9- E3-Oscilador

Embed Size (px)

Citation preview

  • 7/28/2019 9- E3-Oscilador

    1/44

    E3 - MIEEC 1

    Electrnica 3

    Oscillators and Multivibrators

    Mestrado Integrado emEngenharia Electrotcnica e de Computadores

    Telecomunicaes, Eletrnica e Computadores

  • 7/28/2019 9- E3-Oscilador

    2/44

    E3 - MIEEC 2

    Oscillators Summary

    LC basic oscillator

    Barkhausen criterion

    Ring oscillator

    Multivibrators

  • 7/28/2019 9- E3-Oscilador

    3/44

    E3 - MIEEC

    Harmonic oscillators An oscillator can be defined as a device that generates a

    sinusoidal or any other type of repetitive signal.

    An harmonic oscillator is generally characterized by being

    capable of generating a sinusoidal signal, or nearly

    sinusoidal, with a well defined frequency.

    In contrast, the rest of the oscillators group is given the name

    of relaxation oscillators.

    The most important features associated to an oscillator are:amplitude and frequency stability, output power and harmonic

    content (a variation in frequency is called drift)

    3

  • 7/28/2019 9- E3-Oscilador

    4/44

    E3 - MIEEC 4

    Oscillators

    Tuned oscillator - LC resonant circuit

    L C

    [ ] real;,02ideal;,0

    sin

    0;0

    0

    5,022

    0210

    2

    0

    2

    021

    2

    0

    2

    021

    2

    02

    2

    2

    2

    2

    2

    00

    jjssss

    jsss

    tVeVeVv

    vdt

    vd

    LC

    v

    dt

    vd

    dt

    vdLC

    dt

    dvC

    dt

    dL

    dt

    diLv

    tjtj

    L

    LLLL

    LLLL

    =>=++

    ==+

    =+=

    =+=+

    =

    ==

    vL

    energy

    LC Oscillator: low phase noise, large area

    Power is usually supplied by DC bias to the devices that convert

    the bias power into signal power in the form of a negative,

    nonlinear conductance or as regenerative feedback.

    jL -j/C

  • 7/28/2019 9- E3-Oscilador

    5/44

    E3 - MIEEC 5

    Oscillators

    ( )

    ( ) ( )

    ( )LC

    LCGLGLss

    kei

    idt

    diGL

    dt

    idLC

    VL

    vLdt

    di

    iidt

    diGL

    dt

    idLC

    iiii

    stL

    LLL

    CL

    NLLL

    NLRC

    2

    4,

    0

    10

    10

    I0i,conditionsInitial

    2

    21

    2

    2

    0

    0L

    2

    2

    =

    =

    =++

    ==

    =

    =++

    =++L

    C

    vL

    energy

    R

    [ ]

    0)()(

    real;,

    02

    0201

    0

    5,022

    021

    02

    02

    +=

    =

    >=++

    ttSinKtCosKeti

    jjss

    ss

    tL

    iN

    set iN=0 to obtain a homogeneous

    equation in the inductor current.

    A trial solution of the form iL=Kest

    leads to the characteristic equation

    Case (GL)2-4LC

  • 7/28/2019 9- E3-Oscilador

    6/44

    E3 - MIEEC

    Harmonic oscillators

    6

    LC

    Rs

    LC RPQL>5

    RP=QL2Rs

    Assuming some initial energy inthe system, the natural response

    is a sinusoidal signal with

    frequency:

    With magnitude dumping of:

    2411Q

    o =

    Qo

    2 =

    221 4

    11

    2,

    Qj

    Qpp o

    o =

    CRQ

    LC

    Po

    o

    =

    =1

    How to keep a sustained oscillation?

    Active mode: Using an active element

    that replaces the dissipated energy in

    Rs (or Rp). Some sort of feedback is

    needed.

    a sort of negative resistor is needed.

