21
CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________ _____________________________________________________________________________________________ PRATO, MASSA -1- Capítulo 10 Emparrillados planos - Pórticos tridimensionales 10.1- El emparrillado plano Un emparrillado plano es una estructura plana de barras con nudos rígidos cuyas cargas actúan perpendiculares al plano de la estructura. Resulta importante destacar que la única diferencia con el pórtico plano consiste en la dirección en que actúan las cargas. Dado que todas las estructuras en rigor son tridimensionales, una estructura plana recibe, en general, cargas en todas direcciones y trabaja simultáneamente como pórtico y emparrillado. Además, cada estructura suele tener un tipo de carga dominante que condiciona que la misma sea clasificada como pórtico o emparrillado. En un caso genérico en que las cargas predominantes no están todas contenidas en el plano de la estructura, ni son todas perpendiculares a dicho plano, siempre es posible considerar al sistema dado como un pórtico plano superpuesto con un emparrillado plano como se aprecia en la Figura 10.1. Por otra parte, siempre existe la posibilidad de tratar el caso general (a) de la Figura 10.1 como una estructura tridimensional considerando 6 desplazamientos incógnitas por nudo. En tal caso debe resolverse un sistema de 12 x 12 incógnitas, mientras que descomponiéndolo en los casos (b) y (c) de la Figura 10.1, la resolución resulta más sencilla dado que deben resolverse dos sistemas de 6 x 6.

Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

  • Upload
    ledieu

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -1-

Capítulo 10

Emparrillados planos - Pórticos tridimensionales

10.1- El emparrillado plano

Un emparrillado plano es una estructura plana de barras con nudos rígidos cuyas cargas

actúan perpendiculares al plano de la estructura.

Resulta importante destacar que la única diferencia con el pórtico plano consiste en la

dirección en que actúan las cargas. Dado que todas las estructuras en rigor son tridimensionales,

una estructura plana recibe, en general, cargas en todas direcciones y trabaja simultáneamente

como pórtico y emparrillado. Además, cada estructura suele tener un tipo de carga dominante

que condiciona que la misma sea clasificada como pórtico o emparrillado.

En un caso genérico en que las cargas predominantes no están todas contenidas en el

plano de la estructura, ni son todas perpendiculares a dicho plano, siempre es posible considerar

al sistema dado como un pórtico plano superpuesto con un emparrillado plano como se aprecia

en la Figura 10.1.

Por otra parte, siempre existe la posibilidad de tratar el caso general (a) de la Figura 10.1

como una estructura tridimensional considerando 6 desplazamientos incógnitas por nudo. En tal

caso debe resolverse un sistema de 12 x 12 incógnitas, mientras que descomponiéndolo en los

casos (b) y (c) de la Figura 10.1, la resolución resulta más sencilla dado que deben resolverse dos

sistemas de 6 x 6.

Page 2: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -2-

Figura 10.1

En el caso de la Figura 10.1 (c), la flexión de la barra horizontal provoca giros de los

nudos 2 y 3 (alrededor del eje vertical) que inducen torsión en las barras verticales. Suponiendo

a b e (1) (2)I I , el giro del nudo 2, 2x causado por la flexión de la barra vertical (1) es mayor

que 3x , por lo que la barra horizontal está sometida a torsión. Además, la fuerza horizontal en

la Figura 10.1 (c) se transmite hasta los apoyos como fuerza cortante.

Las barras de un emparrillado están sometidas a esfuerzos de flexión, corte y

torsión (no se producen esfuerzos normales). En cada nudo deben considerarse como incógnitas el desplazamiento perpendicular al

plano de la estructura y dos giros respecto a los ejes coplanares con la estructura.

Dada una barra de un emparrillado plano siempre es posible, sin pérdida de generalidad,

suponer que el emparrillado está contenido en el plano horizontal XY y que las cargas actúan en

la dirección vertical Z. Lo que no siempre sucede es que todas las barras sean paralelas a los ejes

X o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de

orientación arbitraria.

Figura 10.2

xF

zFyF

xF

yFzF

Page 3: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -3-

Suponiendo que la barra 2-3 de la Figura 10.2 es prismática, se adopta un sistema local de

coordenadas tal que el eje lX coincide con el eje de la barra.

Figura 10.3

El eje lZ local coincide con el eje Z global, mientras que el eje lY está contenido en el

plano de la estructura (horizontal) y tiene una dirección y un sentido tal que la terna , ,l l lX Y Z es

ortogonal y está positivamente orientada (dextrógira).

