70
1 CÁLCULO DE TUBERÍAS UNIVERSIDAD DE LEÓN Dpto. de Ingeniería Eléctrica y Electrónica

Calculo de tuberias

Embed Size (px)

Citation preview

Page 1: Calculo de tuberias

1

CÁLCULO DE TUBERÍAS

UNIVERSIDAD DE LEÓNDpto. de Ingeniería Eléctrica y Electrónica

Page 2: Calculo de tuberias

2

CONCEPTOS BÁSICOS (1)FENÓMENO TRANSITORIO O VARIABLE: Las magnitudes que intervienen varían de una manera aleatoria con el tiempo.FENOMENO PERMANENTE: Las magnitudes que intervienen toman valores alrededor de uno medio y la suma de las diferencias con éste es ceroFENOMENO ESTACIONARIO: Las magnitudes que intervienen conservan su valor a lo largo del tiempo; Concretamente, la velocidad en cada punto es independiente del tiempo y las trayectorias no se cruzan entre sí.

FLUIDOS PERFECTOS: Se consideran fluidos perfectos o ideales cuando se hace abstracción de la viscosidad y, por tanto , se prescinde de los esfuerzos cortantes o tangenciales y se tiene en cuenta exclusivamente los esfuerzos normales o de presión.LÍNEA DE CORRIENTE: Es aquélla que admite como tangente en cada uno de sus puntos la dirección del vector velocidad. TUBO DE CORRIENTE: Es el formado por las líneas de corriente que se apoyan en una curva cerrada en un campo de velocidades.TRAYECTORIA: Línea lugar geométrico de los puntos ocupados sucesivamente por una partícula.

Page 3: Calculo de tuberias

3

CONCEPTOS BÁSICOS (2)PRINCIPIO DE CONTINUIDAD:S1 · ΔL1· ρ1 = Sn · ΔLn· ρn = cteS1 · V1 = S2 · V2 = cte = QA lo largo de un tubo de corriente, es constante el producto de la sección por la velocidad (velocidad media); esta constante se denomina caudal o gasto (Q).1 m3/s = 1.000 l/s = 1.000 dm3/s = 60.000 l/min = 3,6 · 103 m3/h.TEOREMA DE BERNOULLI ( para fluidos perfectos):p/γ + z + v2/2g = cte = H peso especifico = γ = kg/m3= g · ρEn un hilo de corriente de un líquido perfecto en régimen estacionario, es constante la suma de las energías (o alturas) de presión, de posición y de velocidad en cualquier punto del hilo.

UNIDADES DE PRESIÓN:1 kg/cm2 = 10 m.c.a. = 0,9806 bar = 98,06 kPaPresión absoluta = Presión relativa + Presión atmosféricaLa presión relativa se mide con manómetros tipo Bourdon

Page 4: Calculo de tuberias

4

TEOREMA DE BERNOULLI - FLUIDOS REALES

cteHg

VzpHg

Vzpg

Vzpn

nn

n =+++=+++=++ 1

2

12

22

22

21

11

222 γγγp/γ = Altura piezométrica o energía piezométrica por unidad de peso, representaría la

altura de una columna de líquido, debida a la presión p, en el campo de la gravedad. (mm.c.a. ó Pa).

z = Altura geométrica o energía específica potencial (por unidad de peso). Es la cota de la partícula considerada respecto a un plano de referencia. (mm.c.a. ó Pa).

V2/2g = Altura cinética o energía cinética específica (por unidad de peso). Es la altura a la que subiría una partícula lanzada verticalmente hacia arriba en el campo de la gravedad. (mm.c.a. ó Pa).

