, permite que la suspensión absorba las irregularidades del camino

Batería Acumulador de electricidad.

Celosía Enrejado de pequeños listones, generalmente de madera o hierro, que se

coloca en las ventanas de otros huecos análogos para poder ver a través de él sin ser visto.

Fenotipo en un organismo, manifestación de un conjunto de caracteres hereditarios

que dependen tanto de los genes como del medio ambiente.

Horquilla es el componente que conecta al eje delantero de la motocicleta con el

chasis de la misma.

Prototipo primer ejemplar de alguna cosa que se toma como modelo para crear

otros de la misma clase

Glosario de acrónimos.

CAD (Computer-aided design) Diseño asistido por computadora.

CAE (Computer-aided engineering) Ingeniería asistida por computadora.

CANAIVE Cámara Nacional de la Industria del Vestido.

CO2 Dióxido de carbono.

Li-Ion Baterías de ion de litio

Li-NCM Baterías de litio, níquel, manganeso y cobalto.

T6 Tratamiento térmico que consiste en un tratamiento térmico de solución,

templado y sobre-maduración.

Page 6: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 6/50

 

iv

Lista de tablas y figuras.

Figuras.FIG. 1: DIAGRAMA DE LA MOTOCICLETA ELÉCTRICA DE HOSEA W. LIBBEY. (1) .................................................................. 2 

FIG. 2: DIAGRAMA DE LA MOTOCICLETA ELÉCTRICA DE OGDEN BOLTON. (2) .................................................................... 2 FIG. 3: MOTOCICLETA ELÉCTRICA DISPONIBLE A LA VENTA AL PÚBLICO EN 1911. (3) .......................................................... 2 

FIG. 4: MOTOCICLETA ELÉCTRICA DE LA EMPRESA BRITÁNICA RANSOMES PRODUCTS. ......................................................... 2 

FIG. 5: MOTOCICLETA BELGA SOCOVEL DE 1941. ..................................................................................................... 2 

FIG. 6: MOTOCICLETA ELÉCTRICA EXPERIMENTAL CON CELDAS DE COMBUSTIBLE. ............................................................... 3 

FIG. 7: MOTOCICLETA ELÉCTRICA INDIAN P APOOSE . .................................................................................................. 3 

FIG. 8: MOTOCICLETA ELÉCTRICA AURANTHETIC C HARGER. ......................................................................................... 3 

FIG. 9: MOTOCICLETA ELÉCTRICA CON EL RECORD DE VELOCIDAD EN 1975. ..................................................................... 4 

FIG. 10: MOTOCICLETA ELÉCTRICA CORBIN XLP-1. ................................................................................................... 4 

FIG. 11: PROFESOR MACARTHUR Y SU MOTOCICLETA ELÉCTRICA XLP-1. ........................................................................ 4 

FIG. 12: MOTOCICLETA ELÉCTRICA EMB LECTRA VR24.............................................................................................. 4 

FIG. 13 MOTOCICLETA ELÉCTRICA E LECTRA C RUISER. (4) ............................................................................................ 5 FIG. 14: MOTOCICLETA ELÉCTRICA KILLACYCLE EN 2007 EN LA LÍNEA DE SALIDA. .............................................................. 5 

FIG. 15: MODELOS DE MOTOCICLETA ZERO S. ........................................................................................................ 5 

FIG. 16: MOTOCICLETA ELÉCTRICA BRAMMO ENERTIA. .............................................................................................. 6 

FIG. 17: MOTOCICLETA ELÉCTRICA BRUTUS 2........................................................................................................... 6 

FIG. 18: PROPIEDADES GEOMÉTRICAS. (5) .............................................................................................................. 8 

FIG. 19: CHASIS SIMPLE CUNA CERRADO. ................................................................................................................ 9 

FIG. 20: CHASIS SIMPLE CUNA ABIERTO  .................................................................................................................. 9 

FIG. 21: CHASIS SIMPLE CUNA DESDOBLADO. ........................................................................................................... 9 

FIG. 22: CHASIS DOBLE CUNA. ............................................................................................................................ 10 

FIG. 23: CHASIS MULTITUBULAR. ........................................................................................................................ 10 

FIG. 24: CHASIS DOBLE VIGA. ............................................................................................................................. 10 FIG. 25: CHASIS DOBLE VIGA PERIMETRAL CERRADO. ................................................................................................ 11 

FIG. 26: CHASIS MONOCASCO. ........................................................................................................................... 11 

FIG. 27: CHASIS MONO VIGA.............................................................................................................................. 11 

FIG. 28: EJEMPLO DE UN SISTEMA BATERÍA, MOTOR Y CONTROLADOR. ......................................................................... 12 

FIG. 29: ESTATURA EN HOMBRES. ....................................................................................................................... 15 

FIG. 30: ESTATURA EN MUJERES. ........................................................................................................................ 15 

FIG. 31: PESO EN HOMBRES............................................................................................................................... 15 

FIG. 32: PESO EN MUJERES. ............................................................................................................................... 15 

FIG. 33: DIMENSIONES RELATIVAS DEL CUERPO HUMANO. ......................................................................................... 15 

FIG. 34: EJEMPLO DE LA POSICIÓN ESTÁNDAR DEL CONDUCTOR. ................................................................................. 16 

FIG. 35: VARIACIÓN DEL RANGO DEBIDO A LA RUTA Y AL CONDUCTOR. (6)..................................................................... 17 FIG. 36: VARIACIÓN DEL RANGO DEBIDO AL CLIMA Y AL ESTADO DE LA MOTOCICLETA. (6) ................................................. 17 

FIG. 37: EJEMPLO DEL ESPACIO OCUPADO POR EL SISTEMA ELÉCTRICO. (6) .................................................................... 17 

FIG. 38: VOLUMEN DEL SISTEMA ELÉCTRICO DE LA MOTOCICLETA ZERO S. ..................................................................... 18 

FIG. 39: VOLUMEN DEL SISTEMA ELÉCTRICO DE LA MOTOCICLETA BRAMMO EMPULSE. ..................................................... 18 

FIG. 40: MEDIDAS CARACTERÍSTICAS DE LA MOTOCICLETA ZERO S. .............................................................................. 20 

FIG. 41: MEDIDAS CARACTERÍSTICAS DEL PROYECTO. ............................................................................................... 21 

FIG. 42: CHASIS. ............................................................................................................................................. 22 

Page 7: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 7/50

 

v

FIG. 43: SUB-CHASIS........................................................................................................................................ 22 

FIG. 44: BASCULANTE. ..................................................................................................................................... 22 

FIG. 45: CHASIS FINAL DEL PROYECTO................................................................................................................... 23 

FIG. 46: VISTAS DEL CHASIS. .............................................................................................................................. 23 

