72
CAPÍTULO IV CIRCUITOS DE AGUA El gua es un recurso ilimitado en la naturaleza y ofrece una multiplicidad de u siempre son compatibles entre si . Algunos usos extraen el gua de sus ciclo nat periodos largos de tiempo, otros por un tiempo corto y otros simplemente no ext agua . USO DOMÉSTICO Comprende el consumo de agua en nuestra alimentación, en la limpieza de nuestra viviendas, en el lavado de ropa, la higiene y el aseo personal.

Circuitos de Agua

Embed Size (px)

DESCRIPTION

flujo del agua en turbinas a vapor

Citation preview

CAPTULO IV CIRCUITOS DE AGUA El gua es un recurso ilimitado en la naturaleza y ofrece una multiplicidad de usos que no siempre son compatibles entre si . Algunos usos extraen el gua de sus ciclo natural por periodos largos de tiempo, otros por un tiempo corto y otros simplemente no extraen agua .

USO DOMSTICOComprende el consumo de agua en nuestra alimentacin, en lalimpieza de nuestras viviendas, en el lavado de ropa, la higiene y el aseo personal.

USO PBLICOEn la limpieza de las calles de ciudades y pueblos, en las fuentes pblicas, ornamentacin, riego de parques y jardines, otros usos de inters comunitario, etc..

USO EN AGRICULTURA Y GANADERAEn agricultura, para el riego de los campos. En ganadera, como parte de la alimentacin de los animales y en la limpieza de los establos y otras instalaciones dedicadas a la cra de ganado.Energa hidroelctricaLa energa hidroelctrica es electricidad generada aprovechando la energa del agua en movimiento. La lluvia o el agua de deshielo, provenientes normalmente de colinas y montaas, crean arroyos y ros que desembocan en el ocano. La energa que generan esas corrientes de agua puede ser considerable, como sabe cualquiera que haya hecho descenso de rpidos.La primera central hidroelctrica se construy en Niagara Falls en 1879. En 1881, las farolas de la ciudad de Niagara Falls funcionaban mediante energa hidroelctrica. En 1882, la primera central hidroelctrica del mundo comenz a funcionar en Estados Unidos en Appleton, WisconsinUna central hidroelctrica clsica es un sistema que consiste en tres partes: una central elctrica en la que se produce la electricidad; una presa que puede abrirse y cerrarse para controlar el paso del agua; y un depsito en que se puede almacenar agua. El agua de detrs de la presa fluye a travs de una entrada y hace presin contra las palas de una turbina, lo que hace que stas se muevan. La turbina hace girar un generador para producir la electricidad. La electricidad puede transportarse mediante cables elctricos de gran longitud hasta casas, fbricas y negocios.

La energa hidroelctrica proporciona casi un quinto de la electricidad de todo el mundo. China, Canad, Brasil, Estados Unidos y Rusia fueron los cinco mayores productores de este tipo de energa en 2004 .La central hidroelctrica de mayor tamao de los Estados Unidos se encuentra junto a la presa Grand Coulee, sobre el ro Columbia, en la zona norte del estado de Washington. Ms del 70 % de la electricidad producida en este estado proviene de centrales hidroelctricas.La energa hidroelctrica es la que genera electricidad de forma ms barata en la actualidad. Esto se debe a que, una vez que la presa se ha construido y se ha instalado el material tcnico, la fuente de energa (agua en movimiento) es gratuita. Esta fuente de energa es limpia y se renueva cada ao a travs del deshielo y las precipitaciones.Adems, este tipo de energa es fcilmente accesible, ya que los ingenieros pueden controlar la cantidad de agua que pasa a travs de las turbinas para producir electricidad segn sea necesario.Las ventajas de las centrales hidroelctricas son evidentes:-No requieren combustible, sino que usan una forma renovable de energa, constantemente repuesta por la naturaleza de manera gratuita.-Es limpia, pues no contamina ni el aire ni el agua. A menudo puede combinarse con otros beneficios, como riego, proteccin contra las inundaciones, suministro de agua, caminos, navegacin y an ornamentacin del terreno y turismo.-Los costos de mantenimiento y explotacin son bajos.-Las obras de ingenieria necesarias para aprovechar la energa hidralica tienen una duracin considerable.-La turbina hidralica es una mquina sencilla, eficiente y segura, que puede ponerse en marcha y detenerse con rapidez y requiere poca vigilancia siendo sus costes de mantenimiento, por lo general, reducidos.Contra estas ventajas deben sealarse ciertas desventajas:- Los costos de capital por kilovatio instalado son con frecuencia muy altos.-El emplazamiento, determinado por caractersticas naturales, puede estar lejos del centro o centros de consumo y exigir la construccin de un sistema de transmisin de electricidad, lo que significa un aumento de la inversin y en los costos de mantenimiento y prdida de energa.-La construccin lleva, por lo comn, largo tiempo en comparacin con la de las centrales termoelctricas.-La disponibilidad de energa puede fluctuar de estacin en estacin y de ao en aoCentrales hidroelctricas del mundoEl complejo de laPresa de las Tres Gargantas, en la provincia deHubei, enChina, tiene la mayor capacidad de generar energa del mundo, aunque la central de Itaip genera, en una sola presa, la mayor electricidad del mundo. El complejo chino incluye dos centrales de generacin: lapresa de las Tres Gargantas(22.500 MW) y lapresa Gezhouba(.2715 MW) en el ao 2009; la capacidad total de generacin de este complejo alcanzara los 25.615 MW. En 2008, este complejo gener 97,9 TWh de electricidad (80,8 TWh de la presa de las Tres Gargantas y 17,1 TWh de la presa Gezhouba).La central hidroelctrica deItaip, localizada en lafrontera entre Brasil y Paraguay, tiene actualmente la ms alta produccin de energa hidroelctrica del mundo en una sola presa. Con 20 unidades de generacin y 14.000 MW de capacidad instalados, en 2013 la central hidroelctrica de Itaip alcanz un nuevo rcord histrico en la produccin de energa elctrica al alcanzar los 98,6 TWh. Es importante recordar que aunque una central hidroelctrica pueda tener una capacidad de generacin de energa realmente grande (generadores) tambin necesita que la corriente fluya de manera continuada a lo largo del ao, como sucede en la presa de Itaip.

CENTRALES HIDROELECTRICAS EN EL PEREs el de mayor capacidad, ya que genera casi 3 mil megawatts. Abastece a las principales ciudades del pas como: Piura, Chiclayo, Trujillo, Chimbote, Huaraz, Hunuco, Tingo Mara, Cajamarca, Huancayo y Lima. La principales centrales hidroelctricas que componen este sistema son:1) Carhuaquero: Ubicada en Cajamarca, aprovecha las aguas del ro Chancay y cuenta con una cada neta de 475 m para generar 75 Megavatios (Mw). Fue puesta en servicio en 1988 y pertenece a la empresa EGENOR S.A..2) Can del Pato: Ubicada en Ancash, a 120 Km. de Chimbote en la provincia de Huaylas, utiliza las aguas del ro Santa aprovechando una cada de 395 m y generando 154 Megawatts (Mw). Fue puesta en servicio en dos etapas: 1958 y 1981 respectivamente. Pertenece tambin a EGENOR S.A.3) Gallito Ciego:Ubicada en la provincia de Contumaz, en Cajamarca. Genera 34 Megawatts. Ha sido entregada en concesin definitiva a la empresa Cementos Norte Pacasmayo.4) Central Hidroelctrica Santiago Antnez de Mayolo:Ubicada en el departamento de Huancavelica, provincia de Tayacaja. Produce 798 Mw, con una cada neta de 748 m tambin con turbinas Pelton. Fue puesta en servicio en dos etapas 1973 y 1979 respectivamente.5) Restitucin: Esta central recibe las aguas ya utilizadas en la Central Antnez de Mayolo a travs de una cada de 258 m generando 216 Mw. Fue puesta en operacin en 1984. Ambas componen el complejo hidroenergtico ms grande del pas y pertenecen a Electroper S.A..6) Cahua: Ubicado en Pativilca, al norte de Lima, aprovecha las aguas del ro Pativilca a travs de una cada de 215 m produciendo 41 Mw. Fue puesta en servicio en 1967 y abastece de electricidad a Huacho, Supe, Paramonga, Pativilca y Barranca.7) Huinco: Es la principal central hidroelctrica de Lima. Su produccin es de 262 Mw a travs de 4 generadores. La cuenca hdrica que abastece a Huinco es recogida de las lagunas de Marcapomacocha y Antacoto a 5 mil m.s.n.m. Las aguas son derivadas a travs de una cada neta de 1.245 m para ser absorbidas por 8 turbinas Pelton. Fue puesta en operacin en 1965. Adems de Huinco, otras centrales hidroelctricas abastecen a la ciudad de Lima. Todas ellas Pertenecen a la empresa EDEGEL S.A.:B. El Sistema Interconectado Sur :

Suministra energa a una poblacin de ms de millones de habitantes. Entre las principales ciudades que abastece estn Arequipa, Cusco, Tacna, Moquegua, Juliaca, Ilo y Puno. En este Sistema Interconectado con 711 kilmetros de lneas de transmisin se hallan las siguientes centrales hidroelctricas:1) Charcani V Ubicada en Arequipa, esta central es una de las ms modernas del pas. Fue inaugurada en 1988. Genera 136.8 Mw con una cada de agua de 690 m y pertenece a la Empresa EGASA.2) Machu Picchu: Ubicada en la provincia de Urubamba cerca a las ruinas de Machu Picchu en el Cusco. Genera 110 Mw y su cada neta es de 345 m. Esta Central trabaja con turbinas tipo Francis y fue puesta en servicio en 3 etapas: 1964, 1972 y 1984 respectivamente. En la actualidad esta central se encuentra inoperativa por los graves daos ocasionados por el aluvin sufrido durante la temporada del fenmeno de El Nio de febrero de 1998.3) Aricota 1 y 2: Se localizan en la provincia de Candarave, en el departamento de Tacna. Aricota I fue construida en 1967 y en la actualidad produce 23.80 Mw con una cada de agua de 617 m a travs de un sistema de turbinas Pelton . Aricota 2 genera 11.9 Mw. Estas centrales pertenecen a la empresa EGESUR S.A.Ciclos de Vapor:Los ciclos de vapor los podemos dividir entre ciclos de vapor abiertos y ciclos de vapor cerrados. En los prximos prrafos daremos un breve vistazo a cada uno de ellos.Ciclo Abierto: Este fue el primer ciclo de vapor a utilizarse en forma amplia. Corresponde a las tpicas mquinas de vapor de ciclo abierto (locomotoras, locomviles y muchas mquinas estacionarias en los inicios de la revolucin industrial). Pasemos a analizarlo en diagramas y en bloques.

Ciclo de Rankine:El ciclo de Rankine es conceptualmente muy parecido al anterior. La gran diferencia es que se introduce elcondensador. Este tiene por efecto bajar la temperatura de fuente fra y mejorar la eficiencia del ciclo. El efecto es doble:-Desde el punto de vista netamente termodinmico,bajamosla temperatura de la fuente fra, mejorando por lo tanto la eficiencia del ciclo.-Desde el punto de vistamecnico, lapresinen el condensador es muy inferior a la atmosfrica, lo que hace que lamquinaopere con unsaltode presiones mayor, lo que aumenta la cantidad de trabajo recuperable por unidad de masa de vapor.La principal diferencia entre un ciclo de vapor abierto y uno de Rankine es elcondensador. Esta mejora la introdujo James Watt hacia fines del Siglo XVIII. En el prximo prrafo explicaremos brevemente el funcionamiento de este elemento tan esencial en los ciclos de vapor.El condensador:En la prxima figura vemos esquematizado un condensador. Vamos a esquematizar uno de los ms sencillos, el detubos y carcaza.

