23
CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE ENFRIAMIENTO DEL AIRE DE LA ENTRADA DE LA TURBINA DE GAS A UNA CENTRAL DE CICLO COMBINADO 5.1 INTRODUCCIÓN En el capítulo anterior se diseño una central de ciclo combinado con unos criterios definidos a priori. El objetivo de esa central era principalmente mostrar la influencia que las condiciones ambientales pueden tener sobre la actuación de la planta y sobre todo en los requerimientos de potencia. Como ya se ha explicado en capítulos anteriores, la solución a la caída brusca de potencia debido a las condiciones ambientales, es la implantación de un sistema de enfriamiento del aire de la entrada de la turbina de gas, puesto que las otras dos opciones, cambiar las turbinas por otras más grandes o hacer funcionar el ciclo en sobrecarga durante gran periodo del año, tienen unos costes mayores que la primera a lo largo de la vida útil de la central. Por lo tanto a lo largo de este capítulo analizaremos la funcionalidad de instalar un sistema de enfriamiento del aire de la entrada de la turbina de gas, mediante simulaciones hechas a la planta que en el capítulo anterior hemos diseñado. El punto de funcionamiento para el cual compararemos las tecnologías, será tomado a partir de las condiciones ambientales que han sido registradas por el INE para la ciudad de Sevilla (España), concretamente serán las más críticas, que a raíz del análisis hecho en el capitulo anterior son la temperatura ambiental máxima alcanzada y la humedad relativa y presión correspondientes para dicho mes de temperatura máxima. Concretamente esos valores son: Temperatura máxima anual: 45.2 ºC (mes de agosto de 2003). Humedad relativa: 41% (mes de agosto de 2003). Presión ambiental: 1.013 bar. Potencia neta para esas condiciones: 621.067 MW.

CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

  • Upload
    vudiep

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE ENFRIAMIENTO DEL

AIRE DE LA ENTRADA DE LA TURBINA DE GAS A UNA CENTRAL DE

CICLO COMBINADO

5.1 INTRODUCCIÓN

En el capítulo anterior se diseño una central de ciclo combinado con unos criterios

definidos a priori. El objetivo de esa central era principalmente mostrar la influencia que

las condiciones ambientales pueden tener sobre la actuación de la planta y sobre todo en

los requerimientos de potencia.

Como ya se ha explicado en capítulos anteriores, la solución a la caída brusca de

potencia debido a las condiciones ambientales, es la implantación de un sistema de

enfriamiento del aire de la entrada de la turbina de gas, puesto que las otras dos

opciones, cambiar las turbinas por otras más grandes o hacer funcionar el ciclo en

sobrecarga durante gran periodo del año, tienen unos costes mayores que la primera a lo

largo de la vida útil de la central.

Por lo tanto a lo largo de este capítulo analizaremos la funcionalidad de instalar un

sistema de enfriamiento del aire de la entrada de la turbina de gas, mediante

simulaciones hechas a la planta que en el capítulo anterior hemos diseñado.

El punto de funcionamiento para el cual compararemos las tecnologías, será tomado a

partir de las condiciones ambientales que han sido registradas por el INE para la ciudad

de Sevilla (España), concretamente serán las más críticas, que a raíz del análisis hecho

en el capitulo anterior son la temperatura ambiental máxima alcanzada y la humedad

relativa y presión correspondientes para dicho mes de temperatura máxima.

Concretamente esos valores son:

Temperatura máxima anual: 45.2 ºC (mes de agosto de 2003).

Humedad relativa: 41% (mes de agosto de 2003).

Presión ambiental: 1.013 bar.

Potencia neta para esas condiciones: 621.067 MW.

Page 2: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

Rendimiento bruto de las turbinas de gas para esas condiciones: 34.38%.

Rendimiento neto de la planta para esas condiciones: 53.30%

Coste por kWe para esas condiciones: 357 $.

Flujo másico de aire que entra en la planta 561.76 kg/s por turbina de gas.

Como podemos comprobar existe una caída de potencia importante, concretamente de

113.993 MW, la cual es debida principalmente a la subida de la temperatura ambiente.

El coste por kW también ha aumentado, lo que unido con la caída de potencia,

provocaría unos costes de operación en la época de altas temperaturas considerables. El

único parámetro que aumenta es rendimiento del ciclo combinado, ya que el de la

turbina de gas baja. Esto es debido a que al ser la temperatura ambiente mayor y la del

escape constante, en el ciclo entra mas energía procedente del ambiente. También se

puede ver de otra forma ya que al ser la temperatura de la entrada mayor, la temperatura

de salida de la turbina aumenta y por tanto en la caldera de recuperación dispondremos

de mas energía para producir más vapor y por tanto más trabajo en el ciclo de vapor.

