129
INSTITUTO POLITECNICO NACIONAL. ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD PROFESIONAL AZCAPOTZALCO CIENCIA DE LOS MATERIALES. II M. en C. José Rubén Aguilar Sánchez.

CIENCIA DE LOS MATERIALES. II · ciencia de los materiales I, así como apoya a todas las asignaturas de la carrera cuya base es el conocimiento de los materiales: Tratamientos térmicos,

  • Upload
    others

  • View
    7

  • Download
    1

Embed Size (px)

Citation preview

  • INSTITUTO POLITECNICO NACIONAL.

    ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA

    UNIDAD PROFESIONAL AZCAPOTZALCO

    CIENCIA DE LOS MATERIALES.

    II

    M. en C. José Rubén Aguilar Sánchez.

  • ÍNDICE GENERAL.

    Tema: PáginaUNIDAD I - NORMATIVIDAD. 1.1.ANTECEDENTES 1.2.DEFINICIÓN DE PROPIEDADES MECÁNICAS 1.3.FINALIDAD 1.4.CLASIFICACIÓN GENERAL DE LOS ENSAYOS 1.5.NORMAS Y ESPECIFICACIONES UNIDAD II - COMPORTAMIENTO MECANICO DE LOS METALES. 2.1.CONCEPTO DE ESFUERZO Y DEFORMACIÓN 2.2.DEFORMACIÓN ELÁSTICA (LEY DE HOOKE) 2.3.DEFORMACIÓN PLÁSTICA DE MONOCRISTALES Y POLICRISTALES

    2.4.EFECTO DE VELOCIDAD DE DEFORMACIÓN Y 2.5.TIEMPO 2.6.PROBLEMAS UNIDAD III - EVALUACIÓN DE LAS PROPIEDADES MECÁNICAS DE LOS METALES Y SU CONTROL.

    3.1.DUREZA 3.1.1.Principios y Objetivos 3.1.2. Equipos y materiales de prueba 3.1.3. Procedimientos y rnétodos de prueba 3.1.4. Conversiones de dureza 3.1.5. Aplicaciones. 3.2.TENSIÓN 3.2.1. Introducción. 3.2.2. Interpretación del diagrama esfuerzo – deformación. 3 2.3. Procedimientos y métodos de prueba 3.2.4. Determinación de propiedades 3 2.5. Aplicaciones y problemas 3.3.Compresión 3.3.1. Introducción 3.3.2. Compresión de materiales dúctiles 3.3.3. Compresión de materiales frágiles 3.3.4. Discusión de resultados 3.3.5. Aplicaciones

  • Tema: Página3.4.FLEXION 3.4.1.Principios y objetivos 3.4.2.Determinación de propiedades 3.4 3.Extensometría eléctrica 3.4.4. Aplicaciones y problemas 3.5.IMPACTO 3.5.1.Principios y objetivos 3 5.2.Clasificación de pruebas de impacto 3 5.3. Formas de fractura 3.5.4. Equipos y materiales de pruebo 3.5.5. Curva de energía de fractura vs. temperatura 3.6.TORSIÓN 3.6.TORSIÓN 3.6.1. Principios y objetivos 3.6.2. Curva de torsión 3.6.3. Interpretación y uso de resultados 3.6.4. Relación entre el módulo de elasticidad y módulo de rigidez 3.7.TERMOFLUENCIA 3.7.1. Principios y objetivos 3.7.2. Procedimientos y método de prueba 3.7.3. Curva de termo fluencia (deformación - tiempo y esfuerzo - temperatura)

    3.7.4. Interpretación y uso de resultados 3.8.TENACIDAD 3.8.1. Principios y objetivos 3.8.2. Concentración de esfuerzos 3.8.3. Criterio de la energía de Griftith 3.8.4. Tenacidad de fractura 3.8.5. Interpretación de resultados 3.9.FATIGA 3.9.1. Fundamentos generales 3.9.2. Procedimientos y métodos de prueba 3.9.3. Tensiones cíclicas 3.9.4. Iniciación de propagación de la grieta 3.9.5. Factores que afectan a la vida a fatiga 3.9.6 Influencia del medio 3.9.7. Análisis, interpretación y uso de resultados 3.10. DESGASTE 3.10.1. Principios y objetivos 3.10.2. Superficies sólidas 3.10 3. Contaminantes 3.10.4. Interpretación de resultados y aplicaciones

  • TEMA: Página

    UNIDAD IV - FRACTURA: MECANICA DE LA FRACTURA Y FRACTOGRAFIA.

    4.1.CONCEPTOS GENERALES 4.2.MECANISMOS DE FRACTURA EN LA FALLA DE METALES 4.2.1 Fundamentos de fractura 4.2.2. Fractura dúctil 4 2.3. Fractura frágil 4.2.4. Fractura por fatiga 4.2.5 Termofluencia y ruptura por esfuerzo 4.2.6. Fracturas por esfuerzo y corrosión 4.2.7. Ensayos de fractura por impacto 4.2.8. Aplicaciones ; 4.3.ORIGEN Y PREVENCIÓN DE LAS FALLAS POR FRACTURA EN LOS METALES

    4 3.1. Diseño 4.3 2. Selección de los materiales 4.3.3. Procesamiento de los materiales 4.3 4. Condiciones de servicio 4.4.DETECCIÓN DE MATERIALES POTENCIALMENTE DEFECTUOSOS

    UNIDAD V - ENSAYOS NO DESTRUCTIVOS. 5.1.CONCEPTOS GENERALES 5.2.RAYOS X 5.3 PARTICULAS MAGNETICAS 5.4.PARTICULAS FLOURECENTES 5.5.ULTRASONIDO 5.6.CORRIENTES PARASITAS UNIDAD VI - ANALISIS Y PREVENCIÓN DE FALLAS OBJETIVOS PARTICULARES DE LA UNIDAD.

    6.1.OBSERVACIONES INICIALES 6.1.1. Definiciones 6.1.2. Tipos de fracturas 6.1.3. Selección, prevención y limpieza de muestra 6.2.DATOS INFORMATIVOS DE LAS CAUSAS DE LA FALLA 6.2.1. Defectos por diseño 6.2.2. Defectos en proceso de fabricación o de manufacturación 6.2.3 Daños durante la operación 6.3.ESTUDIO DE LABORATORIO 6.3.1 Resultados de ensayo no destructivos 6.3.2. Resultados de ensayos destructivos

  • TEMA: Página6.4. SINTESIS DEL ESTUDIO DE LA FALLA 6.4.1. Análisis experimentales de esfuerzos 6.4.2. Análisis de datos y resultados 6.4 3 Prevención de fallas (modelos, simulaciones, etc.) 6.4.4. Condiciones de garantía BIBLIOGRAFIA INDICE GENERAL NORMA DGN 2001

  • BIBLIOGRAFIA: INTRODUCCIÓN A LA METALURGIA FÍSICA. Sydney Avner Editorial Mc. Graw Hill. 1992. MATERIALES PARA INGENIERIA. Van Vlack, Laurence H. Editorial CECSA 1981. CIENCIA E INGENIERIA DE L.OS MATERIALES. Donald R. Askeland. Editorial International Thomson , 2000 MATERIALES DE INGENIERIA Y SUS APLICACIONES Flinn. Richard Edítorial Mc Graw Hill. 1989. CIENCIA DE MATERIALES, SELECCIÓN Y DISEÑO Pat L. Mangonon Editorial Prentice may, 2201 FUNDAMENTOS DE LA CIENCIA E INGENIERIA DE MATERIALES William F. Smith Ed. Mc Graw - Hill HANDBOOK OF MATERIALS SELETION FOR ENGINEERING APPLICATIONS T. Murria Editorial Marcel Derker, Inc. AND INTRODUCTION TO MATERIALS SCIENCIE AND ENGENIERING Walls/Courtney/wulff Editorial Wiley

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705

    PROLOGO. El presente libro de texto, representa la información de notas, apuntes y datos técnicos que cubren en general el programa de Ciencias de los Materiales II que se imparte en la Escuela Superior de Ingeniería Mecánica y Eléctrica (Unidad Profesional Azcapotzalco) dependiente del Instituto Politécnico Nacional a los alumnos del segundo año de la carrera de Ingeniería Mecánica. Debido a lo anterior si existieran dudas respecto a lo conjugado se anexa la bibliografía de la respectiva información. Así mismo contiene parte de la experiencia profesional del autor, estos son problemas reales que se presentan en el medio profesional donde se desenvolverán los futuros Ingenieros.

    1

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 FUNDAMENTACIÓN DE LA ASIGNATURA. El ingeniero mecánico en su carácter de transformador de la energía, requiere poseer conocimientos técnicos de los materiales que habrá de laborar en su vida profesional, de ahí que el plan de estudios de la carrera de ingeniero mecánico se contemple la asignatura de ciencia de los materiales II en el 4° semestre en la que se ofrece al futuro profesional, de acuerdo con el perfil que el mismo tiene, las herramientas que le permitan la resolución de problemas que involucren la selección de materiales, las pruebas mecánicas y pruebas no destructivas, así como su cálculo y diseño. Los materiales de ingeniería han evolucionado en forma acelerada a través de los tiempos de tal manera que en la actualidad son una parte integral de la ciencia y la tecnología moderna, esto implica la necesidad de trabajar con nuevos y mejores materiales, así como establecer la metodología apropiada para su empleo en el campo de la industria, donde se requiere de egresados de las carreras de ingeniería que hayan aprendido a calcular, diseñar, interpretar y seleccionar nuevos materiales para su empleo. Esto le permitirá integrarse de manera exitosa en la vida, laboral del área de metal mecánica. Como antecedente directo se relaciona con las asignaturas de química I y II y ciencia de los materiales I, así como apoya a todas las asignaturas de la carrera cuya base es el conocimiento de los materiales: Tratamientos térmicos, Mecánica, Diseño, Selección y Aplicación de materiales, Resistencia de los materiales, Procesos de manufactura, Proyecto mecánico entre otras. Las Unidades han sido diseñadas como una guía para el docente, lo que no exime que él mismo pueda enriquecerlas, ya que el Plan de Estudios de la Carrera de Ingeniería es flexible y admite más y mejores modificaciones. El curso teórico de Ciencia de los materiales II, está contenido en seis unidades: I. Normatividad. II. Comportamiento mecánico de los materiales. III. Evaluación de las propiedades mecánicas de los materiales y su control. IV. Fractura: Mecánica de la Fractura y Fractografía. V. Ensayos no destructivos. VI. Análisis y prevención de fallas. El programa también contiene un listado de practicas de laboratorio, mismo que en su desarrollo ofrece el auxilio practico a la teoría. Se sugiere realizar un mínimo de diez practicas de laboratorio durante el curso.

