19
Automatización Industrial UPCO ICAI Departamento de Electrónica y Automática 1 Prof. José A. Rodríguez Mondéjar Algebra de Boole/Automatismos cableados Álgebra de Boole Automatismos cableados Automatización Industrial UPCO ICAI Departamento de Electrónica y Automática 2 Prof. José A. Rodríguez Mondéjar Algebra de Boole/Automatismos cableados Introducción Se ha modelado la realidad como 0’s y 1’s La salida es una función de las entradas ¿Cómo se forma la función? Álgebra de Boole ¿Cómo se simplifica? Álgebra de Boole ¿Cómo se implanta? Depende de la tecnología elegida

Algebra de Boole

Embed Size (px)

DESCRIPTION

control

Citation preview

Page 1: Algebra de Boole

1

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 1Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Álgebra de BooleAutomatismos cableados

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 2Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Introducción• Se ha modelado la realidad como 0’s y 1’s• La salida es una función de las entradas• ¿Cómo se forma la función?

– Álgebra de Boole• ¿Cómo se simplifica?

– Álgebra de Boole• ¿Cómo se implanta?

– Depende de la tecnología elegida

Page 2: Algebra de Boole

2

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 3Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Algebra de Boole• Un álgebra está definida por:

– Un conjunto de elementos Κ– Un conjunto de operaciones Φ que actúan sobre los miembros de

Κ y que cumplen unas ciertas propiedades• El Algebra de Boole (caso más simple) se define por:

– Un conjunto B con sólo dos elementos {0,1}– Un conjunto de operaciones (lógicas) {+,·,’} definidas sobre B

• 2 operaciones binarias (f(x,y)):– (+) función suma, función O, función OR– (·) función multiplicación, función Y, función AND

• 1 operación monaria (f(x)):– (‘ ó ¯) función negación, función NO, función NOT

– tales que para x,y,z ∈ B se cumplen las siguientes propiedades:• Postulados de Huntington

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 4Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Postulados (axiomas) de Huntington• Conjunto cerrado:

– x·y ∈ B, x+y ∈ B, x’ ∈ B• Ley conmutativa:

– x+y=y+x– x·y=y·x

• Ley asociativa:– (x+y)+z=x+(y+z)– (x·y)·z=x·(y·z)

• Ley distributiva:– (x+y)·z=x·z+y·z– x+y·z=(x+y)·(x+z)

• Identidad:– x+0=x– x·1=x

• Complemento– x+x’=1 – x·x’=0

• En la siguiente transparencia se definen las operaciones básicas. Todas ellas cumplen los postulados de Huntington. Puede haber otra definición que también los cumpla.

Page 3: Algebra de Boole

3

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 5Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Definición operaciones básicas/tablas de verdad• Función suma lógica, O o OR

– Para activar la salida, a o b tienen que estar activas

• Función producto lógico, Y o AND

– Para activar la salida, a y b tienen que estar activas

• Función complemento, NO o NOT

a b a+b0 0 0

10 11 0 1

11 1

a b a·b0 0 0

10 01 0 0

11 1

a a’0 1

01

a

bc = a·b

a

bc = a+b

b = a’a

¡¡ 1 + 1 = 1 !!

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 6Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Variables, expresiones lógicas, tablas de verdad• Variable lógica (booleana)

– Variable perteneciente a B – Por tanto, sólo puede tener dos

valores: 0 y 1• Expresión (función) lógica

(booleana)– Combinación de variables lógicas

pertenecientes a B y de operaciones lógicas (+ paréntesis):

• f = xy+xy’z+x’yz (· implícito)• Tabla de verdad equivalente a la

anterior.• Formas estándar de representación:

– Producto de sumas– Suma de productos

• Tabla de verdad (con todas las posibilidades) y expresión lógica son equivalentes entre sí.

1

1

0

0

1

1

0

0

0

0

0

0

1

1

1

1

1

0

1

0

1

0

1

0

1

1

1

0

1

0

0

0

x zy f

A una misma tabla de la verdadle corresponden varias expresiones

lógicas

Page 4: Algebra de Boole

4

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 7Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Equivalencia entre expresiones• Dos expresiones son equivalentes si sus tablas de verdad

son iguales– f1 = a+bc– f2 = (a+b)(a+c)

• O si se puede llegar de la una a la otra (ambas direcciones)– f2=(a+b)(a+c)=aa+ac+ba+bc=a+ac+ba+bc=a(1+c+b)+bc=a+bc

1

1

0

0

1

1

0

0

0

0

0

0

1

1

1

1

1

0

1

0

1

0

1

0

1

1

1

1

1

0

0

0

1

1

1

1

1

0

0

0

a cb a+b·c (a+b)(a+c)

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 8Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Convertir tabla de verdad en expresión lógica I• Forma canónica con minterm:• 1. Tómese cada combinación

que dé 1 a la salida y fórmese un producto de variables, de forma que si una variable vale 0 en aquella fila se coloca su complemento y si vale 1 se coloca la variable sin complementar.

