6
Diseño de Anclajes en Hormigon Las conexiones empernadas que se tienen son las que van a funcionar como anclajes de las plataformas con las columnas de hormigón armado. Se va a verificar la capacidad del anclaje se tomó las máximas solicitaciones tanto en tensión como en flexión, para un tramo de 30cm. En los planos correspondientes se mostrará en detalle la distribución de los mismos, a continuación se mostrarán las verificaciones respectivas para los anclajes. CARGAS PARA DISEÑO Carga V2 V3 M33 M22 Axial [Ton] [Ton] [Ton*m] [Ton*m] [Ton] 1 - DL 0.52 0.5 0.11 0.02 1.12 PLACA PARA UNION CONSIDERACIONES GEOMETRICAS Dimensiones Unidades Calc. Min. Max. Estado. Referencias Dimension Longitudinal Nmin = dc + 2*w = 17.77[cm] + 2*0.635[cm] = 19.04[cm] [cm] 35 19.05 -- OK Dimension Transversal Bmin = bc + 2*w = 5.08[cm] + 2*0.635[cm] = 6.35[cm] [cm] 30 6.35 -- OK Distancia desde el Perno hasta el Borde Tablas J3.4, Lemin = edmin + C2 = 3.175[cm] + 0[cm] = 3.175[cm] [cm] 4 3.17 -- OK J3.5 VERIFICACIONES Verificaciones Capacidad Demanda Relacion Referencias Base de Hormigón Resistencia a la Tensión 0.12 0.12 1 A2 = ((B/N)*Ncs)*Ncs = ((30[cm]/35[cm])*35[cm])*35[cm] = 1050[cm2] DG1 Sec 3.1.1 A1 = B*N = 30[cm]*35[cm] = 1050[cm2] DG1 Sec 3.1.1 fp, max = f*min(0.85*f'c*(A2/A1)1/2, 1.7*f'c) = 0.65*min(0.85*0.21092[Ton/cm2]*(1)1/2, 1.7*

Diseño de Anclajes en Hormigon

  • Upload
    laztroz

  • View
    33

  • Download
    12

Embed Size (px)

DESCRIPTION

Diseño de Anclaje de Estructura Metalica en Elemento de Hormigon Armado

Citation preview

Page 1: Diseño de Anclajes en Hormigon

Diseño de Anclajes en Hormigon

Las conexiones empernadas que se tienen son las que van a funcionar como anclajes

de las plataformas con las columnas de hormigón armado.

Se va a verificar la capacidad del anclaje se tomó las máximas solicitaciones tanto en

tensión como en flexión, para un tramo de 30cm. En los planos correspondientes se

mostrará en detalle la distribución de los mismos, a continuación se mostrarán las

verificaciones respectivas para los anclajes.

CARGAS PARA DISEÑO

Carga V2 V3 M33 M22 Axial

[Ton] [Ton] [Ton*m] [Ton*m] [Ton]

1 - DL 0.52 0.5 0.11 0.02 1.12

PLACA PARA UNION

CONSIDERACIONES GEOMETRICAS

Dimensiones Unidades Calc. Min. Max. Estado. Referencias

Dimension Longitudinal

Nmin = dc + 2*w = 17.77[cm] + 2*0.635[cm] =

19.04[cm] [cm] 35 19.05 -- OK

Dimension Transversal

Bmin = bc + 2*w = 5.08[cm] + 2*0.635[cm] =

6.35[cm] [cm] 30 6.35 -- OK

Distancia desde el Perno hasta el Borde Tablas J3.4,

Lemin = edmin + C2 = 3.175[cm] + 0[cm] =

3.175[cm] [cm] 4 3.17 -- OK J3.5

VERIFICACIONES

Verificaciones Capacidad Demanda Relacion Referencias

Base de Hormigón

Resistencia a la Tensión 0.12 0.12 1

A2 = ((B/N)*Ncs)*Ncs = ((30[cm]/35[cm])*35[cm])*35[cm] = 1050[cm2] DG1 Sec 3.1.1

A1 = B*N = 30[cm]*35[cm] = 1050[cm2] DG1 Sec 3.1.1

fp, max = f*min(0.85*f'c*(A2/A1)1/2, 1.7*f'c) = 0.65*min(0.85*0.21092[Ton/cm2]*(1)1/2, 1.7*

