21
Cuaderno de Actividades: Física II 7) 7) Campo Magnético. Campo Magnético. Ley de Ampere Ley de Ampere Lic. Percy Víctor Cañote Fajardo 134

38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

7)7) Campo Magnético.Campo Magnético. Ley de AmpereLey de Ampere

Lic. Percy Víctor Cañote Fajardo 134

Page 2: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

7.1) Interacción de campos magnéticos

i) Conocimiento histórico de la IM

IE ∼ 25s → 1ra

en desarrollarse IM ∼ 42s → después

IE → qIM → I

IM:Magnetita {FeO, Fe2O3}

FerrososCiertos minerales

Elementos de transición

Tierra:

Lic. Percy Víctor Cañote Fajardo

PN

PS

EG

PS

PN

EMPNG

PSG

135

Page 3: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

De acuerdo a esta analogía con los polos geográficos, PG, se renombran los extremos de las barras de magnetita como PN magnético (PMN → PN) y PS magnético ( PSM → PS)

ii) Experimentos importantes

j) HC Oersted, 1820

No se tiene certeza del montaje experimental usado por Oersted, es más, el experimento hipotético es extremadamente sensible.

jj) Polaridad de la “I”

→ circulación

Circulaciones contrarias

Circulaciones iguales

iii) ¿Cómo debe ser la fuerza que representa a esta interacción magnética?

mI F→r

Lic. Percy Víctor Cañote Fajardo

r Ir

I

B

I1 I2

136

Page 4: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

e F E→r r

Los cambios en el espacio producidos por la distribución de sI serán descritos

por un campo magnético,Br

, asociado a una fuerza magnética, mFr

, mediante

la siguiente ecuación:

mF qv B= ×r rr

__

[ ]

[ ]

mu F N

u q C

=

=

__

__

[ ]

[ ]

mu v

s

u B T

=

=

41 10

1

T G

G Gauss

==

En adelante toda distribución de I estaría enlazada a un campo Br

( )E B⇔r r

Lic. Percy Víctor Cañote Fajardo

q q

qρ =

____

eFEq

=

v

q

Fm

B

v

q

I

I

137

Page 5: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

iv) Generalización de la fuerza para una distribución de Is

: .J I I J da→ ≡ ∫r r r

( )

( )

( )

m

m

m

dF dq v B

dF dV B

d

Nq v

JF B dV

= ×

= ×

= ×

r rr

r r

r r

r

r

Lineales

Superficiales

Volumétricas

( )m m

I I

F dF J B dV→ = = ×∫ ∫r r r r

Obteniendo la ecuación de fuerza para corrientes filiformes,

{ } { }

__ __ __

__ __

*J

m

I

m

I

F J BdV dV Adl

F BJû Adl

= × ← =

= ×

∫ r

{ }_ _{ }J JJ û Adl JA dl û Idl→ =r

Lic. Percy Víctor Cañote Fajardo

I

__

BN

vJ

dFm

dqdV

dl

A

I

C

D

dV

138

I: distribución de Is

Page 6: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

__ __ __D

m CF Id l B→ = ×∫

Si C=D:

m

C

F Idl B= ×∫rr r

Ñ

__

_ __ __ _ ___

0{ }m

c C

m

Si I cte C B cte

F I d l B I Fd l B

→ = ∀ ∧ =

≡ × = × → =∫ ∫

uur

rrÑ Ñ

Lic. Percy Víctor Cañote Fajardo

IC

“elemento del circuito”, describe espacialmente al C.

es la corriente en C.

:I dlr

139

Page 7: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

v) Torque sobre una I

m I A=rr

Lic. Percy Víctor Cañote Fajardo

I

I

__

B

__

mF

Amµ =r r

I

I

m

p

<>I

µ

140

Page 8: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

m Bτ = ×rr r ← mF Idl B= ×∫

rr r

7.2) 7.2) LeyLey dede BiotBiot yy SavartSavart

__

3

'( ')( )

'

k dv r rE r

r rρ

ρ

ρ −=−∫

r rr

r r

Esta ley permite conocer el campo partiendo de una ecuación empírica para la fuerza magnética entre circuitos de Is,