Page 5: Calculo de tuberias

5

TEOREMA DE BERNOULLI - FLUIDOS REALES

cteHg

VzpHg

Vzpg

Vzpn

nn

n =+++=+++=++ 1

2

12

22

22

21

11

222 γγγPara que un fluido se mueva por dentro de una tubería hace falta que exista una presión que le obligue a ello y que compense los rozamientos que se producen cuando el fluido se mueve y al mismo tiempo mantenga la velocidad de circulación

Page 6: Calculo de tuberias

6

CIRCULACIÓN DENTRO DE TUBERÍASFLUIDOS REALES: Se consideran fluidos reales cuando se tiene en cuenta la existencia de la viscosidad, por lo que hay que contar con los esfuerzos cortantes o tangenciales y con los esfuerzos normales o de presión.

CIRCULACIÓN DENTRO DE TUBERÍAS:El tubo de corriente está limitado por un contorno material sólido. Las características de las paredes o superficies interiores de las tuberías pueden influir decisivamente en el régimen con que circulan los fluidos (rugosidad).

TIPOS DE CIRCULACIÓN DEL FLUIDO:Los fluidos pueden circular dentro de las tuberías de una forma ordenada (régimen laminar) o desordenada (régimen turbulento)

Page 7: Calculo de tuberias

7

RÉGIMEN LAMINARRÉGIMEN LAMINAR: El movimiento de un fluido en régimen laminar o viscoso, que es independiente de la rugosidad de la tubería, se realiza, de manera que las partículas se desplazan únicamente en el sentido de la corriente, es decir, los distintos filetes o capas se deslizan uno al lado del otro sin mezclarse. No existe ninguna componente radial de la velocidad. La distribución de velocidades en una sección circular es parabólica y la velocidad media en la sección es igual a la mitad de la velocidad máxima.

En régimen laminar la velocidad media será:

j: caída de presión por unidad de longitudη: viscosidad dinámicaη·32

· 3DjV =

Page 8: Calculo de tuberias

8

RÉGIMEN TURBULENTOEn el movimiento de un fluido en régimen turbulento las partículas no siguen las líneas regulares de la corriente, sino trayectorias transversales desordenadas. Es decir se produce una turbulencia, con velocidades medias diferentes en cada capa y componentes de agitación perpendiculares. Como además de la energía de rozamiento interno perdida por los desplazamientos longitudinales, existen pérdidas por los frotamientos o fricciones de los desplazamientos transversales, la pérdida de carga es mayor que para el régimen laminar. La curva que expresa la distribución de la velocidad en función de la distancia al eje, es mucho más aplastada que una parábola, y la velocidad media de la corriente es, aproximadamente el 0,8 de la velocidad en el eje. En las inmediaciones de la pared de la tubería , una zona laminar asegura el paso a la velocidad nula: es la capa límite, cuyo espesor decrece cuando crece el número de Reynolds.

Longitud mínima a la que en las canalizacionesse llega a establecer el régimen turbulento:

eRDL 510=

Page 9: Calculo de tuberias

9

RÉGIMEN CRÍTICO Ó DE TRANSICIÓNEl que una corriente discurra en forma laminar o en forma turbulenta depende de la velocidad de circulación del fluido, del diámetro del tubo y de la densidad y viscosidad del fluido. Estas cuatro variables se engloban dentro del llamado “número de Reynolds= Re (adimensional)El paso de régimen laminar al turbulento se estudia mediante el número de Reynolds.

η = viscosidad dinámica (kg/ m·s) 1 (kg/ m·s) = 1 P (poise)

ν = viscosidad cinemática (m2/s)1 (m2/s) = 104 St (Stokes)

ρ = densidad (kg/m3)

Régimen laminar se produce para Re < 2. 320Para Re > 3.000 En tubos rectos es siempre Régimen turbulentoPara 2.000 < Re < 6.000 se produce el paso a Régimen turbulento se llama Régimen crítico.