    2

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 OBJETIVO GENERAL DE LA ASIGNATURA. AI término del curso el alumno empleará los conocimientos obtenidos que le permitan seleccionar adecuadamente los materiales para su aplicación tanto en el diseño de elementos de máquinas, como en los procesos de manufactura, en función de sus propiedades mecánicas. Además aplicará los conocimientos adquiridos para determinar los defectos de los materiales, empleando las pruebas no destructivas como un análisis y prevención de fallas en los materiales utilizados en Ingeniería. ESTRATEGIA DIDACTICA PARA TRABAJAR CON LAS UNIDADES. Exposiciones o intervenciones orales, recursos audiovisuales: acetatos, transparencias, retroproyector de cuerpos opacos, Data-show, dinámicas grupales como: bina, escenificación, panel, trabajo en grupos, Phillips 6,6, acuario, taller, debate, comunidad de cuestionamiento, mesa redonda, entrevista, conferencias, estudios de caso entre otras, dibujos gráficas, esquemas, cuadros sinópticos, trabajos extraclase, investigación bibliográfica, investigación de campo y practicas de laboratorio.

    3

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 UNIDAD 1. NORMATIVIDAD. OBJETIVOS PARTICULARES DE LA UNIDAD. Interpretara la importancia de conocimiento de las normas para pruebas de los materiales y su aplicación en la selección de materiales y sus usos. TEMAS: 1.1.Antecedentes_______________________5 1.2.Definición de propiedades mecánicas____7 1.3.Finalidad__________________________8 1.4.Clasificación general de los ensayos____9 1.5.Normas y especificaciones___________-15

    4

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 UNIDAD I.

    NORMATIVIDAD.

    1.1 ANTECEDENTES. Definiciones de normalización y algunas consideraciones sobre este concepto. Aun cuando desde hace algún tiempo se habla y se escribe con cierta insistencia sobre el término normalización, en pocas ocasiones se ha tratado sobre su definición aun a pesar de que uno de los propósitos fundamentales de la Normalización es precisamente de definir. Definición adoptada por la ISO La organización internacional de Normalización ISO, organismo constituido por la mayor parte de los países que tienen una institución encargada del proceso de normalizaron a nivel nacional, tiene varios Comités especiales que dependen directamente de su Consejo Directivo. Uno de estos comités es el Comité para el estudio de los Principios Científicos de la Normalización (STACO), el cuál esta formado por expertos en materia de normalización que pertenecen a varios países e instituciones. Entre los primeros documentos que preparó este comité, para someterlos a la aprobación del consejo de la ISO, incluyó las definiciones de normalización y de norma, mismas que tardó más de cinco años discutiéndolas. De acuerdo con la STACO el concepto de normalización es primero y luego el de norma; para STACO

    tiene primer lugar la acción, el proceso y luego su reconocimiento por una determinada institución, debido a eso aprobó primeramente en 1961 la definición de normalización, y en 1962 la de norma. La definición de normalización según la STACO es la siguiente: “La normalización es el proceso de formular y aplicar reglas con el propósito de realizar un orden en una actividad especifica, para el beneficio y con la cooperación de todos los intereses, y en particular para la obtención de una economía de conjunto óptima, teniendo en cuenta las características funcionales y los requisitos de seguridad. Se basa en los resultados consolidados de la ciencia, la técnica y la experiencia. Determina no solamente la base para el presente sino también para el desarrollo futuro y debe mantener su paso acorde con el progreso. Algunas aplicaciones particulares son: 1. Unidades de medida. 2. Terminología y representación simbólica. Productos y procesos (definición y selección de las características de productos, métodos de prueba y de medición, especificación de las características de los productos para definir su calidad, regulación de la definición de norma según la STACO es la siguiente: Una norma es el resultado de una gestión particular de normalización, aprobada por una autoridad reconocida.

    5

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 Puede tomar la forma de: 1. Un documento que contiene un conjunto de condiciones por ser cumplidas. 2. Una unidad fundamental o una constante física, ejemplo: amperio, cero absoluto (Kelvin), etc. 3. Un objeto para comparación física, ejemplo: metro. Algunas consideraciones sobre la definición adoptada por la ISO. De la anterior concepción de normalización podemos observar que primeramente se define que es normalización, en que consiste “es el propósito de formular y aplicar reglas”, luego se indica su fin practico “con el propósito de realizar un orden”, en un horizonte determinado “en una actividad especifica”, se mencionan también sus condiciones “con la cooperación de todos los interesados y teniendo en cuenta las características funcionales y los requisitos de seguridad” y su propósito fundamental 2para la obtención de una economía de conjunto optima”. Cabe observarse que su propósito fundamental esta en función de las circunstancias pues partiendo de la premisa de que las normas inducen un determinado comportamiento en su campo de aplicación, este comportamiento influye a su vez en la utilización y productividad de todos los factores de la producción y en algunos casos preponderantemente en el uso de ellos. Más adelante menciona STACO que “se basa en los resultados consolidados de la ciencia, la técnica y la experiencia”, lo cuál es obvio si

    consideramos a la normalización como una disciplina técnica, que debe tener un mínimo de rigor. Por último dice la STACO que determina no solamente la base para el presente sino también para el desarrollo futuro, aquí es justo deducir que la STACO con un criterio muy amplio no fija ningún limite, considerando tal vez que la Normalización tiene varios niveles de acción, pues mientras resulta bastante lógico considerar presente y futuro en una recomendación internacional dada la variedad de países y la gran diferencia existente entre sus niveles de desarrollo industrial, no lo parece mucho en una norma a nivel de empresa. Por ultimo considerándola también de una manera más técnica, la STACO menciona también que normalizar es: especificar, simplificar y unificar, entendiendo que: • Especificar es definir calidad. • Simplificar es reducir modelos superfluos y • Unificar es definir las características dimensionales para asegurar ínter cambiabilidad. Definición desde el punto de vista etimológico. Desde el punto de vista etimológico, la palabra normalización proviene de norma, está a su vez del latín norma que definen como regla a la que se modela voluntariamente una acción.

    6

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 Definición de normalización adoptadas por algunos organismos nacionales de normalización. Francia Para la Asociación Francesa de normalización “AFNOR” La normalización es un conjunto de técnicas que tiene por objeto definir colectivamente, en consideración de categorías determinadas de necesidades, gamas correspondientes de productos o métodos propios a satisfacerlos (aptitudes de empleos) eliminando las complicaciones y las variedades superfluas por medio de la simplificación, con el fin de permitir una producción y una utilización racional, sobre las bases de técnicas válidas en el momento. Inglaterra Para la Institución Británica de Normas (BSI). Normalización es el proceso de definir y aplicar, las condiciones necesarias para asegurar que una categoría dada de requisitos puedan corrientemente ser cumplidos, con un mínimo de variedad, de una manera económica y reproducible, y sobre de la mejor técnica actual. Alemania El Comité Alemán de Normas (DNA). Definió a la Normalización en 1940, desde un punto de vista muy general, en la siguiente forma: por normalización se entienden los sistemáticos trabajos de unificación llevados a cabo colectivamente sobre bases de utilidad general y con la participación de todos los sectores que, en caso, estén interesados.

    La norma es la misma solución adoptada para un problema que se repite. México En México la vigente Ley General de Normas y de Pesas y Medidas, publicada en el diario Oficial de la Federación, el día 7 de Abril de 1961, define norma industrial en su artículo 4o. como sigue: Articulo 4º.- Norma Industrial es el conjunto de especificaciones en que se define, clasifica y califica un material, producto o procedimiento para que se satisfaga las necesidades y usos a que está destinado. Por último y a manera de conclusión podemos considerar que una definición es la objetivización de un concepto, es su determinación; definir un concepto es determinar su posición dentro del sistema de todos los conceptos relacionados. La definición es una presentación verbal o escrita de características elegidas para exponer:

    • Lo que el concepto tiene en común con sus conceptos relativos y

    • Por cuales atributos se distingue de ellos.

    1.2 DEFINICIÓN DE LAS PROPIEDADES MECÁNICAS.

    PROPIEDADES MECÁNICAS. Mechanical properties. Características de los materiales mecánicos. Por ejemplo: modulo, esfuerzo permisible, relación esfuerzo -.deformación, dureza, límite de fatiga, tenacidad a la fractura.

    7

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 Modulo de elasticidad: cociente de la fuerza de estiramiento, como en el espécimen de prueba por la unidad de área de la sección transversal con el alargamiento por la unidad de longitud su valor es del orden de 105 Pascal o 107Lb/pulg2 para los metales. Esfuerzo permisible: esfuerzo de trabajo; esfuerzo de trabajo. Valor del esfuerzo en el material por de bajo del cual el objeto tiene un margen de seguridad apropiado. El esfuerzo permisible es menor que el esfuerzo de daño a causa de factores desconocidos en la uniformidad del material, limitaciones en el análisis de esfuerzos e incertidumbre respecto al uso del objeto en servicio. Relación esfuerzo deformación: Efecto de aumentar el esfuerzo sobre los materiales y su correspondiente aumento en la deformación que tiene una relación única para cada uno. Con esfuerzos hasta el limite de elasticidad, el material recuperará su longitud original al eliminarse el esfuerzo, y con este tramo de la cúrvale cociente del esfuerzo entre la deformación es una constante denominada módulo de Young del material del que se dice que obedece entonces a la ley de Hooke. Por la fluencia de cargas que inducen esfuerzos superiores al punto de fluencia, el material deja de ser elástico y, después de pasar por un estado plástico, finalmente se fracturara. Dureza: Resistencia a la deformación, es medida por lo general al calibrar la resistencia a la identación mediante alguna de las diversas pruebas de dureza.