Lic. Percy Víctor Cañote Fajardo

__ __

p m= : Simetrías

IE IM

Br

dl

I m

141

__

mF

__

mF

-

I

m Br

Page 9: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

,21 2 1m mF F sobre C debido a C=

2 1

0 2 1 2 1 2 121 3

2 1

{ ( )}

4m

C C

I I dl dl r rF

r r

µπ

× × −=−

∫ ∫ÑÑ

Comparando…

m

C

F Idl B= ×∫Ñ

2

12

1

0 1 1 2 13

2 1

21 2 2

21 2 2

( )

4

m

C

C C

m

F B

I dl r r

r

I dl

Fr

I dlµπ

× −

= ×

→ = × −

∫ Ñ

Ñ

Ñ

Lic. Percy Víctor Cañote Fajardo

Fm,21

r1

r2

dl2C2

B

I2

dl1I1

C1

I

r’

dl

C

P

Br

142

Page 10: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

03

( ')( )

4 'C

Idl r rB r

r r

µπ

× −=−

∫r r

Ñ

µ 0 : permeabilidad magnética del vacío

70 4 10

Tm

Aµ π −≡ ×

EjercicioEjercicio: : Calcule el B debido a la línea de I,Calcule el B debido a la línea de I, ?CPB =

2 2 2 1/ 2

2 2 1/ 2

ˆ ˆ

ˆ' '

ˆˆ ˆ´ '

ˆ'

´ { ' }

´ { ' }

r xi yj

r z k

r r xi yj z k

dl dz k

r r x y z

r r r z

= +

=

− = + −

=

− = + +

→ − = +

r

Lic. Percy Víctor Cañote Fajardo

I

r

r’

dl

P

θy

x

z

143

Page 11: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

032 2 2

03

2 2 2

ˆ ˆˆ ˆ{ ' } ( ' )( )

4 { ' }

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) '(0)

ˆ ˆ{ } '

{ }

)4

'

(

C

C

I dz k xi yj z kB r

r z

k xi yj zk x j y i z

I yi xjB r

dz

r z

µπ

µπ

−∞

× + −→ =+

× + − = + − −

− + → =

+

r

Ñ

Recordando…

Introduciendo el vector eθ y la integral,

3 22 2 2

2',

( )

dzI

rz

r

z

z

−∞= =

+≡∫%

Resulta,

0 02

2ˆ ˆ( )

4 4C I I

B r re I rerθ θ

µ µπ π

= ≡ ×r %

0 ˆ( )2

C IB r e

r θµπ

=

7,3) 7,3) LíneasLíneas dede induccióninducción, LI, LI

Sinteticemos las simetrías,

Lic. Percy Víctor Cañote Fajardo

y

x

zr eθ

ˆre

θ

P

ˆ ˆˆ { }

ˆ ˆ ˆ{ cos }

y xu i j

r r

sen i j eθθ θ

≡ − +

≡ − + ≡

144

Page 12: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

03

0

( ')( )

4 '

.

.

.

:

C

IM

I

Idl r rB r

r r

C

LI Lineas deinduccion

µπ

µ

× −=−

∫r r

Ñ

3

0

'( ')( )

'

.

.

.

:

IE

q

k dv r rE r

r r

LF Lineas de fuerza

ρρ

ρ

ερ

−=−

i) Definición de LIi) Definición de LI

Son líneas que describen la distribución del campo magnético debido a una distribución de corrientes I.

ii) Características de las LIii) Características de las LI

j) Son cerradas y con circulación.

jj) No se cruzan.

jjj) El Br

tangente a las LI y orientado según su circulación.

Lic. Percy Víctor Cañote Fajardo

PN

PS

P

PB

145

Page 13: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

jv) La distribución de las LI relacionadas con la uniformidad e intensidad de B .

k) La uniformidad de las LI de acuerdo a la uniformidad del Br

.

1B cte=uurr

kk) La densidad de LI vinculada a la B .

El conocimiento de las LI para las distribuciones de I permitirá obtener información valiosa del B

r, lo que permitirá para distribuciones de I especiales,

simplificar la obtención de los Br

.

