14
FORMULACIÓN DE ÁBACOS PARA EL DISEÑO DE REFUERZOS DE PAVIMENTOS EMPLEANDO CAPAS GRANULARES DE TRANSICIÓN. Luis Ricardo VÁSQUEZ VARELA, M.Sc. Profesor Asociado. Universidad Nacional de Colombia, Sede Manizales. [email protected] Diego Alexander ESCOBAR GARCÍA, Ph.D. Profesor Asociado. Universidad Nacional de Colombia, Sede Manizales. [email protected] Alejandra CARDONA O. Estudiante de Ingeniería Civil. Universidad Nacional de Colombia, Sede Manizales. [email protected] Grupo de Trabajo Académico en Vías, Transporte y Geotecnia. Universidad Nacional de Colombia, Sede Manizales. Carrera 27 No. 6460. Teléfono: (57) (6)8879300 Laboratorio de Suelos y Pavimentos. Manizales. Colombia, Suramérica. Número total de palabras: 3,939. Número de tablas: 0. Número de figuras: 3. Fecha de envío: 15 de marzo de 2011.

Ábacos para el diseño de refuerzos de pavimentos mediante capas granulares y sobrecapas asfálticas

Embed Size (px)

DESCRIPTION

Se presenta una metodología simplificada para diseñar el refuerzo de un pavimento en servicio a partir de su deflexión actual y la intensidad de tránsito esperada para el periodo de diseño. Se basa en el tradicional diseño de refuerzo por deflexiones del Asphalt Institute, pero involucra la verificación mecanicista - empírica (ME) del comportamiento por fatiga de la sobrecapa asfáltica.

Citation preview

Page 1: Ábacos para el diseño de refuerzos de pavimentos mediante capas granulares y sobrecapas asfálticas

FORMULACIÓN DE ÁBACOS PARA EL DISEÑO DE REFUERZOS DE

PAVIMENTOS EMPLEANDO CAPAS GRANULARES DE TRANSICIÓN.

Luis Ricardo VÁSQUEZ VARELA, M.Sc.

Profesor Asociado.

Universidad Nacional de Colombia, Sede Manizales.

[email protected]

Diego Alexander ESCOBAR GARCÍA, Ph.D.

Profesor Asociado.

Universidad Nacional de Colombia, Sede Manizales.

[email protected]

Alejandra CARDONA O.

Estudiante de Ingeniería Civil.

Universidad Nacional de Colombia, Sede Manizales.

[email protected]

Grupo de Trabajo Académico en Vías, Transporte y Geotecnia.

Universidad Nacional de Colombia, Sede Manizales.

Carrera 27 No. 64–60.

Teléfono: (57) (6)8879300 – Laboratorio de Suelos y Pavimentos.

Manizales.

Colombia, Suramérica.

Número total de palabras: 3,939.

Número de tablas: 0.

Número de figuras: 3.

Fecha de envío: 15 de marzo de 2011.

Page 2: Ábacos para el diseño de refuerzos de pavimentos mediante capas granulares y sobrecapas asfálticas

ABSTRACT

The surface deflection of pavements is considered a good indicator of its structural condition.

Several experimental studies indicate the existence of a relationship between the magnitude of

surface deflection and pavement life expectancy, i.e. the period of future operation over a defined

level of service.

Since 1969, the Asphalt Institute has presented two versions of an abacus for the design of

asphalt concrete overlays from the existing pavement deflection. This method, derived from the

formula for deflection of bilayer systems presented by Kirk in 1964, does not consider the pre-

treatment of the existing pavement before the construction of asphalt reinforcement, so it gives no

indication about the behavior of the materials used for reinforcement.

The use of unbounded granular materials as a transition between existing pavement structures and

new asphalt layers is a common practice in Colombia, although not without debate with varying

levels of documentation and case studies.

In this paper, an abacus for preliminary or final design (according to the level of information

available for the design) of asphalt concrete overlays over unbounded granular transition layers

on existing pavements are presented; it is drawn from verification of the admissible deflection

and fatigue of the asphalt concrete overlay using the Asphalt Institute models.

Some recommendations for the design and construction of this strategy of flexible pavement

rehabilitation, which could even be extended to rigid pavements, are presented.

Keywords: Flexible pavements, unbounded granular reinforcement, asphalt overlay.