El proceso consistirá, por tanto, en intentar buscar la consigna de los 738.841 MW, con

las limitaciones que los sistemas presenten. Concretamente estos sistemas son:

Enfriador eléctrico de agua.

Enfriador eléctrico de aire.

Enfriador de absorción de una etapa.

Enfriador de absorción de dos etapas.

Enfriador evaporativo.

Enfriador de neblina de alta de presión.

Compresión húmeda.

Sistemas híbridos. Combinaremos los sistemas anteriores (tecnologías evaporativas

con las de compresión mecánica / térmica) y veremos si tiene sentido una implantación

conjunta de los mismos.

Page 3: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

Para hacernos una primera idea de lo que vamos a utilizar podemos ver en el siguiente

gráfico como es el clima de Sevilla:

A la vista de dicha gráfica, podemos decir que Sevilla es un clima relativamente

húmedo y de temperaturas altas. Por ello, será necesario bajar notablemente la

temperatura de entrada, bajada que mediante un método evaporativo no va ser

suficiente. A pesar de que mediante un método de enfriamiento eléctrico o de absorción

una bajada de temperatura si es posible, los costes de instalación y auxiliares son

Page 4: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

importantes. Por lo tanto nos enfrentamos a la cuestión de saber que sistema conviene

mejor a la central que hemos diseñado.

5.2 ENFRIADOR ELÉCTRICO DE AGUA

5.2.1 Datos

Los datos de diseño del enfriador de tipo eléctrico se establecen en la siguiente plantilla:

Las opciones marcadas son:

Caída de temperatura: 40.2 ºC. Es la máxima que podemos descender, ya que se

recomienda no bajar por debajo de los 5 ºC por existir la posibilidad de formación de

hielo a la entrada del compresor. Esta caída de temperatura, al descender por debajo de

la temperatura de bulbo húmedo ambiental, hace que la corriente de aire entre en el

compresor con una humedad relativa del 100 %, por lo tanto habrá que evacuar agua

procedente de la condensación producida durante el enfriamiento.

La perdida de carga asociada al sistema es de 15 mbar. Es debida a los

intercambiadores que se encuentra en la entrada la corriente.

Page 5: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

El COP de diseño es el típico que podemos encontrar en una instalación industrial,

0.7 kW/ton. Este se define para unas condiciones en las que el agua entre a enfriarse a

29.4ºC y salga a 6.67ºC, condiciones que el programa tiene definidas internamente.

El aproach point del agua con el aire se establece en 3.333 ºC que es el mínimo

requerido.

Las caídas de presión en las tuberías y serpentines para el diseño de los mismo son de

0.8 y 0.7 bar respectivamente.

En cuanto al tamaño de los equipos, hemos usado enfriadores de 14000 kW

nominales y hemos impuesto que haya un mínimo de dos por cada turbina de gas

5.2.2 Resultados

Potencia neta para esas condiciones: 731.346 MW.

Rendimiento bruto de las turbinas de gas para esas condiciones: 36.86%.

Rendimiento neto de la planta para esas condiciones: 51.67%

Coste por kWe para esas condiciones: 326.3 $.

Potencia eléctrica de enfriamiento por turbina de gas: 11462.6 kW.

Potencia térmica extraída a la corriente de aire por turbina de gas: 16976.6 ton.

COP en condiciones de funcionamiento: 0.6752 kWe/ton.

Coste del equipo de enfriamiento por turbina de gas: 661.3 k$.

5.3 ENFRIADOR ELÉCTRICO DE AIRE

5.3.1 Datos

Los datos de este enfriador se meten en una pantalla que es idéntica la del agua.

Caída de temperatura: 40.2 ºC. Es la máxima que podemos descender. La razón es la

misma que en el caso anterior.

La perdida de carga asociada al sistema es de 15 mbar. También es debida a los

intercambiadores que se encuentra en la entrada la corriente.