FIG. 47: SECUENCIA DE ETAPAS DEL MÉTODO DE ELEMENTO FINITO. ............................................................................ 26 

FIG. 48: SISTEMA DE UNIDADES DEFINIDAS EN ANSYS. ............................................................................................ 26 

FIG. 49: CHASIS IMPORTADO DE CATIA A ANSYS. ................................................................................................... 27 

FIG. 50: REPRESENTACIÓN GRÁFICA DEL ELEMENTO SOLID185.  ................................................................................ 27 

FIG. 51: MALLA.............................................................................................................................................. 28 

FIG. 52: RESTRICCIONES Y FUERZAS APLICADAS EN EL MODELO. .................................................................................. 28 

FIG. 53: CAMPO DE DESPLAZAMIENTOS. ............................................................................................................... 29 

FIG. 54: CAMPO DE ESFUERZOS (TEORÍA DE VON MISES). ......................................................................................... 30 

FIG. 55: MODELO FINAL DE CHASIS Y ESPACIO PARA BATERÍAS. .................................................................................... 33 

Tablas.

TABLA 1: MEDIDAS CARACTERÍSTICAS DE LA MOTOCICLETA ZERO S. ............................................................................. 21 TABLA 2: MEDIDAS CARACTERÍSTICAS DEL PROYECTO. ............................................................................................... 22 

TABLA 3. PROPIEDADES DEL ALUMINIO. ................................................................................................................ 27 

Page 8: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 8/50

 

vi

Resumen.

Este proyecto engloba una propuesta de diseño de chasis para una motocicleta eléctrica.

Se comienza viendo la evolución de las motocicletas eléctricas en el tiempo y el mercado

actual existente en América.

Posteriormente se hace un resumen con las medidas fundamentales de las motocicletas y

se presentan las opciones en cuanto a tipos de chasis existentes, también se hace una reseña

sobre los componentes del sistema eléctrico de una motocicleta eléctrica.

Se continúa con el análisis de las dimensiones requeridas en el chasis, esto da paso para

modelar el chasis y posteriormente analizar e interpretar los datos arrojados del análisis.

Page 9: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 9/50

 

vii

Introducción.

Objetivo.

Diseñar y analizar mediante herramientas CAD/CAE un chasis de motocicleta eléctrica parafenotipo mexicano.

Justificación.

En la actualidad, vivimos en un mundo globalizado, en el cual, gran parte de los vehículos

que utilizamos generan emisiones contaminantes de CO2, debido al uso de motores de

combustión interna y al consumo de combustibles fósiles, lo cual contribuye en gran medida al

calentamiento global.

Aunque las motocicletas con motor de combustión interna son una alternativa para

vehículos que generan mayor emisión de contaminantes, son un peligro latente para el medio

ambiente debido al incremento y a su uso constante en ciudades con problemas viales en los

últimos años.

En las grandes urbes es imprescindible trasladarse de un lugar a otro en el menor tiempo

posible, además de minimizar el impacto ambiental que conlleva, es por eso que la motocicleta

eléctrica y las mejoras tecnologías que aumentan sus prestaciones, hacen de esta una opción

viable a los problemas que actualmente se presentan en las urbes, como es el caso de la Ciudad de

México.

 Alcance.

En el presente trabajo, se iniciará con la recopilación de información relevante al tema,

posteriormente, se realizará el dimensionamiento inicial de la motocicleta eléctrica, lo cual dará

paso para realizar un prototipo virtual del chasis con ayuda de software CAD, es importante

mencionar, que en este punto se omitirán los demás sistemas y subsistemas de la motocicleta.

Posterior al modelado, se realizará el análisis estructural estático al prototipo virtual con ayuda de

software CAE, excluyendo los efectos dinámicos que se pudieran presentar en la estructura.

Al finalizar, se obtendrá un prototipo virtual en donde se podrá visualizar el chasis y el

espacio que ocupara el sistema eléctrico.

Page 10: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 10/50

 

viii

Metodología.

  Investigación de campo.

Se recopilara información relevante al tema a través de la bibliografía existente y de

internet.

  Definición de las medidas iniciales para la motocicleta.

Se definirán las medidas fundamentales de la motocicleta como: La distancia entre ejes,

diámetro de las ruedas, dimensiones de las suspensiones, del motor, entre otras.

  Modelado geométrico mediante software CAD.

Se modelará en 2D, con ayuda del software CATIA, los elementos descritos anteriormente

para obtener una primera aproximación de la estructura del chasis, posteriormente se modelará

en 3D el prototipo virtual del chasis.

  Cálculo de esfuerzos y deformaciones mediante software CAE.

Se analizará el chasis mediante el software ANSYS, el cual utiliza el método de elementos

finitos, para validar nuestro diseño. Si los resultados no son los adecuados, se regresara al punto

anterior para redefinir los parámetros de diseño.

 Antecedentes.

Los inicios de la motocicleta eléctrica se remontan a finales del siglo XIX y se desarrollaron

casi a la par que las motocicletas de combustión interna.

A principios del siglo XX, tanto las motocicletas eléctricas como las motocicletas de

combustión interna siguieron patrones y tendencias de diseño similares, pero las motocicletas

eléctricas lo hicieron con una tasa de desarrollo y producción inferior a su contraparte.

Hasta mediados del siglo XX, las motocicletas eléctricas eran incapaces de alcanzar

prestaciones similares (autonomía, velocidad) a la de una motocicleta de combustión interna.

Posterior a esta fecha, se inicia con la innovación en las motocicletas eléctricas principalmente en

el sistema eléctrico. Con la finalidad de aumentar sus prestaciones, se utilizaron como bancos de

pruebas para celdas de combustible.

El último cuarto del siglo XX y los primeros años del siglo XXI, se desarrollaron motocicletas

eléctricas capaces de viajar más lejos y más rápidas. Con la implementación de nuevos tipos de

Page 11: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 11/50

 

ix

baterías y motores eléctricos más potentes, han beneficiado las prestaciones de la motocicleta

eléctrica, al grado de romper marcas de velocidad contantemente.

Actualmente, el mercado de las motocicletas eléctricas, es un mercado relativamente

pequeño pero con un constante y gran crecimiento, el cual cuenta con pocos fabricantes alrededor

del mundo.

Page 12: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 12/50

 

Capítulo I: 

Pasado, presente y futuro.

“El futuro es incierto…  pero esta incertidumbre está en el corazón mismo de la creatividad

humana.” Ilia Prigogine

Page 13: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 13/50

Capítulo I: Pasado, presente y futuro.

2

1.1  Inicios de la motocicleta Eléctrica

Los registros más antiguos que se tienen de una motocicleta eléctrica provienen de

patentes de finales del siglo XIX. La primera patente registrada es del 8 de Octubre de 1895 por

Hosea W. Libbey, meses después, el 31 de Diciembre de 1895 se registra la segunda patente por

Ogden Bolton.