• 2. Escríbase la función que resulta de sumar todos los productos.

• f=x’yz’+x’yz+xy’z+xyz’+xyz• Hay muchas expresiones

equivalentes f=x’y+xy’z+xy

1

1

0

0

1

1

0

0

0

0

0

0

1

1

1

1

1

0

1

0

1

0

1

0

1

1

1

0

1

1

0

0

x zy f

f=x’yz’+x’yz+xy’z+xyz’+xyz

Page 5: Algebra de Boole

5

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 9Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Convertir tabla de verdad en expresión lógica II• 1. Tómese cada combinación

que dé 0 a la salida y fórmese un producto de variables, de forma que si una variable vale 0 en aquella fila se coloca su complemento y si vale 1 se coloca la variable sin complementar.

• 2. Escríbase la función que resulta de sumar todos los productos, negando el valor de la función.

• f’=x’y’z’+x’y’z+xy’z’• Simplificada: f=(x’y’+xy’z’)’

1

1

0

0

1

1

0

0

0

0

0

0

1

1

1

1

1

0

1

0

1

0

1

0

1

1

1

0

1

1

0

0

x zy f

f=(x’y’z’+x’y’z+xy’z’)’

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 10Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Más puertas• AND de tres o más entradas

• OR de tres o más entradas

• NOR

• NAND

• OR exclusiva - XOR (diferentes)

• XNOR (coincidentes)

f=abca

cb

abcd

f=a+b+c+d

a

bc = (a+b)’

a

bc = (a·b)’

c=a’+b’

a

bc = a ⊕ b

c = a’b + ab’

a

bc = (a ⊕ b)’c = ab + a’b’

Page 6: Algebra de Boole

6

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 11Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Convertir expresión a puertas lógicasf=x’yz’+x’yz+xy’z+xyz’+xyz

x y z

f

f=x’y+xy’z+xyx

y

z

f

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 12Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Variables y funciones lógicas en el mundo real• Interruptor modelado como

una variable lógica (a) – Interruptor cerrado -> a = 1– Interruptor abierto -> a = 0– a es la variable asociada al

interruptor

• Bombilla modelada como una variable lógica (b)

– Bombilla encendida -> b = 1– Bombilla apagada -> b = 0

a

b

• Función O con interruptores

• Función Y con interruptores

• Comprobar las tablas de la verdad

Page 7: Algebra de Boole

7

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 13Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Función complemento• Se puede realizar la función

complemento de forma mecánica: se dispone de la variable complementada y sin complementar mecánicamente( contacto abierto, contacto cerrado).

• En muchos casos resulta difícil con interruptores y sin provocar cortocircuitos realizar la función complemento: manejar f1 y f1’ en el mismo circuito, donde f1’ se ha construido a partir de f1. En estos casos se necesitan relés (caso de circuito eléctrico).

ab

f1=ab’

b

f2=b

Físicamente es el mismo pulsador: 2 contactos (NO y NC)

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 14Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Lógica positiva/Lógica negativa• Si una variable lógica está a 1 significa que la acción o

estado asociado a dicha variable se está cumpliendo. Si es 0 indica que no se cumple. – En electrónica 1 significa tensión positiva ( típico 5V) y 0 significa

tensión cero o tensión negativa. – Interruptor abierto igual a 0.– Interruptor cerrado igual a 1.

• Lo anterior es una convención. Se puede cambiar 0 por 1.– Lógica negativa: 1 - 0 voltios, 0 - 5 voltios.– 1 - Interruptor abierto 0 - Interruptor cerrado. Típico para detectar

fallos de alimentación.

Unidad decontrol Bombilla alarma

AlimentaciónPlanta

Page 8: Algebra de Boole

8

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 15Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Simplificación• Problema: Juan quiere

instalar 2 interruptores en su habitación (a y b) para encender una bombilla (f) de tal forma que sólo se encienda cuando:

– a y b están simultáneamente cerrados.