)·/()/()·()·/( 3

smkgmkgmDsmVRe η

ρ=

)/()()·/(

2 smmDsmVRe ν

=

ρην =

Page 10: Calculo de tuberias

10

VELOCIDAD CRÍTICA: Es la velocidad en la cual se efectúa el cambio de la corriente laminar a turbulenta

VELOCIDAD CRÍTICA

Page 11: Calculo de tuberias

11

VALORES DEL NÚMERO DE REYNOLDS PARA EL AGUA

Page 12: Calculo de tuberias

12

VISCOSIDAD DE ACEITES COMBUSTIBLES

Page 13: Calculo de tuberias

13

TABLA DE CORRECCIÓN PARA VALORES DE VISCOSIDAD

Page 14: Calculo de tuberias

14

CURVAS DE CONVERSIÓN DE LAS UNIDADES PRÁCTICAS DE VISCOSIDAD

Page 15: Calculo de tuberias

15

VALORES DE LA VISCOSIDAD CINEMÁTICA ν (10-6 m2/s), DE FLUIDOS USUALES A LA PRESIÓN ATMÓSFERICA Y DISTINTAS TEMPERATURAS

VISCOSIDAD CINEMÁTICA

Page 16: Calculo de tuberias

16

VISCOSIDAD CINEMÁTICA ν DEL AIRE, AGUA Y VAPOR SATURADO

Page 17: Calculo de tuberias

17

VISCOSIDAD CINEMÁTICA ν DEL AGUA A TEMPERATURAS ALTAS

VISCOSIDAD DINÁMICA Y CINEMÁTICA DEDISTINTOS MATERIALES A 20ºC

Page 18: Calculo de tuberias

18

VARIACIÓN DE LA VISCOSIDAD CON LA TEMPERATURA PARA ALGUNOS LÍQUIDOS

Page 19: Calculo de tuberias

19

CAPA LÍMITE LAMINAR DE PRANDTL ( δ )La experiencia demuestra que el fluido de pequeña viscosidad (agua o el aire) obedece, cuando no hay límites sólidos, a las leyes de los fluidos perfectos, pero que en las proximidades de una pared se constituye una capa límite, en la que la velocidad pasa del valor que exija la adherencia (nulo si se trata de paredes fijas) hasta el valor finito que corresponde al movimiento sin rozamiento, es decir, al régimen de un fluido perfecto.La noción de capa límite ( Prandtl 1909), permite separar el espacio ocupado por el fluido en movimiento en dos regiones: el fluido libre, que obedece a las ecuaciones del fluido perfecto y la capa límite en la que los fenómenos de viscosidad son preponderantes. No se trata de dos zonas de fluido totalmente distintas, pues no hay entre ellas una transición brusca, sino un paso continuo, aunque rápido. El fluido de la capa límite tiene una velocidad nula en la pared que aumenta muy rápidamente y tiende asintóticamente hacia la velocidad V del fluido libre.Espesor de la capa límite: El valor de la distanciaa la pared en el que el gradiente de velocidad essuficientemente pequeño como para que la velocidad no difiera prácticamente de la delfluido libre.

Page 20: Calculo de tuberias

20

CAPA LÍMITE LAMINAR Y TURBULENTA SOBRE UNA SUPERFICIE PLANA

ESTABLECIMIENTO DE LOS FLUJOS LAMINAR Y TURBULENTO EN UNA TUBERÍA

Page 21: Calculo de tuberias

21

RÉGIMEN TURBULENTO- CAPA LÍMITE ( δ )Experimentos llevados a cabo han demostrado que en el exterior de la vena líquida existe una capa, bastante delgada, en que el movimiento es laminar y que se conoce como capa límite. Su espesor viene dado por:

δ = espesor de la capa límite en mmf = coeficiente de rozamiento o fricción

En las inmediaciones de la pared de la tubería, una zona laminar asegura el paso a la velocidad nula: es la capa límite, cuyo espesor decrece cuando crece el número de ReynoldsDISTRIBUCIÓN DE VELOCIDADES DENTRO DE LA SECCIÓNEl reparto de la velocidades en las secciones de una corriente en régimen turbulento es más uniforme que el existente en un régimen laminar

régimen régimenturbulento laminarRe > 3.000 Re < 2.300

En régimen TURBULENTO la velocidad media será:

fRD

e ··5,32

VV )24,1......16,1(max = [ ] 7/1max /2(1 DyVV −=

Page 22: Calculo de tuberias

22

CONDICIONES DE PASO DEL RÉGIMEN LAMINAR AL DE TRANSICIÓN

Se estudian los valores críticos que definen el límite entre ambos regímenes. El régimen laminar únicamente suele darse en el movimiento de líquidos viscosos, como combustibles petrolíferos, aceites térmicos, líquidos oleodinámicos, etc. Ejemplo:Gasóleo C a 20 ºC , circulando a 0,3 m/s en una tubería de 0,01 m de diámetro.Según tabla pag 15→ ν = 8·10-6 (m2/s)Se trata de régimen laminar, ya que

Para tener un régimen laminar rozando con el de transición sería necesario considerar agua a 10 ºC, circulando a 0,3 m/s en una tubería de 0,01 m de diámetro (condiciones bastante anómalas).Según tabla pag 15→ ν = 1,31·10-6 (m2/s)

300.237510·8

01,0·3,0)/(

)()·/(62 <<=== −sm

mDsmVRe ν

300.2307.210·3,1

01,0·3,0)/(

)()·/(62 ≈=== −sm

mDsmVRe ν

Page 23: Calculo de tuberias

23

CONDICIONES DE PASO DEL RÉGIMEN DE TRANSICIÓN AL TURBULENTOEjemplo:

Agua Caliente Sanitaria a 30 ºC, circulando a 0,3 m/s en una tubería de 0,02 m de diámetro. Según tabla pag 15→ ν = 0,79·10-6 (m2/s)

Se trata de régimen turbulento , ya que:

La cifra obtenida confirma la aseveración anterior de que, en el movimiento del agua, deberá contarse en general con un régimen turbulento y , como caso excepcional, con un régimen de transición del laminar al turbulento.

VELOCIDAD CRÍTICA:

Es la velocidad en la cual se efectúa el cambio de la corriente laminar a turbulenta

000.6595.710·79,0

02,0·3,0)/(

)()·/(62 >=== −sm

mDsmVRe ν

Page 24: Calculo de tuberias

24

RÉGIMEN TURBULENTO COEFICIENTE DE ROZAMIENTO ( f )

Se ha demostrado experimentalmente que el coeficiente de rozamiento o fricción en el régimen turbulento varía con el número de Reynolds, con la rugosidad absoluta de Nikuradse (k) y con el diámetro, es decir, que:

f = ϕ (Re, k, D) k: rugosidad absoluta (mm)Valores indicativos de la rugosidad absoluta k para distintos materiales y condiciones

5,00Hormigón de muy mala calidad (con rebabas, coqueras), fábricas sin revestimiento

1,50Acero o fundición muy incrustados o corroídos, hormigón de 1ª calidad incrustado o de calidad media poco alterado

0,05Plásticos algo erosionados, plomo poco alterado 0,01Cobre, plásticos, plomo, usados

3,00Hormigón de calidad media alterado o de mala calidad poco alterado

1,00Acero o fundición sensiblemente incrustados o corroídos, hormigón de 1ª calidad sin incrustar

0,50Fibrocemento con depósitos, acero o fundición poco alterados o con numerosos accidentes en la conducción

0,25Fibrocemento poco alterado, acero sin soldadura

0,10Plásticos erosionados, plomo sensiblemente alterado o con muchos accidentes en conducción libre

0,001Cobre, plásticos nada erosionados k (mm)TIPO Y ESTADO DEL MATERIAL

Page 25: Calculo de tuberias

25

RÉGIMEN TURBULENTO COEFICIENTE DE ROZAMIENTO ( f )

Valores indicativos de la rugosidad k para distintos tubosCLASE DE TUBO k (mm)