  • 7/28/2019 9- E3-Oscilador

    7/44

    E3 - MIEEC

    Harmonic oscillators

    7

    LC Rs

    -Rs

    +

    -

    R1

    R2

    R3

    3

    2

    1

    3

    2

    1

    RRRR

    RR

    Riv

    i =

    =

    LC RP-R

    p

  • 7/28/2019 9- E3-Oscilador

    8/44

    E3 - MIEEC 8

    Oscillators

    Barkhausen Criterion

    H(s)

    G(s)

    Vi(s) Vo(s)

    )()(1

    )(

    )(

    )(

    sGsH

    sH

    sV

    sV

    i

    o

    +=

    )()(1

    )(

    )(

    )(

    sGsH

    sH

    sV

    sV

    i

    o

    +=

    1 ( ) ( ) 0 ( ) ( ) 1H s G s H s G s+ = =

    180)()(

    1)()(

    00

    00

    0

    =

    =

    =

    jGjH

    jGjH

    js

    Self-sustaining oscillation

    the loop gain slightly exceeds unity at the resonant frequency,

    the phase shift around the loop is n2 rad (where n is an integer),

    the oscillation is sustained even if Vi=0.

  • 7/28/2019 9- E3-Oscilador

    9/44

    E3 - MIEEC 9

    Oscillators

    Barkhausen criterion regenerative feedback

    The inverting amplifier grants a rad (180 deg.) phase shift. To meet

    the requirements of the second criterion, the filter block provides anadditional rad phase shift for a total of 2 rad (360 deg.) around the

    entire loop.

    By design, the filter block inherently provides the phase shift in addition to

    providing a coupling network to and from the amplifier.

    The filter block also sets the frequency of oscillation, using a tuned circuit(inductor and capacitor) or crystal.

    The amplifier provides for the replacement of the dissipated energy.

    G

  • 7/28/2019 9- E3-Oscilador

    10/44

    E3 - MIEEC 10

    H(f)

    G(f)

    vof

    |GH|>1

    saturation

    -

    ++

    Oscillators

    Vi(s)

    Vo(s)

  • 7/28/2019 9- E3-Oscilador

    11/44

    E3 - MIEEC

    Harmonic oscillators

    Tuned oscillator

    11

    C RP

    R3=

    L

    RPv1

    voAv

    It is possible after a simple inspection tofind the right conditions for oscillation.

    For a null phase in the system, L and C

    should not be noticed during oscillation.That happens at the resonant frequency,

    (infinite impedance):

    For a sustained oscillation the losses atRp needs to be compensated. That is

    accomplished if the amplifier is able to

    replace that energy by sensing v1 and by

    trying to keep its function (sinusoid).Once there is an attenuation of from

    the output to v1, Av=2!

  • 7/28/2019 9- E3-Oscilador

    12/44

    E3 - MIEEC

    Harmonic Oscillator

    12

    +

    -

    Wien-Bridge oscillator

    R2

    R

    R

    C

    C

    R1( ) ( )

    +

    +=

    CRCRj

    R

    R

    jjA oo

    0

    0

    1

    2

    13

    1

    1

    2;1

    1

    2 ==R

    R

    RCo

  • 7/28/2019 9- E3-Oscilador

    13/44

    E3 - MIEEC

    Oscillation control

    It is impossible to impose the exact conditions for oscillation.

    The solution passes by giving a gain > 1 when the signal has a

    small amplitude, and a gain < 1 for the large portion of the

    signal. Eventually a sustained oscillation is obtained.

    13

  • 7/28/2019 9- E3-Oscilador

    14/44

    E3 - MIEEC

    Harmonic oscillator

    14

    +

    -

    R22

    R

    R

    C

    C

    R1

    R22

    ( ) ( ) 1=oo jjA

    ( ) ( ) 1>oo jjA

    Low signal level

    In-between state

    High signal level

    ( ) ( ) 1

  • 7/28/2019 9- E3-Oscilador

    15/44

    E3 - MIEEC

    Harmonic Oscillator

    15

    Phase delay based oscillator

    +

    -C

    R

    C C

    R

    R

    KR

    Negative feedback. To

    verify the Barkhausen

    criterion a total shift of 180

    is needed, at a single welldefined frequency. Then three

    singularities are imposed

    (together of a gain equal to

    one).

    ( ) ( )

    ( ) ( )

    29;6

    11

    1561

    32

    ===+++

    = KRC

    SRCsRCsRC

    KssA o

    j

  • 7/28/2019 9- E3-Oscilador

    16/44

    E3 - MIEEC 16

    Oscillators

    Can this circuit be an oscillator?