RESUMEN

La deflexión superficial de un pavimento se considera como un indicador adecuado de la

condición estructural del mismo. Numerosos estudios experimentales indican la existencia de una

relación entre la magnitud de la deflexión superficial y la expectativa de vida del pavimento, es

decir, el periodo de operación futura por encima de un nivel de servicio definido como adecuado.

Desde 1969, el Asphalt Institute ha presentado dos versiones de un ábaco para el diseño de

sobrecapas de concreto asfáltico a partir de la deflexión del pavimento existente. Este método,

derivado de la fórmula de deflexión de sistemas bicapa presentada por Kirk en 1964, no

considera los tratamientos previos que deben realizarse sobre el pavimento existente antes de la

construcción del refuerzo asfáltico, de forma que no da ninguna indicación sobre el

comportamiento de los materiales empleados en el refuerzo.

El empleo de capas de materiales granulares no cementados como transición entre estructuras de

pavimento existentes y nuevas sobrecapas asfálticas es una práctica conocida en Colombia,

aunque no está exenta de debate con niveles variables de documentación y argumentación de

casos.

Page 3: Ábacos para el diseño de refuerzos de pavimentos mediante capas granulares y sobrecapas asfálticas

En este trabajo se presenta un ábaco para el diseño preliminar o definitivo (de acuerdo con el

nivel de información disponible para el diseño) de sobrecapas de concreto asfáltico sobre capas

granulares no tratadas de transición en pavimentos existentes; este se obtuvo a partir de la

verificación de la deflexión admisible y la fatiga de la nueva sobrecapa asfáltica empleando los

modelos del Asphalt Institute.

Se presentan algunas recomendaciones para la adopción, diseño y construcción de esta estrategia

de rehabilitación de pavimentos flexibles, la cual incluso podría extenderse a los pavimentos

rígidos.

Palabras clave: Pavimentos flexibles, refuerzo granular, sobrecapa asfáltica.

Page 4: Ábacos para el diseño de refuerzos de pavimentos mediante capas granulares y sobrecapas asfálticas

1 INTRODUCCIÓN.

La deflexión superficial de un pavimento se considera como un indicador adecuado de la

condición estructural del mismo. En la actualidad, se propende por la medición del perfil de

deflexiones superficiales del pavimento como un insumo para la modelación de las propiedades

in situ de los materiales constitutivos del mismo a través de la técnica conocida como retrocálculo

(backcalculation), cálculo inverso, modelación o “convergencia”; todas expresiones de uso

común en Colombia.

Numerosos estudios experimentales, desarrollados en la segunda mitad del siglo XX, indican la

existencia de una relación entre la magnitud de la deflexión superficial y la expectativa de vida

del pavimento, es decir, el periodo de operación futura por encima de un nivel de servicio

definido como adecuado.

Desde 1969, el Asphalt Institute ha presentado dos versiones de un ábaco para la estimación del

refuerzo estructural de pavimentos flexibles en servicio, basado en la deflexión característica de

la estructura (valor superado por el 2% de las mediciones de un tramo homogéneo) y el tránsito

futuro expresado con el estándar AASHTO de ejes sencillos equivalentes de 8.2 toneladas (80

kN).

Esta metodología, conocida como “método de las deflexiones”, tiene un marco de referencia

empírico – mecanicista superior al que se le ha reconocido por la sencillez de su aplicación. Sin

embargo, el método sólo indica el espesor necesario de concreto asfáltico que, en condiciones

isotermas, puede reducir la deflexión actual de un pavimento a un valor admisible como función

empírica del tránsito esperado en el futuro.

El método no da ninguna indicación sobre el comportamiento de los materiales empleados en el

refuerzo, es decir, el concreto asfáltico que constituye la sobrecapa; tampoco restringe su

aplicación de acuerdo con el estado actual de la superficie del pavimento por reforzar.

Estas limitaciones pueden encararse de dos formas:

a. Limitando el uso del método a estructuras de pavimento asfáltico en condiciones

predominantemente buenas.

b. Prescribiendo algún tratamiento previo sobre el pavimento existente antes de construir el

espesor de sobrecapa asfáltica.

La primera aproximación mantiene el rigor conceptual, pero reduce ostensiblemente la

aplicabilidad del método en un medio como el colombiano, donde las decisiones de inversión en

rehabilitación suelen presentarse en estados avanzados del deterioro estructural.