CENTRALES A VAPOR

Las centrales de vapor adoptan un papel clave en elsuministro de energa elctrica. Con ello, el ciclo devapor de Rankine sigue siendo hoy en da uno de losciclos industriales utilizados ms importante.Mediante optimizaciones de proceso ha podido aumentarsela eficiencia de la produccin de energa elctricaen los ltimos aos continuamente. Hoy en da selogra una eficiencia total aprox. de un 45%. Por tanto,el ciclo de vapor representa un papel sumamenteimportante tambin en la formacin de los ingenieros.Con las centrales de vapor GUNT para el funcionamientoexperimental se puede transmitir desde laprctica este importante campo en el estudio tcnico.Con ellas se puede estudiar y comprender el comportamientode las centrales de vapor bajo diversascondiciones de funcionamiento. Mediante la utilizacinde componentes reales tambin se pueden aprenderaspectos como el mantenimiento, la reparacin y lastcnicas

El ciclo de vapor ms sencillo consta de cuatro cambios de estado: 12: El agua lquida bajo presin se evapora mediante la alimentacin de calor en una caldera de vapor. 24: El vapor se expande en la turbina bajo el suministro de trabajo mecnico. En una central se transforma la energa mecnica a travs de un generador en energa elctrica. 45: El vapor expandido se condensa en agua mediante la cesin de calor en el conden- sador. 51: El agua se presuriza a travs de una bomba de alimentacin y se vuelve a suministrar a la caldera de vapor. El proceso parece ms complicado en la realidad. Para aumentar la eficiencia se intenta lograr una temperatura del vapor de la turbina lo ms alta posible. Para ello se sobrecalienta el vapor en un sobrecalentador (23). Se puede ahorrar energa mediante el precalentamiento del agua de alimentacin (56). Para el precalentamiento se utiliza vapor de distintos niveles de presin del ciclo. En este ejemplo se utiliza una parte del vapor saturado directamente despus de la caldera. de medicin, control y regulacin.

El ciclo de vapor se puede representar claramente en el diagrama T-s. La temperatura T se traza sobre la entropa s. Las superficies formadas en el diagrama se interpretan del siguiente modo: mientras que la superficie azul corresponde al calor perdido, desprendido a travs del condensador, la superficie naranja se refiere a la energa til en la turbina. Con la optimizacin del ciclo se trata de maximizar la superficie naranja y reducir la azul. La condensacin (45) debera realizarse con la temperatura ms baja posible. Por otro lado, para la evaporacin (12) se requiere una temperatura lo ms alta posible. Esto supone una presin alta. El sobrecalentamiento (23) debe ser lo ms alto posible desde el punto de vista tcnico.

En las centrales de vapor grandes, GUNT instala una turbina de vapor industrial tpica, tal y como se representa en la parte superior. Se trata de una turbina de accin con una turbina Curtis de dos etapas. La energa de presin del vapor se transforma totalmente as en energa cintica en las toberas fijas (1). La energa cintica del vapor se transforma mediante una desviacin doble en el rodete (2) en trabajo mecnico. El eje de rodete (3) con el rodete en el medio est colocado sobre dos rodamientos (4). La turbina dispone de un regulador de revoluciones (5), que controla la alimentacin de vapor mediante una vlvula de mariposa (6). La turbina est destinada al accionamiento directo de las bombas y generadores y no tiene

CENTRALES TERMICAS

DEFINICIN DE CENTRAL TERMICA

Una central trmica es una instalacin que produce energa elctrica a partir de la combustin de carbn, fuel-oil ogasen una caldera diseada al efecto. El funcionamiento de todas las centrales trmicas, o termoelctricas, es semejante.El combustible se almacena en parques o depsitos adyacentes, desde donde se suministra a la central, pasando a la caldera, en la que se provoca la combustin. Esta ltima genera el vapor a partir delaguaque circula por una extensaredde tubos que tapizan las paredes de la caldera. El vapor hace girar los labes de la turbina, cuyo eje rotor gira solidariamente con el de un generador que produce laenerga elctrica; esta energa se transporta mediante lneas de alta tensin a los centros deconsumo. Por su parte, el vapor es enfriado en un condensador y convertido otra vez en agua, que vuelve a los tubos de la caldera, comenzando un nuevo ciclo.El agua en circulacin que refrigera el condensador expulsa elcalorextrado a laatmsfera a travs de las torres derefrigeracin, grandesestructurasque identifican estas centrales; parte del calor extrado pasa a un ro prximo o al mar.Las torres de refrigeracin son enormes cilindros contrados a media altura (hiperboloides), que emiten de forma constante vapor de agua, no contaminante, a la atmsfera. Para minimizar los efectos contaminantes de la combustin sobre el entorno, la central dispone de una chimenea de gran altura (llegan a los 300m) y de unos precipitadores que retienen las cenizas y otros voltiles de la combustin. Las cenizas se recuperan para su aprovechamiento enprocesosdemetalurgiay en el campo de laconstruccin, donde se mezclan con elcemento.

FUNCIONAMIENTO DE UNA CENTRAL TRMICA

En las centrales trmicas convencionales, la energaqumicaligada por el combustible fsil (carbn, gas o fuel -il) se transforma en energa elctrica. Se trata de unprocesode refinado de energa. El esquema bsico de funcionamiento de todas las centrales trmicas convencionales es prcticamente el mismo, independientemente de que utilicen carbn, fuel -il o gas.Las nicas diferencias sustanciales consisten en el distinto tratamiento previo que sufre el combustible antes de ser inyectado en la caldera y eldiseode los quemadores de la misma, que vara segn el tipo de combustible empleado.El vapor de agua se bombea a altapresina travs de la caldera, a fin de obtener el mayor rendimiento posible. Gracias a esta presin en los tubos de la caldera, el vapor de agua puede llegar a alcanzar temperaturas de hasta 600 C (vapor recalentado).Este vapor entra a gran presin en la turbina a travs de unsistemade tuberas. La turbina consta de tres cuerpos; de alta, media y baja presin respectivamente. Elobjetivode esta triple disposicin es aprovechar al mximo lafuerzadel vapor, ya que este va perdiendo presin progresivamente. As pues, el vapor de agua a presin hace girar la turbina, generando energamecnica. Hemos conseguido transformar la energa trmica en energamecnicade rotacin.El vapor, con el calor residual no aprovechable, pasa de la turbina al condensador. Aqu, a muy baja presin (vaco) ytemperatura(40C), el vapor se convierte de nuevo en agua, la cual es conducida otra vez a la caldera a fin de reiniciar el ciclo productivo. El calor latente de condensacin del vapor de agua es absorbido porel aguade refrigeracin, que lo entrega alairedel exterior en las torres de enfriamiento.La energa mecnica de rotacin que lleva el eje de la turbina es transformada a su vez en energa elctrica por medio de un generador asncrono acoplado a la turbina.

CLASIFICACION

CENTRALES TERMICAS CLASICAS O CONVENCIONALES

Centrales Trmicas de CarbnFUNCIONAMIENTO, CARACTERISTICAS, VENTAJAS Y DESVENTAJASLas centrales trmicas que usan como combustible carbn, pueden quemarlo en trozos o pulverizado. La pulverizacin consiste en la reduccin del carbn a polvo finsimo (menos de 1/10 mm de dimetro) para inyectarlo en la cmara de combustin del generador de vapor por medio de un quemador especial que favorece la mezcla con el aire comburente.Con el uso del carbn pulverizado, la combustin es mejor y ms fcilmente controlada. La pulverizacin tiene la ventaja adicional que permite el uso de combustible de desperdicio y difcilmente utilizado de otra forma. En estas se requiere instalar dispositivos para separar las cenizasproductode la combustin y que van hacia el exterior, hay incremento de efecto invernadero por su combustin, altoscostosde inversin, bajo rendimiento y arranque lento

Centrales Trmicas de Fuel-OilFUNCIONAMIENTO, CARACTERISTICAS, VENTAJAS Y DESVENTAJASEn las centrales de fuel, el combustible se calienta hasta que alcanza la fluidez ptima para ser inyectado en los quemadores. Las de fuel-il presentan como principal inconveniente las oscilaciones delpreciodelpetrleoy derivados, y a menudo tambin se exigen tratamientos de desulfuracin de los humos para evitar lacontaminaciny la lluvia cida.El consumo de un milln de litros de gasolina emite a la atmsfera 2,4 millones de kilogramos de Dixido deCarbono(CO2), el principal causante delcambioclimtico mundial. Arranque lento y bajo rendimiento.

Centrales Trmicas de Gas NaturalFUNCIONAMIENTO, CARACTERISTICAS, VENTAJAS Y DESVENTAJASEn vez de agua, estas centrales utilizan gas, el cual se calienta utilizando diversos combustibles (gas,petrleoo diesel). El resultado de sta combustin es quegasesa altas temperaturas movilizan la turbina, y su energa cintica es transformada en electricidad por un generador.El uso de gas en las centrales trmicas, adems de reducir el impacto ambiental, mejora laeficienciaenergtica. Menores costos de la energa empleada en el proceso de fabricacin y menores emisiones de CO2 y otros contaminantes a la atmsfera. La eficiencia de stas no supera el 35% .CENTRALES TERMICAS NO CONVENCIONALES

Centrales Trmicas de Ciclo CombinadoFUNCIONAMIENTO, CARACTERISTICAS, VENTAJAS Y DEVENTAJASUn ciclo combinado es, la combinacin de un ciclo de gas y un ciclo de vapor. Sus componentes esenciales son la turbina de gas, la caldera de recuperacin la turbina de vapor y el condensador. El ciclo de gas lo compone la turbina de gas, y el ciclo de vapor est constituido por la caldera de recuperacin, la turbina de vapor y el condensador.Latecnologade las centrales de ciclo combinado permite un mayor aprovechamiento del combustible y, por tanto, los rendimientos pueden aumentar entre el 38 por ciento normal de una central elctrica convencional hasta cerca del 60 por ciento. Y la alta disponibilidad de estas centrales que pueden funcionar sinproblemasdurante 6.500-7500 horas equivalentes al ao.Uno de los principales problemas que plantean las centrales trmicas es que se trata de un proceso relativamente complejo de conversin de energas. Utilizan combustible de alto grado decalidad. Provocan contaminacin con la alta emisin de gases.

Centrales Trmicas de Combustin de Lecho FluidizadoFUNCIONAMIENTO; CARACTERISTICAS; VENTAJAS Y DESVENTAJASConsiste en quemar carbn en un lecho de partculas inertes, a travs del cual se hace pasar una corriente de aire. Esta soporta el peso de las partculas y las mantiene en suspensin, de modo que da la impresin de que se trata de un lquido en ebullicin. Permitira obtener rendimientos de hasta el 50%, disminuyendo al mismotiempola emisin de anhdrido sulfuroso.Su eficiencia es de 40 a 42% en ciclos combinados En la tecnologa de lecho fluidizado se inyecta caliza directamente dentro de la caldera para capturar y remover el azufre del combustible como un subproducto seco.La temperatura del gas dentro de la caldera va de los 820C a los 840C, lo cual determina su diseo y el arreglo de las superficies de transferencia de calor. Este tipo decalderaspuede ser atmosfrico o presurizado.