    Límite de fatiga: Límite superior del rango de esfuerzo que un metal puede soportar de manera indefinida. Tenacidad a la fractura: Medida de la tolerancia al daño de un material que presenta fallas o grietas iniciales. 1.3 FINALIDAD Principios Generales de la Normalización El proceso de normalización industrial, elaboración y aplicación de normas, ha adquirido una creciente popularidad en el ámbito nacional que data de unos pocos años. En el caso de lo países altamente industrializados, la normalización de cincuenta años a la fecha, ha llegado a ser considerada como indispensable tanto por la producción como para la presentación de determinados servicios. La normalización es consecuencia de una serie de pasos, de estudios y discusiones, sin embargo, tratándose de generalizar, se puede decir que las dos fases más importantes de la normalización son: primero la elaboración de normas y, segundo su aplicación. Obvio resulta decir que es imposible aplicar normas sin antes haberlas preparado, pero si es necesario aclarar, que para la elaboración de normas es necesario tener en cuenta una serie de principios generales. Como todos sabemos, la normalización es la captación de la realidad, es imposible basarla en principios rígidos, establecidos a priori, que la quiten la necesaria flexibilidad para adaptarse a las

    8

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 necesidades, a la técnica y a la idiosincrasia nacional. La normalización debe ser considerada como una gestión paralela al proceso de producción y al proceso de desarrollo de los productos. La experiencia ha permitido establecer unos principios generales que deben tenerse en cuenta para realizar una verdadera normalización. Estos principios, que no significan ningún obstáculo, han sido expuestos ya por muchos expertos en normalización, en distintas épocas y lugares; estos principios son los de Homogeneidad, Equilibrio y Cooperación. En cuanto a homogeneidad, en un tiempo determinado al conjunto de normas debe constituir un todo perfectamente homogéneo; en el caso de equilibrio, la normalización debe realizar un estado de equilibrio entre las necesidades del progreso técnico y las posibilidades económicas; por último, es indispensable un principio de cooperación, la normalización es una obra eminentemente colectiva, en consecuencia, es necesario que sea establecida con el consenso y la cooperación de todos los intereses afectados. El principio de equilibrio garantiza que las normas no sean especulaciones cerebrales de escritorio, sin fruto de la colaboración de todos los sectores afectados. La normalización debe lograr un estado de equilibrio entre las necesidades del progreso y las posibilidades económicas. El último de estos tres principios generales de la normalización es la cooperación. La normalización es una obra de carácter eminentemente colectivo, en

    la que deben participar todos los sectores interesados, en una discusión franca y libre que garantice en consenso nacional. La división, menos extensa de los sectores interesados que puede afectar la aplicación de una norma, es la que los clasifica en tres grandes grupos: 1. Sector de interés general. 2. Sector productor. 3. Sector consumidor. El sector de interés general incluye a todos aquellos que no están directamente afectados por la aplicación de una norma, es decir, que no pertenecen a los sectores de producción ni de consumo; en este grupo se incluye a los profesores, a los consultores técnicos, a los investigadores, asociaciones de profesionistas, etc. El sector productor, se refiere a los fabricantes del producto por normalizar, en el caso de que una norma sea preparada exclusivamente por miembros de este sector, éstos estarían asumiendo una doble misión, la de hacer el producto y juzgarlo; o lo que es más, hacerlo de acuerdo con su único y propio criterio; puede verse tentado a establecer niveles mas bajos de los alcanzables, en perjuicio del consumidor y sin el estimulo de exigencias que lo obliguen a una constante superación. Al sector consumidor pertenecen tanto los consumidores directos como los intermediarios. Si una norma fuera elaborada exclusivamente con la opinión de este sector, seguramente los consumidores con su desconocimiento de las posibilidades industriales, exigirían niveles de calidad difícilmente alcanzables,

    9

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 provocando sin preverlo, un encarecimiento o la inaplicabilidad de la norma, y no se cumpliría tampoco con el principio general de equilibrio. 1.4 CLASIFICACIÓN GENERAL DE

    LOS ENSAYOS Que es un ensayo: Los ensayos tienen como finalidad determinar las características de los materiales. Clasificación de los ensayos: 1.1 Ensayos de características Químico: Determinar la composición de los materiales. Cristales: Determinar la cristalización, se realiza mediante un microscopio electrónico. Microscópicos: Determinar el grano. Macroscópicos: Determinar la fibra Térmicos: Puntos de fusión. Puntos críticos. Constituyentes: (Ej. (Carburo de...) 1.2 Ensayos destructivos: (E.D.) Ensayos de propiedades mecánicas: Estáticos: Durezas, Tracción, Compresión, Cizalladura, Flexión, Pandeo, Fluencia Dinámicos: Resistencia al choque, Desgaste, Fatiga 1.3 Ensayos tecnológicos: Determ. el comportamiento de los mat. ante operaciones industriales: Doblado, Plegado, Forja, Embutición, Soldadura, Laminación,... 1.4 Ensayos No destructivos: (Por orden de importancia)Rayos X, Rayos Gamma (Se usa un isótopo reactivo, uso de radiografías), Ultrasonidos, Partículas magnéticas, Líquidos

    penetrantes, Corrientes Inducidas, Magnéticos, Sónicos (Es el más utilizado, un mat. sin grietas tiene un sonido agudo; si el mat. Tiene grietas el sonido es más grave.) •Que es un ensayo de dureza:las propiedades mecánicas de los materiales son: COHESION: Resistencia de los átomos a separarse unos de otros. ELASTICIDAD: Capacidad de un material de recobrar su forma primitiva cuando cesa la causa que los deformara. PLASTICIDAD: Capacidad de un material a deformarse. Se clasifica en: MALEABILIDAD: Facilidad a deformarse en láminas. DUCTILIDAD: Facilidad a deformarse en hilos. Para determinar la cohesión se realizan ensayos de DUREZA y tamaño del grano. Para determinar la elasticidad y la plasticidad se realizan ensayos de TRACCION y COMPRESION. 2 - Definiciones de Dureza. a) Dureza al rayado: Resistencia que opone un material a dejarse rayar por otro. Dureza Mohs (mineralúgica), Dureza Lima, Dureza Martens, Dureza Turner. b) Dureza a la penetración: Resistencia que opone un material a dejarse penetrar por otro más duro. HBS y HBW, HR, HV, HK, POLDI (Brinell dinámico), Herziana, Monotrón. c) Dureza elástica: Reacción elástica del material cuando se deja caer sobre él un cuerpo más duro. SHORE y Método Dinámico.

    10

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 d) Dureza Pendular: Resistencia que opone un material a que oscile un péndulo sobre él. a) Dureza al Rayado. * Dureza MOHS: Se usa para determinar la dureza de los minerales. Se basa en que un cuerpo es rayado por otro más duro. Esta es la escala de Mohs: 1 - Talco 6 - Feldespato (Ortosa) 2 - Yeso 7 - Cuarzo 3 - Calcita 8 - Topacio 4 - Fluorita 9 - Corindón 5 - Apatita 10 - Diamante La fundición gris esta entre 8 y 9; el hierro dulce en el 5; y los aceros entre 6,7 y 8. * Dureza MARTENS: Se basa en la medida de la anchura de la raya que produce en el material una punta de diamante de forma piramidal y de ángulo en el vértice de 90º, con una carga constante y determinada. Se aplica sobre superficies nitruradas. Se mide “a” en micras y la dureza Martens viene dada por: DUREZA MARTENS= peso en gr que produce en el material una huella de 10 micras * Dureza TURNER: Es una variante de la dureza Martens. La dureza viene dada en función de los gramos necesarios (carga necesaria, P) para conseguir una deformación tal que a = 10 micras. El valor de las carga será el valor de la dureza Turner. * Dureza a la lima: Se usa en industria. En todo material templado la lima no "entra". Dependiendo de sí la lima entra o no entra sabremos: No entra, el material raya a la lima; Dureza mayor de 60 HRC

    Entra, la lima raya al material; Dureza menor de 60 HRC b) Dureza a la penetración: * Dureza HERZIANA: Viene determinada por la menor carga que hay que aplicar a un material (con bolas de 1,5 a 4 mm. de acero extraduro) para que deje huella. * Dureza MONOTRON: Es una variante de la dureza Herziana. Viene expresada por la carga que hay que aplicar para producir una penetración de 0,0018 pulgadas. El penetrador es una semiesfera de diamante de 0,75 mm. Tiene dos dispositivos, uno que da la carga aplicada y un sensor que para el ensayo cuando la penetración es de 0,0018Ó. * Dureza BRINELL ( HBS y HBW): UNE 7-422-85 Este método consiste en comprimir una bola de acero templado, de un diámetro determinado, sobre un material a ensayar, por medio de una carga y durante un tiempo también conocido. HB viene dado por: DUREZA=(fuerza aplicada (kgf))/(superficie esférica de la huella) El valor de la carga P viene dado por: P = K D2, donde K=cte. de ensayo. El tiempo de ensayo es t=10 - 15 seg. según normas UNE. Los valores de K para algunos materiales son: Aceros y elementos siderúrgicos: K=30 ; Cobres, Bronces, Latones: K=10 ; Aluminio y aleaciones: K=5 ; Materiales blandos (Sn, Pb): K=2,5; No se utilizan los ensayos Brinell para durezas superiores a 500 (aceros templados), porque se deforman las bolas.