Ejemplos de LI:

Lic. Percy Víctor Cañote Fajardo

1

2

11 2B B<

I

146

Page 14: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

*LI: I filiforme*LI: I filiforme

*LI: I planares*LI: I planares

7,4) 7,4) LeyLey circuitalcircuital dede AmpereAmpere

Esta ley establece la proporcionalidad entre la integral de línea del y la corriente encerrada por dicha línea. Esta línea es un circuito matemático, C,

. ,enc cond

C

B dl I I I Iα = =∫Ñ

0.C

B dl Iµ=∫Ñ

Ejercicio: Igual al ejercicio ultimo…

Lic. Percy Víctor Cañote Fajardo

IA

I

147

C

Bdl

Page 15: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

0.C

B dl Iµ=∫Ñ

{ }

0

0

00

1

2

2

)

)

o

C

B dl I

B dl I

IB

r

µπ

µ

µ

=

=

=

Ñ

Ñ

Como las I están asociadas a los , .A

J I J da= ∫ , estas I deben de generalizarse

para todas las superficies, de la siguiente forma,

I=IC + ID IC: I de conducción, IID: I de desplazamiento

Caso interesante:

Donde las ID están definidas por,

0E

D

dI

dt

φε=

r

Con lo cual,

0.C

B dl Iµ=∫Ñ ← I=IC + ID

Es la Ecuación circuital de Ampere- Maxwell

Lic. Percy Víctor Cañote Fajardo

dlB

IA

C

E

IDI=IC

CB

148

Page 16: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

7,5) 7,5) EnergíaEnergía magnéticamagnética enen elel RR 33

3

2

.

:

1: ,

2eléctrica p el

R

IE

E E E E dvρ ε→ → = ∫r

3

22

:

1

2 2 magnétic

smagnétic

R

a

a B

BE B dv u

IM

IE

B

µ µ

= =

Aplicaciones:

a) Problema ABP: “La Feria Escolar de Física”

Lic. Percy Víctor Cañote Fajardo 149

Page 17: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

EN LA FERIA ESCOLAR DE FÍSICA

Pedro y José ajustan los últimos detalles de su exposición científica. Pedro ha fijado correctamente su banda de hule a cuatro soportes aislantes R, S, T y U, asegurándose que la banda se ajuste adecuadamente con el rodillo metálico C(Cu). Con esto su banda ha quedado conectada a tierra. Pedro será el encargado de hacer la explicación del trabajo.José ha terminado de ajustar las escobillas metálicas E contra la banda de hule, y ha comprobado que al hacer girar la manivela el rozamiento produce la electrización de aquella. Él será el encargado de mover la manivela.Todo parece indicar que ellos han acusado esmero en su trabajo y que el generador de cargas electrostáticas de su invención ha quedado listo para su presentación. Pedro y José tienen planeado hacerle una broma a Luis, que perteneciendo al grupo de trabajo es el que menos ha contribuido en su elaboración, sin embargo se le ha prometido que lo consideraran ante el jurado, siempre que se anime a hacer una pequeña demostración del nivel de electrización de la banda. La broma consistirá en hacerle tocar la banda cargada con un delgado cable de cobre pero sin que él se de cuenta. El trabajo de Luis consistirá en dejar libre a una pequeña esfera de espuma plástica desde un punto P cerca de la banda que deberá estar previamente electrizada negativamente por frotación. Entonces se apreciará que la esferilla sube verticalmente

Lic. Percy Víctor Cañote Fajardo 150

OBJETIVOS DE APRENDIZAJE

1. Comprender la inducción del campo magnético a partir del movimiento de cargas eléctricas

2. Caracterizar la fuerza magnética a partir de las cantidades físicas: carga eléctrica, velocidad y campo magnético

Page 18: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

alejándose de la banda por efecto de repulsión, demostrándose así que la banda se electrizada por fricción con las escobillas. Iniciado el evento, el jurado le pide al grupo hacer la explicación de su trabajo. Pedro empieza demostrando que la banda se encuentra inicialmente descargada. A continuación José empieza a mover impetuosamente la manivela y Luis sin que se lo indiquen sus compañeros suelta la esferilla cargada, observándose que ésta no sube verticalmente sino más bien sale siguiendo una trayectoria que no había sido prevista.

¿Qué causas justificarían tan inesperado resultado?

PREGUNTAS ADICIONALES

1. Sabiendo que toda superficie uniformemente cargada provoca un campo eléctrico uniforme. En el experimento dado ¿qué efecto produce sobre este campo el desplazamiento de la banda?

2. Colocando la esferilla electrizada negativamente y en reposo muy cerca de la banda electrizada y en reposo, ésta logra ascender verticalmente. Explica las razones que justifican este comportamiento.

3. En base a la situación de la pregunta anterior, supongan ahora que la banda se encuentra en movimiento, se sabe que al liberar la esferilla no sigue la trayectoria vertical. Elabore una hipótesis de existencia de la causa que genera el cambio de una trayectoria vertical por otra distinta.