Centrales Trmicas Gicc Gasificacin de Carbn Integrada en ciclo combinadoFUNCIONAMIENTO, CARACTERISTICAS, VENTAJAS Y DESVENTAJAS

La gasificacin del carbn es un proceso que transforma el carbn slido en un gas sinttico compuesto principalmente de CO ehidrgeno(H2). El carbn es gasificado controlando la mezcla de carbn,oxgenoy vapor dentro del gasificador. Lapotenciamedia de estas centrales viene a ser de 300 MW, muy inferior todava a la de una trmica convencional.Las ventajas medioambientales que ofrecen estas centrales se fundamentan en los bajosvaloresde emisin de xidos de azufre y otras partculas.En la actualidad las IGCC alcanzan eficiencias de 45%, una eliminacin de 99% de azufre. Bajos costos de combustible, admite combustible de bajo grado de calidad, bajo grado de emisiones, alto rendimiento, tecnologa sin completa prueba de eficiencia, altos costos de inversin,plantascomplejas, arranque lento.

CRITERIOS DESELECCINY DISEO

El diseo conceptual incluye ladescripcinde la localizacin, forma y bases del diseo de la planta general, como intemperie o cubierta, grado de utilizacin, combustible (incluyendo previsin de cambios), tipo y enlaces de la subestacin elctrica, suministro ysistemasde agua, accesos, condiciones y caractersticas del sitio, orientacin, arreglo general, elementos principales, condiciones de diseo y caractersticas de construccin.

CARACTERSTICAS DEL SITIO*Topografay drenaje*Accesos*Geologa*Proximidad abancosde prstamos (obtencin de material combustible)*Meteorologa. Condiciones climatolgicas del sitio

CONDICIONES GENERALES DE DISEO*Temperatura del aire anual promedio*Presin baromtrica*Nivel base de la planta*Coeficientes ssmicos: para estructuras, para bardas, para chimeneas.*Resistenciadel terreno

SELECCIN DEL TAMAO DE UNIDADESLa seleccin del tamao involucra un compromiso entre varios factores, sin embargo se sabe que econmicamente la mejor solucin es instalar unidades del 5 al 10% de la capacidad de los sistemas.*Especificaciones del turbogenerador, del generador de vapor, y optimizacin del sistema de agua de circulacin.*Suministro de agua asegurada para el presente y para el fututo.*Ubicacin por razn de disponibilidad del carbn o combustibles, cerca de lasfuentesdel mismo, o sea lo que corrientemente se conoce como Central de Boca de Mina.*Ubicacin por razn de otros factores, como proximidad a los centros de carga, a fuentes de agua para refrigeracin, o a sitios de fcil acceso para la maquinaria y equipos pesados. La ubicacin del lugar debe ser en un sitio con vas de acceso muy buenas y al uso de equipos especiales detransporte.*Costos de lapropiedad, de construccin, de puesta enfuncin, demantenimiento.*Impacto- socio econmico.*Facilidades de transportacin.

MATERIALES DE CONSTRUCCION

Estos varan de acuerdo al equipo utilizado, los ms utilizados son los siguientes: Para paredes, pisos y cubierta o techo de los tanques, se emplean los aceros A283 grado C y D y A285 grado C. Acero al carbn Acero inoxidable Tefln en loscompresoresde aire Aleaciones de acero Aleaciones de latn Vidrio Hule Plsticos Concreto Ladrillo RefractarioDEFINICION DE COGENERACION

Los sistemas de cogeneracin reciclan la energa perdida en el proceso primario de generacin (como una turbina de gas) en un proceso secundario. La energa restante se emplea en este caso en forma de vapor directamente en las cercanas de la central (por ejemplo, para calentar edificios), lo que aumenta an ms la eficiencia global del sistema.En las aplicaciones de cogeneracin que requieran tanto calor (el utilizado en un proceso industrial) como electricidad, se genera vapor a altas presiones en una caldera y se extrae desde la turbina a la temperatura y la presin que necesita el proceso industrial. Las turbinas de vapor se pueden utilizar en ciclos (escalones) combinados con un generador de vapor que recupera el calor que se perdera. Las unidades industriales se utilizan para poner enmovimientomquinas,bombas, compresores y generadores elctricos. La potencia que se obtiene puede ser de hasta 1.300 MW.

COSTOS

De acuerdo con los planes de expansin del sector elctrico, la mnima capacidad de la planta trmica que se est instalando en el pas es de 150 MW.Es casi imposiblepoderindicar, para centrales trmicas de determinada capacidad, uncostopromedio global o por KW instalado. Cada central es un caso especfico y debe procederse a establecer los costos de cada uno de sus componentes de acuerdo con los equipos seleccionados y las condiciones locales especficas.La siguiente tablamuestralas diferencias de costo frente a las alternativas clsicas de generacinComo puede apreciarse en la tabla anterior, de las centrales trmicas analizadas, la de ciclo combinado presenta costos de operacin menores a cualquier alternativa. Posee un costo variable no combustible enmarcado dentro de los ms baratos (1,55 Mills/KWh) y un costo de combustible considerablemente ms barato que cualquier otra alternativa trmica (8,5 Mills/KWh). Aunque estos costos varan algo con cada diseo, son aproximadamente constantes, por lo que se pueden considerar estables.

COMPONENTES DE UNA CENTRAL TERMICACARACTERSTICAS FUNCION

TURBOGENERADOREn l tienen lugar las siguientes conversiones de energa: Energa calorfica del vapor a energa cintica en las toberas de la turbina. Energa cintica del vapor a energa mecnica en los labes, la que se recoge en la flecha de la turbina. Energa mecnica o energa elctrica, de la flecha al embobinado del generador.

GENERADOR DE VAPOR

El trmino de generador de vapor o caldera se aplica normalmente a un dispositivo que genera vapor para producir energa, para procesos o dispositivos de calentamiento. Las calderas se disean para transmitir calor de una fuente externa de combustin a un fluido (agua) contenido dentro de ellaLa caldera est compuesta por equipos como ventiladores de aire y gases, precalentadores de aire, ductos, chimenea, economizador, domo, hogar, sobrecalentador, recalentador, quemadores, accesorios, instrumentos, etc.

CONDENSADOR

La condensacin el vapor de escape de la turbina y drenes se efecta en el condensador , adems de la extraccin de algunos gases inconfensables.

TORRE DE ENFRIAMIENTO

Las torres de enfriamiento son dispositivos de enfriamiento artificial de agua. Se clasifican como cambiadores de calor entre unvolumenen circuito cerrado de agua y aire atmosfrico.Bsicamente las torres de enfriamiento son cambiadores de calor de mezcla, efectuando la transmisin de calor por cambio de sustancia y conveccin entre losmedios. El agua cede calor al aire sobre todo por evaporacin, lo hace tambin por conveccin, pero en forma secundaria.

BOMBAS

De acuerdo con el mecanismo que mueve el flujo, las bombas se clasifican en: centrfugas rotatorias alternativas

CAMBIADOR DE CALOR

Despus de la resistencia de losmateriales, los problemas que involucran flujo de calor son los ms importantes en laingeniera.el calor se transfiere mediante aparatos llamados cambiadores de calor; los principales de stos equipos, son los siguientes: calentadores de agua de alimentacin calentadores de combustible generador de vapor / vapor evaporadores enfriadores de agua enfriadores de aceite enfriadores de hidrgeno condensador generador de vapor

TANQUESLos cdigos onormassobre diseo de recipientes o tanques tienen como objeto principal que la fabricacin se haga con laseguridadrequerida a unaeconomarazonable. Todos los tanques estarn provistos con los aditamentos necesarios para cumplir con su funcionamiento y los reglamentos de seguridad;Usos de los tanques Almacenamiento de condensado Servicio diario deaceitecombustible Almacenamiento de aceite combustible Almacenamiento de agua desmineralizada o evaporada Almacenamiento de agua cruda Servicio de aceite ligero Tanque para columna de agua de enfriamiento Tanque de mezcla de sustancias qumicas Drenes limpios fros Tanque de purgas (blow off tank)

COMPRESORES DE AIREEl aire comprimido se utiliza en las plantas termoelctricas para instrumentos,control,servicio, sopladores de la caldera y subestacin elctrica.

TRATAMIENTO Y MONITOREO DE AGUA

Laalimentacinde agua a la caldera constituye, desde el punto de vista qumico, uno de los principales problemas de operacin: influencia en la confiabilidad decisiva.En las plantas termoelctricas, la alimentacin a la caldera es principalmente de condensado de la turbina (alrededor de 95 a 99%); las prdidas por purgas, fugas de vapor y condensado, atomizacin de combustible, etc., deben compensarse con agua de repuesto cuyo volumen vara de 1 a 5%.El agua de repuesto proviene de fuentes naturales de superficie o pozos profundos; en ninguno de los dos casos se encuentra enestadopuro.

TUBERAS Y AISLAMIENTO

La aplicacin de tuberas en plantas termoelctricas y nucleares, refineras y plantas qumicas, etc., se basa normalmente en idnticas ( o muy similares) consideraciones de diseo. En su construccin se usan materiales de las mismas propiedades fsicas y mecnicas, composicin qumica yestructurametalrgica; los procesos de fabricacin como doblado, formado, soldado y tratamiento trmico involucranprocedimientosidnticos que no dependen de la aplicacin, sino de la calidad final deseada.

CUADRO COMPARATIVO ENTRE CENTRALES TERMICAS, NUCLEARES E HIDROELECTRICAS

PARMETROSCENTRAL TERMICACENTRAL NUCLEARCENTRAL HIDROELECTRICA

COMBUSTIBLECombustibles fsiles: gas, carbn, fuel- oil.Energa nuclear: fisin, fusinEnergas renovables: Hidrulica

EQUIPOS Calderas Turbinas de vapor y gas Carbn- gas- fuel oil Condensador Generador Reactor nuclear Turbinas de vapor Uranio plutonio Generador Turbinas Agua Generador

TIEMPO DE INSTALACIN6 meses a 1 ao5 a 10 aos1 a 4 aos

FUENTE DE ENERGIANo renovableNo renovableRenovable

COSTOS150 millones de dlares.Esta alrededor de 1000 US$/kW, 3.5 USc/kWh240 millones de dlares

SUMINISTRO DEENERGIAEN COLOMBIA25%0%75%

CONVENIENCIA ECONOMICA EN COLOMBIAMenor consumo dedivisas, menor tendencia tecnolgica, mayor factor deempleo.Mayor consumo de divisas, mayores costos en tecnologa, menor factor de empleo remplazando la mano de obra por mquinas.Menor consumo de divisas, menor tendencia tecnolgica, mayor factor de empleo.

PRODUCCIN DE ENERGIA ELECTRICAEl vapor se genera por la combustin del carbn o de derivados del petrleo.El calor se produce por la fisin nuclear en un reactor.Utilizan la fuerza yvelocidaddel agua corriente para hacer girar las turbinas.