    11

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 Nomenclatura: XXX HBS (D/P/t) Ej. 156 HBS 10/3000/15. Generalmente se usan bolas de 10 mm; cuando t = 15 seg. no hace falta indicarlo. Condiciones de ensayo: 1 - La superficie de la probeta debe ser plana, estar limpia, homogénea y perpendicular a la bola, libre de óxido y lubricantes. 2 - El espesor de la probeta (s), debe ser al menos ocho veces la flecha de la impronta. ( s = 8f) 3 - La distancia entre 2 huellas = (4:6) d; la distancia del centro de la huella al borde = (2,5:3) d. 4 - Temperatura de ensayo = 23 C ±5 Uso de HBS: -Cálculo de la resistencia a la tracción. r= mH n * Dureza Meyer ( HBW ): Es igual que la Brinell excepto que S es la superficie proyectada de la huella: HV=1,8544 P/l [kg/mm] * Dureza ROCKWELL ( HRx ): UNE 7-424/89/1 (Normal) UNE 7-424/89/2 (Superficial) El método Rockwell se basa en la resistencia que oponen los materiales a ser penetrados, se determina la dureza en función de la profundidad de la huella. Permite medir durezas en aceros templados. Da directamente la dureza en el durómetro: - escala de bolas de 130 divisiones (rojo) - escala de conos de 100 divisiones (negro)

    Los ensayos se pueden realizar con 2 tipos de penetradores: Bolas de 1/8” y 1/16” y Conos de 120º ángulo en el vértice. Las cargas se aplican en dos tiempos; primero se aplica la carga previa (10 — 3 Kp); y posteriormente se mete el resto de la carga. A partir de introducir la carga adicional se mide la dureza. La carga previa en HR normal es de 10 Kp y en HR superficial es de 3 Kp. Nomenclatura: XXX HRx t XXX HRS P/t Condiciones de ensayo: 1 - La superficie de la probeta debe ser plana, estar limpia, homogénea y perpendicular a la bola, libre de óxido y lubricantes. 2. El espesor de la probeta debe ser 10 veces la penetración del cono. s = 10 f 3-La distancia entre 2 huellas = 3d; la distancia del centro de la huella al borde = 2,5d 4 - Temperatura de ensayo = 23º C ±5ºC 5. Si las piezas son cilíndricas y d

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 * Dureza VICKERS ( HV ): UNE 7-423/84/1 (HV 5 a HV 100) El método Vickers se deriva directamente del método Brinell. Se emplea mucho en laboratorio y en particular para piezas delgadas y templadas, con espesores mínimos hasta de 0,2 mm. Se utiliza como penetrador una punta piramidal de base cuadrangular y ángulo en el vértice entre caras de 136º. Este ángulo se eligió para que la bola Brinell quedase circunscrita al cono en el borde de la huella. La dureza Vickers viene dada por: HV = P/S [Kg/mm] donde S es la superficie de la impronta y P la carga aplicada. Nomenclatura: XXX HV P/t Condiciones de ensayo: 1 - La superficie de la probeta debe ser pulida, plana; estar limpia, homogénea y perpendicular a la bola, libre de óxido y lubricantes. 2 - s = 1,5 d (s= espesor de la probeta). 3 - Distancia entre centros de 2 huellas = (3:6) d; Distancia del centro de la huella al borde = (2,5:3) d. 4 - Temperatura de ensayo = 23º C ±5ºC 5 - En probetas cilíndricas, P debe ser tan pequeña que f < 0,01 mm. d ± 0,001 mm. ; d>0,5 mm. => d±0,01 mm. HV se redondea a la décima. HV>25 ++> se redondea a la unidad. Ventajas del método Vickers:

    1. Las huellas Vickers son comparables entre sí; independientes de las cargas. 2. Pueden medirse una amplia gama de materiales, desde muy blandos hasta muy duros, llegándose hasta 1.150 HV. 3. Se pueden medir piezas muy delgadas con cargas peque-as, hasta espesores de orden de 0,05 mm. 4. Puede medirse dureza superficial. (para determinar recubrimientos de los materiales) 5. La escala Vickers es más detallada que la Rockwell; 32 unidades Vickers = 1 unidad Rockwell 6. Como es preciso examinar la huella puede comprobarse el estado del penetrador. * Dureza KNOOP ( HK ): Se usa para durezas normales (P=1-5 Kp), superficiales (P=1/2-1 Kp) y microdurezas (P=10 gr-500 gr). El penetrador esta hecho con una pirámide rómbica con relación entre diagonales de 1:7. Sus ángulos entre aristas son a = 130¡ y b = 170º30”. El método Knoop se emplea sólo en laboratorio, para medir la dureza de láminas muy delgadas, incluso de depósitos electrolíticos. Nomenclatura: XXX HK P/t Condiciones de Ensayo: 1. D £ 3e (e= espesor de la probeta) * Dureza POLDI : Es una variable de la dureza Brinell. Es portátil. Es independiente del tiempo de carga.

    13

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 Se basa en ejercer una carga P sobre el durómetro que nos producirá 2 huellas en dos probetas, una de dureza conocida y otra de dureza desconocida. La dureza esta en razón inversa del tipo del material (duro, blando). Nomenclatura: XXX HBS D POLDI c) Dureza elástica: * Dureza SHORE ( HS ): Se basa en la reacción elástica del material cuando dejamos caer sobre él un material más duro. Si el material es blando absorbe la energía del choque, si el material es duro produce un rebote cuya altura se mide. La práctica se realiza en un ESCLEROMETRO o escleroscopio, aparato formado por un tubo de cristal de 300 mm. de altura, por cuyo interior cae un martillo con punta de diamante redondeada de 2,36 gr. La altura de la caída es de 254 mm. y la escala esta dividida en 140 divisiones Nomenclatura: XXX HS Condiciones de ensayo: 1. Superficie plana, limpia, pulida y perpendicular al esclerímetro. 2. Hacer 3 ensayos y cada vez en sitios diferentes (endurecimiento de la superficie por el choque). Ventajas del método Shore: 1. No produce prácticamente ninguna huella en el material ensayado. 2. Permite medir dureza superficial de piezas terminadas.

    3. Es el único ensayo NO destructivo para medir durezas. * Método Dinámico para ensayo de la dureza al rebote ( L ): Este método se basa en las medidas de las velocidades de impulsión y rebote de un cuerpo móvil impulsado por un resorte contra la superficie del material metálico a ensayar. Existen curvas de relación de L con HB y HRC. El tiempo de ensayo es de 2 seg. y el durómetro puede estar en cualquier posición (horizontal, vertical, inclinado...), vasta con luego restar al resultado 10 si estaba horizontal, y diferentes valores(18...26) si estaba invertido. Uso industrial: Piezas de gran tamaño, Mapas de dureza de una misma pieza. Ventajas: Operario No cualificado, Resultados independientes del operario • Dureza por rebote • DUROSCOPIO: d) Dureza pendular: Se basa en la resistencia que opone un material a que oscile un péndulo sobre él. Sirve para materiales con reacción elástica muy alta. Consiste en 2 péndulos, uno se apoya sobre un eje de cuarzo y el otro sobre el material a ensayar. Se dejan caer y empiezan a oscilar, como son diferentes materiales tienen diferentes durezas, luego hay una descompensación de oscilaciones, cuando las oscilaciones coinciden de nuevo se mide el tiempo que han tardado en coincidir y luego con ese tiempo se traduce a la dureza correspondiente.

    14

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 * Método UCI: Es un aparato portátil, con un penetrador piramidal de 136º entre caras de diamante. Se coloca el penetrador que vibra con una frecuencia y una carga de 5 Kp. Según la huella que produce se genera una frecuencia de resonancia, que es traducida por el aparato al dato numérico de la dureza que se halla seleccionado, puesto que nos puede dar cualquiera (HBS, HRx, HV,...). Existe una relación directa entre la frecuencia de resonancia y la dureza del material. * Relación de HBS con HRb y HRc. Fórmulas empíricas de tolerancia ±10%: Con esto quedan explicados los ensayos de dureza para cualquier tipo de material, al no haber podido encontrar nada acerca de los ensayos de dureza en los materiales plásticos. Deformación plástica por mezclado

    1.5 NORMAS Y

    ESPECIFICACIONES SECRETARIA DE COMERCIO Y

    FOMENTO INDUSTRIAL NORMA MEXICANA NMX-B-242-1990 PLANCHAS DE ACERO AL CARBONO CON RESISTENCIA A LA TENSION INTERMEDIA Y BAJA PARA RECIPIENTES QUE TRABAJAN A PRESION DIRECCION GENERAL DE NORMAS PREFACIO En la elaboración de esta norma participaron las siguientes empresas e instituciones: - BABCOCK & WILCOX DE MEXICO, S.A. DE C.V. - CAMARA NACIONAL DE LA INDUSTRIA DE LA CONSTRUCCION. - CAMARA NACIONAL DE LA INDUSTRIA DEL HIERRO Y DEL ACERO. - COMISION FEDERAL DE ELECTRICIDAD. - DEPARTAMENTO DE LA INDUSTRIA MILITAR. - DEPARTAMENTO DEL DISTRITO FEDERAL. - - FERROCARRILES 1 OBJETIVO Y CAMPO DE APLICACIÓN 1.1 Esta Norma Oficial Mexicana establece los requisitos que deben cumplir las plantas de acero al carbono, con resistencia a la tensión intermedia y baja, que se utilizan en la fabricación de calderas y recipientes que trabajan a presión.

    15

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 Este material es adecuado para soldarse. A opción del fabricante, las planchas pueden fabricarse de acero calmado, semicalmado o tapado. 1.2 La norma contempla tres clases de planchas, las cuales se indican en 3.1. 1.3 El espesor máximo de las planchas que se contemplan en esta norma es de 50mm. 2 REFERENCIAS Esta norma se complementa con la siguiente Norma Oficial Mexicana vigente: NOM-B-246 "Requisitos generales

    para planchas de acero para recipientes que trabajan a presión."

    3 CLASIFICACIÓN Y DESIGNACIÓN 3.1 Clasificación Las planchas se clasifican conforme a sus niveles de resistencia a la tensión en tres clases: A, B y C. 3.2 Designación La designación debe ser la que se establece en la NOM-B-246. 4 ESPECIFICACIONES 4.1 Requisitos generales. 4.1.1 A menos que se especifique otra cosa, las planchas objeto de esta norma, deben cumplir con los

    requisitos aplicables de la NOM-B-246, como son: definiciones, inspección, certificación, etc. 4.1.2 Además de los requisitos básicos, esta norma también incluye requisitos suplementarios, los cuales deben aplicarse sólo cuando se especifiquen pruebas o exámenes adicionales, para cumplir con el uso final. Los requisitos suplementarios se indican en esta norma, y se detallan en la NOM-B-246. 4.1.3 En caso de discrepancia en cuanto a requisitos, deben prevalecer en primer lugar los indicados en esta norma sobre los especificados en la NOM-B-246. 4.1.4 Tratamiento térmico. Las planchas se suministran, generalmente sin tratamiento térmico (en su condición de laminado). Pueden solicitarse normalizadas o con relevado de esfuerzos, o con ambos tratamientos. 4.2 Requisitos químicos. El acero debe cumplir con la composición química indicada en la tabla 1. Tabla 1.- Composición química, en por ciento.