4. En una situación hipotética supongan que en lugar de una banda electrizada en movimiento, existan un conjunto de cables conduciendo corriente en la dirección del movimiento de aquella. Al repetir la experiencia anterior ¿la trayectoria de la esferilla sería como cuando la banda electrizada se desplazaba?

5. Si en lugar de la carga eléctrica se instala una brújula en un plano paralelo a la banda en movimiento, se observará que la aguja de ésta se perturba. ¿De qué naturaleza es la fuerza que afecta a la brújula? ¿Es esta fuerza de la misma naturaleza que la que afecta a la esferilla cargada cuando ésta se mueve?

6. En base a la situación de la pregunta anterior, la fuerza sobre la aguja de la brújula está asociada a un campo magnético. ¿Son suficientes los datos para determinar qué dirección tiene dicho campo magnético?. Si es así ¿cuál es esa dirección en las proximidades de la banda electrizada y en movimiento?

7. Existe alguna relación entre las direcciones del campo magnético, de la dirección de la velocidad de la esferilla y de la fuerza magnética aplicada sobre ella. Expliquen.

Lic. Percy Víctor Cañote Fajardo 151

Page 19: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

8. Elaboren un DCL de la esferilla electrizada para el caso dado en el experimento original. ¿Qué forma tiene la trayectoria que describe la esferilla mientras está cayendo en dicho experimento ?

FUENTES DE INFORMACIÓN

A. FUENTES BIBLIOGRÁFICAS

1. Física Fundamental.

Jay Orear. Editorial Limusa- Wiley, S.A. México 1970.

2. Física , tomo II . 3ra Edición.

Raymond A. Serway. Mc GRAW-HILL. S.A. México 1993.

3. Física para la ciencia y la tecnología, volumen II . 4ta. Edición.

Paul A. Tipler. Editorial REVERTÉ, S.A. Barcelona 2000.

4. Física Conceptual. 3ra Edición

Paul G. Hewitt. Addison Wesley Longman. México 1999.

5. Física Clásica y Moderna

W. Edward Gettys, Frederick J. Keller, Malcolm J. Skove

Mc. Graw Hill. Madrid 1993

6. Física 3

G. Ya Miákishev, B. B. Bújovtsev

Editorial MIR Moscú 1986.

B. RECURSOS DE LAS NTIC(NUEVAS TECNOLOGIAS DE LA INFORMATICA Y …)

1. Temas de electromagnetismo

: http//www.enebro.pntic.mc.es /fisica.html

2. Física Virtual

Lic. Percy Víctor Cañote Fajardo 152

Page 20: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

:http//www.pergamino virtual.com/categorías/ciencia_y_tecnología_fisica1.shtml

3. APPLETS de Fenómenos electromagnéticos.

SUPUESTOS

A. CONOCIMIENTOS PREVIOS

1. Diagrama de Cuerpo Libre.

2. 2da Ley de Newton.

3. Fuerza Electrostática.

4. Campo Eléctrico.

B. NECESIDADES DE APRENDIZAJE

1. Aprender que los campos electromagnéticos se generan a partir del movimiento de cargas eléctricas.

2. Conocer y comprender la relatividad de los campos electromagnéticos.

3. Caracterizar un campo magnético generado por una corriente eléctrica en los alrededores de ella.

4. Comprender y aplicar las reglas que relacionan a la Velocidad, Campo Magnético y Fuerza Magnética.

C. HIPÓTESIS / CONJETURAS

1. Existe una fuerza que desvía el movimiento de la carga cuando esta se deja en libertad.

2. La fuerza desconocida sólo aparece cuando las cargas de la banda se encuentran en movimiento cuando ella se desplaza.

D. POSIBLES SOLUCIONESS

1. Si la fuerza de gravedad sobre la esferilla es mayor que la fuerza eléctrica, ésta baja describiendo una trayectoria curva.

Lic. Percy Víctor Cañote Fajardo 153

Page 21: 38827874 capitulo-7-campo-magnetico-y-ley-de-ampere

Cuaderno de Actividades: Física II

2. Si la fuerza de gravedad sobre la esferilla es de igual valor que la fuerza de repulsión eléctrica, al liberarse quedará en reposo.

3. Si la fuerza de gravedad es menor que la fuerza de repulsión eléctrica, la esferilla ascenderá en una trayectoria curva.

Lic. Percy Víctor Cañote Fajardo 154