Fig. 1: Diagrama de la motocicleta eléctrica

de Hosea W. Libbey. (1)

Fig. 2: Diagrama de la motocicleta eléctrica

de Ogden Bolton. (2)

En 1911, la revista Popular Mechanics  publicó un

pequeño artículo informativo sobre una motocicleta

eléctrica, en el cual, se habla sobre su reciente introducción

al mercado. El diseño de la motocicleta era, un chasis de

bicicleta reforzado, con una batería de seis celdas de 12

volts, la cual era capaz de andar hasta 160 km, a una

velocidad de hasta 56 km/h y con tan solo 90 kg de peso.

En la década de 1920 la compañía británica

Ransomes Products, diseño y produjo una motocicleta

eléctrica. En esa misma época la compañía neoyorquina  Automatic Electric Transmission Company

of Buffalo desarrollo un modelo pequeño de motocicleta eléctrica.

Es hasta la segunda guerra mundial y como respuesta a la escasez de combustibles en

Bélgica, que la compañía Socovel, manufacturo alrededor de 400 motocicletas eléctricas.

Fig. 4: Motocicleta eléctrica de la

empresa británica Ransomes Products1.

Fig. 5: Motocicleta belga Socovel2 de 1941.

1 http://www.forkliftparts.co.uk/history.htm

2http://visforvoltage.org/forum/11775-socovel-electric-bike-review-1936

Fig. 3: Motocicleta eléctrica disponible

a la venta al público en 1911. (3)

Page 14: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 14/50

Capítulo I: Pasado, presente y futuro.

3

1.2  Tiempos modernos

En 1967, se registró por primera vez el uso de una

celda de combustible para una motocicleta eléctrica por el

químico austríaco Dr. Karl Kordesch, pionero en el desarrollo

de celdas de combustibles.

Esta motocicleta podía recorrer hasta 321 km a una

velocidad de 40km/h con una sola carga. No se construyó

ningún modelo comercial de esta motocicleta ya que

solamente se utilizó con el fin de probar las celdas de

combustible.

En ese mismo año, la compañía estadounidense

Indian Motorcycle Company   mostro el prototipo de una

motocicleta eléctrica basado en el modelo Papoose  de ese

mismo año.

En la década de 1970, la compañía estadounidense  Auranthetic  produjo la motocicleta

eléctrica conocida como  Auranthetic Charger . Esta motocicleta de dimensiones pequeñas podía

recorrer hasta 80 km y alcanzar velocidades de hasta 40 km/h.

Fig. 7: Motocicleta Eléctrica Indian Papoose4. Fig. 8: Motocicleta eléctrica  Auranthetic Charger 

5.

En 1973, Mike Corbin impuso el record mundial de velocidad para una motocicleta

eléctrica, alcanzando la velocidad de 162 km/h. Al año siguiente rompió esta marca, imponiendo la

velocidad de 266 km/h.

En 1974, la compañía que él fundo, Corbin-Gentry Inc. vendió una línea de motocicletas

eléctricas denominada XLP-1, la cual era capaz de viajar hasta 64 km y alcanzar velocidades dehasta 48 km/h. En Julio de ese mismo año, el profesor Charles E. MacArthur hizo el primer ascenso

al monte Washington en la motocicleta eléctrica diseñada por Corbin. Este suceso dio inicio a un

evento anual llamado “Regata de vehículos alternos del monte Washington”. 

3http://americanhistory.si.edu/fuelcells/alk/alk2.htm

4http://www.cycletownusa.com/post1953.html

5 http://auranthetic.blogspot.mx/

Fig. 6: Motocicleta eléctrica experimental3 

con celdas de combustible.

Page 15: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 15/50

Capítulo I: Pasado, presente y futuro.

4

Fig. 9: Motocicleta eléctrica con

el record de velocidad en 19756.

Fig. 10: Motocicleta eléctrica Corbin XLP-17.

Fig. 11: Profesor MacArthur y

su motocicleta eléctrica XLP-18.

En 1978, la empresa estadounidense

Transitron, desarrolló una motocicleta eléctrica

basada en el modelo Sportster 1971  de Harley-

Davidson, la cual no logró el financiamiento necesariopara su comercialización.

A finales de la de cada de 1990, la empresa

estadounidense Electric Motorbike Inc.  desarrolló la

motocicleta eléctrica EMB Lectra VR24.  Esta

motocicleta fue la pionera en el uso de motores de

reluctancia variable, el uso de este motor le brindaba a la motocicleta poder viajar hasta 56 km y

alcanzar velocidades de hasta 82 km/h. Este modelo se comercializó hasta 1999 logrando vender

aproximadamente 100 unidades.

6http://www.flickr.com/photos/go_bagel/2694705619/in/photostream/

7http://www.bonhams.com/auctions/18346/lot/164/

8http://www.mgmojo.com/corbinmotors/chapter3.html

9http://www.electricmotorbike.org/index.php?page=photos

Fig. 12: Motocicleta eléctrica EMB Lectra VR249. 

Page 16: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 16/50

Capítulo I: Pasado, presente y futuro.

5

1.3   Actualidad

En 2001, la empresa estadounidense Vogelbilt

Corporation  desarrolló el primer prototipo de la

motocicleta Electra Cruiser  la cual pretender ser la base

para desarrollar nuevas y mejoras tecnológicas en

diversos campos. Esta motocicleta puede alcanzar

velocidades de hasta 128 km/h y puede recorrer hasta

96 km en una sola recarga.

En el año 2000, la motocicleta Killacycle  de Bill

Dube, impuso un nuevo record mundial de velocidad,

alcanzando los 245 km/h en tan solo 9.4 segundos en la pista de Woodburn, Oregon.

Con la introducción y las constantes mejoras en las baterías de ion de litio en la década de

los 2000, permitieron tener baterías más ligeras, con mayor capacidad energética, resistentes a la

descarga y con un elevado número de ciclos de regeneración, sumado a la introducción demotores eléctricos más potentes, han hecho que la motocicleta eléctrica se beneficie aumentando

sus prestaciones.

En 2007, la misma motocicleta eléctrica de Bill

Dube, la Killacycle  y la incorporación de un nuevo grupo

de baterías de ion de litio, hicieron posible romper su

propio record de velocidad, alcanzando en esta ocasión la

velocidad de 270 km/h en 7.824 segundos. Repitiendo esa

hazaña en 2008.