Page 2: Diseño de Anclajes en Hormigon

0.210[Ton/cm2]) = 0.116[Ton/cm2] DG1 3.1.1

Placa para Unión

Fluencia (Interaccion por Flexión) 0.57 0.18 0.32 DG1 Sec 3.1.2,

m = m = 9.0545[cm] DG1 Eq. 3.3.13

n = n = 12.587[cm]

Mpl = max(MpM, MpN) = max(0.0122[Ton*m/m], 0.183823[Ton*m/m]) =

0.183[Ton*m/m]

fMn = f*Fy*tp2/4 = 0.9*2.531[Ton/cm2]*1[cm]2/4 = 0.569[Ton*m/m]

Fluencia (Interacción por Tensión) 0.57 0.47 0.83 DG1 Eq. 3.3.13

MpT = Mstrip/Beff = 0.0479[Ton*m]/10.109[cm] = 0.474[Ton*m/m]

fMn = f*Fy*tp2/4 = 0.9*2.531[Ton/cm2]*1[cm]2/4 = 0.569[Ton*m/m]

ANCLAJES

CONSIDERACIONES GEOMETRICAS

Dimensiones Unidades Calc. Min. Max. Estado. Referencias

Espaciamiento de Anclajes [cm] 27 7.62 -- OK Sec. D.8.1

smin = 4*da = 4*1.905[cm] = 7.62[cm]

Distancia desde el Anclaje hasta el Borde [cm] 11.5 7.62 -- OK Sec. D.7.7.1

ca,min = 3[in]

Longitud Efectiva [cm] 21.24 -- 58.76 OK

VERIFICACIONES

Verificaciones Capacidad

Demanda

Relacion

Referencias

Resistencia del Acero de los Anclajes en Tensión 6.59 0.95 0.14 Eq. D-

3

futa = min(futa, 1.9*fya, 125[ksi]) = min(4.077[Ton/cm2], 1.9*2.531[Ton/cm2], 125[ksi]) =4.077[Ton/cm2]

Sec. D.5.1.2

fNsa = f*n*Ase,N*futa = 0.75*1*2.154[cm2]*4.077[Ton/cm2] = 6.590[Ton]

Eq. D-3

Arrancamiento del Anclaje por Tensión 2.68 0.95 0.35 Eq. D-4,Sec. D.3.3.3

Page 3: Diseño de Anclajes en Hormigon

ANc = (ca1Left + ca1Right)*(ca2Top + ca2Bot) = (15[cm] + 15[cm])*(11.5[cm] + 15[cm]) =795[cm2]

Sec. RD.5.2

.1

ANco = 9*hef2 = 9*10[cm]2 = 900[cm2]

Eq. D-6

yed,N = 0.7 + 0.3*ca,min/(1.5*hef) = 0.7 + 0.3*11.5[cm]/(1.5*10[cm]) = 0.93

Sec. D.5.2.5

Nb = kc*l*(fc/(1[psi]))1/2*(hef/(1[in]))1.5[lb] = 24*1*(0.21092[Ton/cm2]/(1[psi]))1/2*(10[cm]/(1[in]))1.5[lb] =

4.657[Ton]

Eq. D-7

Ncb = (ANc/ANco)*yed,N*yc,N*ycp,N*Nb = (795[cm2]/900[cm2])*0.93*1*1*4.657[Ton] = 3.826[Ton]

Eq. D-4

fNcb = f*Ncb = 0.7*3.826[Ton] = 2.678[Ton]

Sec. D.3.3.3

Arrancamiento del Grupo de Anclajes en Tensión 3.47 1.26 0.36 Eq. D-5,Sec. D.3.3.3

ANco = 9*hef2 = 9*10[cm]2 = 900[cm2]