Tubos calibrados (latón, etc.) 0,0015

Tubos PVC y Polietileno 0,005

Tubos de uralita (nuevo) 0,05-0,1

Tubos de hierro fundido 0,4-0,6

Tubos de hierro fundido, asfaltados 0,125

Conductos Rabitz, liso 1,5

Conductos de albañilería 3,0-5,0

Conductos de madera 0,2-1,0

Conductos de hormigón en bruto 1,0-3,0

Conductos de chapa, rebordeados 0,15

Tubos flexibles 0,6-0,8-2

Tubos comerciales de acero 0,045

Tubos de acero galvanizado 0,15

Tubos de acero, ligeramente oxidados 0,15-1,0

Tubos de acero, fuertemente oxidados 1,0-3,0

Page 26: Calculo de tuberias

26

VALORES DE “e” (k) RUGOSIDAD ABSOLUTA DE DIVERSAS CLASES DE TUBERÍAS

DATOS EXPERIMENTALES PARA TUBOS NUEVOS

Page 27: Calculo de tuberias

27

VALORES DE “e” (k) RUGOSIDAD ABSOLUTA PARA TUBOS DE HORMIGÓN

DATOS EXPERIMENTALES PARA TUBOS NUEVOS

Page 28: Calculo de tuberias

28

CONDICIONES QUE SEPARAN EL RÉGIMEN HIDRÁULICAMENTE LISO DEL RUGOSO

El coeficiente de rozamiento o fricción a usar depende de que el régimen sea liso, rugoso o incluso de transición.

Rugosidad absoluta de Nikuradse (k): Representa la rugosidad de una superficie en contacto con el fluido, revestida con granitos de arena de igual diámetro “k” (mm) y cuyos centros quedan uniformemente repartidos entre sí 2k . La rugosidad natural de las superficies interiores de los tubos comerciales en servicio pueden asimilarse a la rugosidad de Nikuradse con ayuda de medidas normalizadas con rugosímetros. La rugosidad de la circulación puede establecerse, desde el punto de vista hidráulico, empleando la expresión de la capa límite deducida por Von Kárman y Nikuradse. Para separar los régimenes hidráulicamente lisos de los rugosos, basta comparar los espesores, “δ”, de esta capa límite con los valores de la rugosidad absoluta “k”

δ ≥ 3 k → régimen hidráulico liso 3 k > δ >0,15 k → régimen hidráulico de paso 0,15 k ≥ δ → régimen hidráulico rugoso.

Page 29: Calculo de tuberias

29

CONDICIONES QUE SEPARAN EL RÉGIMEN HIDRÁULICAMENTE LISO DEL RUGOSO

Rugosidad hidráulica es función de la rugosidad absoluta, de la velocidad y del diámetro.

Para que la circulación de un fluido real sea en régimen liso sin pasar al régimen de transición o al rugoso se deberán tener los siguientes valores:

k = 0,001 mm ; en cualquier caso k = 0,01 mm ; V < 1,6 m/s (ó D > 60 mm y Re < 300.000 k = 0,1 mm ; V < 0,5 m/s (ó D > 60 mm y Re < 30.000 k = 1,0 mm ; V < 0,4 m/s (ó D > 10 mm y Re < 4.300

V < 0,2 m/s (ó D > 5 mm y Re < 4.300 k = 10 mm ; en ningún caso.

Page 30: Calculo de tuberias

30

FÓRMULAS ADECUADAS PARA EL CÁLCULO DE LA CIRCULACIÓN DEL AGUA A 10ºC EN SISTEMAS HIDRÁULICOS, EN FUNCIÓN DE SUS CARACTERÍSTICAS, PARA UNA TOLERANCIA ≤ 10 %

C,m,n = coeficientes que dependende la rugosidad absoluta

Page 31: Calculo de tuberias

31

ECUACIÓN DEL MOVIMIENTO CUANDO EXISTE INTERCAMBIO DE ENERGÍA

Page 32: Calculo de tuberias

32

PÉRDIDAS DE CARGA EN CONDUCIONES CON SUPERFICIE LIBRE

Page 33: Calculo de tuberias

33

FÓRMULAS ADECUADAS PARA EL CÁLCULO de CIRCULACIÓN DE GASES (1)

Page 34: Calculo de tuberias

34

FÓRMULAS ADECUADAS PARA EL CÁLCULO: ECUACIONES PARA LA CIRCULACIÓN DEL AIRE: GASES (2)

Page 35: Calculo de tuberias

35

CÁLCULO DE LA PÉRDIDA DE CARGA EN CONDUCCIONES A PRESIÓNLa existencia de fuerzas de presión implica que la circulación en el sistema tenga lugar a tubo lleno (el fluido ocupa toda la sección de la tubería).