1.4 

Empresas en AméricaActualmente existen compañías que diseñan,

manufacturan y comercializan motocicletas eléctricas

como:

 Zero Motorcycles  (Estados Unidos), fue

fundada en el 2006 y define a sus motocicletas como

el siguiente paso en la evolución. Las motocicletas

eléctricas combinan el aspecto tradicional con la

tecnología más avanzada lo que les ha llevado a

producir motocicletas eléctricas de alto rendimientoque son livianas, eficientes y rápidas.

Actualmente la compañía produce 5 tipos de

motocicleta para diferentes gamas del motociclismo.

10http://www.killacycle.com/2007/11/11/7824-168-mph-at-pomona-ahdra-nov-10th/

11 http://zeromotorcycles.com/

Fig. 13 Motocicleta eléctrica Electra Cruiser. (4)

Fig. 14: Motocicleta eléctrica Killacycle10

 

en 2007 en la línea de salida.

Fig. 15: Modelos de motocicleta ZERO S.11

 

Page 17: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 17/50

Capítulo I: Pasado, presente y futuro.

6

Brammo Motorsport   (Estados Unidos), fue

fundada en el 2002 y se define como una de las principales

compañías en tecnologías de vehículos eléctricos.

La compañía produce tres líneas de motocicletas,las cuales han sido reconocidas y premiadas en diferentes

rubros.

Brutus Motorcycle (Estados Unidos),

manufactura sus motocicletas eléctricas a mano

utilizando piezas de primer nivel en cada etapa de

ensamble, e incluye en sus equipos la posibilidad depersonalizarlos al gusto de sus clientes.

12  http://brammo.com/

13 http://brutusmotorcycle.com/

Fig. 16: Motocicleta eléctrica

Brammo Enertia12

.

Fig. 17: Motocicleta eléctrica Brutus 2 .

Page 18: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 18/50

 

Capítulo II: 

La motocicleta y sus

componentes.

“No hay inversión más rentable que la del conocimiento.” Benjamin Franklin

Page 19: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 19/50

Capítulo II: La motocicleta y sus componentes.

8

2.1  Definiciones

La motocicleta se define como un vehículo de dos ruedas impulsado por un motor y están

compuestas generalmente por un chasis, ruedas, motor, una transmisión de potencia,

amortiguadores, frenos y otros elementos auxiliares.

El chasis de una motocicleta es una estructura rígida que sujeta a los componentesmecánicos, incluyendo al motor, la suspensión, el sistema de dirección, la carrocería entre otros

elementos que componen a la motocicleta, además de soportar todos estos elementos, el chasis

también soporta al conductor y pasajero.

Las funciones de un chasis de motocicleta son básicamente de dos tipos, estáticos y

dinámicos. La función estática del chasis es la de soportar los elementos de la motocicleta, como

se menciona anteriormente. Aunque no es tan evidente pero es muy importante, la función

dinámica del chasis en conjunto con la suspensión y las ruedas deberá proporcionar una dirección

precisa, buena adherencia al camino y un manejo y confort adecuado.

Tanto la rigidez como la geometría del chasis son vitales para su estabilidad.

2.2 

Geometría básica de la motocicleta

Las principales definiciones geométricas de una motocicleta se muestran en la Fig. 18. 

  El eje de dirección (steering axis) es

la línea sobre la cual gira el sistema

de dirección.

  Lanzamiento (rake angle) es la

inclinación hacia atrás que tiene el

eje de dirección.  El avance (Front ground trail o rear

ground trail) es la distancia que

existe al nivel del suelo entre el

centro de la huella de contacto del

neumático y el punto en el cual el

eje de dirección intersecta con el

suelo. La rueda delantera y la rueda

trasera tienen sus propios valores de

avance.

 

El descentramiento existente entre el eje de la rueda y el eje de dirección (Offset ofWheel) se mide en ángulo recto con respecto a este último.

  El centro de gravedad (C of G.) para casi todos nuestros propósitos nos interesa el centro

de gravedad combinado de la moto y el piloto.

Fig. 18: Propiedades geométricas. (5)

Page 20: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 20/50

Capítulo II: La motocicleta y sus componentes.

9

2.3  Tipos de Chasis

Los tipos de chasis se clasifican en función de la forma de unión del cabezal de dirección

con la zona del anclaje del basculante.

2.3.1  Chasis simple cuna cerrado

El chasis de simple cuna cerrado es aquel quedispone de perfiles en un solo plano vertical que parten

desde el cabezal de dirección hasta la zona del eje del

basculante, es decir, desciende un solo tubo desde la

columna de dirección y pasa por debajo del motor

formando una cuna. La estructura, compuesta por tubos

soldados, alberga al motor en su interior. El perfil en la

parte inferior del chasis es continuo desde el cabezal de

dirección hasta la zona del basculante.

Se utilizaba en motos no deportivas de bajas prestaciones, ya que la rigidez peso potencia

es poco favorable. Actualmente los modelos que se fabrican con este tipo de chasis prácticamente

han desaparecido.

2.3.2  Chasis simple cuna abierto o interrumpido

Es una variante del chasis de simple cuna cerrado,

y se diferencia de este, porque el perfil en la parte inferior

está interrumpido al llegar al motor, siendo el motor el

que cierra esa zona.

En este caso se utiliza el motor como estructura

resistente.

Estos chasis son muy económicos y son habituales

sobre todo en cilindradas pequeñas, 125 y 250 cc y en la

mayoría de motocicletas trail.

2.3.3  Chasis simple cuna desdoblado

Es otra variante del chasis de simple cuna, en el que

del cabezal de dirección desciende un único tubo pero que se

desdobla delante o debajo del motor, llegando a la zona del

eje del basculante trasero dos tubos.

Este tipo de chasis se utiliza habitualmente en

motocicletas de campo y trail.

Fig. 19: Chasis simple cuna cerrado.

Fig. 20: Chasis simple cuna abierto

Fig. 21: Chasis simple cuna desdoblado.

Page 21: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 21/50

Capítulo II: La motocicleta y sus componentes.

10

2.3.4  Chasis doble cuna

Dos tubos descienden desde el cabezal de dirección y

pasan por debajo del motor formando una cuna y abrazando al

motor por los laterales en su parte inferior, en la zona del

cárter, llegando al anclaje del basculante por separado.

Estos chasis son más rígidos que los de simple cuna ya

que forman una estructura más sólida.

En muchos casos la cuna o parte inferior del chasis va

atornillada para facilitar su desmontaje a la hora de introducir

el motor.

Es usual en motocicletas tipo custom. También era típico de motocicletas de grandes

cilindradas en los años 80.

2.3.5 

Chasis multitubularEste chasis consiste en dos vigas a cada lado del

motor, que unen el cabezal de dirección con la zona del

eje del basculante trasero, pero compuestas por tubos,

rectos y cortos, colocados a modo de celosía. Estos

tubos cortos, que suelen ser de secciones circulares y de

acero al cromo molibdeno, le dan una gran rigidez al

chasis. Generalmente estos tubos se diseñan para que

solo trabajen a tracción o a compresión.