10.2- Matriz de rigidez de una barra de emparrillado

A continuación se formula la matriz de rigidez de una barra prismática orientadas según

el eje X. Posteriormente, mediante una rotación del sistema de referencia, se obtiene la matriz

del caso general de una barra con una dirección arbitraria.

Deben considerarse tres incógnitas de desplazamiento por nudo, por lo que la matriz de

rigidez resulta de 6 x 6. Los elementos de la matriz de rigidez se deducen a través de un

razonamiento físico análogo al empleado para las barras de reticulado y pórtico.

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

.

z zi ix x

i iy y

i iz z

j jx x

j jy y

j j

K K K K K K U PK K K K K K MK K K K K K MK K K K K K U PK K K K K K MK K K K K K M

(Ec. 10.1)

Los coeficientes de rigidez para desplazamientos impuestos en dirección del eje Z y giros

impuestos alrededor del eje Y se obtienen resolviendo la ecuación diferencial de la viga elástica,

de forma similar a la utilizada para la matriz de rigidez de una barra de pórtico.

lXlY

lZ

Page 4: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -4-

La primera columna de la matriz se deduce suponiendo los siguientes desplazamientos

prefijados:

Figura 10.4

1 0

0 0

0 0

z zi j

x xi j

y yi j

U U

(Ec. 10.2)

De la primera ecuación de la (Ec. 10.1):

11 12 161 0 0 ziK K K P

11 312 EIKL

(Ec. 10.3)

De la segunda ecuación de la (Ec. 10.1):

21 22 261 0 0 xiK K K M

21 0K (Ec. 10.4)

Utilizando las ecuaciones 3°, 4°, 5° y 6° del sistema de la (Ec. 10.1) se obtiene:

31 26 EIKL

; 41 312 EIKL

; 51 0K ; 61 26 EIKL

(Ec. 10.5)

1ziU

312zj

EIPL

312zi

EIPL

26yi

EIML

26yj

EIML

Page 5: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -5-

La segunda columna de la matriz de rigidez surge a través del siguiente esquema:

Figura 10.5

0 0

1 0

0 0

z zi j

x xi j

y yi j

U U

(Ec. 10.6)

Luego:

12 0K ; 22GJKL

; 32 0K ; 42 0K ; 52GJKL

; 62 0K (Ec. 10.7)

El producto GJ se designa rigidez a la torsión. El parámetro "J" coincide con el momento

polar de inercia sólo en el caso de secciones circulares y anulares. Para otras formas de la

sección transversal, el valor de "J" se obtiene a través de la teoría de torsión de barras.

xi

GJML

xj

GJML

Page 6: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -6-

La tercera columna de la matriz de rigidez surge del siguiente esquema:

Figura 10.6

0 0

0 0

1 0

z zi j

x xi j

y yi j

U U

(Ec. 10.8)

Luego:

13 26 EIKL

; 23 0K ; 33 4 EIKL

; 43 26 EIKL

; 53 0K ; 63 2 EIKL

(Ec. 10.9)

Notar que considerando el teorema de reciprocidad se demuestra que:

21 12K K 31 13K K 32 23K K (Ec. 10.10)

Realizando un razonamiento análogo, se deducen los elementos de las columnas restantes.

Las ecuaciones fuerza-movimiento para una barra prismática según el eje X resultan:

1 2 1 2

2 3 2 3

1 2 1 2

2 3 2 3

0 00 0 0 0

0 0 / 2.

0 00 0 0 0

0 / 2 0

z zi ix x

i iy y

i iz z

j jx x

j jy y

j j

K K K K U PK K M

K K K K MK K K K U P

K K MK K K K M

(Ec. 10.11)

1 2 33 212 6 4GJ EI EI EIK K K KL L L L

1yi

26zi

EIPL

4yi

EIML

2yj

EIML

26zj

EIPL

Page 7: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -7-

Nótese que durante la deducción de los elementos de la matriz de rigidez no se han tenido

en cuenta las “deformaciones por corte”.

La interpretación física de los elementos de la matriz de rigidez debe considerarse de

suma importancia. Por ejemplo, observando la (Ec. 10.1), ¿ qué representa 46K ?. Al encontrarse

en la sexta columna, el elemento 46K multiplica a yj . Igualando los restantes desplazamientos a

cero y teniendo en cuenta que el elemento 46K pertenece a la cuarta ecuación, se obtiene:

46y z

j jK P (Ec. 10.12)

Por lo tanto, 46K representa la fuerza a aplicar en el nudo "j" en la dirección Z cuando al

nudo "j" se lo gira un radián alrededor del eje Y mientras que los restantes desplazamientos de

extremo de la barra se encuentran restringidos (son nulos).