El COP de diseño es 1 kW/ton, tipico en instalaciones de aire. Esta definido para unas

condiciones idénticas a las del enfriador de agua

El aproach point del agua con el aire se establece en 3.333 ºC

Page 6: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

Las caídas de presión en las tuberías y serpentines para el diseño de los mismo son de

0.8 y 0.7 bar respectivamente.

En cuanto al tamaño del equipo, hemos usado enfriadores de 14000 kW nominales y

hemos impuesto que haya un mínimo de dos por cada turbina de gas.

5.3.2 Resultados

Potencia neta para esas condiciones: 691.545 MW.

Rendimiento bruto de las turbinas de gas para esas condiciones: 36.86%.

Rendimiento neto de la planta para esas condiciones: 48.86%

Coste por kWe para esas condiciones: 345.1 $.

Potencia eléctrica de enfriamiento por turbina de gas: 31578.8 kW.

Potencia térmica extraída a la corriente de aire por turbina de gas: 16976.6 ton.

COP en condiciones de funcionamiento: 1.86 kWe/ton.

Coste del equipo de enfriamiento por turbina de gas: 726.1 k$.

5.4 ENFRIADOR DE ABSORCIÓN DE UNA ETAPA

5.4.1 Datos

Esta es la pantalla de los datos a introducir.

Page 7: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

Las opciones marcadas son:

Caída de temperatura: 40.2 ºC. Es la misma que en los casos anteriores

La perdida de carga asociada al sistema es de 15 mbar.

El COP de diseño es 0.7, valor de referencia para estos sistemas. Esta definido para

unas condiciones tales que la fuente del vapor que se usa para calentar en absorbedor

tenga una presión de 1.4 bar en estado de saturación.

El aproach point del agua con el aire se establece en 2.778 ºC. Es algo menor al de los

equipos de compresión mecánica debido a especificaciones técnicas asumidas por el

programa.

Las caídas de presión en las tuberías y serpentines para el diseño de los mismo son de

0.8 y 0.7 bar respectivamente.

En cuanto al tamaño del equipo, hemos usado enfriadores de 14000 kW nominales y

hemos impuesto que haya un mínimo de dos por cada turbina de gas.

Para la fuente de calor, hemos utilizado una extracción de vapor del nivel de presión

de baja, por lo tanto usamos vapor a 1.5 bar y a una temperatura de 290 ºC.

5.4.2 Resultados

Potencia neta para esas condiciones: 734.401 MW.

Page 8: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

Rendimiento bruto de las turbinas de gas para esas condiciones: 36.86%.

Rendimiento neto de la planta para esas condiciones: 51.89%

Coste por kWe para esas condiciones: 334.2 $.

Calor de proceso utilizado en el enfriamiento por turbina de gas: 66369 kW.

Potencia térmica extraída a la corriente de aire por turbina de gas: 16976.6 ton.

COP en condiciones de funcionamiento: 0.8995.

Coste del equipo de enfriamiento por turbina de gas: 1136.1 k$

Decir que durante el proceso de resolución el pinch point del nivel de presión

intermedio se tubo que cambiar a 42.27 ºC para que se pudiera producir el vapor

necesario para los enfriadores.

5.5 ENFRIADOR DE ABSORCIÓN DE DOS ETAPAS

5.5.1 Datos

Aquí vamos a analizar el otro tipo de sistema de absorción. Básicamente nos servirá

para ver si en nuestra central nos compensa mas extraer vapor para la refrigeración de

un nivel de presión o de otro.

La pantalla de introducción de datos es idéntica a la de una etapa:

Page 9: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

En la pantalla hemos introducido:

Caída de temperatura: 40.2 ºC.

La perdida de carga asociada al sistema es de 15 mbar.

El COP de diseño es 1.1, valor de referencia para estos sistemas. Esta definido para

las mismas condiciones de antes exceptuando que la presión es 9 bar.

El aproach point del agua con el aire se establece en 2.778 ºC. Al igual que antes es

algo menor al de los equipos de compresión mecánica debido a especificaciones

técnicas del equipo.

Las caídas de presión en las tuberías y serpentines para el diseño de los mismo son de

0.8 y 0.7 bar respectivamente.

En cuanto al tamaño del equipo, hemos usado enfriadores de 14000 kW nominales y

hemos impuesto que haya un mínimo de dos por cada turbina de gas.