La segunda aproximación busca preservar la integridad de la inversión que se realiza en el

refuerzo del pavimento, pero pierde solidez conceptual pues la deflexión actual existente en la

estructura cambiaría por la incorporación de cualquier tratamiento previo a la construcción de la

sobrecapa, bien sea por técnicas de destrucción y reutilización de los materiales existentes como

Page 5: Ábacos para el diseño de refuerzos de pavimentos mediante capas granulares y sobrecapas asfálticas

el reciclaje, por remoción de parte de la estructura como en el fresado, o por el uso de capas de

transición como el refuerzo granular.

El uso de capas granulares de transición constituye el objeto de este artículo, en el cual se

presenta una aproximación empírico – mecanicista para el diseño de sobrecapas de concreto

asfáltico en pavimentos en servicio teniendo en cuenta el aporte estructural de una capa de

refuerzo con base granular triturada (Artículos 300 y 330 del INVIAS 2007) y el análisis por

deflexión admisible y fatiga de la sobrecapa de concreto asfáltico mediante sendos modelos

publicados por el Asphalt Institute (Asphalt Institute, 1982 – 2002).

El producto final del artículo es una carta para el dimensionamiento del refuerzo de concreto

asfáltico siguiendo una metodología similar a la del “Asphalt Overlays for Highway and Street

Rehabilitation Manual Series No. 17” (Asphalt Institute, 2002) pero considerando refuerzos

granulares de 12 ó 15 centímetros de espesor.

A continuación se presenta una breve exposición sobre el origen del concepto de “deflexión

admisible” y los trabajos de J. M. Kirk para el modelo original de dimensionamiento de refuerzos

por deflexiones.

Posteriormente, se explica el proceso de elaboración del ábaco propuesto y se discuten algunos

aspectos constructivos de interés al considerar el refuerzo granular como técnica de

rehabilitación.

2 MÉTODO DE LAS DEFLEXIONES.

2.1 Relación empírica entre la deflexión y el tránsito futuro.

El método de diseño de sobrecapas de refuerzo a partir de las deflexiones se basa en tres

postulados básicos (Kingham, 1969):

a. Para un material dado, a mayor nivel de deflexión del pavimento, menor será la vida de

dicha estructura.

b. La deflexión tolerable (admisible) de un pavimento es función del tránsito futuro que

circulará sobre la estructura después de la construcción de la sobrecapa.

c. Un espesor adicional de concreto asfáltico, construido sobre el pavimento existente, puede

reducir la deflexión del pavimento hasta un valor tolerable o admisible.

La información empírica que permitió la formulación de estos postulados proviene de los

experimentos viales WASHO y AASHO y fue complementada con datos obtenidos por la

Canadian Good Roads Association (CGRA) y los experimentos viales desarrollados en la Gran

Bretaña después de la Segunda Guerra Mundial (Op. Cit., 1969).

No obstante, las mismas investigaciones indican que la relación entre la deflexión admisible de

un pavimento y el tránsito futuro que hará uso del mismo no constituye un criterio mecanicista

totalmente riguroso. Dicha relación varía con el tipo de material, de forma que la experiencia

obtenida en pavimentos flexibles convencionales sólo es significativa para ese tipo de estructuras

(capas asfálticas y capas granulares no cementadas). El uso de la deflexión superficial ha sido

Page 6: Ábacos para el diseño de refuerzos de pavimentos mediante capas granulares y sobrecapas asfálticas

favorecido por la facilidad de su medida en campo, en contraste con las dificultades para medir

respuestas más significativas como esfuerzos y deformaciones (Op. Cit., 1969).

En la Figura 1 se presenta la compilación realizada por Kingham (1969) de varias experiencias de

medida de deflexiones con viga Benkelman mediante la normalización de los datos de tránsito y

las deflexiones. A partir de esta Figura, se hizo evidente la relación empírica entre el nivel de

deflexión inicial tolerable en función del tránsito esperado sobre el pavimento.

Figura 1. Compilación de la experiencia con viga Benkelman.

Fuente: Kingham, 1969.

En la Ecuación 1 se presenta la forma vigente de la relación entre la deflexión admisible y el

tránsito futuro de acuerdo con el Asphalt Institute (Asphalt Institute, 2002).