    Nota.- (a) Se aplica para ambos análisis ( de colada y de producto).

    16

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 4.3 Requisitos de tensión. El material debe cumplir con los requisitos de tensión indicados en la tabla 2. 5 MUESTREO El muestreo debe efectuarse conforme a lo indicado en la NOM-B-246. Tabla 2.- Requisitos de tensión. Notas.- a) Ver inciso 6.2 de esta norma. b) Ver requisitos de tensión de la NOM-B-246. 6 MÉTODOS DE PRUEBA 6.1 Los métodos de prueba para verificar las especificaciones de esta norma, deben ser los indicados en la NOM-B-246. 6.2 En la prueba de tensión, el límite de fluencia debe determinarse, ya sea empleando el método de deformación permanente especificado (Off-Set), utilizando un

    valor de 0.2% de deformación, o por el método de extensión total bajo carga, considerando una deformación de 0.5% de la longitud calibrada. 7 REQUISITOS SUPLEMENTARIOS 7.1 Los requisitos suplementarios sólo deben aplicarse a solicitud del comprador, previo acuerdo con el fabricante. Los detalles de estos deben ser los que se especifican en la NOM-B-246. A continuación se da una lista de los requisitos suplementarios a los que se pueden someter las planchas objeto de esta norma. 7.1.1 Tratamiento térmico simulado, posterior a la soldadura de probetas, para pruebas mecánicas. 7.1.2 Prueba de tensión adicional. 7.1.3 Prueba de doblado. 7.1.4 Contenido de cobre El contenido de cobre en el análisis de colada debe ser de 0.20% a 0.35% y para el análisis de producto de 0.18% a 0.37%. SECRETARIA DE COMERCIO Y FOMENTO INDUSTRIAL NORMA MEXICANA NMX-B-244-1990 PLANCHAS DE ACERO AL CARBONO, PARA SERVICIO A TEMPERATURAS ALTAS E INTERMEDIAS, PARA

    17

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 RECIPIENTES QUE TRABAJAN A PRESION

    DIRECCION GENERAL DE NORMAS PREFACIO En la elaboración de esta norma participaron las siguientes empresas e instituciones. - BABCOCK & WILCOX DE MEXICO, S.A. DE C.V. - CAMARA NACIONAL DE LA INDUSTRIA DE LA CONSTRUCCION. - CAMARA NACIONAL DE LA INDUSTRIA DEL HIERRO Y DEL

    ACERO. - COMISION FEDERAL DE ELECTRICIDAD. - DEPARTAMENTO DE LA INDUSTRIA MILITAR. - DEPARTAMENTO DEL DISTRITO FEDERAL. - FERROCARRILES NACIONALES DE MEXICO. - SISTEMA DE TRANSPORTE

    COLECTIVO -METRO-. PLANCHAS DE ACERO AL CARBONO, PARA SERVICIO A TEMPERATURAS ALTAS E INTERMEDIAS, PARA

    RECIPIENTES QUE TRABAJAN A PRESION

    1 OBJETIVO Y CAMPO DE APLICACION 1.1 Esta Norma Oficial Mexicana establece los requisitos que deben cumplir las planchas de acero al carbono - silicio, destinadas principalmente para servicio a temperaturas altas e intermedias, en calderas y otros recipientes soldados que trabajan a presión. 1.2 Esta norma contempla cuatro clases de planchas, las cuales se indican en 3.1. 1.3 Los espesores máximos de las planchas, solamente están en función de la capacidad de la composición química para cumplir con los requisitos de tensión especificados; sin embargo, los espesores máximos de las planchas contempladas en esta norma, se limitan a los siguientes:

    2 REFERENCIAS Esta norma se complementa con las siguientes Normas Mexicanas vigentes: NOM-B-246 “Requisitos generales para planchas de acero para recipientes que trabajan a presión”. NOM-B-261 “Inspección ultrasónica con haz angular de planchas de acero”. NOM-B-476 “Método de inspección ultrasónica con haz recto para planchas de acero”.

    18

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705

    3 CLASIFICACION Y DESIGNACION 3.1 Clasificación Las planchas se clasifican conforme a sus niveles de resistencia a la tensión, en cuatro clases: 3.2 Designación La designación debe ser conforme a lo indicado en la NOM-B-246.

    4 ESPECIFICACIONES 4.1 Requisitos generales 4.1.1 Las planchas suministradas bajo esta norma deben cumplir con los requisitos aplicables de la NOM-B-246, como son: definiciones, inspección, certificación, etc. 4.1.2 Además de los requisitos básicos de esta norma, se incluyen requisitos suplementarios, los cuales deben aplicarse cuando se especifiquen pruebas o exámenes adicionales, para cumplir con el uso final. Dichos requisitos suplementarios se indican en 7.

    4.1.3 En caso de discrepancia en cuanto a requisitos, deben prevalecer en primer lugar los indicados en esta norma, sobre los especificados en la NOM-B-246. 4.2 Fabricación El acero debe ser calmado, y a menos que se especifique otra cosa, debe fabricarse de tal manera que se obtenga una microestructura de grano grueso. Entendiéndose por grueso aquel que tiene un número de 1 a 5 (ver NOM-B-246). 4.3 Tratamiento térmico 4.3.1 Las planchas de 50mm de espesor y menores se suministran generalmente sin tratamiento térmico (en su condición de laminado). Estas planchas pueden solicitarse normalizadas o con relevado de esfuerzos, o con ambos tratamientos. 4.3.1.1 Las planchas con espesor mayor de 50 mm deben ser normalizadas. 4.4 Requisitos químicos 4.4.1 El acero debe cumplir con los requisitos químicos indicados en la tabla 1

    19

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705

    Tabla 1. Composición química, en por ciento. Nota.- (a) Se aplica para ambos análisis (de colada y de producto). 4.5 Requisitos de tensión El material debe cumplir con los requisitos de tensión indicados en la tabla 2.

    Tabla 2.- Requisitos de tensión. Nota de la tabla 2.- (a) Ver requisitos de tensión de la NOM-B-246. 5 MUESTREO El muestreo debe efectuarse conforme a lo indicado en la NOM-B-246.

    6 METODOS DE PRUEBA Los métodos de prueba para verificar las especificaciones de esta norma deben ser los indicados en la NOM-B-246.

    7 REQUISITOS SUPLEMENTARIOS Los requisitos suplementarios solo deben aplicarse a solicitud del comprador, previo acuerdo con el fabricante. Los detalles de éstos deben ser los que se especifican en la NOM-B-246. A continuación se da una lista de los requisitos Suplementarios a que pueden someterse las planchas objeto de esta norma. 7.1 Análisis de producto. 7.2 Tratamiento térmico simulado posterior a la soldadura de probetas para pruebas mecánicas. 7.3 Prueba de tensión adicional. 7.4 Prueba de impacto tipo Charpy con ranura en "V". 7.5 Prueba de caída de peso. 7.6 Examen ultrasónico, conforme a lo indicado en la NOM-B-476. 7.7 Examen con partículas magnéticas. 7.8 Examen ultrasónico, conforme a lo indicado en la NOM-B-261. 7.9 Prueba de doblado.

    20

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 SECRETARIA DE COMERCIO Y FOMENTO INDUSTRIAL NORMA MEXICANA NMX-B-243-1990 PLANCHAS DE ACERO AL CARBONO-MANGANESO DE AL RESISTENCIA PARA RECIPIENTES QUE TRABAJAN PRESION DIRECCION GENERAL DE NORMAS PREFACIO En la elaboración de esta norma participaron las siguientes empresas e instituciones. - BABCOCK & WILCOX DE

    MEXICO, S.A. DE C.V. - CAMARA NACIONAL DE LA

    INDUSTRIA DE LA CONSTRUCCION.

    - CAMARA NACIONAL DE LA INDUSTRIA DEL HIERRO Y DEL ACERO. - COMISION FEDERAL DE

    ELECTRICIDAD. - DEPARTAMENTO DE LA

    INDUSTRIA MILITAR. - DEPARTAMENTO DEL

    DISTRITO FEDERAL. - FERROCARRILES

    NACIONALES DE MEXICO. - SISTEMA DE TRANSPORTE

    COLECTIVO -METRO-. PLANCHAS DE ACERO AL CARBONO-MANGANESO DE AL RESISTENCIA PARA RECIPIENTES QUE TRABAJAN PRESION

    1 OBJETIVO Y CAMPO DE APLICACIÓN 1.1 Esta Norma oficial Mexicana establece los requisitos que deben cumplir las planchas de acero al carbono - manganeso, con alta resistencia a la tensión, las cuales se emplean en la fabricación de recipientes que trabajan a presión. Este material es adecuado para soldarse. 1.2 Las planchas se producen a partir de un acero semicalmado o tapado Sin embargo, a opción del fabricante o del comprador, el acero puede ser calmado con silicio o con aluminio. 1.3 El espesor máximo de las

    planchas objeto de esta norma es de 20mm.

    2 REFERENCIAS

    Esta norma se complementa con la siguiente Norma Oficial Mexicana vigente: NOM-B-246 "Requisitos generales para planchas de acero, para recipientes que trabajan a presión."