10.3- Matriz de rigidez en el caso general El eje de la barra forma un ángulo respecto del eje X del sistema global.

Figura 10.7

El desarrollo para la transformación de coordenadas resulta totalmente análogo al

descripto para la barra de alma llena de un pórtico. Deben relacionarse las componentes de un

vector (giro o momento) contenido en el plano XY en el sistema local con las componentes del

mismo vector expresadas en el sistema global.

lX

lY

1

2

Page 8: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -8-

Figura 10.8

cos sen

sen cos

x yx l l

x yy l l

M M M

M M M

(Ec. 10.13)

De esta forma, las componentes locales de momento en función de las componentes

globales resultan:

cos sen

sen cos

xl x y

yl x y

M M M

M M M

(Ec. 10.14)

Matricialmente:

1 2

2 1

xxl

yyl

MMMM

(Ec. 10.15)

Observando que las fuerzas según el eje Z local no cambian al pasar al sistema global

porque lZ Z , la matriz de rotación resulta:

1 2

2 1

1 0 000

zl z

xl xy

l y

globallocal

P PM MM M

(Ec. 10.16)

Los desplazamientos de extremo de barra se rotan de similar manera. En forma abreviada,

puede escribirse:

lP R P lU RU (Ec. 10.17)

R es una matriz ortonormal, por lo que su inversa resulta igual a su transpuesta: 1 TR R

de modo que:

TlP R P

TlU R U (Ec. 10.18)

lX

lY

x

lM

xM

yM

ylM

Page 9: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -9-

Particionando el sistema de la (Ec. 10.11) resulta: l l l l l

ii i ij j i

l l l l lji i jj j j

K U K U P

K U K U P

(Ec. 10.19)

Para pasar a coordenadas globales se reemplaza según (Ec. 10.18): l l

ii i ij j i

l lji i jj j j

K RU K RU R P

K RU K RU R P

(Ec. 10.20)

Premultiplicando ambos miembros por TR y considerando que TR R I , finalmente se

llega a:

.

T l T li iii ij

T l T lj jji jj

Sistema SistemaMatriz de rigidez enGlobal Globalel sistema global

U PR K R R K RU PR K R R K R

(Ec. 10.21)

A modo de ejemplo, se deduce en forma explícita la rigidez directa del nudo "j" en el

sistema global: l

jjT T l

jj jj

K RR R K K

1 2

1 2

2 3 2 1

1 2 1 2 2 1 22 2

1 2 2 2 1 2 3 2 2 1 2 3 1 2 32 2

2 1 1 2 2 1 3 1 2 1 2 3 2 1 3

0 1 0 00 0 0

0 01 0 0 000

K KK

K KK K K K K

K K K K K K K KK K K K K K K K

Operando de manera similar sobre las restantes matrices de rigidez locales se arriba a la

forma explícita de la matriz de rigidez en el caso general:

(Ec. 10.22)

donde:

1 2 33 212 6 4GJ EI EI EIK K K KL L L L

1 1

1

.

z zi ix x

i iy y

i iz z

j jx x

j jy y

j j

U PK A B K A BMC D A G FME B F H

U PK A BMC DME

simétrica

Page 10: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -10-

2 2A K ; 1 2B K ; 2 21 2 3C K K ; 1 2 3D K K

2 22 1 3E K K ; 1 2 3 2F K K ; 2 2

1 2 3 2G K K

2 22 1 3 2H K K

El caso de una barra paralela al eje Y es un caso particular de (Ec. 10.22). Sin embargo,

por resultar un caso de uso frecuente, se desarrolla a continuación su expresión explícita, que

resulta simple dado que 2 1 y 1 0 .

1 2 1 2

2 3 2 3

1 2 1 2

2 3 2 3

0 00 / 2 0

0 0 0 0.