VENTAJASCorto tiempo de construccinNo dependen del climaCostos de inversin menores que en la hidroelctricas lo que favorece su construccin y entrada en funcionamiento.Facilidad de transporte del combustible orgnico desde el lugar de su extraccin hasta la central trmica.Progreso tcnico lo que permiti disear grandes unidades generadoras (grandes mdulos) con mejores rendimientos que las unidades pequeas o medianas.Uno de los materiales utilizados para su desintegracin es el uranio, del cual quedan an grandes reservas.La tecnologa empleada est muy desarrollada y tiene una granproductividad, ya que con cantidades mnimas de sustancia se obtiene una gran cantidad de energa.Generan energa elctrica limpia ya que no se produce emanacin al medioambientede gases de combustin causantes de lalluvia cida.No contamina: el aire, ni agua, ya que no se requiere combustible alguno.Costos de mantenimiento bajos.

DESVENTAJASComo resultado del procesamiento del carbn, fue- oil y gas, stas centrales son importantes fuentes emisoras de agentes contaminantes, calor,ruidoy vibraciones.La peor desventaja es el terrible impacto ambiental que produce, ya que emite gases que provocan tanto elefecto invernaderocomo la lluvia cida.En el caso del petrleo es preocupante su vertido al mar cuando se transporta, ya que crea las famosas mareas negras.Uno de los mayores problemas es la posibilidad de una fuga radioactiva en caso de accidente, lo que provocara cuantiosos daos humanos y materiales.Otro problema son los residuos radioactivos que genera, de difcil y costosoalmacenamientoy que resultan muy peligrosos a corto y largo plazo.Tambin es muy alto el coste de las instalaciones y su mantenimiento.Inundaciones grandes de tierras frtiles.Deforestacin.Migracinforzada de poblaciones aledaas.Mayor tiempo de construccin en comparacin con las Centrales Trmicas.

CAPACIDAD DE GENERACION Gas natural 9,7 KW-h/ m3Carbon 2,4 KW- h/ KgFuel- oil 2,9 KW- h/ Kg Uranio 115 KW- h/ Kg Hidraulica 2,57 KW- h/m3

EFICIENCIA DE LA CONVERSION Gas natural 40% Carbn 40% Fuel- oil 40% Uranio 30% Hidrulica 80%

Kg O m3 DE COMBUSTIBLE QUE SE NECESITAN PARA GENERAR 1 KWGas natural 0,416 m3 /KW hCarbn de 0,336 a 0,850 Kg / KW- hDiesel / fuel de 0,362 a 0,309 Kg / KW- hUranio 8,69 x 10-3 Kg / KW - hHidrulica 0,389 m3 / KW- h

IMPACTO AMBIENTALLos efectos ambientales de una central trmica provienen del proceso de combustin,as como de las emisiones de polvo y gases contaminantes. En general los efectos ambientales -por ejemplo, emisiones contaminantes, ocupacin de espacio por la central y volumen de residuos - aumentan en el orden siguiente: gas,fuel oilligero,fuel oilpesado y combustin de carbn.Los materiales radioactivos emitenradiacinionizante penetrante que puede daar lostejidosvivos.El gas radn radioactivo es un contaminante frecuente en las minas subterrneas de uranio.Gran impacto ambientalNo contaminan el ambiente.

Contaminacin del aguaEl ciclo natural del agua tiene una gran capacidad de purificacin. Pero esta misma facilidad de regeneracin del agua, y su aparente abundancia, hace que sea el vertedero habitual en el que arrojamos los residuos producidos por nuestras actividades. Pesticidas, desechos qumicos, metales pesados, residuos radiactivos, etc., se encuentran, en cantidades mayores o menores, al analizar las aguas de los ms remotos lugares del mundo. Muchas aguas estn contaminadas hasta el punto de hacerlas peligrosas para la salud humana, y dainas para la vida.

Alteraciones fsicas del agua

Alteraciones fsicasCaractersticas y contaminacin que indica

ColorEl agua no contaminada suele tener ligeros colores rojizos, pardos, amarillentos o verdosos debido, principalmente, a los

compuestos hmicos, frricos o los pigmentos verdes de las algas que contienen..Las aguas contaminadas pueden tener muy diversos colores pero, en general, no se pueden establecer relaciones claras entre el color y el tipo de contaminacin

Olor y saborCompuestos qumicos presentes en el agua como los fenoles, diversos hidrocarburos, cloro, materias orgnicas en descomposicin o esencias liberadas por diferentes algas u hongos pueden dar olores y sabores muy fuertes al agua,aunque estn en muy pequeas concentraciones. Las sales o los minerales dan sabores salados o metlicos, en ocasiones sin ningn olor.

TemperaturaEl aumento de temperatura disminuye la solubilidad de gases (oxgeno) y aumenta, en general, la de las sales. Aumenta la velocidad de las reacciones del metabolismo, acelerando la putrefaccin. La temperatura ptima del agua para beber est entre 10 y 14C.Las centrales nucleares, trmicas y otras industrias contribuyen a la contaminacin trmica de las aguas, a veces de forma importante.

Materiales en suspensinPartculas como arcillas, limo y otras, aunque no lleguen a estar disueltas, son arrastradas por el agua de dos maneras: en suspensin estable (disoluciones coloidales); o en suspensin que slo dura mientras el movimiento del agua las arrastra. Las suspendidas coloidalmente slo precipitarn despus de haber sufrido coagulacin o floculacin (reunin de varias partculas)

RadiactividadLas aguas naturales tienen unos valores de radiactividad, debidos sobre todo a isotopos del K. Algunas actividades humanas pueden contaminar el agua con istopos radiactivos.

EspumasLos detergentes producen espumas y aaden fosfato al agua (eutrofizacin). Disminuyen mucho el poder autodepurador de los ros al dificultar la actividad bacteriana. Tambin interfieren en los procesos de floculacin y sedimentacin en lasestaciones depuradoras.

ConductividadEl agua pura tiene una conductividad elctrica muy baja. El agua natural tiene iones en disolucin y su conductividad es mayor y proporcional a la cantidad y caractersticas de esos electrolitos. Por esto se usan los valores de conductividad como ndice aproximado de concentracin de solutos. Como la temperatura modifica la conductividad las medidas se deben hacer a 20C

Alteraciones qumicas del agua

Alteraciones qumicasContaminacin que indica

pHLas aguas naturales pueden tener pH cidos por el CO2 disuelto desde la atmsfera o proveniente de los seres vivos; por cido sulfrico procedente de algunos minerales, por cidos hmicos disueltos del mantillo del suelo. La principal substancia bsica en el agua natural es el carbonato clcico que puede reaccionar con el CO2 formndo un sistema tampn carbonato/bicarbonato.Las aguas contaminadas con vertidos mineros o industriales pueden tener pH muy cido. El pH tiene una gran influencia en los procesos qumicos que tienen lugar en el agua, actuacin de los floculantes, tratamientos de depuracin, etc.

Oxgeno disuelto OD1Las aguas superficiales limpias suelen estar saturadas de oxgeno, lo que es fundamental para la vida. Si el nivel de oxgeno disuelto es bajo indica contaminacin con materia orgnica, septicizacin, mala calidad del agua e incapacidad para mantener determinadas formas de vida.

Materia orgnica biodegradable: Demanda Bioqumica de Oxgeno (DBO5)DBO5 es la cantidad de oxgeno disuelto requerido por los microorganismos para la oxidacin aerobia de la materia orgnica biodegradable presente en el agua. Se mide a los cinco das. Su valor da idea de la calidad del agua desde el punto de vista de la materia orgnica presente y permite prever cuanto oxgeno ser necesario para la depuracin de esas aguas e ir comprobando cual est siendo la eficacia del tratamiento depurador en una planta.

Materiales oxidables: Demanda Qumica de Oxgeno (DQO)Es la cantidad de oxgeno que se necesita para oxidar los materiales contenidos en el agua con un oxidante qumico (normalmente dicromato potsico en medio cido). Se determina en tres horas y, en la mayora de los casos, guarda una buena relacin con la DBO por lo que es de gran utilidad al no necesitar los cinco das de la DBO. Sin embargo la DQO no diferencia entre materia biodegradable y el resto y no suministra informacin sobre la velocidad de degradacin en condiciones naturales.

Nitrgeno totalVarios compuestos de nitrgeno son nutrientes esenciales. Su presencia en las aguas en exceso es causa de eutrofizacin.El nitrgeno se presenta en muy diferentes formas qumicas en las aguas naturales y contaminadas. En los anlisis habituales se suele determinar el NTK (nitrgeno total

Kendahl) que incluye el nitrgeno orgnico y el amoniacal. El contenido en nitratos y nitritos se da por separado.

Fsforo totalEl fsforo, como el nitrgenos, es nutriente esencial para la vida. Su exceso en el agua provoca eutrofizacin.El fsforo total incluye distintos compuestos como diversos ortofosfatos, polifosfatos y fsforo orgnico. Ladeterminacin se hace convirtiendo todos ellos en ortofosfatos que son los que se determinan por anlisis qumico.

Aniones: cloruros nitratos nitritos fosfatos sulfuros cianuros fluorurosindican salinidadindican contaminacin agrcola indican actividad bacterilogica indican detergentes y fertilizantesindican accin bacteriolgica anaerobia (aguas negras, etc.)indican contaminacin de origen industrialen algunos casos se aaden al agua para la prevencin de las caries, aunque es una prctica muy discutida.

Cationes: sodio calcio y magnesio amonio metales pesados

indica salinidadestn relacionados con la dureza del agua contaminacin con fertilizantes y hecesde efectos muy nocivos; se bioacumulan en la cadena trfica; (se estudian con detalle en el captulo correspondiente)

Compuestos orgnicosLos aceites y grasas procedentes de restos de alimentos o de procesos industriales (automviles, lubricantes, etc.) son difciles de metabolizar por las bacterias y flotan formando pelculas en el agua que daan a los seres vivos.Los fenoles pueden estar en el agua como resultado de contaminacin industrial y cuando reaccionan con el cloro que se aade como desinfectante forman clorofenoles que son un serio problema porque dan al agua muy mal olor y sabor.La contaminacin con pesticidas, petrleo y otros hidrocarburos se estudia con detalle en los captulos correspondientes.