    3 CLASIFICACIÓN Y DESIGNACIÓN 3.1 Clasificación Las planchas objeto de esta norma se

    21

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 suministran en una sola clase, por lo que no requieren clasificación. 3.2 Designación La designación debe ser conforme a lo indicado en la NOM-B-246. 4 ESPECIFICACIONES 4.1 Requisitos generales 4.1.1 A menos que se especifique otra cosa, las planchas suministradas bajo esta norma deben cumplir con los requisitos aplicables de la NOM-B-246, como son: definiciones, inspección, certificación, etc. 4.1.2 En caso de discrepancia en cuanto a requisitos, deben prevalecer en primer lugar los indicados en esta norma sobre los especificados en la NOM-B-246. 4.2 Tratamiento térmico Las planchas se suministran generalmente, sin tratamiento térmico (en su condición de laminado). Pueden solicitarse normalizadas o con relevado de esfuerzos, o con ambos tratamientos. 4.3 Requisitos químicos El acero debe cumplir con la composición química indicada en la tabla 1. Tabla 1.- Composición química. Notas.- a) Se aplica para ambos análisis (de colada y de producto).

    b) Cuando el contenido de silicio

    es mayor de 0.10%, el contenido máximo de carbono no debe exceder de 0.28%.

    c) A opción del fabricante o del

    comprador, el contenido máximo de silicio puede ser hasta 0.40% en el análisis de colada y hasta 0.45% en el análisis de producto.

    4.4 Requisitos de tensión El material debe cumplir con los requisitos de tensión indicados en la tabla 2. 5 MUESTREO El muestreo debe efectuarse conforme a lo indicado en la NOM-B-246.

    Tabla 2. Requisitos de tensión. Nota.- (a) Ver requisitos de tensión en la NOM-B-246. 6 MÉTODOS DE PRUEBA Los métodos de prueba, deben ser los indicados en la NOM-B-246.

    22

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 7 REQUISITOS SUPLEMENTARIOS 7.1 Los siguientes requisitos suplementarios, deben aplicarse por acuerdo previo entre fabricante y comprador; y deben especificarse en la orden de compra. En la NOM-B-246 se indican otros requisitos suplementarios, los cuales puede solicitar el comprador. Aquellos que se consideran adecuados para usarse en esta norma, se indican a continuación. 7.2 Tratamiento térmico simulado posterior a la soldadura de probetas para pruebas mecánicas. 7.3 Prueba de doblado SECRETARIA DE COMERCIO Y FOMENTO INDUSTRIAL NORMA MEXICANA NMX-B-243-1990 PLANCHAS DE ACERO AL CARBONO-MANGANESO DE AL RESISTENCIA PARA RECIPIENTES QUE TRABAJAN PRESIÓN DIRECCION GENERAL DE NORMAS PREFACIO En la elaboración de esta norma participaron las siguientes empresas e instituciones.

    - BABCOCK & WILCOX DE MEXICO, S.A. DE C.V.

    - CAMARA NACIONAL DE LA INDUSTRIA DE LA CONSTRUCCION.

    - CAMARA NACIONAL DE LA INDUSTRIA DEL HIERRO Y DEL

    ACERO. - COMISION FEDERAL DE

    ELECTRICIDAD. - DEPARTAMENTO DE LA

    INDUSTRIA MILITAR. - DEPARTAMENTO DEL

    DISTRITO FEDERAL. - FERROCARRILES

    NACIONALES DE MEXICO. - SISTEMA DE TRANSPORTE

    COLECTIVO -METRO-. PLANCHAS DE ACERO AL CARBONO-MANGANESO DE AL RESISTENCIA PARA RECIPIENTES QUE TRABAJAN PRESION 1 OBJETIVO Y CAMPO DE APLICACION 1.1 Esta Norma oficial Mexicana establece los requisitos que deben cumplir las planchas de acero al carbono - manganeso, con alta resistencia a la tensión, las cuales se emplean en la fabricación de recipientes que trabajan a presión. Este material es adecuado para soldarse. 1.2 Las planchas se producen a partir de un acero semicalmado o tapado Sin embargo, a opción del fabricante o del comprador, el acero puede ser calmado con silicio o con aluminio.

    23

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 1.3 El espesor máximo de las planchas objeto de esta norma es de 20mm. 3 REFERENCIAS

    Esta norma se complementa con la siguiente Norma Oficial Mexicana vigente:

    NOM-B-246 "Requisitos generales para planchas de acero, para recipientes que trabajan a presión."

    3 CLASIFICACION Y DESIGNACION 3.1 Clasificación Las planchas objeto de esta norma se suministran en una sola clase, por lo que no requieren clasificación. 3.2 Designación La designación debe ser conforme a lo indicado en la NOM-B-246. 4 ESPECIFICACIONES 4.1 Requisitos generales 4.1.1 A menos que se especifique otra cosa, las planchas suministradas bajo esta norma deben cumplir con los requisitos aplicables de la NOM-B-246, como son: definiciones, inspección, certificación, etc. 4.1.2 En caso de discrepancia en cuanto a requisitos, deben prevalecer en primer lugar los indicados en esta norma sobre los especificados en la NOM-B-246.

    4.2 Tratamiento térmico Las planchas se suministran generalmente, sin tratamiento térmico (en su condición de laminado). Pueden solicitarse normalizadas o con relevado de esfuerzos, o con ambos tratamientos. 4.3 Requisitos químicos El acero debe cumplir con la composición química indicada en la tabla 1. Tabla 1.- Composición química. Notas.- a) Se aplica para ambos análisis (de colada y de producto). b) Cuando el contenido de silicio es mayor de 0.10%, el contenido máximo de carbono no debe exceder de 0.28%. c) A opción del fabricante o del

    comprador, el contenido máximo de silicio puede ser hasta 0.40% en el análisis de colada y hasta 0.45% en el análisis de producto.

    4.4 Requisitos de tensión El material debe cumplir con los requisitos de tensión indicados en la tabla 2. 5 MUESTREO El muestreo debe efectuarse conforme a lo indicado en la NOM-B-246.

    24

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705

    Tabla 2. Requisitos de tensión. Nota.- (a) Ver requisitos de tensión en la NOM-B-246. 6 METODOS DE PRUEBA 7 REQUISITOS SUPLEMENTARIOS 7.1 Los siguientes requisitos suplementarios, deben aplicarse por acuerdo previo entre fabricante y comprador; y deben especificarse en la orden de compra. En la NOM-B-246 se indican otros requisitos suplementarios, los cuales puede solicitar el comprador. Aquellos que se consideran adecuados para usarse en esta norma, se indican a continuación. 7.2 Tratamiento térmico simulado posterior a la soldadura de probetas para pruebas mecánicas.

    25

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705

    UNlDAD II. COMPORTAMIENTO MECANICO DE LOS METALES. OBJETIVOS PARTICULARES DE LA UNIDAD. AI finalizar la Unidad el alumno, obtendrá los conocimientos del esfuerzo y la deformación aplicados sobre los materiales, cuando se les aplica una carga o fuerza, además sabrá a interpretar la curva de esfuerzo - deformación en el ensayo de tensión y compresión, además determinará algunas propiedades de los materiales a partir de este diagrama, etc. Aplicará los conocimientos anteriores en la solución de problemas planteados en clase. TEMAS: 2.1.CONCEPTO DE ESFUERZO Y DEFORMACIÓN____________________27 2.2.DEFORMACIÓN ELASTICA (LEY DE HOOKE)______________________28 2.3.DEFORMACIÓN PLASTICA DE MONOCRISTALES Y POLICRISTALES__34 2.4.EFECTO DE VELOCIDAD DE DEFORMACIÓN Y TIEMPO____________36 2.6.PROBLEMAS________________________________________________37

    26

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 UNIDAD II. COMPORTAMIENTO MECANICO DE LOS METALES. OBJETIVOS PARTICULARES DE LA UNIDAD. Al finalizar la Unidad el alumno, obtendrá los conocimientos del esfuerzo y la deformación aplicados sobre los materiales, cuando se les aplica una carga o fuerza, además sabrá interpretar la curva de esfuerzo – deformación en el ensayo de tensión y compresión, además determinará algunas propiedades de los materiales a partir de este diagrama, etc. Aplicará los conocimientos anteriores en la solución de problemas planteados en clase. COMPORTAMIENTO MECANICO DE LOS METALES. 2.1 CONCEPTO DE ESFUERZO Y DEFORMACIÓN. Cuando a un cuerpo se le aplica una fuerza externa que tiende a cambiar su forma o tamaño, el cuerpo se resiste a esa fuerza. La resistencia interna del cuerpo se conoce como esfuerzo y los cambios en las dimensiones del cuerpo que la acompañan se llaman deformaciones o alargamientos. El esfuerzo total es la resistencias interna total que actúa en una sección del cuerpo. Por lo general, la cantidad determinada es la intensidad de esfuerzo o esfuerzo unitario, definida

    como el esfuerzo por unidad de área. El esfuerzo unitario generalmente se expresa en unidades de libra por pulgada cuadrada (lb/pulg2), y para una carga axial tensil o una comprensiva, se calcula como la carga por unidad de área. La deformación o alargamiento total en cualquier dirección es el cambio total de una dimensión del cuerpo en esa dirección, y la deformación o tensión unitaria es la deformación o alargamiento por unidad de longitud en esa dirección. Inicialmente, la deformación es en esencia proporcional al esfuerzo; además, es reversible. Después de eliminar el esfuerzo, la deformación desaparece. El modulo de elasticidad es la relación entre el esfuerzo y la deformación reversible :

    σε

    εσ

    Cuando una pieza de metal es sometida a una fuerza de tensión uniaxial, se produce una deformación del metal. Si el metal vuelve a sus dimensiones originales cuando la fuerza cesa, se dice que el metal ha experimentado una deformación elástica. El número de deformaciones elásticas que un metal puede soportar es pequeño, puesto que durante la deformación elástica los átomos del metal son desplazados de su posición original, pero no hasta el extremo de que

    27

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 tomen nuevas posiciones fijas. De esta manera, cuando la fuerza sobre el metal que ha sido deformado elásticamente cesa, los átomos del metal vuelven a sus posiciones originales y el metal adquiere de nuevo su forma original. Si el metal es deformado hasta el extremo de que no puede recuperar completamente sus dimensiones originales, se dice que ha experimentado una deformación plás-tica. Durante la deformación plástica, los átomos del metal son desplazados permanentemente de sus posiciones originales y toman nuevas posiciones.