0 0/ 2 0 0

0 0 0 0

z zi ix x

i iy y

i iz z

j jx x

j jy y

j j

U PK K K KMK K K KMK K

U PK K K KMK K K KMK K

(Ec. 10.23)

Recuérdese que:

1 2 33 212 6 4GJ EI EI EIK K K KL L L L

Resulta importante destacar que las matrices de las ecuaciones (Ec. 10.11), (Ec. 10.22) y

(Ec. 10.23) se deducen con la siguiente convención de signos (Figura 10.9):

Figura 10.9

Page 11: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -11-

El sentido adoptado como positivo para fuerzas y momentos debe coincidir con el sentido

positivo adoptado para desplazamientos y giros. Se considera giro (y momento) positivo al que

tiene sentido antihorario al ser observado desde el lado positivo del eje correspondiente.

10.4- Cálculo de los desplazamientos y determinación de los esfuerzos

Habiendo ya obtenido en forma explícita la matriz de rigidez de la barra prismática en el

caso general, se repite el procedimiento usado en capítulos 8 y 9 para el pórtico plano:

1º Paso: se arma la matriz de rigidez del sistema sumando la contribución de todas las

barras. La matriz de rigidez de cada barra de está referido a sistema de referencia global (usar

(Ec. 10.11), (Ec. 10.22) o (Ec. 10.23) según corresponda).

Figura 10.10

2º Paso: se determinan los elementos del vector de cargas en el sistema global.

3º Paso: se imponen las condiciones de apoyo suprimiendo las filas y las columnas

correspondientes, con lo que la matriz de rigidez del sistema deja de ser singular.

4º Paso: se resuelve el sistema de ecuaciones lineales y se obtienen los desplazamientos.

5º Paso: se calculan las fuerzas de extremo de cada barra. Esto se realiza barra por barra

trabajando con la matriz de rigidez de cada barra en el sistema local (Ec. 10.11) y utilizando los

desplazamientos de extremo de las barras previamente transformados al sistema local (emplear la

(Ec. 10.18))

iiK ijK

jiK jjKii ij

ji jj

K KK K

Page 12: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -12-

6º Paso: se calculan las reacciones de apoyo sumando las fuerzas de extremo de barra de

todas las barras que concurren a cada apoyo. Como alternativa pueden utilizarse las ecuaciones

asociadas a los grados de libertad no utilizados (suprimidos) en el cálculo de desplazamientos.

Nota 1: La matriz de rigidez de la estructura es singular antes de imponer las condiciones de

vínculo que restringen los desplazamientos de cuerpo rígido.

Nota 2: La ventaja de obtener las fuerzas de extremo de barra en el sistema local de la barra

resulta evidente al observar la Figura 10.11.

:xM se relaciona directamente con el momento torsor.

:yM se relaciona directamente con el momento flector.

Figura 10.11

10.5- Pórtico tridimensional

En el caso general de estructuras no planas de barras con nudos rígidos resulta necesario

considerar seis grados de libertad por nudo: tres desplazamientos y tres giros. Por lo tanto, la

matriz de rigidez de una barra es de 12 x 12.

La matriz de rigidez para una barra prismática se deduce haciendo coincidir el eje de la

barra con el eje X y los ejes principales de inercia de la sección con los ejes Y y Z,

respectivamente. Las ecuaciones fuerza-movimiento se obtienen repitiendo el razonamiento

físico aplicado en los casos de pórtico y emparrillado.

xiM

xjM

yjM

zjP

ziP

i

j

Page 13: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -13-

Figura 10.12

Designando:

1 2 33 2

1 2 33 2

12 6 4

* * 12 * 6 * 4

z z z

y y y

EI EI EIEAK K K KL L L L

EI EI EIGJK K K KL L L L

(Ec. 10.24)

1 2 1 2

1 2 1 2

2 3 2 3

2 3 2 3

1 2 1 2

1 2 1 2

2 3 2 3

0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 * 0 * 0 0 0 * 0 * 00 0 0 * 0 0 0 0 0 * 0 00 0 * 0 * 0 0 0 * 0 * /2 00 0 0 0 0 0 0 0 / 2

0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 * 0 * 0 0 0 * 0 * 00 0 0 * 0 0 0 0 0 * 0 00 0 * 0 */2 0 0 0 * 0 *

K KK K K K

K K K KK K

K K K KK K K K

K KK K K K

K K K KK K

K K K K

2 3 2 3

.

00 0 0 0 / 2 0 0 0 0

x xi iy y

i iz z

i ix x

i iy y

i iz z

i ix x

j jy y

j jz z

j jx x

j jy y

j jz z

j j

U PU PU P

MMM

U PU PU P

MM

K K K K M

(Ec. 10.25)

Nótese que eliminando las filas y columnas correspondientes a , ,z x yU (es decir: 3º, 4º,

5º, 9º, 10º, 11º) se obtiene la matriz de rigidez del pórtico plano. Por otra parte, eliminando

, ,x y zU U como grados de libertad, la matriz se reduce al caso del emparrillado plano.