En muchos casos el motor se utiliza adicionalmente como elemento estructural,

soportando incluso el anclaje directo del basculante trasero.

Este tipo de chasis es muy característico de Ducati.

2.3.6  Chasis doble viga perimetral

Este tipo de chasis es el más utilizado en motos deportivas. La

estructura que conforma este tipo de chasis se define perfectamente

por su nombre, está formada por dos vigas de elevada sección, una a

cada lado del motor, que parten del cabezal de dirección y acaban en la

zona del eje del basculante. Las vigas abrazan perimetralmente al motor

por su parte superior suelen ser generalmente de aleaciones dealuminio. Además, incorporan soportes inferiores para anclar el motor.

En algunos casos se incorporan aberturas en las vigas para el

paso de aire hacia la admisión.

Estos chasis pueden ser fabricados por fundición, laminación o extrusión, o por

combinación de estos métodos.

Fig. 22: Chasis doble cuna.

Fig. 23: Chasis multitubular.

Fig. 24: Chasis doble viga.

Page 22: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 22/50

Capítulo II: La motocicleta y sus componentes.

11

El cabezal de dirección y la zona del anclaje del basculante son las zonas que sufren

mayores esfuerzos, por ello son zonas que generalmente se suelen fabricar mediante fundición.

2.3.7 

Chasis doble viga perimetral cerrado

Es una variante del chasis de doble viga y que

apareció anteriormente.

En este caso, además de disponer de las dos vigas

que abrazan al motor en su zona superior por los

laterales, parten otros dos tubos del cabezal de dirección

hacia la zona inferior del motor y al basculante, haciendo

de cuna y con sección muy inferior que las de la doble

viga.

Este tipo de chasis se utilizaba en motocicletas deportivas de los años 90.

2.3.8 

Chasis monocascoEs el tipo de chasis utilizado por Vespa durante muchos años.

Chasis monocasco auto portante de chapa estampada que hace las

funciones de chasis y a la vez de carrocería. Es una técnica que se utiliza

en su mayoría en los diseños del automóvil (carrocería auto portante).

Es un tipo de chasis muy inusual en otros modelos de

motocicletas, sin embargo lo utiliza una moto deportiva como la

Kawasaki ZX12R (2005) y la ZZR 1400, fabricado en aleación de aluminio,

en el que el chasis conforma además parte de la caja de admisión.

2.3.9 

Chasis Mono viga o de espina centralPodría considerarse como un tipo de chasis tubular

en el que el tubo discurre por la parte superior toma mayor

protagonismo, con mayores dimensiones y llega a ser

prácticamente una viga. El motor ya no se rodea en la parte

inferior por la cuna, sino que queda colgado bajo el perfil

tubular o espina central del chasis.

Esta mono viga dispone de unos soportes laterales

para permitir anclar al motor.

Los chasis más destacables debido a su mayor utilización son los chasis de dobles viga, los

de simple cuna desdoblada y los de doble cuna.

Fig. 25: Chasis doble viga perimetral cerrado.

Fig. 26: Chasis monocasco.

Fig. 27: Chasis mono viga.

Page 23: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 23/50

Capítulo II: La motocicleta y sus componentes.

12

2.4  Sistema eléctrico.

En particular, la motocicleta eléctrica consiste de los siguientes elementos:

  La batería es el dispositivo que almacena y proporciona energía eléctrica al

sistema.

 

El motor eléctrico convierte la energía eléctrica en energía mecánica y a través deun sistema de transmisión de potencia, impulsa a la rueda trasera en la

motocicleta.

  El controlador del motor es el dispositivo que se encarga de controlar el

rendimiento de un motor eléctrico, para una motocicleta eléctrica controla la

velocidad de esta.

El sistema compuesto por la batería, el motor y el controlador, hacen que la motocicleta

eléctrica tenga un sistema de propulsión simple y eficiente.

Al tener solamente una pieza en movimiento, el motor eléctrico es libre de mantenimiento

periódico además de que no requiere cambios de aceite, de bujías, de filtros o de cualquier otro

tipo de mantenimiento regular comparado con el motor de combustión interna.

Fig. 28: Ejemplo de un sistema batería, motor y controlador.

Page 24: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 24/50

 

Capítulo III: 

Diseño preliminar.

“Los científicos estudian el mundo tal como es, los ingenieros crean el mundo que nunca ha sido.” Theodore Von Karman

Page 25: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 25/50

Capítulo III: Diseño preliminar.

14

3.1 

Consideraciones para el dimensionado inicial

Para el diseño del chasis se consideró principalmente las siguientes características:

  Fenotipo del mexicano promedio. Es importante conocer la longitud promedio de

la entrepierna, ya que esta, nos determinara la altura máxima que el asiento del

chasis puede alcanzar, se considera a la vez el diámetro de las ruedas y la altura

libre sobre el suelo.

  Rendimiento de la motocicleta (Velocidad y alcance). El rendimiento de la

motocicleta eléctrica está determinada por el sistema eléctrico, pero es afectado

por diversos factores, por lo que se deberá maximizar el espacio al interior del

chasis para tener la mayor cantidad de baterías.

  Las dimensiones del sistema eléctrico (Baterías, motor y controlador). En el

mercado actual existen un sinfín de proveedores de baterías, motores y

controladores, al dejar el máximo espacio posible en el chasis, se podrá realizar ungran número de diversas configuraciones en el sistema eléctrico, para cubrir las

necesidades de velocidad y alcance que se requieran.

3.2  Fenotipo mexicano.

Las motocicletas en general son usadas para diversas actividades, al igual que como una

alternativa a los problemas que existen en las congestionadas ciudades, pero sin duda, para

muchas personas, andar en motocicleta es una actividad divertida y apasionante.

La recomendación de los expertos al momento de seleccionar una motocicleta, es que estase ajuste a la persona, así de esta manera, la persona tendrá una experiencia segura, eficiente y

agradable al usar su motocicleta.

Ya que el presente proyecto se centra en el desarrollo del chasis, únicamente nos interesa

conocer la medida promedio de la entrepierna, para determinar la altura del asiento de la

motocicleta.

3.2.1   Antropometría

A partir del estudio “¿Cuánto mide México? El tamaño sí importa”14, realizado por la

CANAIVE en asociación con otras instituciones, se determinaron la estatura y el peso promedio

para hombres y mujeres, estos datos se pueden ver en las Fig. 29, Fig. 30, Fig. 31 y Fig. 32

14http://www.canaive.org.mx/doctos/rueda_de_prensa_cuanto_mide.pdf

Page 26: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 26/50

Capítulo III: Diseño preliminar.