Alteraciones biolgicas del agua

Alteraciones biolgicas del aguaContaminacin que indican

Bacterias coliformes2Desechos fecales

VirusDesechos fecales y restos orgnicos

Animales, plantas, microorganismosdiversosEutrofizacin

Substancias contaminantes del agua

Hay un gran nmero de contaminantes del agua que se pueden clasificar de muy diferentes maneras. Una posibilidad bastante usada es agruparlos en los siguientes ocho grupos:1. Microorganismos patgenos. Son los diferentes tipos de bacterias, virus, protozoos y otros organismos que transmiten enfermedades como el clera, tifus, gastroenteritis diversas, hepatitis, etc. En los pases en vas de desarrollo las enfermedades producidas por estos patgenos son uno de los motivos ms importantes de muerte prematura, sobre todo de nios.Normalmente estos microbios llegan al agua en las heces y otros restos orgnicos que producen las personas infectadas. Por esto, un buen ndice para medir la salubridad de las aguas, en lo que se refiere a estos microorganismos, es el nmero de bacterias coliformes presentes en el agua. La OMS (Organizacin Mundial de la Salud) recomienda que en el agua para beber haya 0 colonias de coliformes por 100 ml de agua.2. Desechos orgnicos. Son el conjunto de residuos orgnicos producidos por los seres humanos, ganado, etc. Incluyen heces y otros materiales que pueden ser descompuestos por bacterias aerbicas, es decir en procesos con consumo de oxgeno. Cuando este tipo de desechos se encuentran en exceso, la proliferacin de bacterias agota el oxgeno, y ya no pueden vivir en estas aguas peces y otros seres vivos que necesitan oxgeno. Buenos ndices para medir la contaminacin por desechos orgnicos son la cantidad de oxgeno disuelto, OD, en agua, o la DBO (Demanda Biolgica de Oxgeno).3. Sustancias qumicas inorgnicas. En este grupo estn incluidos cidos, sales ymetales txicos como el mercurio y el plomo. Si estn en cantidades altas puedencausar graves daos a los seres vivos, disminuir los rendimientos agrcolas y corroer los equipos que se usan para trabajar con el agua.4. Nutrientes vegetales inorgnicos. Nitratos y fosfatos son sustancias solubles en agua que las plantas necesitan para su desarrollo, pero si se encuentran en cantidad excesiva inducen el crecimiento desmesurado de algas y otros organismos provocando la eutrofizacin de las aguas. Cuando estas algas y otros vegetales mueren, al ser descompuestos por los microorganismos, se agota el oxgeno y se hace imposible lavida de otros seres vivos. El resultado es un agua maloliente e inutilizable.5. Compuestos orgnicos. Muchas molculas orgnicas como petrleo, gasolina, plsticos, plaguicidas, disolventes, detergentes, etc. acaban en el agua y permanecen, en algunos casos, largos perodos de tiempo, porque, al ser productos fabricados por el hombre, tienen estructuras moleculares complejas difciles de degradar por los microorganismos.6. Sedimentos y materiales suspendidos. Muchas partculas arrancadas del suelo y arrastradas a las aguas, junto con otros materiales que hay en suspensin en las aguas, son, en trminos de masa total, la mayor fuente de contaminacin del agua. La turbidez que provocan en el agua dificulta la vida de algunos organismos, y los sedimentos que se van acumulando destruyen sitios de alimentacin o desove de los peces, rellenan lagos o pantanos y obstruyen canales, ras y puertos.7. Sustancias radiactivas. Istopos radiactivos solubles pueden estar presentes en el agua y, a veces, se pueden ir acumulando a los largo de las cadenas trficas, alcanzando concentraciones considerablemente ms altas en algunos tejidos vivos que las quetenan en el agua.8. Contaminacin trmica. El agua caliente liberada por centrales de energa o procesos industriales eleva, en ocasiones, la temperatura de ros o embalses con lo que disminuye su capacidad de contener oxgeno y afecta a la vida de los organismos. Origen de la contaminacin de las aguas

Clasificacin de la calidad de las aguasHay muchos sistemas de clasificar la calidad de las aguas. En primer lugar se suele distinguir segn el uso que se le vaya a dar (abastecimiento humano, recreativo, vida acutica).Hay directivas comunitarias que definen los lmites que deben cumplir un amplio nmero de variables fsicas, qumicas y microbiolgicas para que pueda ser utilizada para consumo y abastecimiento (75/440/CEE), bao y usos recreativos (76/160/CEE) y vida de los peces (78/659/CEE) y estn traspuestas en la legislacin espaola en el R. D.927/1988 de 29 de julio.

a) Clasificacin para consumo humano.-Las aguas se clasifican en cuatro grupos (ver cuadro) segn su calidad para el consumo humano. Para hacer esta clasificacin se usan unos 20 parmetros de los que los ms importantes son: DQO, DBO5, NH4+, NTK, conductividad, Cl-, CN-, recuentos microbiolgicos y algunos metales (Fe, Cu, Cr).

TipoClasificacin de las aguas para consumo humano

A1Aguas potabilizables con un tratamiento fsico simple como filtracin rpida y desinfeccin.

A2Aguas potabilizables con un tratamiento fisico-qumico normal, como precloracin, floculacin, decantacin, filtracin y desinfeccin.

A3Potabilizable con un tratamiento adicional a la A2, tales como ozonizacin o carbn activo.

A4Aguas no utilizables para el suministro de agua potable, salvo casos excepcionales, y con un tratamiento intensivo.

b) Clasificacin para bao y usos deportivosDe forma similar se determina la aptitud de las aguas para el bao y uso deportivo. En este caso hay que fijarse, sobre todo, en los recuentos microbiolgicos, el porcentaje de saturacin de oxgeno, y en menor medida, presencia de aceites y grasas y otros caracteres organolpticos (olor, sabor, etc.). Para determinar la aptitud de las aguas para la vida pisccola influye mucho la concentracin de nitritos y tambin el amoniaco no ionizado, que es muy txico para los organismos acuticos, an a bajas concentraciones; y tambin, aunque menos, la DBO5, amonio, hidrocarburos disueltos y metales (Pb, Cu, Zn) presentes.

c) Otros clasificaciones de calidad de las aguasHay otras formas de definir la calidad de las aguas que se utilizan segn lo que interese conocer. Se puede tambin determinar y clasificar las aguas segn un ndice de calidad fsico-qumico. Ejemplos de ndices utilizados son:ICG (ndice de calidad general), muy utilizado en todo el estado espaol.Otra posibilidad es analizar el nivel de mineralizacin de las aguas por anlisis deconductividad.Desde el punto de vista biolgico suele interesar clasificar las aguas segn el tipo y cantidad de microorganismos presentes o aplicar ndices biticos, como el BMWP, o ndices de diversidad que indican la riqueza ecolgica de ese tramo del ro. Hay modelos, como el SCAF, que determinan el tipo de "ambiente ecolgico" de la estacin analizada, lo que permite hacer estudios de comparacin o determinar que impactos negativos sobre el ecosistema pueden estar afectando a la calidad del ro.Indice bitico BMWP (Biological Monitoring Working Party) de Hellawell modificado por Alba & Snchez para la Pennsula Ibrica. Con l se determina unndice que suele tener valores entre 0 y un mximo indeterminado que, en la prctica, no suele superar el 200.Modelo SCAF.- Se basa en la teora de la sucesin ecolgica. Determina el estado ambiental combinando los ndices de diversidad y el ndice bitico BMWP.Con este modelo se determinan los distintos tipos de estado ambiental del ecosistema. A Vcada tipo le correspondern, a su vez, unos usos potenciales

Figura de calidad de los Ros

Mapa de calidad de los rosSntesis de la situacin actual de la calidad de las aguas en funcin de los valores del Indice de Calidad General (porcentaje de tramos segn calidad respecto del total de cada cuenca).

Contaminacin de mares y costasEl vertedero final para una gran parte de nuestros desechos es el ocano. A l van a parar gran parte de los vertidos urbanos e industriales. No slo recibe las aguas residuales, sino que, en muchas ocasiones, se usa para arrojar las basuras o, incluso, los residuos radiactivos.El 80% de las substancias que contaminan el mar tienen su origen en tierra. De las fuentes terrestres la contaminacin difusa es la ms importante. Incluye pequeos focos como tanques spticos, coches, camiones, etc. y otros mayores como granjas, tierras de cultivo, bosques, etc. Los accidentes martimos son responsables de alrededor de un 5% de los hidrocarburos vertidos en el mar. En cambio, una ciudad de cinco millones de habitantes acaba vertiendo en un ao la misma cantidad que derram el Exxon Valdez en su accidente en Alaska.Aproximadamente un tercio de la contaminacin que llega a los mares empieza siendo contaminacin atmosfrica pero despus acaba cayendo a los ocanos.En los fondos ocenicos hay, en este momento, decenas de miles de barriles con substancias como plutonio, cesio o mercurio, resultado de dcadas de uso del ocano como vertedero para grandes cantidades de desechos. Por ejemplo, como consecuencia de los accidentes sufridos por diversos barcos de guerra desde 1956 hasta 1989, ocho reactores nucleares completos, con todo su combustible, y 50 armas nucleares, se encuentran en el fondo de diversos mares del globo.

El exceso de aporte de nutrientes causa eutrofizacin en grandes zonas martimas. En la desembocadura del Mississippi, por ejemplo, una zona de unas 4000 millas cuadradas, en las costas de Texas y Louisiana, ha perdido gran parte de su fauna como consecuencia del enriquecimiento de nutrientes continuado por el excesivo crecimiento de las algas y del empobrecimiento en oxgeno provocado por la putrefaccin de estas algas.Alrededor del 60% de las especies viven en la franja de 60 Km ms prxima a la costa. Todos ellos se ven especialmente afectados por la contaminacin que afecta a los mares y ocanos, especialmente en la cercana de las costas, lo que es especialmente importante teniendo en cuenta que, segn algunos clculos, procede de las costas algo ms de la mitad de todos los servicios que la naturaleza, en su conjunto, provee a la humanidad (que en un estudio hecho en 1987 se evaluaron en 21.500 miles de millones de dlares)La capacidad purificadora de las grandes masas de agua marina es muy grande. En ellas se diluyen, dispersan o degradan ingentes cantidades de aguas fecales, hidrocarburos, desechos industriales e, incluso, materiales radiactivos. Por este motivo es muy tentador recurrir al barato sistema de arrojar al mar los residuos de los que queremos deshacernos; pero en muchos lugares, los excesos cometidos han convertido grandes zonas del mar en desiertos de vida o en cloacas malolientes.Para saber ms ver: El mar Bltico en peligro.

CostasLas zonas costeras son las que ms han sufrido la actividad humana. Una gran parte de la poblacin mundial vive cerca de las costas. Por ejemplo, en Europa, alrededor del30% de la poblacin vive a menos de 50 km. de la costa; y en Espaa, 12,5 millones de habitantes - nmero que aumenta considerablemente en verano-, viven en las ciudades situadas en los algo ms de 8 000 km. de costa que tiene el pas. As se entiende que una gran parte de las orillas de los mares del mundo tengan graves problemas de contaminacin.Los vertidos son la principal fuente de contaminacin de las costas. En la mayor parte de los pases en vas de desarrollo y en muchos lugares de los desarrollados, los vertidos de las ciudades se suelen hacer directamente al mar, sin tratamientos previos de depuracin.Adems, las zonas donde la renovacin del agua es ms lenta (marismas, estuarios, bahas, puertos) son las ms maltratadas. En ellas es frecuente encontrar peces con tumores y graves enfermedades, o moluscos y crustceos cuya pesca y consumo estn prohibidos, porque contienen altas dosis de productos txicos.