– a está cerrado• Juan que es un lanzado hace

la instalación• Juan está muy contento

porque la instalación funciona perfectamente hasta que llega su amigo Antonio y le pregunta para qué sirve el interruptor b

a

b

a a

a b f0 0 0

10 01 0 1

11 1f = ab + a = a(b+1) = a·1 = a

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 16Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Propiedades útiles del Algebra de Boole• Idempotencia

– a+a=a– a·a=a

• Maximalidad del 1– a+1=1

• Minimalidad del 0– a+0=a

• Involución– a’’=a

• Leyes de Morgan– (a+b)’=a’b’– (ab)’=a’+b’– (a+b+c+...)’=a’b’c’...– (abc...)’=a’+b’+c’+...

• Absorción– a+ab=a– a(a+b)=a

• Todas estas propiedades se comprueban mediante la aplicación de las propiedades del Algebra de Boole(postulados de Hungtinton) o recurriendo a las tablas de la verdad (en todos los casos posibles se cumple la igualdad).

• Permiten simplificar fácilmente.

Page 9: Algebra de Boole

9

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 17Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Simplificando• f=x’yz’+x’yz+xy’z+xyz’+xyz

– Asociativa y distributiva: f=x’y(z’+z)+xy’z+xy(z’+z)– Complemento: f=x’y+xy’z+xy– Complemento: f=y(x’+x)+xy’z– f=y+xy’z

• f=(x’y’z’+x’y’z+xy’z’)’– Asociativa y distributiva: f=(x’y’(z’+z)+xy’z’)’– Complemento: f=(x’y’+xy’z’)’– Leyes de Morgan: f=(x’y’)’(xy’z’)’– Leyes de Morgan: f=(x+y)(x’+y+z)

– f=xx’+xy+xz+yx’+yy+yz– f=xz+y+xy+yx’+yz– f=xz+y(1+x+x’+z)– f=xz+y Es equivalente a la de arriba (ver tabla de la verdad)

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 18Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Implantaciones alternativas de f

Suma de productos canónica

Suma de productos minimizada

Producto de sumas canónica

Producto de sumas minimizado

A

B

F 2

F 3

F 4

F 1 C

F = A' B C + A B' C' + A B' C + A B C' + A B C

Page 10: Algebra de Boole

10

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 19Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Simplificación mediante el método de Karnaugh• Hay muchos métodos para simplificar (aplicando

directamente los postulados del Algebra)• Programas de simplificación automática• El método de Karnaugh es un método gráfico muy útil para

funciones de 2 a 4 variables lógicas.– Se basa en buscar términos adyacentes en la tabla de la verdad.– Los términos adyacentes son aquellos que tienen las mismas

variables con el mismo estado de complemento, excepto una.• xyz’ y xyz son adyacentes

– Los términos adyacentes se pueden simplificar fácilmente• xyz’+xyz = xy(z’+z) = xy

– Para buscar fácilmente los términos adyacentes se dispone la tabla de la verdad de tal forma que los valores de las variables de entrada vecinos resulten adyacentes. Esta tabla recibe el nombre de tabla o mapa de Karnaugh.

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 20Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Ejemplos de simplificación por Karnaugh I

ba

0 1

0 1

0 1

0

1

f = b

1 1

1 1

0 0

0 1

00 01 11 10

0

1

yz

x

f = y + xz

• Construir el mapa de Karnaugh. • Colocar los ceros y unos de la tabla

de verdad sobre el mapa de Karnaugh.

• Formar grupos (paralelogramos) con las casillas que tienen 1, de tal forma que contengan el máximo número de elementos y éste sea potencia de 2.

• Casillas de un grupo pueden formar parte de otro.

• Cada grupo representa un producto. Éste está formado por las variables que no cambian de valor en dicho grupo. Si está a 1 la variable se escribe tal cual, y si está a 0, se complementa.

adyacente

Page 11: Algebra de Boole

11

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 21Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Ejemplos de simplificación por Karnaugh IIAB

00 01 11 10

1 0 0 1

0 1 0 0

1 1 1 1

1 1 1 1

00

01

11

10

CD

f = c + d’b’ + a’bd

AB 00 01 11 10

0 0 1 0

0 0 1 0

1 1 0 1

0 0 1 0

00

01

11

10

CD

f =abc’+abd’+cda’+cdb’

f = a’b’cd + a’bcd+ab’cd+

+abc’d’+abc’d+abcd’

Adyacentes

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 22Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Ejemplos de simplificación por Karnaugh III

AB 00 01 11 10

1 0 1 1

0 1 1 1

X X X X

1 1 X X

00

01

11

10

CD

f = a + c + b’d’ + bd

• Don’t care: combinación de entradas que nunca se dan.

• Pueden ser utilizadas para simplificar las funciones lógicas: se toma su valor como 1 o como 0, en función de lo que más interese.