ECUACIÓN DE DARCY-WEISBACH:El esfuerzo tangencial y , consiguientemente, la pérdida de carga, dependen del número de Reynolds y de la rugosidad absoluta de acuerdo con la ecuación:

J = pérdida de carga unitaria (Pa/m).f = coeficiente de rozamiento f = ϕ (Re, k, D).D = diámetro del conducto (m).ρ = masa especifica del fluido ( kg/m3).V = velocidad media (m/s). ν = viscosidad cinemática (m2/s)

PARA CIRCULACIÓN EN RÉGIMEN LAMINAR : Es independiente de la rugosidad del tubo

DVfJ

·2·2 ρ

=

eRf 64=

2···32DVJ ρν=)/(

)()·/(2 sm

mDsmVRe ν=

Page 36: Calculo de tuberias

36

CÁLCULO DE LA PÉRDIDA DE CARGA EN CIRCULACIÓN EN RÉGIMEN TURBULENTOSe puede utilizar el Diagrama de Moody que da los valores del coeficiente de rozamiento “f” para distintas rugosidades relativas (k/D), según el valor del número de Reynolds. En forma aproximada, esas curvas se ajustan a la formula empírica

Corriente en tubo liso: f depende exclusivamente del número de Reynolds RePrandtl

Corriente en tubo rugoso: f depende exclusivamente de la rugosidad relativa (k/D) Kármán

Corriente en zona de transición: f depende de Re y de (k/D) Colebrook

o bien

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛++=

3/16102000010055,0eRD

kf

⎟⎟⎠

⎞⎜⎜⎝

⎛+−=

fRDk

f e ·51,2

·7,3log21

10

Dk

f 10log214,11−=

( ) 8,0log2110 −= fR

f e

Page 37: Calculo de tuberias

37

DIAGRAMA DE MOODY

d=diámetro interior ; w=velocidad ; ε=rugosidad

Page 38: Calculo de tuberias

38

DIAGRAMA DE MOODY PARA TUBERÍAS

Page 39: Calculo de tuberias

39

DIAGRAMA DE MOODY

Page 40: Calculo de tuberias

40

RUGOSIDAD RELATIVA

Page 41: Calculo de tuberias

41

RUGOSIDAD ABSOLUTA “k”

Page 42: Calculo de tuberias

42

PÉRDIDA DE CARGA TUBERÍAS DE ACERO

Page 43: Calculo de tuberias

43

PÉRDIDA DE CARGA TUBERÍAS DE COBRE

Page 44: Calculo de tuberias

44

PÉRDIDA DE CARGA TUBERÍAS DE RER

Page 45: Calculo de tuberias

45

CAIDA POR ROZAMIENTO “R”(mm.c.a./m), AGUA FRÍA A 10ºC TUBERÍAS DE ACERO (rugosidad ε=0,15mm)

PÉRDIDA DE CARGA TUBERÍAS DE ACERO

Page 46: Calculo de tuberias

46

Nomograma de las ecuaciones de Darcy-Weisbach y Colebrook, teniendo en cuenta el principio de continuidad para tuberías de ACERO, con k= 1,00 mm y agua a 10 ºC.

Para agua a 40 ºC y a 70 ºC reducir las perdidas de cargamultiplicando por 0,98 y 0,96

PÉRDIDA DE CARGA TUBERÍAS DE ACERO

Page 47: Calculo de tuberias

47

Nomograma de las ecuaciones de Darcy-Weisbach y Colebrook, teniendo en cuenta el principio de continuidad para tuberías de ACERO, con k= 0,50 mm y agua a 10 ºC.