15

Fig. 29: Estatura en hombres. Fig. 30: Estatura en mujeres.

Fig. 31: Peso en hombres. Fig. 32: Peso en mujeres.

A partir de la estatura, se

puede estimar las

dimensiones generales del

cuerpo de una persona, como

se muestra en la Fig. 33. 

Las medidas estándares de estatura y peso para efectos de este proyecto serán:

  164 cm de estatura promedio.

  78.72 cm de longitud de entrepierna.

  75 kg de masa para ambos géneros.

15 http://www.mech.utah.edu/ergo/pages/Educational/safety_modules/ctd-anthropometry/index.html

Fig. 33: Dimensiones relativas del cuerpo humano .

Page 27: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 27/50

Capítulo III: Diseño preliminar.

16

3.2.2  La posición del conductor.

La posición del conductor que adoptara

para el diseño de la motocicleta, es la conocida

como estándar, ya que esta es la posición más

neutral que un conductor puede adoptar. En la

Fig. 34,  se destaca la posición de los pies conrespecto a las rodillas, la espalda recta y la

posición relaja de las manos.

3.3  Rendimiento de la motocicleta

En los últimos años, con las mejoras tecnologías en baterías y motores, las motocicletaseléctricas se han visto beneficiadas ampliamente, ya que han podido ir más lejos a mayor

velocidad y con un aumento significativo del costo-beneficio.

La Ciudad de México representa un gran reto, debido a la gran contaminación del aire y al

alto número de vehículos en las calles, factores que aumentan día con día, esto se traduce en un

elevado tiempo de traslado en distancias relativamente cortas además de un entorno estresante

para el ciudadano común.

Son por estos motivos que se ha seleccionado los siguientes parámetros de diseño.

 

⁄  

     

Es importante mencionar que estos valores se encuentran dentro del rango que ofrecen

otras compañías de motocicletas eléctricas. (6) (7)

3.4  Volumen requerido para el sistema eléctrico.

El rango máximo que puede alcanzar una motocicleta eléctrica está provisto por la

cantidad de energía eléctrica que puede almacenar la batería, por lo que a mayor rango, se

requerirán costosas baterías y/o una cantidad superior de baterías. El rango también es afectado

por otras características que se pueden observar en la Fig. 35 y Fig. 36

16 http://www.womenridersnow.com/pages/Posture_Perfect_The_Best_Riding_Position_For_You.aspx  

Fig. 34: Ejemplo de la posición

estándar del conductor16

.

Page 28: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 28/50

Capítulo III: Diseño preliminar.

17

Fig. 35: Variación del rango debido

a la ruta y al conductor. (6)

Fig. 36: Variación del rango debido

al clima y al estado de la motocicleta. (6)

Dado que existe un sinfín de distribuidores de baterías, que es el elemento que mayor

espacio ocupa y mayor peso tiene de todo el sistema eléctrico, así como para los otros elementos,

motores y controladores, se determinó el espacio promedio necesario a partir de las motocicletaseléctricas de dos importantes empresas americanas mencionadas anteriormente.

Todos los productos de la empresa  Zero Motorcycles utilizan baterías de vanguardia de Li-

Ion denominadas  Z-Force, las cuales fueron desarrolladas por la propia empresa con un diseño

modular y de alta eficiencia17.

Por otro lado, los productos de la empresa Brammo Motorcycles  utilizan paquetes de

baterías de Li-NCM denominadas Brammo Power 18

Fig. 37: Ejemplo del espacio ocupado por el sistema eléctrico. (6)

17http://www.zeromotorcycles.com/powertrains/powertrains-sales-sheets.pdf

18http://www.brammo.com/empulse_specifications/

Page 29: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 29/50

Capítulo III: Diseño preliminar.

18

El análisis del volumen que ocupa el sistema eléctrico de amabas motocicletas se puede

ver en las siguientes figuras.

Fig. 38: Volumen del sistema eléctrico

de la motocicleta Zero S.19

 

Fig. 39: Volumen del sistema eléctrico

de la motocicleta Brammo Empulse.20

 

El resultado del análisis del volumen es:

  Motocicleta Zero S:  

  Motocicleta Brammo Empulse:  

Por lo que el volumen mínimo que contendrá el chasis de la motocicleta de este proyecto,

será  

19 Figura realiza por el autor.

20 Figura realiza por el autor.

Page 30: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 30/50

 

Capítulo IV: 

Diseño estructural.

“En los momentos de crisis, sólo la imaginación es más importante que e l conocimiento.” Albert Einstein

Page 31: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 31/50

Capítulo IV: Diseño estructural.

20

Nota: A partir de este capítulo las figuras fueron realizadas por el autor de este trabajo, al

menos que se indique lo contrario.

4.1 

Diseño en 2D.

Antes de iniciar con el diseño del chasis, es importante tener una base de partida para

posteriormente modificarla con nuestros requerimientos de diseño.

Ya que no se tienen antecedentes del diseño de un chasis para motocicleta eléctrica, se

decide iniciar el modelado de nuestro proyecto a partir de una motocicleta en el mercado actual,

que represente una buena base de partida en términos dinámicos, de posición de pilotaje, ángulos

y distancias características.

4.1.1  Dimensiones de partida.

Para este proyecto, la base de partida será la motocicleta eléctrica ZERO S (Fig. 15), ya que

es una de las compañías líderes en el sector. A partir de los datos publicados por la empresa (6) y

de las fotografías podemos obtener las dimensiones de nuestro interés, lo cual se manifiesta en la

Fig. 40.

Fig. 40: Medidas características de la motocicleta Zero S.

Con este plano 2D obtuvimos valores imprescindibles para el inicio del diseño del chasis.

Las medidas características aproximadas se enlistan en la Tabla 1.

Page 32: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 32/50

Capítulo IV: Diseño estructural.

21

Tabla 1: Medidas características de la motocicleta Zero S.

parámetro geométrico valor unidad

Lanzamiento 23.80 ° (6)

Avance delantero 82.00 mm (6)

Distancia entre ejes 1406.00 mm (6)

Altura del asiento 794.00 mm (6)Avance trasero 1368.43 mm

Separación del suelo 160.63 mm

Longitud total 1966.69 mm

Longitud del basculante 539.62 mm

Longitud de la horquilla 715.16 mm

4.1.2  Dimensiones del chasis.

Para seguir con el diseño del chasis, primero crearemos el plano 2D de nuestro proyecto,

ya que una modificación en la geometría o en una cota influye en el resto del diseño.

Fig. 41: Medidas características del proyecto.

Page 33: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 33/50

Capítulo IV: Diseño estructural.