    1

    1

    +2700

    +900

    +1800

    1

    +2700

    +900

    +1800

    1

    +1800

    18001

    H1

    H1H2

    H2

    If gm1RP1gm2RP2 1, the circuit oscillates

    1 2

  • 7/28/2019 9- E3-Oscilador

    17/44

    E3 - MIEEC 17

    Oscillators

    Ring oscillator

    INV1

    INV3

    INV2

    Easy to integrate, high phase noise

    Rarely used in RF systems

    Often used in high speed data links

    tp

    N stages with delay t

    2N=T

    A B C

  • 7/28/2019 9- E3-Oscilador

    18/44

    E3 - MIEEC 18

    Oscillators

    Ring oscillatorINV

    1INV

    3INV

    2

    3

    0

    3

    0

    ( )

    1

    AH s

    s

    =

    +

    1

    1

    32

    0

    3

    0=

    +

    osc

    A

    01

    s

    A)s(A oi

    += inverter gain

    Open-loop gain

    Design requirements:

    The 3 inverters intrinsically

    ensure a 180 phase shift gain.

    The frequency dependentphase must provide another 180

    shift.

    Sinusoidal oscillation.

  • 7/28/2019 9- E3-Oscilador

    19/44

    E3 - MIEEC

    Quadrature Oscillator

    19

    ==+

    )(

    1)(0)(

    )(2

    2

    tv

    k

    tvtv

    t

    tvk

    +

    -

    R+

    -

    R

    C

    +

    -

    R

    CR

    The solution of this

    equation is a sinusoid

    sin((1/k)t)cos((1/k)t)

    K=RC

  • 7/28/2019 9- E3-Oscilador

    20/44

    E3 - MIEEC

    Quadrature Oscillator

    20

    +

    -

    C

    +

    -

    2R

    2R

    2R

    2R

    Non-inverting integrator

    Integrator (invertor)

    Amplitude control made

    at this stage.

    The adjustment can place

    the poles into the right side.

    2R

    C

    v

    v/2R

    The output of the firstintegrator presents a typical

    1% distortion. The sin(.) is

    even better because of the

    extra filtering performed by

    the second integrator.

    sin((1/k)t)

    cos((1/k)t)

  • 7/28/2019 9- E3-Oscilador

    21/44

    E3 - MIEEC 21

    Oscillators

    Regenerative feedback basic architecture of transistor based

    oscillators

    LC 1/G-1

    Vx

    GmVx

    Z(j)

    + -1 -Gm Z(j)+

    +

    Barkhausen criterion for oscillation at resonance frequency

    GmZ(j0)=1

    Assuming Gm is purely real, Z(j0) must also be purely real

  • 7/28/2019 9- E3-Oscilador

    22/44

    E3 - MIEEC 22

    Oscillators

    Regenerative feedback

    Issue GmRp needs to exactly equal 1

    Magnitude condition achieved

    making |GmRp|=1

    + -1 -Gm Z(j)+

    +

    Rp

    0

    90

    -90

    0

    + -1 Z(j)+

    +-Gm 0 0 20 30

    Transistors transconductance is non-linear and presents

    saturation characteristics

    Harmonics are produced but are filtered out by the resonant circuit

    The Barkhausen criterion must be verified at fundamental frequency

    L

    C

  • 7/28/2019 9- E3-Oscilador

    23/44

    E3 - MIEEC

    Colpitts oscillator

    Tuned oscillator Negative feedback but three singularities

    23

    C1R

    vo(t)

    C2

    L

  • 7/28/2019 9- E3-Oscilador

    24/44

    E3 - MIEEC

    Colpitts oscillator

    24

    C1R

    vo(t)

    C2

    L

    v(t) v(t)( ) ( )

    ( )( )

    ( ) ( ) ( ) ( ) ( )tvLCstvtv

    sCsL

    sCtv

    tvsCR

    tvtvsCtvg

    oo

    oom

    +=+

    =

    ++=

    2

    2

    2

    2

    21

    11

    1

    1

    2

    21

    21

    1

    C

    CRg

    CC

    CCL

    m

    o

    =

    +

    =This is the exact value for

    oscillation. In reality, one

    do gmR > C2/C1 and let the

    transistor non-linearity toshape the magnitude.