Para agua a 40 ºC y a 70 ºC reducir las perdidas de cargamultiplicando por 0,97 y 0,96

PÉRDIDA DE CARGA TUBERÍAS DE ACERO

Page 48: Calculo de tuberias

48

Nomograma de las ecuaciones de Darcy-Weisbach y Colebrook, teniendo en cuenta el principio de continuidad para tuberías de COBRE, con k= 0,10 mm y agua a 10 ºC.

Para agua a 40 ºC y a 70 ºC reducir las perdidas de cargamultiplicando por 0,97 y 0,96

PÉRDIDA DE CARGA TUBERÍAS DE COBRE

Page 49: Calculo de tuberias

49

Nomograma de las ecuaciones de Darcy-Weisbach y Colebrook, teniendo en cuenta el principio de continuidad para tuberías de PVC, con k= 0,50 mm y agua a 10 ºC.

Para agua a 40 ºC y a 70 ºC reducir las perdidas de cargamultiplicando por 0,97 y 0,96

PÉRDIDA DE CARGA TUBERÍAS DE PVC

Page 50: Calculo de tuberias

50

PÉRDIDAS DE CARGA DE UNA RED DE TUBERÍAS

PÉRDIDAS DE CARGA = PÉRDIDAS EN TRAMOS RECTOS + PÉRDIDAS SINGULARES( O SIMPLES)

DIAGRAMAS "Método de las longitudes equivalentes"

"Método de los coeficientes de perdidas singulares“ΔP = ξ ½ v2 ρξ = Coeficiente deperdidas singulares

Page 51: Calculo de tuberias

51

MÉTODO DEL COEFICIENTE DE PÉRDIDAEl coeficiente de pérdida “K” es un adimensional que multiplicado por la altura cinética V2 /2g da la pérdida Hra que origina el accesorio:

Pérdida de carga total:

Page 52: Calculo de tuberias

52

Así pues, el coeficiente de pérdida vale,

que coincide prácticamente con los resultados experimentales.

MÉTODO DEL COEFICIENTE DE PÉRDIDA

Page 53: Calculo de tuberias

53

MÉTODO DEL COEFICIENTE DE PÉRDIDASalida de tubería, o entrada en depósito

Es un caso particular de ensanchamiento brusco (K = 1)

Esto además es lógico, pues la energía cinética que tiene el flujo a la salida de la tubería se pierde dentro del depósito.

Page 54: Calculo de tuberias

54

MÉTODO DEL COEFICIENTE DE PÉRDIDAEnsanchamiento gradual

La pérdida de carga es:

Siendo los valores de a que se han de utilizar:

Page 55: Calculo de tuberias

55

MÉTODO DEL COEFICIENTE DE PÉRDIDAEstrechamiento brusco y gradual

Hasta d/D = 0,76, puede utilizarse,

Para d/D > 0,76, las pérdidas coinciden con el ensanchamiento , como se comprueba sin más que ver el gráfico general

Tanto en el ensanchamiento como en el estrechamiento, la energía cinética se mide en el menor diámetro.Para una conicidad entre 20° y 40°, el valor de K es del orden de 0,04: despreciable.

Page 56: Calculo de tuberias

56

MÉTODO DEL COEFICIENTE DE PÉRDIDAEntrada en tubería, o salida de depósito

a) Es un estrechamiento brusco en el que d/D = 0 y K = 0,42:

b) K entre 0,01 y 0,05: despreciable

c) K vale entre 0, 8 y 1.