22

Tabla 2: medidas características del proyecto.

parámetro geométrico valor unidad

Lanzamiento 24.00 °

Avance delantero 86.00 mm

Distancia entre ejes 1420.00 mm

Altura del asiento 788.00 mmAvance trasero 1383.23 mm

Separación del suelo 155.00 mm

Longitud total 2019.82 mm

Longitud del basculante 539.62 mm

Longitud de la horquilla 675 mm

Estas modificaciones se basaron en los siguientes puntos:

  La modificación de la altura del asiento obedece a las medidas antropomórficas

del mexicano promedio.

  La modificación en el lanzamiento obedece a la facilidad de la manufactura, si se

llegara a dar el caso.

  La modificación en la distancia entre ejes obedece al decremento que existe en la

separación del suelo.

4.2 

Modelado 3D del chasis.

Para modelar el chasis se decidió hacerlo en base al chasis doble viga perimetral cerrado,

como se ve en la Fig. 25, esto es con el fin de darle un toque deportivo al aspecto del conjunto de

la motocicleta de este proyecto.

El conjunto del chasis se divide en tres partes: chasis principal, sub-chasis y basculante, en

las siguientes figuras se puede apreciar el modelado de los elementos.

Fig. 42: Chasis. Fig. 43: Sub-chasis. Fig. 44: Basculante.

En la Fig. 45, se puede apreciar el conjunto final ensamblado del chasis.

Page 34: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 34/50

Capítulo IV: Diseño estructural.

23

Fig. 45: Chasis final del proyecto.

Fig. 46: Vistas del chasis.

Page 35: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 35/50

 

Capítulo V: 

 Análisis estructural.

“El hombre está dispuesto siempre a negar todo aquello que no comprende.” Blaise Pascal

Page 36: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 36/50

Capítulo V: Análisis estructural.

25

5.1  Introducción al análisis de elementos finitos.

El análisis de elementos finitos es un método numérico usado para resolver problemas

definidas por ecuaciones diferenciales ordinarias o parciales, esto conlleva a poder resolver

problemas de ingeniera reales mediante la simulación en computadoras. Algunos de los problemas

típicos que se pueden resolver con este análisis incluyen los análisis estructurales, transferencia de

calor, flujo de fluidos electromagnetismo, etc.

La técnica más común de elementos finitos es la técnica basada en los desplazamientos, ya

que en esta técnica se asumen a los desplazamientos como desconocidos.

El procedimiento completo del elemento finito se puede dividir en tres etapas, pre-

procesamiento, procesamiento y post-procesamiento.

5.1.1 

Etapas de la metodología

5.1.1.1  Pre-procesamiento (Pre-processing).

En esta etapa, el problema físico real se convierte en un problema de elementos finitosequivalente, considerando los siguientes puntos:

  Se convierte la estructura física compleja en un modelo de elemento finito

equivalente (discretizar).

  Se definen las propiedades de los materiales reales para el modelo de elemento

finito.

  Se convierten las fuerzas físicas reales en cargas equivalentes para el modelo de

elemento finito.

  Se traducen las condiciones de frontera reales en las condiciones equivalentes

para el modelo.

5.1.1.2  Procesamiento (Computation).

La etapa de procesamiento, es la etapa de la solución del modelo de elemento finito y en

la cual es utilizada toda la información que se proporcionó en la etapa anterior, con el fin de

averiguar los valores de los desplazamientos desconocidos. Se consideran los siguientes puntos:

  La geometría del modelo se discretiza en elementos.

  Todas las propiedades y fuerzas aplicadas se idealizan al nivel de elementos y

nodos.

  Se calcula cada elemento, fuerza en los nodos, matrices de rigideces y vectores de

desplazamiento

5.1.1.3 

Post-procesamiento (Post-Procesing).

Una vez que se averiguaron los desplazamientos desconocidos, la siguiente etapa es el

Post-procesamiento. En esta etapa, se calculan las deformaciones y tensiones en toda la

estructura, de esta manera, se pueden estudiar las deformaciones de la estructura, las variaciones

de las deformaciones y tensiones de la estructura.

Page 37: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 37/50

Capítulo V: Análisis estructural.

26

Fig. 47: Secuencia de etapas del método de elemento finito21

.

5.2  Pre-Procesamiento.

5.2.1  Consideraciones iniciales.

Como se mencionó anteriormente, el análisis conlleva una serie pasos ya establecidos, los

cuales, en la mayoría de software de análisis, en esencia manejan las mismas etapas, o inclusive

les añaden más. El software de análisis de nuestro proyecto, ANSYS 14.5, es un software CAE muy

potente y fiable, el cual requiere que el usuario tenga conocimientos básicos de la metodología y

un poco de paciencia.

5.2.1.1  Unidades utilizadas por el software.

Es muy importante manejar

un sistema de unidades consistentes

a lo largo de todo el análisis, ya que

el software no realiza ningún tipo de

conversión.

Para el análisis de este

proyecto utilizaremos el Sistema

Internacional de unidades. El cual el

software lo define de la siguiente

manera.

21 Extraído de la ayuda de Catia.

22 Extraído del Output Window  de ANSYS.

Fig. 48: Sistema de unidades definidas en ANSYS.22

 

Page 38: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 38/50

Capítulo V: Análisis estructural.

27

5.2.1.2  Importación de modelo 3D.

Ya que el software no realiza

conversiones, es importante que

antes de importar nuestro modelo

3D, este se encuentre en las unidades

correspondientes en este caso enmetros.

Una vez, importado nuestro

modelo y seleccionado las unidades

con las que trabajaremos podemos

empezar con el proceso de análisis.

5.2.2  Elementos.

Para discretizar nuestro modelos debemos

seleccionar un elemento, esto se hace en base a la

geometría y a la naturaleza física de nuestro

problema. Para nuestro proyecto hemos

seleccionado el elemento SOLID185. Este elemento

está definido para modelos 3D, tiene cuatro nodos

(cuatro grados de libertad por nodo) y

desplazamientos lineales, es adecuado para mallas

irregulares generadas por CAD y para cualquier tipode material.

5.2.3 

Propiedad de los materiales.

Para el análisis estructural estático, el software nos pide que definamos el módulo de

Young (E) y el coeficiente de Poisson (ν) del material. Para este proyecto hemos decidido utilizar el

aluminio de uso aeronáutico AW2014-T6, en la siguiente tabla se muestran sus propiedades.

Tabla 3. Propiedades del aluminio.24

AW2014-T6

Densidad. 2800

⁄  

Módulo de Young. 73  

Coeficiente de Poisson. 0.33 -

Esfuerzo de cedencia. 414  

Esfuerzo de ruptura. 483  

23 Extraído de la ayuda de ANSYS.

24http://www.kaiseraluminum.com/customers/products/extrusions/bar/

Fig. 49: Chasis importado de Catia a ANSYS.