Para la fuente de calor, hemos utilizado una extracción de vapor del nivel de presión

intermedio. Al ser esta 27.05 bar y la presión máxima de vapor que aceptan los equipos

de absorción se sitúa en 14 bar, nosotros fijamos la presión de en 13.7 bar y 300 ºC,

presión que fue reducida por una válvula de expansión isoentálpica.

5.5.2 Resultados

Page 10: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

Potencia neta para esas condiciones: 728.815 MW.

Rendimiento bruto de las turbinas de gas para esas condiciones: 36.86%.

Rendimiento neto de la planta para esas condiciones: 51.50%

Coste por kWe para esas condiciones: 331.3 $.

Calor de proceso utilizado en el enfriamiento por turbina de gas: 41997 kW.

Potencia térmica extraída a la corriente de aire por turbina de gas: 16976.6 ton.

COP en condiciones de funcionamiento: 1.422.

Coste del equipo de enfriamiento por turbina de gas: 1020.4 k$

5.6 ENFRIADOR EVAPORATIVO

5.6.1 Datos

El único dato que tenemos que introducir en esta parte es la eficiencia del enfriador

evaporativo, la cual la hemos situado en un 85%, valor máximo alcanzable por estos

sistemas. Le ponemos 10 mbar de perdida de carga. Recordamos que la eficiencia de un

enfriador evaporativo es el tanto por ciento que se consigue acercar la temperatura de la

corriente de aire hasta la temperatura de bulbo húmedo ambiental, limite físico del

proceso.

5.6.2 Resultados

A raíz de la simulación en la planta de este sistemas los resultados fueron los siguiente:

Potencia neta para esas condiciones: 671.537 MW.

Rendimiento bruto de las turbinas de gas para esas condiciones: 35.52%.

Rendimiento neto de la planta para esas condiciones: 53.58%

Coste por kWe para esas condiciones: 333.8 $.

Descenso de temperatura: de 45.2 ºC a la entrada a 33.9 ºC a la entrada del

compresor.

Page 11: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

Caudal de agua utilizado en enfriador evaporativo por turbina de gas: 2.73 kg/s.

Coste de la instalación. No disponemos de este dato ya que GT Pro no lo suministra,

pero podemos estimarlo a partir de los datos recopilados en capítulos anteriores

[capítulo 3]. Se estima que para una instalación de enfriadores evaporativos el coste se

sitúa en 25$/kW añadido a la planta, por lo tanto el coste se sitúa en 1261750 $.

5.7 ENFRIAMIENTO DE NEBLINA DE ALTA PRESION

5.7.1 Datos

Al igual que ocurre con el sistema de enfriamiento evaporativo, solo podemos

suministrar el dato de la eficiencia. Ésta la situamos en un valor del 95%, que es el valor

típico que se alcanza con estos sistemas. La perdida de carga la estimamos en 10 mbar.

5.7.2 Resultados

Potencia neta para esas condiciones: 676.098 MW.

Rendimiento bruto de las turbinas de gas para esas condiciones: 35.62%.

Rendimiento neto de la planta para esas condiciones: 53.60%

Coste por kWe para esas condiciones: 331.3 $.

Descenso de temperatura: de 45.2 ºC a la entrada a 32.6 ºC a la entrada del

compresor.

Caudal de agua utilizado en hasta alcanzar la eficiencia del sistema, por turbina de

gas: 3.07 kg/s.

Coste de la instalación. No disponemos de este dato ya que GT Pro no lo suministra,

pero podemos estimarlo a partir de los datos recopilados en capítulos anteriores

[capítulo 3]. Se estima que para una instalación de enfriadores evaporativos el coste se

sitúa en 40 $/kW añadido a la planta, por lo tanto el coste se sitúa en 2236040 $.

5.8 COMPRESION HUMEDA

GT Pro nos permite la introducción de un sistema de compresión húmeda para aumentar

la potencia de la planta de ciclo combinado. Sin embargo, somos conscientes que la

implantación de un sistema como este en una turbina que no este prediseñada para usar

Page 12: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

este sistema, no puede ser usado. Es por esta razón por la GT Pro trata a la turbina como

una caja negra y nos muestra todos los resultados. Mostraremos por tanto lo que es

capaz de hacer este sistema y su influencia en la potencia. La influencia en los costes

esta algo desvirtuada ya que instalar este sistema, no es tan sencillo como saturar la

corriente de aire; puede ser incluso necesario readaptar la turbina, colocar los adecuados

sistemas de control y demás instalaciones pertinentes.