Ecuación 1 Donde:

DA: Deflexión admisible del pavimento en milímetros.

NESE: Número de ejes sencillos equivalentes de 8.2 toneladas (80 kN) esperados en el

periodo de diseño.

2.2 Relación mecanicista entre el espesor de refuerzo y la deflexión tolerable.

La formulación original del “método de las deflexiones” se basa en un modelo de pavimento

compuesto de dos capas:

Page 7: Ábacos para el diseño de refuerzos de pavimentos mediante capas granulares y sobrecapas asfálticas

a. Una fundación sólida elástica lineal (o de Boussinesq) caracterizada por un módulo de

elasticidad ES y una relación de Poisson νS. Esta capa representa la estructura existente

que va a ser reforzada mediante la construcción de la sobrecapa asfáltica. El módulo de

elasticidad se obtiene a partir de la Ecuación 2, la cual asume una relación de Poisson de

0.50.

Ecuación 2 Donde:

ES: Módulo efectivo del pavimento existente representado como una fundación de

Boussinesq en Kg. /cm².

p: Presión de contacto, asumida como un valor promedio de 4.92 Kg. /cm² (482.6

kPa).

a: Radio de una placa sencilla, asumido como 16.3 centímetros y equivalente a una

rueda doble cargada con 4.1 toneladas (40 kN).

dC: Deflexión característica del pavimento existente (valor superado por el 2% de las

deflexiones) en centímetros y normalizada a una temperatura de 20°C.

b. Una sobrecapa asfáltica, cuyo espesor (t) se determina igualando la Ecuación 3 (fórmula

de Kirk) con la Ecuación 1 para el tránsito esperado en ejes sencillos equivalentes de 8.2

toneladas (80 kN).

[

(

√ ( )

)

√ (

)

]

Ecuación 3 Donde:

d: Deflexión del pavimento en centímetros, que se iguala con la deflexión admisible

de la Ecuación 1.

p: Presión de contacto, asumida como un valor promedio de 4.92 Kg. /cm² (482.6

kPa).

a: Radio de una placa sencilla, asumido como 16.3 centímetros y equivalente a una

rueda doble cargada con 4.1 toneladas (40 kN).

t: Espesor del pavimento (sobrecapa asfáltica) en centímetros.

EP: Módulo del pavimento (sobrecapa asfáltica), asumido como 35,153 Kg. /cm²

(3,447 MPa) para la temperatura normalizada de 20°C.

ES: Módulo efectivo del pavimento existente representado como una fundación sólida

elástica en Kg. /cm². (Ecuación 2).

Se observa que el modelo es empírico – mecanicista simplificado, con un componente mecánico

basado en la elasticidad lineal y un componente empírico basado en la relación deflexión –

tránsito futuro que se estableció anteriormente.

Page 8: Ábacos para el diseño de refuerzos de pavimentos mediante capas granulares y sobrecapas asfálticas

En la Figura 2 se presenta la evolución de las cartas de diseño de espesores de sobrecapa asfáltica

que el Asphalt Institute ha desarrollado con la metodología descrita.

Figura 2. Cartas de diseño de espesor de sobrecapa asfáltica por deflexiones 1969 – 2002

a)

b)

Fuente: a) Kingham, 1969 y b) Asphalt Institute, 2002.

Page 9: Ábacos para el diseño de refuerzos de pavimentos mediante capas granulares y sobrecapas asfálticas

La simplicidad del modelo bicapa no permite analizar los tratamientos previos que deben

realizarse sobre el pavimento existente antes de la construcción del refuerzo asfáltico, de forma

que, si bien dimensiona las necesidades de rehabilitación estructural por el criterio de deflexión,

no da ninguna indicación sobre el comportamiento de los materiales empleados en el refuerzo.

3 ÁBACO DE DISEÑO PARA REFUERZO GRANULAR CON SOBRECAPA

ASFÁLTICA.

El empleo de capas granulares no cementadas como transición entre pavimentos existentes y

sobrecapas asfálticas de refuerzo es una práctica conocida en Colombia, aunque no está exenta de

debate con niveles variables de documentación y estudios de casos (Vásquez et al., 2002).