    La capacidad de algunos metales de ser deformados plásticamente en gran extensión sin sufrir fractura, es una de las propiedades más útiles de los metales para ingeniería. Por ejemplo, la deformabilidad plástica del acero posibilita que parte del automóvil tales como parachoques, cubiertas y puertas sean troqueladas mecánicamente sin romperse el metal. 2.2 DEFORMACIÓN ELÁSTICA (LEY DE HOOKE)

    Deformación elástica procede a la deformación plástica. Esta ocurre cuando se aplica un esfuerzo a una pieza de metal o cualquier material sólido. Cuando la carga se aplica en tensión, la pieza se vuelven un poco más larga; al quitar la carga, la muestra regresa a sus dimensiones originales. Inversamente, cuando la carga se aplica en comprensión, la muestra se vuelve un poco más corta. Dentro de la región elástica, la deformación es resultado de una ligera elongación de la celda unitaria

    en la dirección de la tensión, o de una ligera contracción en la dirección de la comprensión

    Fig. 6.3.1 deformación elástica normal (muy exagerada). a) tensión, b) sin deformar y c) comprensión. Cuando ocurre una deformación elástica, ésta es casi proporcional al esfuerzo. Esta relación entre esfuerzo y deformación, es el módulo de elasticidad (módulo de Young) y es una característica del tipo de metal. Entre mayores sean las fuerzas de atracción entre los átomos en un metal, mayor es un módulo de elasticidad.

    Cualquier elongación o comprensión de la estructura cristalina en una dirección, debida a una fuerza uniaxial, produce un cambio de las dimensiones perpendiculares a la fuerza. Por ejemplo, en la figura, se produce una pequeña contracción perpendicular a la fuerza de tensión. La razón negativa entre la deformación lateral xε y la deformación paralela al esfuerzo de tensión yε se llama la razón de Poisson υ

    Y

    X

    εευ −=

    28

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 En las aplicaciones a la ingeniería, los esfuerzos cortantes también aparecen en estructuras cristalinas ver figura.

    Deformación elástica cortante. a) sin deformación, b) deformación cortante.

    Estos producen un desplazamiento de un plano de átomos con relación a otro adyacente. La deformación elástica cortante γ , se define como la tangente del ángulo α .

    αγ tan= ;

    Y el módulo de corte G, es la razón del esfuerzo cortante τ a la deformación cortante γ :

    γτ

    =G

    Este modulo de corte (También llamado de rigidez) es diferente del módulo de elasticidad E; sin embargo, los dos están relacionados por la expresión.

    ( )υ+= 12GE

    Como la relación de Poisson normalmente esta entre 0.25 y .50 el valor de G es de alrededor de 35% de E.

    En los materiales se encuentra un tercer módulo elástico, el módulo volumétrico. K. Este es el recíproco

    de la compresibilidad β del material y es igual a la presión hidrostática

    hσ por unidad de volumen comprimido

    VV∆ :

    βσ 1

    =∆

    =VVK h .

    El módulo volumétrico se relaciona a el módulo de elasticidad como sigue:

    ( )υ213 −=EK .

    Ley de Hooke. Los diagramas de esfuerzo-deformación para la mayoría de los materiales de ingeniería, exhiben una relación lineal entre el esfuerzo y la deformación unitaria dentro de la región elástica. Por consiguiente, un aumento en el esfuerzo causa un aumento proporcional en la deformación unitaria. Este hecho fue descubierto por Roberto Hooke en 1676 cuando utilizaba resortes, y se conoce como ley de Hooke. Puede expresarse matemáticamente como:

    εσ E=

    Aquí E representa la constante de proporcionalidad, que es el módulo de elasticidad, o módulo de Young, en honor de Thomas Young, quien publicó en 1807 un trabajo sobre el asunto. La ecuación anterior representa en realidad la ecuación de la proporción inicial en línea recta del diagrama

    29

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 esfuerzo- deformación hasta el límite proporcional. Además, el módulo de elasticidad representa la pendiente de esta línea. Puesto que la deformación unitaria no tiene dimensiones, según esta ecuación, E tendrá un ideal es de esfuerzo, tales como psi, ksi o Pascales. Como ejemplo de este cálculo, consideremos el diagrama de esfuerzo-deformación para el acero mostrado en la (figura 3.6). Aquí

    ksipl 35=σ y ininpl 0012.0=ε , de modo que

    ininksiE

    pl

    pl

    0012.035

    ==εσ

    Diagrama esfuerzo-deformación para un acero de bajo carbón. Como se muestra la figura 3.12, el límite proporcional para un tipo particular de acero depende de su contenido de aleación; sin embargo, la mayoría de los grados de acero, desde el acero rolado más suave hasta el acero de herramientas más duro, tienen aproximadamente el mismo módulo de elasticidad, que

    generalmente se acepta como de ( ) GPaksiESI 200 ó 1029 3= . Los valores

    comunes de E para otros materiales de ingeniería están a menudo tabulados en códigos de ingeniería y en libros de referencia. Debe observarse que el módulo de elasticidad es una propiedad mecánica que indica la rigidez de un material. Los materiales que son muy rígidos, como el acero, tienen valores grandes de E ( )[ ]ksióGPaESI 31029= , mientras que los materiales esponjosos, como el hule vulcanizado, pueden tener valores bajos ( )[ ]MPaksióEr 70.01010.0 3= .

    El módulo de elasticidad es una de las propiedades mecánicas más importantes usadas en el desarrollo de las ecuaciones presentadas en este texto.

    30

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 Por lo tanto, deberá siempre recordase que E puede usarse solo si un material tiene un comportamiento elástico lineal. También, si el esfuerzo en el material es mayor que el límite proporcional, el diagrama de esfuerzo-deformación deja de ser una línea recta y la ecuación εσ E= ya no es válida. 2.3 DEFORMACIÓN PLASTICA DE MONOCRISTALES Y POLICRISTALES. Introducción Cuando un material se tensa por debajo de su límite elástico, la deformación resultante es temporal. La supresión del esfuerzo da como resultado un retorno gradual del objeto a sus dimensiones originales. Cuando un material se tensa más allá de su límite elástico, tiene lugar una deformación plástica o permanente, y no regresará a su forma original por la sola aplicación de una fuerza. La posibilidad de que un metal sufra deformación plástica es probablemente su característica más relevante en comparación con otros materiales. Todas las operaciones de formado, como son troquelado, prensado, hilado, laminado o rolado, forjado, estirado y extrusión, se relacionan con la deformación plástica de los metales. Varias operaciones de maquinado, como fresado, torneado, corte por sierra y punzado también se relacionan con la deformación plástica. El comportamiento de un metal cuando se deforma plásticamente y el mecanismo mediante el cual ocurre

    son de interés esencial para perfeccionar la operación de trabajado. Se puede obtener mucha información respecto al mecanismo de deformación plástica al estudiar el comportamiento de un monocristal sujeto a esfuerzo y aplicando más tarde este conocimiento a un material policristalino.

    La deformación plástica puede tener lugar por deslizamiento, por maclaje o mediante una combinación de ambos procesos.

    Deformación por deslizamiento Si el monocristal de un metal es esforzado tensilmente más allá de su límite elástico, se alarga en forma ligera, aparece un escalón sobre la superficie indicando un desplazamiento relativo de una parte del cristal con respecto al resto y la elongación se detiene. Al aumentar la carga se producirá movimiento en otro plano paralelo y dará como resultado otro escalón.

    Es como si delgadas secciones vecinas del cristal se hubieran deslizado una sobre otra como cartas de baraja. Cada alargamiento sucesivo necesita un esfuerzo aplicado mayor y resulta en la aparición de otro escalón, que es realmente la intersección de un plano de deslizamiento con la superficie del cristal. El aumento progresivo de la eventualmente produce fractura del material.

    31

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705

    Vista de un cristal real Deformación por maclaje En ciertos materiales, particularmente metales c.p.h., el maclaje es uno de los principales medios de deformación. Esto puede causar un extensivo cambio en la forma o colocar planos potenciales de deslizamiento en una posición más favorable para el deslizamiento. El maclaje es un movimiento de planos de átomos en la red, paralelo a un plano específico (de maclaje) de manera que la red se divide en dos partes simétricas diferentemente orientadas. La can-tidad de movimiento de cada plano de átomos en la región maclada es proporcional a su distancia del plano de maclaje, de manera que se forma una imagen especular a través del plano de maclaje. Las figuras 3.11 y 3.12 ilustran esquemáticamente el maclaje en una red f.c.c.

    En la figura 3.1 1, el plano de maclaje ( 111) corta al plano (1 1 0) a lo largo AB', que es la dirección de maclaje. La figura 3.12 muestra el mecanismo de maclaje. El plano del papel es el (110) y se toman juntas muchas celdas unitarias. Cada plano (111 ) en la región de maclaje se mueve tangencialmente a la dirección (112). El primero, CD, se mueve un tercio de una distancia interatómica; el segundo, EF, se mueve dos tercios de una distancia interatómica y el tercero, GH, se mueve un espacio entero.

    Fig. 3.11 Diagrama de un plano de maclaje y dirección de maclaje en una red f.c.c.

    32

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705

    Fig. 3.12 Diagrama esquemático de maclaje en. una red f.c.c. Si desde el átomo A’ se traza una línea perpendicular al plano de maclaje (AB'), se tendrá otro átomo, C', exactamente a la misma distancia del plano maclado, pero del otro lado. Lo mismo es cierto para todos los átomos en la región maclada, de modo que realmente se tiene una imagen especular en la región maclada que refleja la porción no maclada del cristal. Como los átomos terminan en espacios interatómicos, se ha cambiado la orientación de los átomos o la distancia entre ellos. Generalmente la región maclada comprende el movimiento de un gran número de átomos, y suele aparecer microscópicamente como una línea o banda ancha, como se indica en la figura 3.13. Esta fotografía muestra bandas de maclaje en zinc; nótese como las bandas cambian de dirección en la frontera de grano. El plano y la dirección de maclaje no son necesariamente los mismos que los del proceso de deslizamiento. En los metales f.c.c., el plano de maclaje es el (111) y la dirección de maclaje es la (112); en los b.c.c., es el plano (112) y la dirección (111).

    Al metalurgista le interesan dos tipos de maclaje:

    1 Maclajes -mecánicos o de

    deformación; prevalecientes principalmente en metales c.p.h. (magnesio, zinc, etc.) y en metales b.c.c. (tungsteno, hierro, etc.).