5.8.1 Datos

Buscamos mediante simulaciones el grado de saturación del aire de entrada que nos

permitía alcanzar la consigna de 738.841 MW neto. Éste se situó en un 1.4%, por lo

tanto no llegando al limite del 3% que imponen las recomendaciones. La caída de

presión estimada fue de 10 mbar.

5.8.2 Resultados

Potencia neta para esas condiciones: 738.862 MW.

Rendimiento bruto de las turbinas de gas para esas condiciones: 36.71%.

Rendimiento neto de la planta para esas condiciones: 53.46%

Coste por kWe para esas condiciones: 306.2 $.

Descenso de temperatura: de 45.2 ºC a la entrada a 32.17 ºC.

Caudal de agua utilizado hasta llegar a saturación por turbina de gas: 3.24 kg/s.

Caudal de agua utilizado para saturar el aire en 1.4 %: 11.55 kg/s.

Los costes de la instalación no son proporcionados por GT Pro pero a raíz de lo

recopilado en la bibliografía [capítulo 3] podemos estimarlos en unos 75 $/kW añadido

a la planta, siendo el coste de la instalación estimado en 8834625 $.

5.9 SISTEMAS HÍBRIDOS

5.9.1 Introducción

En este apartado lo que haremos será combinar los distintos sistemas de enfriamiento

con el fin de conseguir la consigna. Hemos de tener en cuenta que estamos realizando

Page 13: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

los cálculos para el punto de funcionamiento mas desfavorable, y que por tanto, si

cumplimos la consigna para este punto de funcionamiento lo cumpliremos para otros.

Lo que ocurre es que habrá épocas del año en que en que la potencia requerida sea muy

pequeña y podamos satisfacerla con enfriamiento evaporativo o neblina de alta presión,

teniendo los otros sistemas parados sin consumir auxiliares y además necesitando

instalar menos potencia de los mismos siendo los costes de las instalaciones menos

costosos.

Además entre estos sistemas existe un punto en común que se puede a tener en cuenta y

que favorecería a éstos; y es que los sistemas de enfriamiento eléctrico y de absorción,

producen agua, ya que al bajar la temperatura de la corriente, llegamos a la línea de

saturación y empieza a condensar agua fría. Si esa agua es utilizada para los sistemas de

enfriamiento evaporativo o para los de neblina alta presión, podemos conseguir un

consumo de agua nulo. Además nos encontramos también que, enfriar a lo largo de una

línea de humedad especifica constante consume menos potencia que enfriar a lo largo

de la línea de saturación, pero mas que enfriar a lo largo de una línea de bulbo húmedo.

Con esto queremos decir que si pensamos en ahorrar energía al enfriar a lo largo de una

línea de bulbo húmedo, debemos tener en cuenta que después nos vamos a encontrar en

la línea de saturación y más arriba en el diagrama y si queremos bajar más la

temperatura, el recorrido a lo largo de esa línea será mayor.

A raíz de los resultados anteriores vamos a comparar los siguientes sistemas:

Enfriamiento evaporativo con enfriamiento eléctrico de agua.

Enfriamiento evaporativo con enfriamiento de absorción de una etapa.

Enfriamiento evaporativo con enfriamiento de absorción de dos etapas.

Neblina de alta presión con enfriamiento eléctrico de agua.

Neblina de alta presión con enfriamiento de absorción de una etapa.

Neblina de alta presión con enfriamiento de absorción de dos etapas.

Los dos que no consideramos, enfriamiento eléctrico de aire y compresión húmeda, es

por su poco rendimiento y coste desvirtualizado respectivamente.

Page 14: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

El problema que nos encontramos es que al combinar estos sistemas, GT Pro los coloca

en un orden determinado, que es primero los enfriadores y luego los sistemas de

contacto directo, que es precisamente al revés de cómo nosotros queremos. La solución

es sencilla; tan solo tenemos que poner las condiciones de salida de los sistemas de

contacto directo como condiciones ambientales y colocar como único sistema de

enfriamiento el otro y así podemos ver las influencias

5.9.2 Enfriamiento evaporativo con enfriamiento eléctrico de agua

5.9.2.1 Datos

Eficiencia del enfriador evaporativo: 85 %.

Caída de presión en el enfriador evaporativo: 10 mbar.

Caída de temperatura en el enfriador eléctrico: 28.9 ºC, máxima posible.