En este artículo se propone el uso de una capa de base granular triturada (Artículos 300-07 y 330-

07 del INVIAS) como mecanismo de preparación de la estructura existente para la construcción

de la sobrecapa asfáltica. En ese orden de ideas, el modelo quedaría constituido por tres capas:

a. Una fundación sólida elástica lineal (o de Boussinesq) caracterizada por un módulo de

elasticidad ES y una relación de Poisson νS. Esta capa representa la estructura existente

que va a ser rehabilitada mediante la construcción del refuerzo granular y la sobrecapa

asfáltica.

Para la construcción del ábaco de diseño, el módulo varía entre 300 Kg. /cm² y 5,100 Kg.

/cm² con incrementos de 300 Kg. /cm². Este rango corresponde a un espectro de

deflexiones superficiales entre 4.35 y 0.25 milímetros bajo la carga del eje estándar de 8.2

toneladas (80 kN).

Al igual que en la metodología original, los valores de las deflexiones empleadas deben

estar normalizados para una temperatura de 20°C.

b. Una capa granular de 12.0 o 15.0 centímetros de espesor, cuyo módulo de elasticidad se

estima mediante la relación propuesta por el United States Army Corps of Engineers

como se presenta en la Ecuación 4 (Joint Departments, 1994).

[ ( ) ( ) ( )] Ecuación 4

Donde:

ERG: Módulo del refuerzo o transición con base granular en psi.

ES: Módulo efectivo del pavimento existente representado como una fundación de

Boussinesq en psi.

t: Espesor de la capa de refuerzo o transición con base granular en pulgadas.

Las unidades de esta ecuación provienen de la referencia original. La relación de Poisson

de este material se asume como 0.35.

Page 10: Ábacos para el diseño de refuerzos de pavimentos mediante capas granulares y sobrecapas asfálticas

c. Una sobrecapa asfáltica caracterizada por un módulo de elasticidad de 30,000 Kg. /cm² y

una relación de Poisson es de 0.35. El valor del módulo se ha asumido como

representativo para la temperatura normalizada de 20°C.

El espesor de la capa asfáltica varía entre 8.0 y 40.0 centímetros, con incrementos de 2.0

centímetros para la obtención de datos y la construcción del ábaco.

Con este planteamiento se obtienen 17 módulos efectivos de fundación, dos (2) espesores de

refuerzo granular y 17 espesores de sobrecapa asfáltica. La combinación factorial de estas

variables da 578 estructuras, las cuales fueron analizadas en el programa DEPAV (Universidad

del Cauca, 1994) para obtener dos respuestas estructurales.

a. La deflexión superficial, para la cual se obtiene un tránsito admisible (NESE) empleando

la Ecuación 1.

b. La deformación de tensión (tracción) horizontal máxima en la fibra inferior de la

sobrecapa asfáltica, para la cual se obtiene un tránsito admisible (NESE) mediante la

función de transferencia de fatiga del Asphalt Institute presentada en la Ecuación 5 (Finn

et al., 1982).

( ) ( )

Ecuación 5 Donde:

NF: Número de repeticiones admisibles por fatiga de la carga que produce la

deformación horizontal de tracción εT en la fibra inferior de la capa asfáltica.

εT: Deformación horizontal de tracción (tensión) en la fibra inferior de la capa

asfáltica.

EHMA: Módulo del concreto asfáltico en kPa. Para este ejercicio: 30,000 Kg. /cm² =

2’941,995 kPa.

Las unidades de esta ecuación provienen de la referencia original.

Cada uno de estos criterios arroja un valor de tránsito admisible, expresado en repeticiones de

ejes sencillos de 8.2 toneladas (80 kN). De estos, se seleccionó el menor como solución del

sistema de refuerzo propuesto para cada una de las estructuras analizadas.

Es interesante anotar que el 98.6% de los análisis están controlados por el criterio de fatiga de la

capa asfáltica, de forma que el ábaco está controlado por el comportamiento mecánico de la

sobrecapa asfáltica y no por la deflexión total de la estructura.

Si se acepta que la calibración de campo de la Ecuación 5 representa un amplio espectro de

condiciones, podría concluirse que los espesores de refuerzo obtenidos con el tradicional método

de las deflexiones tienen una perspectiva de vida menor por fatiga que lo que prescribe la

relación empírica entre la deflexión admisible y el tránsito.