Page 12: Algebra de Boole

12

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 23Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Funciones lógicas y tiempo• Si las entradas de la función lógica varían en el tiempo, la

función lógica también varía.• Al variar la entrada, la salida tardará un cierto tiempo en

cambiar, dependiendo de la tecnología. • Retardo de la función lógica: tiempo que media entre el

cambio en la entrada de la función y el cambio en el valor de dicha función. Dependerá del tipo de cambio.

a

b

f=a+b

t

retardo1 retardo2

a

bf = a+b

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 24Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Relés y contactos• Relé: todo dispositivo que utilizando,

ya sea un impulso eléctrico que le es enviado a distancia, o la acción de otros fenómenos ajenos (como presión, temperatura, etc) actúa de modo automático como interruptor, accionando o desconectando un circuito.

• De modo manual o automático retorna a su posición inicial, una vez terminada la acción del impulso delaccionador; a esta operación se le llama rearme o desbloqueo.

• Clasificación:– Relés:gobiernan circuitos de baja

potencia.– Contactores: circuitos de alta

potencia.

I

M

R S T

M = I

Variable de entradaI

M Variable de salida

Esquema de conexión

Esquema

de contactos (PLC)

Esquema eléctrico /

Esquema de relés

Ecuaciónlógica

I M

Contacto Bobina

Page 13: Algebra de Boole

13

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 25Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Relé con más detalle

M = I

A = I

P = I’

I M

A

P

I

M

R S T

24VDC

24VDCPA

Esquema General de conexiones

I

KM

I

AP

Esquema de Mando

M

R S TEsquema de

Potencia

Esquema Eléctrico (Esquema de relés)

KM

Esquema deContactos (PLC)

Ecuación Lógica

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 26Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Ejemplo de circuito de mando y de potencia real

Relé de máxima

corriente

Contacto temporizado.

Evita que el pico de intensidad en el arranque abra

el circuito

Relé de protección

térmica

Page 14: Algebra de Boole

14

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 27Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Tipos de relés y estructura• Clasificación según

tecnología:– Electromagnéticos– Neumáticos– Térmicos– Electrónicos

• Clasificación según misión:– Instantáneos– Temporizados

• En automatismos industriales tienen dos funciones:

– Separación galvánica.– Elemento de memoria (se

contará más adelante)

• Partes de un relé (contactor)– Contactos principales

• Cierre o apertura del circuito principal.

– Contactos auxiliares• Gobierno del contactor y su

señalización.– Circuito electromagnético– Sistema de soplado

• Apaga el arco al abrir el circuito. Aunque se separen los contactos, la corriente sigue pasando a través del aire ionizado, cuando la carga es inductiva. Esto aumenta la resistencia y por tanto el calor originado, que puede dañar los contactos.

– Soporte o estructura del aparato.

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 28Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Circuito electromagnético de un relé• Puede trabajar en continua o

en alterna.• Estructura:

– Núcleo• Chapa magnética aislada

– Armadura• Chapa magnética aislada

– Bobina• En alterna se coloca una

espira de sombra para evitar la vibración por los pasos por 0 de la corriente alterna.

• Los contactos pueden estar normalmente abiertos o normalmente cerrados. Permite realizar la operación complemento fácilmente.

NUCLEO

BOBINA

ARMADURA

Contactosmoviles

Contactosfijos

Page 15: Algebra de Boole

15

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 29Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Usos del relé• Aislamiento galvánico

– Circuito de bobina y circuito de los contactos son independientes• Suficiente rigidez eléctrica

• Amplificador– Señal en potencia: Contactor

• Ejemplo: Con 24V manejar 380 voltios trifásicos– Repetidor lógico

• Utilizar la misma variable lógica en diferentes circuitos eléctricos.

• Memoria de 1 bit– Muy utilizado en el pasado– Relegado actualmente a esquemas sencillos de marcha/paro.

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 30Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Ejemplo combinacional con contactos y bobinasf = a + bc

a

b c

f

Esquema de contactos

a b

c

K

Esquema eléctrico

K

f

Page 16: Algebra de Boole

16

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 31Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Pulsadores, interruptores y contactos.• Pulsadores sólo se mantiene

la acción mientras se pulsa.• Interruptores: la acción se

mantiene después de conmutar.

• Contactos: mecánicamente acoplado al pulsador/ interruptor se pueden colocar contactos que cambian al cambiar el estado del pulsador/interruptor.