Resto de datos del enfriador eléctrico iguales a los del apartado en el que trabaja

individual.

5.9.2.2 Resultados

Potencia neta para esas condiciones: 723.482 MW.

Rendimiento bruto de las turbinas de gas para esas condiciones: 36.85%.

Rendimiento neto de la planta para esas condiciones: 51.65%

Temperatura de salida del enfriador evaporativo: 33.9 ºC seca y 32.17 ºC húmeda.

Caudal del agua utilizado por el enfriador evaporativo por turbina de gas: 2.73 kg/s.

Potencia eléctrica de enfriamiento utilizada por turbina de gas: 11468.6 kW.

Agua condensada en el proceso del enfriador eléctrico por turbina de gas: 16.05 kg/s.

Coste de la instalación del sistema de enfriamiento evaporativo: 1261750 $.

Coste de la instalación del sistema de enfriamiento: 1323400 $.

5.9.3 Enfriamiento evaporativo con enfriamiento de absorción de una etapa

5.9.3.1 Datos

Page 15: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

Eficiencia del enfriador evaporativo: 85 %.

Caída de presión en el enfriador evaporativo: 10 mbar.

Caída de temperatura en el enfriador eléctrico: 28.9 ºC, máxima posible.

Resto de datos del enfriador de absorción iguales a los del apartado en el que trabaja

individual.

5.9.3.2 Resultados

Potencia neta para esas condiciones: 726.284 MW.

Rendimiento bruto de las turbinas de gas para esas condiciones: 36.85%.

Rendimiento neto de la planta para esas condiciones: 51.85%

Temperatura de salida del enfriador evaporativo: 33.9 ºC seca y 32.17 ºC húmeda.

Caudal del agua utilizado por el enfriador evaporativo por turbina de gas: 2.73 kg/s.

Calor de proceso utilizado en el enfriamiento por turbina de gas: 66404 kW.

Agua condensada en el proceso del enfriador de absorción por turbina de gas:

16.05kg/s.

Coste de la instalación del sistema de enfriamiento de absorción: 2273400 $.

Coste de la instalación del sistema de enfriamiento evaporativo: 1261750 $.

5.9.4 Enfriamiento evaporativo con enfriamiento de absorción de dos etapas

5.9.4.1 Datos

Eficiencia del enfriador evaporativo: 85 %.

Caída de presión en el enfriador evaporativo: 10 mbar.

Caída de temperatura en el enfriador eléctrico: 28.9 ºC, máxima posible.

Resto de datos del enfriador de absorción iguales a los del apartado en el que trabaja

individual.

5.9.4.2 Resultados

Page 16: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

Potencia neta para esas condiciones: 720.932 MW.

Rendimiento bruto de las turbinas de gas para esas condiciones: 36.85%.

Rendimiento neto de la planta para esas condiciones: 51.47%

Temperatura de salida del enfriador evaporativo: 33.9 ºC seca y 32.17 ºC húmeda.

Caudal del agua utilizado por el enfriador evaporativo turbina de gas: 2.73 kg/s.

Calor de proceso utilizado en el enfriamiento por turbina de gas: 42009 kW.

Agua condensada en el proceso del enfriador de absorción por turbina de gas:

16.05kg/s.

Coste de la instalación del sistema de enfriamiento de absorción: 2041800 $.

Coste de la instalación del sistema de enfriamiento: 1261750 $.

5.9.5 Neblina de alta presión con enfriamiento eléctrico de agua

5.9.5.1 Datos

Eficiencia sistema de neblina de alta presión: 95 %.

Caída de presión en el sistema de neblina de alta presión: 10 mbar.

Caída de temperatura en el enfriador eléctrico: 27.6 ºC, máxima posible.

Resto de datos del enfriador eléctrico iguales a los del apartado en el que trabaja

individual.

5.9.5.2 Resultados

Potencia neta para esas condiciones: 724.249 MW.

Rendimiento bruto de las turbinas de gas para esas condiciones: 36.85%.

Rendimiento neto de la planta para esas condiciones: 51.71%

Temperatura de salida del enfriador evaporativo: 32.6 ºC seca y 32.17 ºC húmeda.

Caudal del agua utilizado por el enfriador evaporativo por turbinas de gas: 3.07 kg/s.

Potencia eléctrica de enfriamiento utilizada por turbina de gas: 11085 kW.

Agua condensada en el proceso del enfriador eléctrico: 16.41 kg/s.