Adviértase que ambos comportamientos (pórtico plano - emparrillado plano) están desacoplados.

xjU

xj

X

yjU

yj

zjU

zj

Z Y

j

i

Page 14: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -14-

Desplazamientos tales como , ,z x yU no producen fuerzas tales como , ,x y zP P M . Es

decir, los desplazamientos vinculados al emparrillado plano no producen fuerzas del tipo de

pórtico plano (la observación recíproca también resulta válida). En el caso general en que la

barra tenga una dirección cualquiera, se ubica el eje X local uniendo los extremos de la barra.

Los cosenos directores resultan:

1j ix xl

2j iy yl

3j iz zl

(Ec. 10.26)

Figura 10.13

El eje Y local se define perpendicular al plano que contiene a la barra y al eje Z. De esa

manera, el eje lY resulta siempre perpendicular al Z y, por ende, se mantiene contenido en el

plano XY del sistema global.

2

1

1 2 3

/1 0 0 1 /

0l l

i j k DY Z X D

D

(Ec. 10.27)

donde: 2 21 2D

Finalmente, el eje lZ se determina por ortogonalidad:

1 3

1 2 3 2 3

2 1

//

/ / 0l l l

i j k DZ X Y D

D D D

(Ec. 10.28)

lY

X

Z

Y

j

i

lX

1

2

3

Page 15: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -15-

Definiendo de tal manera los ejes locales, la matriz de rotación para la transformación de

coordenadas del sistema local al sistema global resulta:

lU RU (Ec. 10.29)

l R (Ec. 10.30)

1 2 1 3

2 1 2 3

3

/ // /0

D DR D D

D

(Ec. 10.31)

En el caso de una barra según el eje Z, el eje lY se toma directamente como el eje Y del

sistema global y la matriz R resulta simplemente:

0 0 10 1 01 0 0

R

(Ec. 10.32)

De (Ec. 10.29) y (Ec. 10.30) se deduce que:

00

l

l

U R UR

(Ec. 10.33)

En notación sintética resulta:

l R (Ec. 10.34)

Observar que eliminando las filas y columnas 3ª,4ª, y 5ª se obtiene R para el pórtico

plano (ver Ec. 10.10), mientras que suprimiendo las filas y columnas 1ª,2ª y 6ª se obtiene R para

el emparrillado (ver (Ec. 10.16)).

Repitiendo el razonamiento de la sección 8.2 y de la sección 10.3 se demuestra que:

lYlZ

lX

Page 16: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -16-

T l T li iii ij

T l T lj jji jj

PR K R R K RPR K R R K R

(Ec. 10.35)

donde:

posee seis componentes (tres desplazamientos y tres giros), y

R es la matriz de rotación definida en (Ec. 10.33) donde la matriz R está definida en

(Ec. 10.31) o bien (Ec. 10.32) según corresponda.

El eje lX definido por los puntos extremos i y j no define completamente la posición de

la barras porque la misma puede girar alrededor de dicho eje (en lo que sigue a continuación, se

consideran barras con secciones simétricas respecto a los ejes principales).

Figura 10.14

Obsérvese que la expresión (Ec. 10.25) es válida en el sistema de ejes principales. Para

pasar del sistema principal al sistema local se utiliza la matriz de rotación:

lZ

lYpY

pZ

pl XX

lY

lX

lZ

pY

pZ

Page 17: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -17-

1 0 00 cos 00 cos

0

sensen

R

Idem

(Ec. 10.36)

Finalmente, la matriz de rigidez en el sistema global se obtiene de la siguiente forma:

T T p T T pii ij

T T p T T T pji jj

R R K R R R R K R R

R R K R R R R K R R

(Ec. 10.37)

El caso más frecuente es aquel en que 0 y por lo tanto R es la matriz identidad y los

cálculos se simplifican.

Las estructuras planas (pórticos y emparrillados) con nudos rígidos cuyos ejes

principales de las barras prismáticas no coinciden con los ejes locales, se comportan

como tridimensionales y deben tratarse como tales (especificando el ángulo ).