Eq. D-6

ANc = min(ANc, n*ANco) = min(1500[cm2], 2*900[cm2]) = 1500[cm2]

Sec. D.5.2.1

yec,Ny = min(1/(1 + 2*e'N/(3*hef)), 1) = min(1/(1 + 2*6.850[cm]/(3*10[cm])), 1) = 0.686

Eq. D-9

yec,Nx = min(1/(1 + 2*e'N/(3*hef)), 1) = min(1/(1 + 2*0[cm]/(3*10[cm])), 1) = 1

Eq. D-9

yec,N = yec,Nx*yec,Ny = 1*0.686= 0.686

Eq. D-9

Nb = kc*l*(fc/(1[psi]))1/2*(hef/(1[in]))1.5[lb] = 24*1*(0.210[Ton/cm2]/(1[psi]))1/2*(10[cm]/(1[in]))1.5[lb] =

4.657[Ton] Eq. D-

7

Ncbg = (ANc/ANco)*yec,N*yed,N*yc,N*ycp,N*Nb = (1500[cm2]/900[cm2])*0.686*0.93*1*1*4.657[Ton] = 4.956[Ton]

Eq. D-

5

fNcbg = f*Ncbg = 0.7*4.956[Ton] = 3.469[Ton]

Sec. D.3.3.3

Extracción de Anclajes en Tensión 4.98 0.95 0.19 Sec.

D.3.3.3

Np = 8*Abrg*fc = 8*4.219[cm2]*0.210[Ton/cm2] = 7.119[Ton]

Eq D-15,Eq D-16

Npn = yc,P*Np = 1*7.119[Ton] = 7.119[Ton] Eq. D-

14

fNpn = f*Npn = 0.7*7.119[Ton] = 4.983[Ton] Sec.

D.3.3.3

Resistencia de los Anclajes en Cortante 3.43 0.36 0.11 Eq.

D.20

Page 4: Diseño de Anclajes en Hormigon

futa = min(futa, 1.9*fya, 125[ksi]) = min(4.077[Ton/cm2], 1.9*2.531[Ton/cm2], 125[ksi]) =4.0777[Ton/cm2]

Sec. D.5.1.2

fVsa = f*0.6*n*Ase,V*futa = 0.65*0.6*1*2.154[cm2]*4.0777[Ton/cm2] = 3.426[Ton]

Eq. D.20

Arrancamiento del Grupo de Anclajes en Cortante 1.91 0.52 0.27

Sec. D.3.3.3

AVco = 4.5*ca12 = 4.5*38.5[cm]2 = 6670.13[cm2]

Eq. D-23

AVc = LVc*min(ha, 1.5*ca1) = 30[cm]*min(60[cm], 1.5*38.5[cm]) = 1732.5[cm2]

Sec. RD.6.2

.1

AVc = min(AVc, n*AVco) = min(1732.5[cm2], 2*6670.13[cm2]) = 1732.5[cm2]

Sec. RD.6.2

.1

yec,V = min(1/(1 + 2*e'V/(3*ca1)), 1) = min(1/(1 + 2*0[cm]/(3*38.5[cm])), 1) = 1

Eq. D-26

yed,V = 0.7 + 0.3*(ca2/(1.5*ca1)) = 0.7 + 0.3*(15[cm]/(1.5*38.5[cm])) = 0.777922

Sec. D.6.2.6

yc,V = 1

Sec. D.6.2.7

yh,V = 1

Eq. D-29

le = min(hef, 8*da) = min(20[cm], 8*1.905[cm]) = 15.24[cm]

Sec. D.6.2.2

Vb = (7*(le/da)0.2*(da/(1[in]))1/2)*l*(fc/(1[psi]))1/2*(ca1/(1[in]))1.5[lb]

=(7*(15.24[cm]/1.905[cm])0.2*(1.905[cm]/(1[in]))1/2)*1*(0.21092[Ton/cm2]/(1[psi]))1/2*(38.5[cm]/(1[in]))1.5[lb] = 13.471356[Ton]