Page 11: Ábacos para el diseño de refuerzos de pavimentos mediante capas granulares y sobrecapas asfálticas

Los resultados de los análisis se procesaron mediante el programa Scilab (The Scilab

Consortium, 2010), obteniéndose una carta de contornos que obra como ábaco de diseño de

forma similar a los presentados en la Figura 2.

Figura 3. Carta de diseño de espesor de sobrecapa asfáltica con refuerzo granular

Fuente: Elaboración propia.

Se observa, como es lo esperado, que el refuerzo granular de 12.0 centímetros requiere de forma

sistemática un mayor espesor de sobrecapa asfáltica que el refuerzo granular de 15.0 centímetros

para las mismas condiciones de tránsito y deflexión característica actual del pavimento.

4 EJEMPLO DE APLICACIÓN.

Considere un tramo homogéneo de carretera, cuyo estudio de tránsito da un estimado de dos

millones (2’000,000) de ejes sencillos equivalentes de 8.2 toneladas (80 kN), en los siguientes 10

años, sobre el carril de diseño.

Page 12: Ábacos para el diseño de refuerzos de pavimentos mediante capas granulares y sobrecapas asfálticas

La estructura de pavimento fue evaluada mediante el ensayo de viga Benkelman (I.N.V. E–795,

2007) obteniéndose los siguientes resultados, debidamente normalizados a 20°C.

Deflexión promedio = 0.93 milímetros.

Desviación estándar de las deflexiones = 0.35 milímetros.

La deflexión característica (dC) es:

( )

Empleando la Figura 2 b) se obtiene un espesor de sobrecapa de concreto asfáltico de 10.5

centímetros. Se reitera que este método no da ninguna indicación sobre cómo preparar la

superficie existente para recibir la nueva sobrecapa asfáltica.

Empleando la Figura 3 se obtienen espesores de sobrecapa de concreto asfáltico de:

a. 16.5 centímetros para un refuerzo granular de 12.0 centímetros.

b. 16.0 centímetros para un refuerzo granular de 15.0 centímetros.

Los espesores prescritos por el ábaco propuesto son mayores que el obtenido por el método

tradicional de las deflexiones. Esto, como se ha indicado, se debe a que el criterio de fatiga

empleado es más exigente que el de deflexión admisible.

Este resultado debería ser atractivo para quienes propenden por una aplicación cada vez más

rigurosa de los postulados empírico – mecanicistas en la práctica rutinaria del diseño de

pavimentos.

5 RECOMENDACIONES PARA LA IMPLEMENTACIÓN DEL REFUERZO

GRANULAR.

A lo largo de los años, en Colombia se ha discutido sobre la aplicabilidad del refuerzo granular

como alternativa de rehabilitación de pavimentos en servicio.

La experiencia del autor principal en proyectos en la región centro – occidental de Colombia le

permiten postular, dentro de las limitaciones propias de nuestra instrumentación de campo, que la

solución es válida y duradera (Vásquez et al., 2002) aunque es necesario reconocer que tiene

aspectos positivos y negativos.

Como su nombre lo indica, el “refuerzo granular” es un refuerzo, es decir, implica la existencia

de alguna capacidad estructural en el pavimento por intervenir. Si la estructura existente presenta

grandes deformaciones plásticas por inestabilidad de las capas asfálticas o falla general de la

fundación por una estructura insuficiente que no protegió a la subrasante de esfuerzos excesivos,

es improbable que la solución estructural derivada del ábaco propuesto pueda resolver este

problema adecuadamente. En tal escenario, será necesario emprender una reconstrucción integral.

Page 13: Ábacos para el diseño de refuerzos de pavimentos mediante capas granulares y sobrecapas asfálticas

El concepto de refuerzo granular también requiere, aún en un estado muy deteriorado, la

existencia de una capa asfáltica marginal sobre la estructura original. Si la estructura ha perdido

la rodadura asfáltica, es evidente que el paquete granular remanente ha estado sometido a

procesos de humedecimiento de acuerdo con el clima predominante y se requiere una

intervención de reconstrucción basada en el diseño de un pavimento nuevo.

Cabe anotar, pues es una inquietud que se ha atendido en varias ocasiones, que no se requiere

ningún riego asfáltico entre la capa asfáltica existente y el refuerzo granular, pero si es

imprescindible la imprimación del refuerzo granular antes de construir la sobrecapa asfáltica.