Aguas libresLos efectos de los vertidos tambin se dejan sentir en las aguas libres de mares y ocanos. Las grandes cantidades de plstico echadas al mar son las responsables de la muerte de muchas focas, ballenas, delfines, tortugas, y aves marinas, que quedan atrapadas en ellas o se las comen.En algunos casos el exceso de materia orgnica y de nutrientes que hacen proliferar las algas, genera procesos de putrefaccin tan fuertes, que se consume el oxgeno disuelto en el mar y los peces y otros organismos mueren, originndose grandes "zonas sin vida"

Eutrofizacin

Concepto de eutrofizacinUn ro, un lago o un embalse sufren eutrofizacin cuando sus aguas se enriquecen en nutrientes. Podra parecer a primera vista que es bueno que las aguas estn bien repletas de nutrientes, porque as podran vivir ms fcil los seres vivos. Pero la situacin no es tan sencilla. El problema est en que si hay exceso de nutrientes crecen en abundancia las plantas y otros organismos. Ms tarde, cuando mueren, se pudren y llenan el agua de malos olores y le dan un aspecto nauseabundo, disminuyendo drsticamente su calidad. El proceso de putrefaccin consume una gran cantidad del oxgeno disuelto y las aguas dejan de ser aptas para la mayor parte de los seres vivos. El resultado final es un ecosistema casi destruido.Agua eutrfica y oligotrficaCuando un lago o embalse es pobre en nutrientes (oligotrfico) tiene las aguas claras, la luz penetra bien, el crecimiento de las algas es pequeo y mantiene a pocos animales. Las plantas y animales que se encuentran son los caractersticos de aguas bien oxigenadas como las truchas.Al ir cargndose de nutrientes el lago se convierte en eutrfico. Crecen las algas en gran cantidad con lo que el agua se enturbia. Las algas y otros organismos, cuando mueren, son descompuestos por la actividad de las bacterias con lo que se gasta el oxgeno. No pueden vivir peces que necesitan aguas ricas en oxgeno, por eso en un lago de estascaractersticas encontraremos barbos, percas y otros organismos de aguas pocoventiladas. En algunos casos se producirn putrefacciones anaerbicas acompaadas de malos olores Las aguas son turbias y de poca calidad desde el punto de vista del consumo humano o de su uso para actividades deportivas. El fondo del lago se va rellenando de sedimentos y su profundidad va disminuyendo.Nutrientes que eutrofizan las aguasLos nutrientes que ms influyen en este proceso son los fosfatos y los nitratos. En algunos ecosistemas el factor limitante es el fosfato, como sucede en la mayora de los lagos de agua dulce, pero en muchos mares el factor limitante es el nitrgeno para la mayora de las especies de plantas.En los ltimos 20 o 30 aos las concentraciones de nitrgeno y fsforo en muchosmares y lagos casi se han duplicado. La mayor parte les llega por los ros. En el caso del nitrgeno, una elevada proporcin (alrededor del 30%) llega a travs de la contaminacin atmosfrica. El nitrgeno es ms mvil que el fsforo y puede ser lavado a travs del suelo o saltar al aire por evaporacin del amoniaco o por desnitrificacin. El fsforo es absorbido con ms facilidad por las partculas del suelo y es arrastrado por la erosin erosionadas o disuelto por las aguas de escorrenta superficiales.En condiciones naturales entra a un sistema acutico menos de 1Kg de fosfato por hectrea y ao. Con los vertidos humanos esta cantidad sube mucho. Durante muchos aos los jabones y detergentes fueron los principales causantes de este problema. En las dcadas de los 60 y 70 el 65% del peso de los detergentes era un compuesto de fsforo, el tripolifosfato sdico, que se usaba para "sujetar" (quelar) a los iones Ca, Mg, Fe y Mn. De esta forma se consegua que estos iones no impidieran el trabajo de las molculas surfactantes que son las que hacen el lavado. Estos detergentes tenan alrededor de un 16% en peso de fsforo. El resultado era que los vertidos domsticos y de lavanderas contenan una gran proporcin de ion fosfato. A partir de 1973 Canad primero y luego otros pases, prohibieron el uso de detergentes que tuvieran ms de un2,2% de fsforo, obligando as a usar otros quelantes con menor contenido de este elemento. Algunas legislaciones han llegado a prohibir los detergentes con ms de 0,5% de fsforo.Fuentes de eutrofizacina) Eutrofizacin natural.- La eutrofizacin es un proceso que se va produciendo lentamente de forma natural en todos los lagos del mundo, porque todos van recibiendo nutrientes.b) Eutrofizacin de origen humano.- Los vertidos humanos aceleran el proceso hasta convertirlo, muchas veces, en un grave problema de contaminacin. Las principales fuentes de eutrofizacin son:los vertidos urbanos, que llevan detergentes y desechos orgnicoslos vertidos ganaderos y agrcolas, que aportan fertilizantes, desechos orgnicos y otros residuos ricos en fosfatos y nitratos.Medida del grado de eutrofizacinPara conocer el nivel de eutrofizacin de un agua determinada se suele medir el contenido de clorofila de algas en la columna de agua y este valor se combina con otros parmetros como el contenido de fsforo y de nitrgeno y el valor de penetracin de la luz.Medidas para evitar la eutrofizacinLo ms eficaz para luchar contra este tipo de contaminacin es disminuir la cantidad de fosfatos y nitratos en los vertidos, usando detergentes con baja proporcin de fosfatos, empleando menor cantidad de detergentes, no abonando en exceso los campos, usandolos desechos agrcolas y ganaderos como fertilizantes, en vez de verterlos, etc. Enconcreto:Tratar las aguas residuales en EDAR (estaciones depuradoras de aguas residuales) que incluyan tratamientos biolgicos y qumicos que eliminan el fsforo y el nitrgeno.Almacenar adecuadamente el estircol que se usa en agricultura.Usar los fertilizantes ms eficientemente.Cambiar las prcticas de cultivo a otras menos contaminantes. As, por ejemplo, retrasar el arado y la preparacin de los campos para el cultivo hasta la primavera y plantar los cultivos de cereal en otoo asegura tener cubiertas las tierras con vegetacin durante el invierno con lo que se reduce la erosin.Reducir las emisiones de NOx y amoniaco.

Petrleo en el marEn nuestras sociedades el petrleo y sus derivados son imprescindibles como fuente de energa y para la fabricacin de mltiples productos de la industria qumica, farmacutica, alimenticia, etc.Por otro lado, alrededor del 0,1 al 0,2% de la produccin mundial de petrleo acaba vertido al mar. El porcentaje puede parecer no muy grande pero son casi 3 millones de toneladas las que acaban contaminando las aguas cada ao, provocando daos en el ecosistema marino.La mayor parte del petrleo se usa en lugares muy alejados de sus puntos de extraccin por lo que debe ser transportado por petroleros u oleoductos a lo largo de muchos kilmetros, lo que provoca espectaculares accidentes de vez en cuando. Estas fuentes de contaminacin son las ms conocidas y tienen importantes repercusiones ambientales, pero la mayor parte del petrleo vertido procede de tierra, de desperdicios domsticos, automviles y gasolineras, refineras, industrias, etc.Se han ensayado distintas tcnicas para limitar o limpiar los vertidos del petrleo. Pronto se comenzaron a usar detergentes y otros productos, pero en el accidente del Torrey Canyon se comprob que los productos de limpieza utilizados haban causado ms dao ecolgico que el propio petrleo vertido. Actualmente se emplean productosde limpieza menos dainos y diferentes tcnicas y maquinarias, como barreras flotantes, sistemas de recogida, etc., que en algunos casos pueden ser bastante eficaces, aunque no son la solucin definitiva. Evitar la contaminacin es la nica solucin verdaderamente aceptable.

Cantidad y origen del petrleo vertido al marNo es fcil calcular la cantidad y el origen de petrleo que llega al mar y, de hecho, slo disponemos de valores poco exactos. Valores estimados segn diversos estudios son:

AoToneladas vertidas

19736.110.000

19794.670.000

19813.570.000

19833.200.000

1985/19892.400.000

Entre los estudios que se han hecho destacan los de la National Academy of Sciences delos EEUU. Public su primer informe en 1975 (datos correspondientes al ao 1973) y posteriormente otro en 1985 (con algunas cifras completadas en 1989). Con datos extrados de estos informes, y de otras fuentes, se puede resumir que la cifra global de petrleo que llega al mar cada ao es de unos 3.000.000 toneladas mtricas (rango posible entre 1.7 y 8.8 millones de toneladas), y la procedencia de este petrleo vertido al mar sera:

Por causas naturales10%

Desde tierra64% (de ellas un 15 a un 30% por aire )

Por funcionamiento de petroleros7%

Por accidentes5%

Por explotaciones petroleo en mar2%

Por otros buques12%

En el informe publicado en 2003: Oil in the Sea III: Inputs, Fates, and Effects (2003)(ver resumen en http://books.nap.edu/html/oil_in_the_sea/reportbrief.pdf ) dan un resumen de datos recogido en esta tabla. Los datos vienen en miles de toneladas y se refieren a la media naula de la dcda entre 1990 y 1999

AccidentesEl porcentaje vertido por accidentes es muy variable, pero lo podemos cifrar en alrededor de un 5%. Aunque en proporcin no es la mayor fuente de contaminacin, los desastres ambientales que originan son muy importantes, porque producen vertidos de masas de petrleo muy concentradas y forman manchas de gran extensin. En algunos accidentes se han llegado a derramar ms de 400 000 toneladas, como en la rotura de una plataforma marina en el Golfo de Mxico, en 1979. En la Guerra del Golfo, aunque no propiamente por accidente, sino por una combinacin de acciones de guerra y sabotajes, se verti an mayor cantidad. Otros, como el vertido del Exon Valdez, en1989, en Alaska, pueden llegar a costas o lugares de gran inters ecolgico y causar extraordinarias mortandades en pjaros, focas y todo tipo de fauna y flora.

Vertidos de petrleo de ms de 140 mil toneladas

AoAccidenteLugarToneladas vertidas

1991Guerra del GolfoGolfo Prsico816 000

1979Plataforma Ixtoc IMexico476 000

1983Pozo petrolferoIran272 000

1992OleoductoUzbekistan272 000

1983

Petrolero Castillo de Bellver

Sudfrica

267 000

1991ABT SummerAngola260.000

1978Petrolero Amoco CadizFrancia234 000

1988Petrolero OdysseyCanad146 000

1979

Petrolero Atlantic Empress

Caribe

145 000

1991

Haven

Italia

144 000

1980Pozo petrolferoLibia143 000

1979

Petrolero Atlantic Empress

Barbados

141 000

Otros accidentes conocidos o que han sucedido en Espaa

1967

Petrolero Torrey Canyon

Reino Unido

130 000

1994Rotura de oleoductoRusia104 000

1976Petrolero UrquiolaLa Corua95 000

1992Petrolero Mar EgeoLa Corua71 000

2002PrestigeGalicia63 000

1989Petrolero Exxon ValdezAlaska37 000

Explicacin: En el Anuario Internacional de Estadsticas sobre Vertidos Petrolferos de1996 venan recogidos 62 casos en los que se han derramado ms de 3 400 toneladas (10 millones de galones). En el cuadro se recogen los accidentes con vertidos mayores de 140 000 toneladas y algunos otros casos de especial inters por sus consecuencias o por haber tenido lugar en las costas espaolas.Ms informacin en http://www.itopf.com/stats.htmlLavado de tanquesDurante mucho tiempo el lavado de tanques de los petroleros ha sido una de las prcticas ms dainas y que ms contaminacin por petrleo ha producido. Estos grandes buques hacan el lavado en los viajes de regreso, llenando los tanques con agua del mar que despus vertan de nuevo al ocano, dejando grandes manchas de petrleo por todas las rutas martimas que usaban. En los ltimos aos una legislacin ms exigente y un sistema de vigilancia y denuncias ms eficiente, han conseguido reducir de forma significativa estas prcticas, aunque, por unos motivos o por otros, los petroleros todava siguen siendo un importante foco de contaminacin.

Evolucin de las manchas de petrleoEl petrleo vertido se va extendiendo en una superficie cada vez mayor hasta llegar a formar una capa muy extensa, con espesores de slo dcimas de micrmetro. De esta

forma se ha comprobado que 1 m3 de petrleo puede llegar a formar, en hora y media, una mancha de 100 m de dimetro y 0,1 mm de espesor.