Eq. D-24

Vcbg = (AVc/AVco)*yec,V*yed,V*yc,V*yh,V*Vb = (1732.5[cm2]/6670.13[cm2])*1*0.777922*1*1*13.471356[Ton] =

2.721991[Ton]

Eq. D-22

fNcbg = f*Ncbg = 0.7*2.721991[Ton] = 1.905394[Ton]

Sec. D.3.3.3

Desprendimiento Lateral de Anclaje en Cortante 5.36 0.26 0.05 Eq. D-4,Sec. D.3.3.3

ANc = (ca1Left + ca1Right)*(ca2Top + ca2Bot) = (15[cm] + 15[cm])*(11.5[cm] + 15[cm]) =795[cm2]

Sec. RD.5.2

.1

ANco = 9*hef2 = 9*10[cm]2 = 900[cm2]

Eq. D-6

yed,N = 0.7 + 0.3*ca,min/(1.5*hef) = 0.7 + 0.3*11.5[cm]/(1.5*10[cm]) = 0.93

Sec. D.5.2.5

yc,N = 1

Sec. D.5.2.6

Page 5: Diseño de Anclajes en Hormigon

ycp,N = 1

Sec. D.5.2.7

kc = 24

Sec. D.5.2.2

Nb = kc*l*(fc/(1[psi]))1/2*(hef/(1[in]))1.5[lb] = 24*1*(0.21092[Ton/cm2]/(1[psi]))1/2*(10[cm]/(1[in]))1.5[lb] =

4.657842[Ton] Eq. D-

7

Ncb = (ANc/ANco)*yed,N*yc,N*ycp,N*Nb = (795[cm2]/900[cm2])*0.93*1*1*4.657[Ton] = 3.826[Ton]

Eq. D-4

Vcp = kcp*Ncb = 2*3.826[Ton] = 7.652[Ton]

Eq. D-30

fVcp = f*Vcp = 0.7*7.652[Ton] = 5.356[Ton]

Sec. D.3.3.3

Deseprendimiento Lateral del Grupo de Anclajes en Cortante 6.94 0.52 0.07 Eq. D-5,Sec. D.3.3.3

kcp = 2

Sec. D.6.3.1

ANco = 9*hef2 = 9*10[cm]2 = 900[cm2]

Eq. D-6

ANc = min(ANc, n*ANco) = min(1500[cm2], 2*900[cm2]) = 1500[cm2]

Sec. D.5.2.1

yec,Ny = min(1/(1 + 2*e'N/(3*hef)), 1) = min(1/(1 + 2*6.850[cm]/(3*10[cm])), 1) = 0.686

Eq. D-9

yec,Nx = min(1/(1 + 2*e'N/(3*hef)), 1) = min(1/(1 + 2*0[cm]/(3*10[cm])), 1) = 1

Eq. D-9

yec,N = yec,Nx*yec,Ny = 1*0.686 = 0.686

Eq. D-9

yed,N = 0.7 + 0.3*ca,min/(1.5*hef) = 0.7 + 0.3*11.5[cm]/(1.5*10[cm]) = 0.93

Sec. D.5.2.5

yc,N = 1

Sec. D.5.2.6

ycp,N = 1

Sec. D.5.2.7

kc = 24

Sec. D.5.2.2

Nb = kc*l*(fc/(1[psi]))1/2*(hef/(1[in]))1.5[lb] = 24*1*(0.210[Ton/cm2]/(1[psi]))1/2*(10[cm]/(1[in]))1.5[lb] =

4.657[Ton] Eq. D-

7

Ncbg = (ANc/ANco)*yec,N*yed,N*yc,N*ycp,N*Nb = (1500[cm2]/900[cm2])*0.686*0.93*1*1*4.657[Ton] = 4.956[Ton]

Eq. D-

5

Vcpg = kcp*Ncbg = 2*4.956[Ton] = 9.912[Ton]

Eq. D-31

Page 6: Diseño de Anclajes en Hormigon

fVcpg = f*Vcpg = 0.7*9.912[Ton] = 6.938[Ton]

Sec. D.3.3.3