En las estructuras tridimensionales, después de calcular los desplazamientos se obtienen

las fuerzas de extremo de cada barra en su sistema principal. Para ello, se transforman los

desplazamientos de extremo de cada barra al sistema principal de la barra mediante (Ec. 10.38) :

l

p l

RR

p R R (Ec. 10.38)

Recuérdese que el sistema local se identifica por el índice "l", el sistema de ejes

principales de inercia por el índice "p" y que el sistema global no lleva índice. Luego se utiliza la

matriz de rigidez en el sistema principal de la barra definida por (Ec. 10.25):

p p pK P (Ec. 10.39)

Las fuerzas en cada extremo de barra, expresadas en el sistema de ejes principales de

inercia, resultan:

" "" "

" ""

x

y

z

p x

y

z

Esfuerzo NormalPCorte según eje principal YPCorte según eje principal ZP

PMomento TorsorM

Momento Flector según eje principal YMMomento Flector según eje principal ZM

"

(Ec. 10.40)

Page 18: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -18-

Finalmente, las reacciones de apoyo se calculan en la forma habitual, es decir, a partir de

las fuerzas de extremo de barra de las barras que concurra la apoyos, o bien utilizando las

ecuaciones suprimidas en el cálculo de los desplazamientos.

Ejercicio Nº 1:

Plantear el sistema de ecuaciones de equilibrio del Estado II para el emparrillado indicado

en la figura.

Barra 1: 2

3 3

3 3

4 2 82 4

12 124 24,37

A cmbhI

hbJ

2 4,37

:

hbh lado mayor

)3(

mKgq /100

)1(

cm60

1)2(

2

cm10

3

cm100

Z

Y

X

3D

2Barra1Barra

4

2

Page 19: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -19-

Barra 2: 4

4

44

3,97664

2 7,95232

DI cm

DJ I cm

Estado I:

2 2

12

2 23

2

1.60 300 .12 12

1.10 50 .2 2

qLM Kg cm

qLM Kg cm

Barra 1: 1

1

2

/ / / / / / / / / / / // / / / / / / / / / / // / / / / / / / / / / // / / / / / 1244, 4 0 37334,5/ / / / / / 0 102480 0/ / / / / / 37334,5 0 1493380

2

3 2102480 ; 12 1244, 4 ; 6 37334,5 ; 4 1493380GJ EI EI EIL L L L

Page 20: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -20-

Barra 2: 2

2

3

100, 2 5008,5 0 / / / / / /5008,5 333900 0 / / / / / /

0 0 66798 / / / / / // / / / / / / / / / / // / / / / / / / / / / // / / / / / / / / / / /

3

3 266798 ; 12 100, 2 ; 6 5008,5 ; 4 333900GJ EI EI EIL L L L

2

2

2

1344,6 5008,5 37334,5 405008,5 436380 0 . 037334,5 0 1560178 250

z

x

y

U

Ejercicio Nº 2:

Plantear las ecuaciones de equilibrio del Estado II.

4 4 4 44 45042, 2 2 10084, 4

64 32x

D d D dI cm J I cm

30D

150

29d

mKgq /400

)2(

)1(

m1 3

2m2

m31

X

Page 21: Capítulo 10 - facultad.efn.uncor.edu fileX o Y, por lo que se torna necesario deducir la matriz de rigidez para el caso general de orientación arbitraria. Figura 10.2 F x F z F y

CAPITULO 10 EMPARRILLADOS PLANOS ____________________________________________________________________________________________

_____________________________________________________________________________________________PRATO, MASSA -21-

Estado I:

Barra 1: 1

1

2

/ / / / / / / / / / / // / / / / / / / / / / // / / / 211772400 1588293 0 105886200/ / / / 1588293 15882 0 1588293/ / / / 0 0 42354480 0/ / / / 105886200 1588293 0 21177240

2

0

3 242354480 ; 12 15882,9 ; 6 1588293 ; 4 211772400GJ EI EI EIL L L L

Barra 2: 2

2

3

4706 705908 0 / / / / / /705908 141181600 0 / / / / / /

0 0 28236320 / / / / / // / / / / / / / / / / // / / / / / / / / / / // / / / / / / / / / / /

3

3 228236320 ; 12 4706 ; 6 705908 ; 4 141181600GJ EI EI EIL L L L

1

2

2

2

211772400 1588293 0 105886200 1666,6715882935 20588,93 705908 1588293 1000

.0 705908 183536080 0 30000105886200 1588293 0 240008720 13333,33

y

x

y

U