Coste de la instalación del sistema neblina de alta presión: 2236040 $.

Coste de la instalación del sistema de enfriamiento eléctrico: 1294600 $.

Page 17: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

5.9.6 Neblina de alta presión con enfriamiento de absorción de una etapa

5.9.6.1 Datos

Eficiencia sistema de neblina de alta presión: 95 %.

Caída de presión en el sistema de neblina de alta presión: 10 mbar.

Caída de temperatura en el enfriador eléctrico: 27.6 ºC, máxima posible.

Resto de datos del enfriador de absorción iguales a los del apartado en el que trabaja

individual.

5.9.6.2 Resultados

Potencia neta para esas condiciones: 726.259 MW.

Rendimiento bruto de las turbinas de gas para esas condiciones: 36.85%.

Rendimiento neto de la planta para esas condiciones: 51.71%

Temperatura de salida del enfriador evaporativo: 32.6 ºC seca y 32.17 ºC húmeda.

Caudal del agua utilizado por el enfriador evaporativo por turbinas de gas: 3.07 kg/s

Calor de proceso utilizado en el enfriamiento por turbina de gas: 66443 kW.

Agua condensada en el proceso del enfriador de absorción por turbina de gas:

16.41 kg/s.

Coste de la instalación del sistema neblina de alta presión: 2236040 $.

Coste de la instalación del sistema de enfriamiento por absorción: 2274600$.

5.9.7 Neblina de alta presión con enfriamiento de absorción de dos etapas

5.9.7.1 Datos

Eficiencia sistema de neblina de alta presión: 95 %.

Caída de presión en el sistema de neblina de alta presión: 10 mbar.

Caída de temperatura en el enfriador eléctrico: 27.6 ºC, máxima posible.

Resto de datos del enfriador de absorción iguales a los del apartado en el que trabaja

individual.

Page 18: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

5.9.7.2 Resultados

Potencia neta para esas condiciones: 720.932 MW.

Rendimiento bruto de las turbinas de gas para esas condiciones: 36.85%.

Rendimiento neto de la planta para esas condiciones: 51.71%

Temperatura de salida del enfriador evaporativo: 32.6 ºC seca y 32.17 ºC húmeda.

Caudal del agua utilizado por el enfriador evaporativo por turbinas de gas: 3.07 kg/s

Calor de proceso utilizado en el enfriamiento por turbina de gas: 42009 kW.

Agua condensada en el proceso del enfriador de absorción por turbina de gas:

16.41kg/s.

Coste de la instalación del sistema neblina de alta presión: 2236040 $.

Coste de la instalación del sistema de enfriamiento de absorción: 2043000 $.

5.6 CONCLUSIONES

En primer lugar, para resumir los datos que hemos obtenidos de las simulaciones,

vamos a mostrar unas tablas que recojan los datos mas importantes para poder comparar

los sistemas de enfriamiento del aire de la entrada de la turbina de gas. Estos datos son

la potencia neta alcanzada con la implantación del sistema en la planta y el coste por

kW de la instalación realizada.

Para cada sistema individualmente quedarían las siguientes potencias en el mes más

critico:

X Tecnología

X

X

Magnitud X

Sin

enfriar

(1)

Enfriador

eléctrico

de agua

(2)

Enfriador

eléctrico

de aire

(3)

Absorción

de 1

Etapa

(4)

Absorción

de 2

etapas

(5)

Enfriamiento

evaporativo

(6)

Fogging

(7)

Compresión

húmeda

(8)

Potencia

neta

(MW)

621.067

731.346

691.545

734.401

728.815

671.537

676.098

738.862

Page 19: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

Coste de la

Instalación

($/kW añadido)

280

12

20

20.05

18.94

25

40

75

Gráficamente las potencias quedan:

Y los costes representados en diagrama de barras:

Page 20: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

Y para los sistemas híbridos quedaría:

X Tecnología

X

X

X

X

Magnitud X

Sin

enfriar

(1)

E.

evaporativo

+

enfriador

eléctrico

de agua (2)

E.

evaporativo

+

absorción de

1 etapa

(3)

E.

evaporativo

+

absorción de

2 etapas

(4)

Fogging

+

e.

eléctrico

de agua

(5)

Fogging

+

absorción

de 1

etapa

(6)

Fogging

+

absorción

de 2

etapas

(7)

Potencia

neta

(MW)