Evolucin de las manchas de petrleo

Una gran parte del petrleo (entre uno y dos tercios) se evapora. El petrleo evaporado es descompuesto por fotooxidacin en la atmsfera.Del crudo que queda en el agua:parte sufre fotooxidacin;otra parte se disuelve en el agua, siendo esta la ms peligrosa desde el punto de vista de la contaminacin, ylo que queda forma el "mousse": emulsin gelatinosa de agua y aceite que se convierte en bolas de alquitrn densas, semislidas, con aspecto asfltico. Se ha calculado que en el centro del Atlntico hay unas 86 000 toneladas de este material, principalmente en el mar de los Sargazos que tiene mucha capacidad de recoger este tipo de material porque las algas, muy abundantes en esa zona, quedan enganchadas al alquitrn.Sistemas de limpieza de los vertidos de petrleo1. Contencin y recogida: Se rodea el petrleo vertido con barreras y se recupera con raseras o espumaderas que son sistemas que succionan y separan el petrleodel agua por:

centrifugacin, aprovechando que el agua es ms pesada que el crudo se consigue que sea expulsada por el fondo del dispositivo que gira, mientras el petrleo es bombeado por la parte superior;bombeo por aspiracinadherencia a tambor o discos giratorios, que se introducen en la mancha para que el crudo quede adherido a ellos, luego se desprende rascando y el petrleo que va quedando junto al eje de giro es bombeado a la embarcacin de recogidafibras absorbentes, en el que se usan materiales plsticos oleoflicos (que adhieren el petrleo) que actan como una bayeta o "mopa" que absorbe petrleo, luego se exprime en la embarcacin de recogida y vuelve a ser empleada para absorber ms

Estas tcnicas no causan daos y son muy usadas, pero su eficiencia, aun en las mejores condiciones, slo llega a un 10 - 15%.2. Dispersantes: Son sustancias qumicas similares a los detergentes, que rompen el petrleo en pequeas gotitas (emulsin) con lo que se diluyen los efectos dainos del vertido y se facilita la actuacin de las bacterias que digieren los hidrocarburos. Es muy importante elegir bien la sustancia qumica que se usa como dispersante, porque con algunas de las que se utilizaron en los primeros accidentes, por ejemplo en el del Torrey Canyon, se descubri que eran ms txicas y causaban ms daos que el propio petrleo. En la actualidad existen dispersantes de baja toxicidad autorizados.3. Incineracin: Quemar el petrleo derramado suele ser una forma eficaz de hacerlo desaparecer. En circunstancias ptimas se puede eliminar el 95% del vertido. El principal problema de este mtodo es que produce grandes cantidades de humo negro que, aunque no contiene gases ms txicos que los normales que se forman al quemar el petrleo en la industria o los automviles, es muy espeso por su alto contenido de partculas.4. Biodegradacin: En la naturaleza existen microorganismos (bacterias y hongos, principalmente) que se alimentan de los hidrocarburos y los transforman en otras sustancias qumicas no contaminantes. Este proceso natural se puede acelerar aportando nutrientes y oxgeno que facilitan la multiplicacin de las bacterias.5. Limpieza de las costas: En ocasiones se usan chorros de agua caliente a presin para arrastrar el petrleo desde la lnea de costa al agua. Este mtodo suele hacer ms mal que bien porque entierra el hidrocarburo ms profundamente en laarena y mata todo ser vivo de la playa. Se us extensamente en el accidente del Exxon Valdez debido a que la opinin pblica exiga la limpieza y este mtodo deja aparentemente la playa con un aspecto casi normal. Pero luego se comprob que las zonas que se haban dejado para que se limpiaran de forma natural, al cabo de unos meses estaban en mejores condiciones que las que se haban sometido al tratamiento, demostrando que consideraciones estticas a cortoplazo no deben imponerse a planteamientos ecolgicos ms importantes a largo plazo.6. No hacer nada: En los vertidos en medio del ocano, o en aquellos en que la limpieza es difcil y poco eficaz, lo mejor es dejar que la accin de las olas, la fotooxidacin y otras acciones naturales, acaben solucionando el problema.

Efectos de la contaminacin con petrleoLos diversos ecosistemas reciben petrleo e hidrocarburos, en cantidades diversas, de forma natural, desde hace millones de aos. Por esto es lgico que se encuentren muchos microorganismos capaces de metabolizar el petrleo y que sea frecuente el que muchos seres vivos sean capaces de eliminar el absorbido a travs de la cadena alimenticia. No parece que es muy importante la amenaza de bioacumulacin del petrleo y los productos relacionados en la cadena alimenticia, aunque en algunas ocasiones, en localidades concretas, puede resultar una amenaza para la salud, incluso humana.Hay diferencias notables en el comportamiento de diferentes organismos ante la contaminacin con petrleo. Los moluscos bivalvos (almejas, mejillones, etc.). por ejemplo, muestran muy baja capacidad de eliminacin del contaminante y, aunque muchos organismos (algunos peces, por ejemplo) no sufren daos importantes con concentraciones del producto de hasta 1000 ppm, algunas larvas de peces se ven afectadas por niveles tan bajos como 1 ppm.

Las aves y los mamferos se ven afectados por la impregnacin de sus plumas y piel por el crudo, lo que supone su muerte en muchas ocasiones porque altera su capacidad de aislamiento o les impermeabiliza.Los daos no slo dependen de la cantidad vertida, sino tambin del lugar, momento del ao, tipo de petrleo, etc. Un simple vertido de limpieza de tanques de un barco -elStylis- mat en Noruega a 30 000 aves marinas en 1981, porque fue arrastrado directamente a la zona donde estas aves tenan sus colonias.La mayora de las poblaciones de organismos marinos se recuperan de exposiciones a grandes cantidades de petrleo crudo en unos tres aos, aunque si el petrleo es refinado o la contaminacin se ha producido en un mar fro, los efectos pueden durar el doble oel triple.

Depuracin de los vertidosLa mayora de los vertidos de aguas residuales que se hacen en el mundo no son tratados. Simplemente se descargan en el ro, mar o lago ms cercano y se deja que los sistemas naturales, con mayor o menor eficacia y riesgo, degraden los desechos de forma natural. En los pases desarrollados una proporcin, cada vez mayor, de los vertidos es tratada antes de que lleguen a los ros o mares en EDAR (estaciones depuradoras de aguas residuales).El objetivo de estos tratamientos es, en general, reducir la carga de contaminantes del vertido y convertirlo en inocuo para el medio ambiente. Para cumplir estos fines se usan distintos tipos de tratamiento dependiendo de los contaminantes que arrastre el agua yde otros factores ms generales, como localizacin de la planta depuradora, clima, ecosistemas afectados, etc.

Tipos de tratamiento.Hay distintos tipos de tratamiento de las aguas residuales para lograr retirar contaminantes. Se pueden usar desde sencillos procesos fsicos como la sedimentacin, en la que se deja que los contaminantes se depositen en el fondo por gravedad, hasta complicados procesos qumicos, biolgicos o trmicos. Entre ellos, los ms usuales son: a) FsicosSedimentacin.Flotacin.- Natural o provocada con aire.Filtracin.- Con arena, carbn, cermicas, etc.Evaporacin.Adsorcin.- Con carbn activo, zeolitas, etc.Desorcin (Stripping). Se transfiere el contaminante al aire (ej. amoniaco).Extraccin.- Con lquido disolvente que no se mezcla con el agua. b) QumicosCoagulacin-floculacin.- Agregacin de pequeas partculas usando coagulantes y floculantes (sales de hierro, aluminio, polielectrolitos, etc.)Precipitacin qumica.- Eliminacin de metales pesados hacindolos insolubles con la adicin de lechada de cal, hidrxido sdico u otros que suben el pH.Oxidacin-reduccin.- Con oxidantes como el perxido de hidrgeno, ozono, cloro, permanganato potsico o reductores como el sulfito sdico.Reduccin electroltica.- Provocando la deposicin en el electrodo del contaminante. Se usa para recuperar elementos valiosos.Intercambio inico.- Con resinas que intercambian iones. Se usa para quitar dureza al agua.

Osmosis inversa.- Haciendo pasar al agua a travs de membranas semipermeables que retienen los contaminantes disueltos.c) Biolgicos. Usan microorganismos que se nutren con diversos compuestos de los que contaminan las aguas. Los flculos que se forman por agregacin de microorganismos son separados en forma de lodos.Lodos activos.- Se aade agua con microorganismos a las aguas residuales en condiciones aerobias (burbujeo de aire o agitacin de las aguas).Filtros bacterianos.- Los microorganismos estn fijos en un soporte sobre el que fluyen las aguas a depurar. Se introduce oxgeno suficiente para asegurar que el proceso es aerobio.Biodiscos.- Intermedio entre los dos anteriores. Grandes discos dentro de una mezcla de agua residual con microorganismos facilitan la fijacin y el trabajo de los microorganismos.Lagunas aireadas.- Se realiza el proceso biolgico en lagunas de grandes extensiones.Degradacin anaerobia.- Procesos con microorganismos que no necesitan oxgeno para su metabolismo.

Niveles de tratamientoLas aguas residuales se pueden someter a diferentes niveles de tratamiento, dependiendo del grado de purificacin que se quiera. Es tradicional hablar de tratamiento primario, secundario, etc, aunque muchas veces la separacin entre ellos no es totalmente clara. As se pueden distinguir:a) Pretratamiento.- Es un proceso en el que usando rejillas y cribas se separan restos voluminosos como palos, telas, plsticos, etc.b) Tratamiento primario.- Hace sedimentar los materiales suspendidos usando tratamientos fsicos o fisico-qumicos. En algunos casos dejando, simplemente, las aguas residuales un tiempo en grandes tanques o, en el caso de los tratamientos primarios mejorados, aadiendo al agua contenida en estos grandes tanques, sustancias qumicas quelantes* que hacen ms rpida y eficaz la sedimentacin. Tambin se incluyen en estos tratamientos la neutralizacin del pH y la eliminacin decontaminantes voltiles como el amoniaco (desorcin). Las operaciones que incluye son el desaceitado y desengrase, la sedimentacin primaria, la filtracin, neutralizacin y la desorcin (stripping).c) Tratamiento secundario.- Elimina las partculas coloidales y similares. Puede incluir procesos biolgicos y qumicos. El proceso secundario ms habitual es un proceso biolgico en el que se facilita que bacterias aerobias* digieran la materia orgnica que llevan las aguas. Este proceso se suele hacer llevando el efluente que sale del tratamiento primario a tanques en los que se mezcla con agua cargada de lodos activos (microorganismos). Estos tanques tienen sistemas de burbujeo o agitacin que garantizan condiciones aerobias para el crecimiento de los microorganismos. Posteriormente se conduce este lquido a tanques cilndricos, con seccin en forma de tronco de cono, en los que se realiza la decantacin de los lodos. Separados los lodos, el agua que sale contiene muchas menos impurezas.d) Tratamientos ms avanzados.- Consisten en procesos fsicos y qumicos especiales con los que se consigue limpiar las aguas de contaminantes concretos: fsforo, nitrgeno, minerales, metales pesados, virus, compuestos orgnicos, etc. Es un tipo de tratamiento ms caro que los anteriores y se usa en casos ms especiales: para purificar desechos de algunas industrias, especialmente en los pases ms desarrollados, o en las zonas con escasez de agua que necesitan purificarla para volverla a usar como potable,

en las zonas declaradas sensibles (con peligro de eutrofizacin) en las que los vertidos deben ser bajos en nitrgeno y fsforo, etc.