    2 Maclajes de recocido,

    prevalecientes principalmente en metales f.c.c. (aluminio, cobre, latón, etc.). Estos metales han sido previamente trabajados y luego recalentados. Los maclajes se forman debido a un cambio en el mecanismo de cre-cimiento normal.

    Fractura Es la separación de un cuerpo sujeto a un esfuerzo, en dos o más partes. La fractura se clasifica en frágil o dúctil. La fractura frágil generalmente comprende la rápida propagación de una grieta, con el mínimo de absorción de energía y de deformación plástica. En los monocristales, la fractura frágil ocurre Por clivaje a lo largo de un plano cristalográfico en particular [por ejemplo, el plano (100) en hierro]. En los materiales policristalinos, la superficie de fractura frágil muestra una apariencia granular debida a los cambios en orientación de los planos de clivaje de un grano a otro.

    33

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 2.3 Deformación plástica de monocristales Los metales con estructura cúbica u sus aleaciones no ordenadas se deforman predominantemente por corte plástico o deslizamiento. Este es también uno de los métodos de deformación en metales con estructura hexagonal. La deformación cortante ocurre aun en el caso de que e esfuerzo aplicado sea de tensión o de comprensión, debido a que estos esfuerzos se pueden descomponer en esfuerzos cortantes.

    fig. 6.4.1 Deslizamiento en un monocristal El deslizamiento se produce principalmente a lo largo de ciertas direcciones y planos cristalinos. Esto se ilustra en la siguiente figura, donde un monocristal de un metal hexagonal compacto fue deformado plásticamente. El esfuerzo cortante requerido para iniciar el deslizamiento se llama esfuerzo crítico de corte.

    Deformación de metales policristalinos (a bajas temperaturas)

    El material comercial está siempre formado de granos policristalinos, cuyos ejes cristalinos se orientan al azar. Cuando un material policristalino está sujeto a esfuerzo, el deslizamiento empieza primero en aquellos granos en que el sistema de deslizamiento se halla más favorablemente situado 1 respecto al esfuerzo aplicado. Como se debe mantener el contacto en las fronteras de grano, podría necesitarse la acción de más de un sistema de deslizamiento. Existen suficientes datos que muestran que metales con granos finos son más fuertes y menos dúctiles que metales con granos gruesos. Como esto se atribuye a la interferencia de las fronteras con el deslizamiento, las propiedades se graficarán en función del área de la frontera entre granos (Fig. 6.5.1).

    figura 6.5.1 resistencia y ductilidad

    34

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 Las fronteras entre granos (Sec. 4-4) interfieren con el deslizamiento, pues son sitios en donde terminan los planos cristalinos en donde las dislocaciones se mueven. Esto da lugar a un apilamiento de dislocaciones que va a tener el mismo efecto que un congestionamiento de tráfico en un viaducto (Fig. 6-5.2). Se requiere la aplicación de una fuerza (o esfuerzo) mayor para continuar con la deformación plástica.

    figura 6.5.2 apilamiento de dislocaciones Los metales Policristalinos se deforman de manera diferente a los monocristales. El monocristal de la Fíg. 6-4.1 no tuvo constricciones producidas por cristales adyacentes. En contraste, observe la Fig. 6-5.3 en donde evidente que el grano grande de cobre situado en el centro no cedió, en forma independiente de sus granos vecinos. El metalurgista puede demostrar que para que un grano se deforme en conjunto con sus vecinos, introducir fisuras o espaciamientos, deben operar simultáneamente dentro del grano, al menos cinco combinaciones de deslizamiento. Debido a que no todos los planos de deslizamiento están favorablemente orientados (Ej. 674.1(b)), podemos con facilidad darnos cuenta por qué un cristal metálico cF o cl, con un gran número de sistemas de deslizamiento (tabla 6-4.1) presenta una gran ductilidad y un metal hC presenta baja ductilidad.

    Deformación de metales policristalinos (a altas temperaturas) En la Sección anterior se hizo ver que los metales de grano fino son mas resistentes que los de grano grueso -a bajas temperaturas-. a temperaturas elevadas la difusión puede volverse significativa y encontramos que se presenta termofluencia. Como su nombre lo implica, es un proceso de deformación. Las velocidades de deformación van desde unos porcentajes por hora a cargas muy grandes o temperaturas muy altas hasta menos de 10-4 % por hora (Fig. 6-8. 1 ). Estas velocidades son muy bajas; sin embargo, considere su importancia cuando se diseña una planta de potencia impulsada por vapor o un reactor nuclear, los cuales deberán estar en servicio a altas temperaturas por muchos. La termofluencia también es importante en el diseño de turbinas de gas y otras aplicaciones que deberán operar sin cambio en dimensiones a altos esfuerzos y temperaturas elevadas para maximizar la eficiencia en la conversión de energía.

    Como la termofluencia es dependiente del tiempo, podemos graficar la deformación en función de la temperatura. La Fig. 6-8.2 es un

    35

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 ejemplo. Cuando un metal se somete a esfuerzo, sufre de inmediato una deformación elástica, la cual es mayor entre más alto sea el esfuerzo aplicado o la temperatura. En el primer período de (región 1), el material sufre ajustes plásticos adicionales y relativamente rápidos en puntos donde los esfuerzos se concentrar a lo largo de fracturas de grano y de fisuras internas. Estos ajustes plásticos iniciales dan lugar a una velocidad de deformación lenta y casi estacionaria que definimos como rapidez o velocidad de deformación. La segunda región de termofluencia estacionaria continua a lo largo de un extenso periodo de tiempo, hasta que se ha producido suficiente deformación, de tal manera que se produce un encuellamiento y por ello una reducción de área. Con este cambio de área a carga constante, la rapidez de deformación se acelera hasta que ocurre la ruptura (región 3). Si se puede ajustar la carga para compensar la reducción en área y mantener un esfuerzo constante, la velocidad de termofluencia de la región 2 continuará constante hasta la ruptura.

    2.4 EFECTO DE VELOCIDAD DE DEFORMACION Y TIEMPO Cuando un material tiene que soportar una carga por un periodo de tiempo muy largo, puede continuar deformándose hasta que ocurra una fatiga súbita o su utilidad se ve amenazada. Esta deformación permanente dependiente del tiempo se llama flujo plástico. Normalmente el flujo plástico es tomado en cuenta cuando se usan metales o cerámicas como miembros estructurales o partes mecánicas sometidos a temperaturas elevadas. Sin embargo, algunos materiales, como los polímeros y materiales compuestos (incluyendo la madera y el concreto), si bien la temperatura no es un factor importante, el flujo plástico puede presentarse. Como ejemplo típico, consideremos el hecho de que una banda de hule no retorna a su forma original después de haber sido liberada de una posición estirada en la cual se mantuvo durante un periodo de tiempo muy largo. En sentido general, tanto el esfuerzo como la temperatura juegan un papel importante en la tasa del flujo plástico. Para efectos prácticos, cuando el flujo plástico resulta importante, un material se diseña usualmente para resistir una deformación unitaria por flujo plástico especificado para un periodo de tiempo determinado. A este respecto una propiedad mecánica importante que se usa para el diseño de miembros sometidos a flujo plástico es la resistencia por flujo plástico. Este valor representa el

    36

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 esfuerzo inicial más alto que el material puede soportar durante un tiempo especificado sin causar una cantidad determinada de deformación unitaria por flujo plástico. La resistencia por flujo plástico variara con la temperatura y para efectos de diseño, deberán especificarse la temperatura, la duración de la carga, y la deformación unitaria por flujo plástico permisible. Por ejemplo se ha sugerido una deformación unitaria por flujo plástico de 0.1% anual para el acero en pernos y en tuberías, y un 0.25% anual para el forro de plomo en cables. Existen varios métodos para determinar la resistencia por flujo plástico permisible para un material en particular. Uno de los más sencillos implica ensayar varias probetas simultáneamente a una temperatura constante, pero estando cada una sometida a un esfuerzo axial diferente. Midiendo la longitud de tiempo necesaria para producir ya sea una deformación unitaria permisible o la deformación unitaria de rotura para cada probeta, se puede establecer una curva de esfuerzo contra tiempo. Normalmente estas probetas se efectúan para un periodo de 100 horas. En la figura 3.26 se muestra un ejemplo de los resultados para un acero inoxidable a una temperatura de 1200 grados F. este material tiene una resistencia de cadencia de 40 ksi (276 MPa) a la temperatura ambiente (con 0.2% de desviación del origen), y la deformación unitaria por flujo plástico prescrita es de 1%. Según la

    grafica, la resistencia por flujo plástico en 1000 horas seria, aproximadamente, σ = 20 ksi (138 MPa).

    Diagrama esfuerzo-tiempo para acero inoxidable a 1200 °F En general, la resistencia por flujo plástico disminuirá para temperaturas más elevadas o para esfuerzos aplicados mas elevados para periodo de tiempo mas largo, deberán hacerse extrapolaciones de las curvas. Para ello se requiere un cierto grado de experiencia con el comportamiento del flujo plástico y cierto conocimiento suplementario del uso de las propiedades del material bajo flujo plástico. Sin embargo una vez que la resistencia por flujo plástico de un material se ha determinado, se aplica un factor de seguridad para obtener un esfuerzo permisible apropiado para el diseño.

    37

  • Ciencia de los materiales II M. en C. José Rubén Aguilar Sánchez.

    Cédula profesional: 1057705 2.5 Problemas. Problema No. 1 Una muestra de aluminio comercial puro de pulg. De ancho, de grueso y 8 pulg. De longitud, tiene unas marcas de calibración en el medio de la muestra, separadas 2 pulg., y es estirada de manera que dichas marcas se separan hasta 2.65 pulg. Calcular la deformación y el porcentaje de elongación que sufre la muestra.

    SOLUCION: Deformación

    % 32.5 % 100 x 0.325 elongación de %

    0l0l - l

    ==

    ==ε

    −==ε

    325.0lgpu00.2lgpu65.0

    lgpu00.2lgpu00.2lgpu65.2

    Problema N° 2 Una prueba de tensión para una aleación de acero da por resultado el diagrama esfuerzo-deformación que

    se muestra en la figura. Calcule el módulo de