621.067

723.482

726.284

720.932

724.249

726.259

720.932

Coste de la

Instalación

($/kW añadido)

280

25.24

33.6

33.08

34

42.88

42.84

Para ver más claro estos resultados los representamos en un diagrama de barras:

Page 21: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

A partir de dichos datos lo que buscamos es acercarnos lo mayor posible a la consigna

que recordamos que era 738.841 MW netos. Las simulaciones las hemos hecho para

unas condiciones de 45.2 ºC de temperatura seca ambiente y 41 de humedad relativa y

a partir de los datos que reflejan las tablas anteriores vamos a ver que sistema es el que

se acerca más a mi consigna teniendo un coste menor.

Page 22: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

Si comenzamos con los sistemas de enfriamiento actuando individualmente, vemos que

el que mas se acerca a la consigna es el de absorción de una etapa. Sin embargo su coste

es de los más altos. Muy cerca se le queda el de enfriamiento eléctrico de agua que tiene

un coste menor. Por lo tanto estas dos opciones serian las mas adecuadas, teniendo en

cuenta que a pesar de tener un coste mayor la planta que lleva el sistema con absorción,

ésta trabaja con menor grado de carga y tiene un mejor rendimiento del ciclo

combinado. Los sistemas de neblina de alta presión y de enfriamiento evaporativo, no

son adecuados para esta instalación ya que es un clima relativamente húmedo, nos

encontramos cerca de la curva de saturación y se consiguen aumentos de potencia muy

pobres. Con respecto al sistema de compresión húmeda, este seria el que llegaría a la

potencia requerida, pero la implantación de este sistema no es tan solo un desembolso

económico fuerte, sino que implica modificaciones en el compresor y compra de

equipos nuevos.

En cuanto a los sistemas híbridos el que más se acerca a la consigna, es el que usa un

sistema evaporativo con un enfriador de absorción de una etapa. Este sistema trabajaría

con un grado de carga algo más alto que si tuviéramos un sistema de absorción solo, sin

embargo presenta una ventaja y es que los sistemas de evaporativos requieren agua para

producir el enfriamiento. Esta agua puede ser aportada por la que condensa al enfriar el

flujo de aire hacia el compresor, lo cual implica ahorro de agua y de potencia de bombas

de impulsión. A pesar de ser más caro también presenta otra ventaja. Esta consiste en

que en épocas donde la temperatura no sea excesiva, no habrá que poner en

funcionamiento el enfriador por absorción y solo tendremos que usar el sistema

evaporativo lo cual supondría un ahorro en consumos de auxiliares, para los meses no

muy cálidos.

En cuanto a la elección entre cual sistema evaporativo utilizar, dado que nos

encontramos en un clima húmedo, con temperaturas seca y de bulbo húmedo muy

cercanas, como vimos en el capítulo 3 la elección por la que deberíamos decantarnos

sería el de enfriamiento evaporativo ya que trabaja mejor que el de fogging cuando los

climas son húmedos. Lo recordamos con la siguiente gráfica que vimos en el capítulo 3:

Page 23: CAPITULO 5: IMPLANTACIÓN DE UN SISTEMA DE …bibing.us.es/proyectos/abreproy/4055/fichero/Unico+volumen%2F6... · capitulo 5: implantaciÓn de un sistema de enfriamiento del aire

Por lo tanto si se tuviera que tomar una decisión final para instalar un sistema, a la vista

de los resultados obtenidos la elección del sistema óptimo resulta en un sistema

híbrido de enfriador evaporativo con sistema de enfriamiento posterior de

absorción de una etapa, cuyos resultados son:

Potencia neta para esas condiciones: 726.284 MW.

Rendimiento bruto de las turbinas de gas para esas condiciones: 36.85%.

Rendimiento neto de la planta para esas condiciones: 51.85%

Temperatura de salida del enfriador evaporativo: 33.9 ºC seca y 32.17 ºC húmeda.

Caudal del agua utilizado por el enfriador evaporativo por turbina de gas: 2.73 kg/s.

Calor de proceso utilizado en el enfriamiento por turbina de gas: 66404 kW.

Agua condensada en el proceso del enfriador de absorción por turbina de gas:

16.05kg/s.

Coste de la instalación del sistema de enfriamiento de absorción: 2273400 $.

Coste de la instalación del sistema de enfriamiento evaporativo: 1261750 $.