Fig. 50: Representación gráfica

del elemento SOLID185.23 

Page 39: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 39/50

Capítulo V: Análisis estructural.

28

5.2.4  Mallado.

Una vez definido el elemento finito,

y las propiedades del material es momento

de mallar nuestro modelo. Quedando como

en la Fig. 51.

El mallado genero 32218 nodos y

107349 elementos.

5.2.5  Condiciones de frontera.

Las condiciones de frontera para este caso, se refiere a las restricciones de desplazamiento

y a las fuerzas aplicadas a al modelo de elemento finito.

Para nuestro proyecto, se restringió totalmente el movimiento en el tubo de la dirección y

se restringió el movimiento en el eje z en la zona que sostiene al eje trasero de la rueda.

Para las fuerzas aplicadas se consideró lo siguiente:

  La masa del sistema eléctrico de la motocicleta Zero S es 90 Kg, pero se consideró

150 Kg de masa para el sistema.

  La masa del mexicano promedio

es de 75 Kg, pero se consideróque el chasis pudiera soportar dos

personas de 100 Kg cada una.

Por lo que se aplicaron las siguientes

fuerzas al modelo.

  Sistema eléctrico. 1471.5 N

divididos en 8 nodos.

  Personas. 1962 N divididos en 16

nodos.

En la Fig. 52 se aprecia lo que se mencionó anteriormente.

Fig. 51: Malla.

Fig. 52: Restricciones y fuerzas aplicadas en el modelo.

Page 40: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 40/50

Capítulo V: Análisis estructural.

29

5.3  Procesamiento y Post-Procesamiento.

Una vez que el software tiene toda la información que requiere para el análisis estructural

estático, podemos continuar con el procesamiento. En esta etapa el software, como se mencionó

anteriormente, soluciona el modelo de elemento finito, la solución la podemos interpretar en la

etapa de post-procesamiento.

Para este proyecto en particular nos interesan dos cosas, la deformación máxima y los

esfuerzos máximos en el chasis.

Fig. 53: Campo de desplazamientos.

Como se muestra en la Fig. 53, el desplazamiento máximo es de 0.657E-03 m, lo cual es

equivalente a 0.657 mm, al ser un valor muy pequeño se desprecia, ya que no provocara ninguna

clase de interferencia entre los elementos de la motocicleta.

Page 41: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 41/50

Capítulo V: Análisis estructural.

30

Fig. 54: Campo de esfuerzos (teoría de Von Mises).

Como se muestra en la Fig. 54, el valor de esfuerzo máximo, localizado en la zona del

basculante cercana al eje trasero, es de 0.422E+08 Pa, lo cual es equivalente a 42.2 MPa.

Page 42: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 42/50

 

Conclusiones y

recomendaciones.

“La ciencia más útil es aquella cuyo fruto es el más comunicable.” Leonardo da Vinci

Page 43: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 43/50

Conclusiones y recomendaciones.

32

Conclusiones

Después del análisis, se obtuvo que los desplazamientos del modelo son mínimos lo cual

no interferirá con ningún otro elemento, así también, se notó que los esfuerzos máximos

producidos por las cargas aplicadas son relativamente pequeñas en comparación con el esfuerzode cedencia del material. Es importante hacer notar, que este análisis es estático, es decir, cuando

la moto está detenida y el piloto sentado sobre la moto, por lo que es importante poner atención,

por muy pequeño que sea, en las zonas de los esfuerzos máximos, para el análisis dinámico.

La altura máxima del asiento para el piloto fue de 731 mm con respecto al suelo, esto fue

debido al ancho de la motocicleta (420mm). Es importante recordar que nuestro diseño tomo

como base las dimensiones de una motocicleta eléctrica existente en el mercado, por lo que, la

altura del asiento se puede ver afectada principalmente por la suspensión.

El volumen propuesto se logró incrementar pasando de   a , por muy

pequeño que parezca el incremento, es de vital importancia tener el mayor espacio disponible en

las motocicletas eléctricas.

La masa aproxima del chasis completo fue de 25 Kg, al no tener una base de comparación

no se puede determinar si está dentro del promedio o se excede, por lo que este valor servirá

como base proyectos futuros.

Recomendaciones

Este trabajo se centra en el chasis, y solamente es un pequeño porcentaje de todo lo que

requiere para tener un producto completo, en este caso una motocicleta eléctrica. Por lo que para

darle continuidad se recomienda:

  Realizar el análisis dinámico, el cual comprende, el ensayo de frenada, ensayo de

paso por curva y ensayo de paso por obstáculo para validar el diseño del chasis.

  Crear una base de datos para la selección del sistema eléctrico.

  Selección de los componentes de la motocicleta (Suspensión, llantas, freno, etc.)

  Diseño a detalle y optimización del chasis.

 

Integración de los componentes al chasis o viceversa.  Manufactura.

Estos puntos no están necesariamente ordenados subsecuentemente.

Page 44: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 44/50

Conclusiones y recomendaciones.

33

Fig. 55: modelo final de chasis y espacio para baterías.

Page 45: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 45/50

 

Bibliografía

“La autoeducación es, estoy convencido, el único tipo de educación que existe.” Isaac Asimov 

Page 46: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 46/50

Bibliografía

35

1. Libbey, Hosea W. Electric Bicycle. 547,441 United States, October 8, 1895. Utility.

2. Bolton, Ogden. Electrical Bycicle. 552,271 United States, December 31, 1895. Utility.

3. Electric motorcycle. Ogden, J. Gordon. United States : Hearst Magazines, 1911, PopularMechanics, p. 560. 0032-4558.

4. Vogel, Carl. Build your own electric motorcycle. United States : McGraw-Hill, 2009. 978-

0-07-162294-3.

5. Foale, Tony. Motorcycle handling and chassis design: The art and science. Spain : Tony

Foale, 2002.

6. Zero Motorcycles. Owner's Manual. 2013.

7. Brammo. Owner's Manual. 2013.

8. Crouse, William H. y Anglin, Donald L.  Mecánica de la motocicleta. Barcelona :

Marcombo, 1992. 84-267-0850-1.

9. Arias-Paz Guitian, Manuel. Motocicletas. Madrid : Cie Dossat 2000, 2003. 84-95312-07-

7.

Page 47: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 47/50

 

Suplementos.

“Lo difícil lo hago de inmediato, lo imposible me tardo un poquito más” Cantinflas

Page 48: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 48/50

Suplementos.

37

 A.  Datos del aluminio por el fabricante.

Page 49: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 49/50

Suplementos.

38

Page 50: 1939 2013

7/23/2019 1939 2013

http://slidepdf.com/reader/full/1939-2013 50/50

Suplementos.

B.  Planos