– Normalmente abierto.– Normalmente cerrado

Muelle

Pulsador

Contacto normalmenteabierto NO

Contacto normalmentecerrado NC

Interruptor

IEC 1082

IEC 1082

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 32Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Ejemplo combinacional con contactos y bobinas IIf = ab + a’c+b’d

Esquema de contactos Esquema de eléctrico Esquema de Conexiones

a

a c

fb

b d

a b

d

f

b c

a

f

fa d

c b

Page 17: Algebra de Boole

17

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 33Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Variables negadas con interruptores• Una variable asociada a un interruptor no puede ser 0 y 1

simultáneamente, si no es un doble interruptor con un contacto normalmente abierto y otro normalmente cerrado

f=yx+y’z

a

a’

y y

x z

f

Esquema eléctrico

y

y

x

z

f

Esquema de contactos

a

a’

a

a

a’

Conmutador

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 34Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Funciones lógicas y la práctica• Una función lógica de más de 4 variables es común en la práctica

– Ir por la tabla de la verdad y obtener la función lógica es inviable.• Imposible de aplicar Karnaugh.• Hay programas para simplificar (orientados al diseño digital).

• Solución práctica– Obtener directamente desde la especificación del problema una función

lógica representativa que, por supuesto, no será la óptima– Refleja directamente el funcionamiento del sistema

• A veces, aplicando Karnaugh aparecen expresiones que son difíciles de interpretar desde el punto vista del sistema a controlar

• Problema de escribir la función lógica directamente– ¿Habré contemplado todos los casos?

• Ejemplo: Poner en marcha un motor cuando no se debe– Muy grave si hay un obrero manipulándolo

– Con la tabla no había problemas porque se contemplaban todos losposibles valores de las entradas

• Solución:– Intentar prevenir que la función tome valor 1 en casos indeseados.– ¿Cómo? Analizando y separando las condiciones de parada

Page 18: Algebra de Boole

18

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 35Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Escribir funciones lógicas de control en la práctica • Primero: Analizar las condiciones bajo las cuales no debe

funcionar el sistema (variable a controlar)– Si ninguna de estas condiciones se cumple entonces es posible arrancar el

sistema– Ejemplo:

• No arrancar el motor si está activado su relé térmico de temperatura• No poner en marcha una bomba si no hay agua en su depósito

• Segundo: Analizar las condiciones que hacen que el sistema funcione (1 lógico) cuando no hay ninguna condición de parada activa.

– Ejemplo:• Interruptor de arranque• Pieza en la posición correcta

• Formato de la función lógica final:f = CondiciónParada1’*CondiciónParada2’*...*(Condición Arranque1 + + CondiciónArranque2 + ...)– Si no se cumple ninguna de las condiciones de parada y se cumple alguna de las

condiciones de arranque se pone en marcha el sistema

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 36Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Ejemplo• Una cinta trasportadora que

se pone en marcha al cerrar el interruptor de arranque o cuando recibe una orden de arranque remota

– IA: Interruptor de arranque– RA: señal remota de arranque– M: señal arranque motor

• La cinta no debe funcionar si el motor tiene sobrecalentamiento

– TM: contacto relé térmico motor. Se abre el contacto cuando hay sobrecalentamiento

M

M = TM(IA+RA)

Page 19: Algebra de Boole

19

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 37Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Resumen automatismos combinacionales• Primero: Identificar las entradas de la planta:

– Variables a controlar: bomba, motor, piloto, etc.– Salidas del control

• Segundo: Identificar las salidas de la planta:– Variables a partir de las cuales se construyen las funciones lógicas

que rigen las salidas– Entradas del control

• Tercero: Construir las funciones lógicas que rigen las salidas del control a partir de las entradas del control– Primero: las condiciones que hacen que la salida no se active.

(PRIMERO ASEGURAR LA PARADA)– Segundo: las condiciones que hacen que la salida se active.– Simplificarlas si es posible y no se pierde la legibilidad del control.

• Cuarto: Implementar– Lógica de relés, sistema digital, PLC

Automatización Industrial

UPCO ICAI Departamento de Electrónica y Automática 38Prof. José A. Rodríguez Mondéjar

Algebra de Boole/Automatismos cableados

Más información• Telesquemario de Schneiderelectric: página web de la

asignatura: capítulos 6 y 7.• Automatismos y Cuadros eléctricos. Roldán Viloria.

Paraninfo 2001.– Módulo 1: Aparellaje, esquemas de automatismos, esquemas de

alimentación.– Módulo 3: Ejemplo completo.

• Página web muy completa sobre automatismos:– http://www.cnice.mecd.es/recursos/fp/cacel/CACEL1/menu_1.htm