Page 57: Calculo de tuberias

57

MÉTODO DEL COEFICIENTE DE PÉRDIDA

Page 58: Calculo de tuberias

58

PÉRDIDAS AISLADAS

Page 59: Calculo de tuberias

59

PÉRDIDAS AISLADAS

Page 60: Calculo de tuberias

60

PÉRDIDAS AISLADAS

Page 61: Calculo de tuberias

61

PÉRDIDAS DE CARGA LOCALIZADAS ÓSINGULARES Ó AISLADASVÁLVULAS DE RETENCIÓN DE PIE Y ALCACHOFAS

VÁLVULAS DE RETENCIÓN DE CLAPETA VÁLVULAS DE COMPUERTA

Page 62: Calculo de tuberias

62

PÉRDIDAS AISLADAS

LONGITUD EQUIVALENTE

Page 63: Calculo de tuberias

63

Longitudes equivalentes (m)de las pérdidas localizadas de carga correspondientes a distintos elementos singulares de las redes hidráulicas.

Para tuberías lisas (k=0,1 mm) multiplicar los valores del cuadro por 1,4

PÉRDIDAS AISLADAS

Page 64: Calculo de tuberias

64

1 Régimen laminar

2 Régimen turbulentoa) Tubería hidráulicamente lisa

b) Con dominio de la rugosidad

EJEMPLOS

c) Con influencia de k/D y de Reynolds

Fórmula de Colebrook

Page 65: Calculo de tuberias

65

Para un caudal de agua de 30 l/s, un diámetro de 0,2 m y una rugosidad de 0,025 mm, determínese f, mediante Colebrook, con un error inferior a 10-4.SoluciónRugosidad relativa

EJEMPLO 1

Número de Reynolds

Suponemos un fluido con una viscosidad cinemática de 1,2 cstokes

Coeficiente de fricción

Fórmula de Colebrook

Page 66: Calculo de tuberias

66

EJEMPLO 1 (2)Para un primer valor de tanteo de f = 0,015)

Para un segundo tanteo de f = 0,01742):

Para un tercer tanteo de f = 0,01718):

Tomaremos

Page 67: Calculo de tuberias

67

EJEMPLO 2 (1)Datos: L = 4000 m, Q = 200l/s, D = 0,5 m, viscosidad= 1,24·10-6 m2/s , k = 0,025 mm. Calcúlese Hr.Solución: Se determinan

• Rugosidad relativa

• Número de Reynolds

• Se valora f con la fórmula de Colebrook o por el diagrama de Moody.

• Se calcula la pérdida de carga:

• Puede también resolverse con tablas o ábacos

Dk

vDQ

D ⋅⋅⋅

4Re

5

2

0827,0DQLfH r ⋅⋅⋅=

Page 68: Calculo de tuberias

68

EJEMPLO 2 (2)Datos: L = 4000 m, Q = 200l/s, D = 0,5 m, viscosidad= 1,24·10-6 m2/s , k = 0,025 mm. Calcúlese Hr.SoluciónRugosidad relativa

Número de Reynolds

Pérdida de carga

Page 69: Calculo de tuberias

69

EJEMPLO 3 (1)Datos: Se quiere trasvasar 200 l/s de agua desde un depósito a otro 5 m más abajo y distantes 4000 m. Calcúlese el diámetro, si k = 0,025

• SOLUCIÓN:•Diámetro aproximado (f0=0,015)

•Rugosidad relativa

•Número de Reynolds

50

22,04000015,00827,05D

Hr ⋅⋅⋅== mD 525,00 =

5

0

1076,4525025,0 −⋅==

Dk

56

0

1091,31024,1525,0

2,044Re ⋅=⋅⋅⋅

⋅=

⋅⋅⋅

= −ππ vDQ

D

Page 70: Calculo de tuberias

70

EJEMPLO 3 (2)

• Coeficiente de fricciónPor Moody: f = 0,0142Por Colebrook: f = 0,01427

• Diámetro definitivo

• Resolución con dos diámetros

5

22,0400001427,00827,05D

Hr ⋅⋅⋅== mD 519,00 =

;52

251

15 D

LDL

DL

+=5

15

15 5,0

40006,0519,0

4000 LL −+=

mLmL

28621138

2

1

==