  • 7/28/2019 9- E3-Oscilador

    25/44

    E3 - MIEEC

    Colpitts oscillator

    25

    Choong-Yul Cha, and Sang-Gug Lee

    A Complementary Colpitts Oscillator in CMOS TechnologyIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 3, MARCH 2005

  • 7/28/2019 9- E3-Oscilador

    26/44

    E3 - MIEEC

    Hartley Oscillator

    26

    L1 R

    vo(t)C

    v(t) v(t)

    L2

    ( )

    2

    1

    21

    1

    LLRg

    LLC

    m

    o

    =

    +=

  • 7/28/2019 9- E3-Oscilador

    27/44

    E3 - MIEEC

    Simplified analysis

    Hartley oscillator

    27

    L1 R

    vo(t)

    CL2

    vo(t)

    v1(t)

    Z= for

    ( )21

    1

    LLCo

    +

    =

    To compensate losses : Vo=-gmRV1.

    Then:

    ( )12

    22

    2

    1

    2

    22

    2

    111

    RVgCL

    CLVVCLs

    CLsV mo =+=

    At the resonant frequency:

    This is true if: gmR=L1/L2

    ( )112

    1 RVgL

    L

    V m

    =

    C l ill

  • 7/28/2019 9- E3-Oscilador

    28/44

    E3 - MIEEC

    Crystal oscillator

    The circuit shows two resonant frequencies. Within the seriesresonance the equivalent impedance of the crystal is very

    small (Rs).

    The second resonance frequency is defined by the LC series in

    parallel with Cp. Under these circumstances, the equivalent

    impedance is very high.

    28

    LCC

    CC

    ps

    ps

    p

    +

    1

    Cp

    CsLRs

    R

    L

    RCQ s

    s

    ==

    1

    Cp: shunt capacitance

    Cs: motional capacitance

    L: motional inductance

    R: motional resistance

    s

    sLC

    1=

    C l ill

  • 7/28/2019 9- E3-Oscilador

    29/44

    E3 - MIEEC

    Crystal oscillator

    29

    ~

    The concept of electromechanic

    resonance can be understood as an

    RLC circuit.

    Rs

    Cs

    LCp

    Capacitor between

    plates

    Crystal mass

    Elasticity

    Friction

    Rs is very small => Q is a large

    value (Q> 20.000 are typical values)

    Symbol

    C t l ill t

  • 7/28/2019 9- E3-Oscilador

    30/44

    E3 - MIEEC

    Crystal oscillator

    30

    ws

    wp

    w

    X

    Inductive

    Capacitive

    Very small difference

    (Cs

  • 7/28/2019 9- E3-Oscilador

    31/44

    E3 - MIEEC

    Crystal Oscillator

    31

    C1C2

    Filtering avoids resonance of the

    harmonics.

    Pierce oscillator

    T d O ill t

  • 7/28/2019 9- E3-Oscilador

    32/44

    E3 - MIEEC 32

    Tuned Oscillator

    Differential LC tuned oscillator

    L1 L2

    C1 C2

    I

    /VO

    VO

    This type of oscillator structure is quite popular in current

    CMOS implementations

    Simple topology Differential implementation (good for feeding differential

    circuits)

    Good phase noise performance can be achieved

    L1 L2Cp1 Cp2

    I

    /VOVO

    Rp2Rp1

    O ill t

  • 7/28/2019 9- E3-Oscilador

    33/44

    E3 - MIEEC 33

    Oscillators

    L1Cp1

    I

    /VO

    VOVS

    L1Cp1

    I

    VOVS

    -1

    Rp1Rp1 L1Cp1

    VO

    Rp1

    -1/Gm1

    Design tank to achieve high Q

    Choose I bias for large swing, preventing saturation

    Transistor size adequate to obtain proper -1/Gm value- usually |GmRp|>1 to ensure start-up

    Differential LC tunned oscillator

    O ill t

  • 7/28/2019 9- E3-Oscilador

    34/44

    E3 - MIEEC 34

    Oscillators

    L1 L2

    C1 C2

    I

    /VOVO

    I2I1

    I1

    I

    I/2

    TI/2

    2I/

    Fundamental component is:

    I1(t)=2/.I.sin(0t)

    Resulting oscillator amplitude:A=2/ .I.sin(0t)*Rp

    Differential LC tunned oscillator

    Oscillators

  • 7/28/2019 9- E3-Oscilador

    35/44

    E3 - MIEEC 35

    Frequency stability

    Oscillators

    See also:Sedra and Smith, Microelectronic Circuits

    Multivibrators

  • 7/28/2019 9- E3-Oscilador

    36/44

    E3 - MIEEC 36

    Multivibrators

    One-shot (monostable) - an electronic device thatemits a single pulse when triggered.