Tratamiento primario y tratamiento secundario en una EDAR

Lneas de tratamiento en las EDAREn el funcionamiento de una EDAR (estacin depuradora de agua) se suelen distinguir dos grandes lneas:a) Lnea de agua.- Es el conjunto de los procesos (primarios, secundarios, etc.) que depuran el agua propiamente dicha. Comenzara con el agua que entra a la depuradora y terminara en el agua vertida al ro o al mar.b) Lnea de fangos.- Est formada por el conjunto de procesos a los que se somete a los fangos (lodos) que se han producido en la lnea de agua. Estos lodos son degradados en un digestor anaerbico* (o en otra forma similar), para ser despus incinerados, usados como abono, o depositados en un vertedero.En una planta depuradora tambin se generan, adems de los lodos, otros residuos (arenas, grasas, objetos diversos separados en el pretratamiento y en el tratamiento primario) que deben ser eliminados adecuadamente. Se suelen llevar a vertederos o similares.

Tratamientos especiales: eliminacin de N y PEn los casos en los que las aguas que salen de la EDAR se vierten a ecosistemas en peligro de eutrofizacin es importante eliminar los nutrientes (P y N) que estas aguas pueden llevar, para no aumentar la intensidad de ese proceso.Para eliminar fsforo se suelen pasar las aguas por un reactor "anaerobio" que facilita una mayor asimilacin de ese elemento por las bacterias. As se llega a eliminar el 60 -70% del fsforo. Si esto no es suficiente se complementa con una precipitacin qumica forzada por la adicin de sulfato de almina o cloruro frrico.La eliminacin de nitrgeno se hace en varias fases. En primer lugar, durante el tratamiento biolgico habitual, la mayor parte de los compuestos orgnicos de nitrgeno se convierten en amoniaco (amonificacin). A continuacin hay que conseguir que el amoniaco se convierta a nitratos (nitrificacin) por la accin de bacterias nitrificantes (Nitrosomonas y Nitrobacter) que son aerobias. Este proceso de nitrificacin necesita de reactores de mucho mayor volumen (unas cinco o seis veces mayor) que los necesarios para eliminar carbono orgnico. Las temperaturas bajas tambin dificultan el proceso (a12C el volumen debe ser el doble que a 18C). A continuacin se procura la eliminacin de los nitratos en el proceso llamado desnitrificacin. Para esto se usan bacterias en condiciones anaerobias que hacen reaccionar el nitrato con parte del carbono que contiene el agua que est siendo tratada. Como resultado de la reaccin se forma CO2 y N2 que se desprenden a la atmsfera. Para llevar a cabo estos procesos hacen falta reactores de gran volumen, aireacin de gandes masas de agua y recirculacin de fangos que complican y encarecen todo el proceso de depuracin. Otros sistemas de depuracinPara lograr una depuaracin suficiente de las aguas residuales de pequeas comunidades no es necesario acudir a la instalacin de EDAR capaces de realizar complejos tratamientos. Otros mtodos pueden ser suficientemente eficaces y mucho msrentables. As:Fosa sptica.- Cmaras cerradas en la que los contaminantes sedimentan y fermentan.Lecho bacteriano (depsito lleno de rido), zanjas o pozos filtrantes o filtros de arena.- Todos ellos facilitan la formacin de pelculas de bacterias sobre los cantos o partculas filtrantes que realizan la descontaminacin.Lagunaje:oanaerobio: elimina hasta el 50% el DBOoaerobio: con posible proceso anaerobio despusFiltro verde: plantacin forestal en la que se riega con aguas residuales.Contactores biolgicos rotativos.- Sistemas mecnicos que facilitan la actuacin de las bacterias descontaminantes.Depuracin de aguas en EspaaEn Espaa, segn el Environmental Profile of Spain 2005 (Ministerio de Medio Ambiente 2006) p. 85, el porcentaje de poblacin equivalente atendido por sistemas depuracin era del 87% en 2004 (en 1995 era del 54%)

Contaminacin de las aguas subterrneasLas aguas subterrneas son una de las principales fuentes de suministro para uso domstico y para el riego en muchas partes de Espaa y del mundo. En Espaaalrededor de la tercera parte del agua que se usa en las ciudades y la industria y la cuarta parte de la que se usa en agricultura son aguas subterrneas. En muchos lugares en los que las precipitaciones son escasas e irregulares pero el clima es muy apto para la

agricultura son un recurso vital y una gran fuente de riqueza, ya que permiten cultivar, productos muy apreciados en los mercados internacionales.Las aguas subterrneas suele ser ms difciles de contaminar que las superficiales, pero cuando esta contaminacin se produce, es ms difcil de eliminar. Sucede esto porquelas aguas del subsuelo tienen un ritmo de renovacin muy lento. Se calcula que mientras el tiempo de permanencia medio del agua en los ros es de das, en un acufero es de cientos de aos, lo que hace muy difcil su purificacin.Problemas en el uso de las aguas subterrneas.

Problemas de las aguas subterrneas en Espaa

La explotacin incorrecta de las aguas subterrneas origina varios problemas. En muchas ocasiones la situacin se agrava por el reconocimiento tardo de que se est deteriorando el acufero, porque como el agua subterrnea no se ve, el problema puede tardar en hacerse evidente. Los principales problemas son:a) Por agotamiento del acufero.Un buen uso de las aguas subterrneas exige tener en cuenta que, en los lugares en que las precipitaciones son escasas, los acuferos se van cargando de agua muy lentamente y si se consumen a un ritmo excesivamente rpido, se agotan. Cuando se produce explotacin intensiva, sequa u otras causas que van disminuyendo el nivel del agua contenida en el acufero se derivan problemas ecolgicos como, por ejemplo, en las Tablas de Daimiel, Parque Nacional situado en La Mancha formado por zonas hmedas muy ricas en aves. La explotacin creciente para usos agrcolas del acufero 23 quenutre de agua al Parque ha hecho que en los aos de pocas lluvias grandes reas de lasTablas se queden sin agua.Cuando estos acuferos se encuentran en la costa, al ir vacindose de agua dulce, van siendo invadidos por agua salada (intrusin) y queda inutilizados para el uso humano. En la costa mediterrnea espaola prcticamente todos los acuferos estn afectados por este problema y necesitan una mejora urgente de su explotacin o de sus sistemas de control y, en muchos casos, es imprescindible permitir que se recarguen de agua antes de seguir explotndolos.

b) Por contaminacin de las aguas subterrneas.Se suelen distinguir dos tipos de procesos contaminantes de las aguas subterrneas: los "puntuales" que afectan a zonas muy localizadas, y los "difusos" que provocan contaminacin dispersa en zonas amplias, en las que no es fcil identificar un foco principal.Actividades que suelen provocar contaminacin puntual son:Lixiviados de vertederos de residuos urbanos y fugas de aguas residuales que se infiltran en el terreno.Lixiviados de vertederos industriales, derrubios de minas, depsitos de residuos radiactivos o txicos mal aislados, gasolineras con fugas en sus depsitos de combustible, etc.Pozos spticos y acumulaciones de purines procedentes de las granjas. Este tipo de contaminacin sueles ser ms intensa junto al lugar de origen y se va diluyendo al alejarnos. La direccin que sigue el flujo del agua del subsuelo influye de forma muy importante en determinar en que lugares los pozos tendrn agua contaminada y en cuales no. Puede suceder que un lugar relativamente cercano al foco contaminante tenga agua limpia, porque la corriente subterrnea aleja el contaminante de ese lugar, y al revs.La contaminacin difusa suele estar provocada por:Uso excesivo de fertilizantes y pesticidas en la agricultura o en las prcticas forestales.Explotacin excesiva de los acuferos que facilita el que las aguas salinas invadan la zona de aguas dulces, por desplazamiento de la interfase entre los dos tipos de aguas.Este tipo de contaminacin puede provocar situaciones especialmente preocupantes con el paso del tiempo, al ir cargndose de contaminacin, lenta pero continuamente, zonas muy extensas.

Fuentes puntuales y difusas de contaminacin de las aguas subterrneasDepuracinLos acuferos tienen una cierta capacidad de autodepuracin, mayor o menor segn el tipo de roca y otras caractersticas. Las sustancias contaminantes, al ir el agua avanzando entre las partculas del subsuelo se filtran y dispersan y tambin sonneutralizadas, oxidadas, reducidas o sufren otros procesos qumicos o biolgicos que lasdegradan. De esta manera el agua va limpindose.Cuando la estructura geolgica del terreno facilita una zona amplia de aireacin, los procesos de depuracin son ms eficaces. Tambin es muy favorable la abundancia de arcillas y de materia orgnica. En cambio en los depsitos aluviales o las zonas krsticas la purificacin del agua es mucho ms difcil y este tipo de acuferos son mucho ms sensibles a la contaminacin.

Es muy importante, de todas formas, tener en cuenta que las posibilidades de depuracin en el acufero son limitadas y que el mejor mtodo de proteccin es, por tanto, la prevencin. No contaminar, controlar los focos de contaminacin para conocer bien sus efectos y evitar que las sustancias contaminantes lleguen al acufero son los mejores mtodos para poder seguir disfrutando de ellos sin problemas.Cuando un acufero est contaminado y hay que limpiarlo el proceso es muy difcil y muy caro. Se han usado procedimientos que extraen el agua, la depuran y la vuelven a inyectar en el terreno, pero no siempre son eficaces y consumen una gran cantidad de energa y dinero.Uso y calidad del agua subterrnea en EspaaAlrededor de la cuarta parte del agua utilizada en Espaa es de origen subterrneo. Con ella se atiende a las necesidades de ms de un tercio de la poblacin y se riega algo menos que un tercio de la superficie total regada. En las zonas ms secas es la fuente fundamental de agua, mientras que en zonas ms hmedas, como Galicia, es un recurso complementario.Los principales problemas de los acuferos son de contaminacin difusa. Principalmente por contaminacin con nitratos y por invasin de agua salada. Las contaminaciones puntuales no son un grave problema, exceptuando algunas zonas muy concretas enncleos industriales o junto a grandes poblaciones.El problema ms preocupante es el de los altos niveles de concentracin de nitratos en algunos depsitos de aguas subterrneas. El lmite mximo permitido por la reglamentacin es de 50 mg/l en el agua de abastecimiento de la poblacin, y en 2003 (Environmental Profile of Spain 2005 (Ministerio de Medio Ambiente 2006) p. 77) el18,76% de la superficie de las reas hidrogeolgicas estaba contaminada con concentraciones de nitrato superiores a 50 mg/L.Generalizando se puede decir que los acuferos de la zona norte se encuentran en situacin buena, mientras que los de la zona mediterrnea, entre Gerona y Mlaga se encuentran muy afectados por este problema. Tambin estn en una situacin bastante deteriorada los de las cuencas de los ros Guadiana y Jcar y algunas zonas de las del Tajo y Duero, especialmente en las provincias de Badajoz, Ciudad Real y Albacete. Asimismo es mala la situacin en Mallorca y en algunas zonas de Tenerife y Gran Canaria.El exceso de nitratos se da precisamente en las zonas en las que los acuferos son ms utilizados. En zonas clidas en las que se puede usar agua subterrnea para regar, las cosechas pueden ser muy buenas y tempranas, lo que posibilita muy buenos rendimientos econmicos. Por eso se cultiva ms intensamente y el campo necesita ser fertilizado con nitratos. Si se usa una cantidad excesiva de estos, el agua los acaba arrastrando a