Aunque se mencionó con claridad en varios apartes del artículo, es necesario recalcar que el

material del refuerzo granular debe tener características de base, conforme con los Artículos 300

y 330 de 2007 del Instituto Nacional de Vías de Colombia.

Debe tenerse en cuenta que el refuerzo granular no resuelve problemas de rugosidad asociados

con la geometría, la construcción y el deterioro posterior de la estructura original, salvo que se

hagan intervenciones profundas, las cuales deberían ser objeto de un diseño diferente.

Las carreteras no están compuestas únicamente por la estructura de pavimento; existe un

importante patrimonio vial representado en las obras de drenaje superficial y subsuperficial. La

construcción de un refuerzo granular demandará la reconstrucción de las cunetas revestidas, si

existen, y el realce de los cabezotes y descoles de las alcantarillas transversales en operación.

Posiblemente, también será necesario realzar algunos muros de pata y las defensas metálicas que

se encuentren instaladas en la vía.

El refuerzo granular es improcedente donde se tengan restricciones de gálibo como en las

intersecciones a nivel o en entornos urbanizados donde la presencia de andenes y construcciones

laterales impiden el desarrollo hacia arriba de la estructura de pavimento. Siendo objetivos, esta

restricción se aplica a cualquier técnica de rehabilitación que implique disponer de espesores

adicionales de nuevos materiales.

El uso extendido de las herramientas computacionales de diseño geométrico ha generado la

tendencia a ajustar en oficina las condiciones geométricas reales de la vía. En el caso del refuerzo

granular, la consecuencia de dicha práctica es el empleo de grandes cantidades de material para

cumplir con los niveles teóricos. La aproximación correcta a este problema se logra mediante el

levantamiento detallado de la vía existente y, si sus condiciones geométricas son precarias, el

diseño de variantes cuyos pavimentos deben enfocarse con una metodología diferente. No

obstante, será conveniente al hacer el análisis del precio unitario del refuerzo granular, considerar

un volumen mayor (del orden del 20%) por metro cúbico de material construido.

6 REFERENCIAS.

Asphalt Institute (2002), Asphalt Overlays for Highway and Street Rehabilitation Manual Series

No 17(Third edition), Lexington, Kentucky, USA: Asphalt Institute.

Page 14: Ábacos para el diseño de refuerzos de pavimentos mediante capas granulares y sobrecapas asfálticas

Finn, F., Monismith, C., Witczak, M. (1982), Research and Development of the Asphalt

Institute’s Thickness Design Manual (MS-1) Ninth Edition, Lexington, Kentucky, USA: Asphalt

Institute.

Huang, Yang H (2004), Pavement Analysis and Design (Second Edition), Upper Saddle River,

New Jersey, USA: Pearson – Prentice Hall.

Instituto Nacional de Vías de Colombia (2007) Especificaciones Generales de Construcción,

Bogotá, Colombia: INVIAS.

________ (2007) Norma de ensayo I.N.V. E–795 Medida de la Deflexión y Determinación del

Radio de Curvatura de un Pavimento Flexible Empleando la Viga Benkelman, Bogotá,

Colombia: INVIAS.

Joint Departments of the Army and Air Force (1994), TM 5-822-13/AFJMAN 32-1018 Pavement

Design for Roads, Streets and Open Storage Areas, Elastic Layered Method, USA.

Kingham, R. Ian (1969), Development of the Asphalt Institute’s Deflection Method for

Designing Asphalt Concrete Overlays for Asphalt Pavements, College Park, Maryland, USA:

Asphalt Institute.

Vásquez Torres, Luis Carlos & Vásquez Varela, Luis Ricardo (2002), Refuerzos Granulares:

Modelación y Seguimiento del Comportamiento de un Tramo de la vía Estación Uribe – Tres

Puertas del Departamento de Caldas, Terceras Jornadas del Asfalto, Popayán, Colombia.

Software empleado:

Universidad del Cauca – Instituto de Posgrado en Vías (1994), DEPAV Diseño Estructural de

Pavimentos, Popayán, Colombia.

The Scilab Consortium (DIGITEO), Copyright (c) 1989–2010 (INRIA), Copyright (c) 1989–

2007, (ENPC), Scilab-5.3.0 CeCILL License