    Free-running (astable) - an electronic device thatoscillates between two stable states (high and low).

    Commonly called a clock in digital systems.

    Latch (bistable) - an electronic device that has two

    stable states (high and low) and must be triggered to

    jump from one to the other. Also called a flip-flop.

    Commonly used as temporary memory.

    Multivibrators

  • 7/28/2019 9- E3-Oscilador

    37/44

    E3 - MIEEC 37

    Multivibrators

    Monostable / One-shot - The one-shot, or monostablemultivibrator, presents only one stable state. When triggered,

    it goes to its unstable state for a predetermined length of time,

    then returns to its stable state.

    Trigger

    CEXTREXT

    +V

    CX

    RX/CX

    Q

    QFor most one-shots, the length of time inthe unstable state (tW) is determined by an

    external RC circuit.

    tW

    Trigger

    Q

    Multivibrators

  • 7/28/2019 9- E3-Oscilador

    38/44

    E3 - MIEEC 38

    Multivibrators

    Monostable /One-shot - Non-retriggerable one-shots do notrespond to any triggers that occur during the unstablestate. Retriggerable one-shots respond to any trigger, evenif it occurs in the unstable state. If it occurs during theunstable state, the state is extended by an amount equal tothe pulse width.

    Retriggers

    tW

    Trigger

    Q

    Retriggerable one-shot:

    Triggers

    derived

    from ac

    Missing trigger

    due to power

    failure

    tW

    Power failure indication

    tW

    tW

    Retriggers RetriggersQ

    Multivibrators

  • 7/28/2019 9- E3-Oscilador

    39/44

    E3 - MIEEC 39

    Multivibrators Monostable/One-shot

    Example

    See also:Sedra and Smith, Microelectronic Circuits

    Multivibrators

  • 7/28/2019 9- E3-Oscilador

    40/44

    E3 - MIEEC 40

    Multivibrators

    Monostable /One-shot - Example

    T Recovery time( ) ( )

    ( ) ( ) ( )

    ( ) ( )CRR

    Trcy

    DDDDD

    CRR

    T

    DDTHi

    RC

    t

    SFFC

    on

    on

    eVVV

    eVVVtv

    eVVVtv

    +

    +

    +=+

    ==

    =

    1

    12

    02,01

    See also:Sedra and Smith, Microelectronic Circuits

    Multivibrators

  • 7/28/2019 9- E3-Oscilador

    41/44

    E3 - MIEEC

    Multivibrators

    +

    -

    R2

    R1

    Av

    Vref

    viSchmitt trigger

    vi

    vo

    AL

    AH

    THHref VARR

    RV =+= 21

    1

    vi

    vo

    -A

    A

    TLLref VARR

    RV =

    +=

    21

    1

    vi

    vo

    AL

    AH

    Hysteresys

    VTL VTH

    vc

    41

    Multivibrators

  • 7/28/2019 9- E3-Oscilador

    42/44

    E3 - MIEEC

    Multivibrators

    +

    -

    R2

    R1 vovi

    Schmitt trigger no inversor

    vi

    AL

    AH

    LTH AR

    RV

    2

    1=HTL AR

    RV

    2

    1=

    vi

    vo

    AL

    AH

    Actual characteristic

    of a comparator

    42

    Multivibrators

  • 7/28/2019 9- E3-Oscilador

    43/44

    E3 - MIEEC 43

    Multivibrators

    Sedra, Smith

    Microelectronic Circuits

    t1 t2

    21

    1

    21

    1 ;RR

    RVV

    RR

    RVV OLTL

    OHTH

    +=

    +=

    +=+=

    2

    1221

    2ln2

    R

    RRttT

    Assuming

    |VOH| = |VOL|

    If R1 = 0.86R2, then T = 2RC and

    where

    = RC

    RCf 2

    1=

    Astable or Relaxation Oscillator VOH

    VOL

    Oscillators and Multivibrators

  • 7/28/2019 9- E3-Oscilador

    44/44

    E3 - MIEEC 44

    Oscillators and Multivibrators

    Bibliography Sedra, Smith, Microlectronic Circuits, Oxford University Press.

    Johns, David;Analog integrated circuit design. ISBN: 0-471-14448-7.