18
UNIVERSIDAD VERACRUZANA FACULTAD DE CIENCIAS QUÍMICAS CAMPUS COATZACOALCOS LABORATORIO DE FISICOQUIMICA DESTILACIÓN DE UNA MEZCLA BINARIA DE HCl - H2O PARA LA OBTENCIÓN DEL PUNTO AZEOTRÓPICO Y ANALISIS TERMODINAMICO PARA LA CONSTRUCCION DEL DIAGRAMA XY VS T ELABORÓ: Ángel Pablo Morales Coatzacoalcos, Ver., 27 de noviembre de 2014

Equilibrios

Embed Size (px)

DESCRIPTION

Una recopilación de todo lo necesario que debes saber de equilibrio físico-químico

Citation preview

  • UNIVERSIDAD VERACRUZANA

    FACULTAD DE CIENCIAS QUMICAS

    CAMPUS COATZACOALCOS

    LABORATORIO DE FISICOQUIMICA

    DESTILACIN DE UNA MEZCLA BINARIA DE HCl - H2O PARA LA

    OBTENCIN DEL PUNTO AZEOTRPICO Y ANALISIS

    TERMODINAMICO PARA LA CONSTRUCCION DEL DIAGRAMA

    XY VS T

    ELABOR: ngel Pablo Morales

    Coatzacoalcos, Ver., 27 de noviembre de 2014

  • DESTILACIN DE UNA MEZCLA BINARIA DE HCl H2O PARA LA

    OBTENCIN DEL PUNTO AZEOTRPICO Y ANALISIS

    TERMODINAMICO PARA LA CONSTRUCCION DEL DIAGRAMA

    XY VS T

    Facultad de Ciencias Qumicas Campus Coatzacoalcos Universidad Veracruzana Pablo Morales, A.

    Laboratorio de Fisicoqumica Dr. Benoit Fouconnier

    1. Introduccin Procesos tales como destilacin, absorcin y extraccin ponen en contacto fases de diferente

    composicin, y como no estn en equilibrio, la masa que se transfiere entre ellas altera sus

    composiciones. La coexistencia de fases ms encontrada en la prctica industrial son el vapor y el

    lquido, aunque tambin se hallan los sistemas lquido/lquido, vapor/slido y lquido/slido.

    Cuando se quema gas natural, se forman slo una pequea cantidad de contaminantes. Los productos

    de la combustin an contienen xidos de nitrgeno y de azufre, as como dixido de carbono y vapor

    de agua. Los xidos de nitrgeno son tpicos subproductos de aire de combustin, y el azufre est

    presente en concentraciones muy bajas que el compuesto odorizante se aade al gas natural. La

    condensacin de estos productos produce una solucin cida que contiene concentraciones de cidos

    ntrico y sulfrico. Por lo tanto, el condensado del gas de combustin se convierte en cada vez ms

    corrosivo en las superficies del intercambiador de calor de condensacin despus de que se concentra

    por condensacin y evaporacin repetida. En las calderas se lleva a cabo la condensacin, opera con

    alta eficiencia mediante la captura de una parte de calor latente de condensacin y una gran cantidad

    de calor sensible de la combustin. Cuando la temperatura de la superficie est por debajo del punto

    de roco de la mezcla de varios componentes, se produce la condensacin. Por lo tanto, se requieren

    modelos de equilibrio lquido-vapor, tales como los modelos de Raoult modificada y Van Laar con

    el fin de determinar el punto de roco de la mezcla para una presin determinada.

    Un azetropo (o mezcla azeotrpica) es una mezcla lquida de dos o ms componentes que posee un

    nico punto de ebullicin constante y fijo, y que al pasar al estado vapor (gaseoso) se comporta como

    un compuesto puro, es decir, como si fuese un solo componente. Un azetropo, puede hervir a una

    temperatura superior, intermedia o inferior a la de los constituyentes de la mezcla, permaneciendo el

    lquido con la misma composicin inicial, al igual que el vapor, por lo que no es posible separarlos

    por destilacin simple. El azetropo que hierve a una temperatura mxima se llama azetropo de

    ebullicin mxima y el que lo hace a una temperatura mnima se llama azetropo de ebullicin

    mnima, los sistemas azeotrpicos de ebullicin mnima son ms frecuentes que los de ebullicin

    mxima.

    Un ejemplo es la mezcla de cido clorhdrico y agua, que forma un azetropo para una concentracin

    del 11.14 % en peso de cido, que hierve a una temperatura de 108.6 C. Con una destilacin simple

    se obtiene un cido con esta concentracin (ttulo), pero para conseguir un compuesto ms puro se

    necesita utilizar recursos especiales como una destilacin azeotrpica (Robert H. Perry, 2012).

    En qumica, la destilacin azeotrpica es una de las tcnicas usadas para romper un azetropo en la

    destilacin.

  • 2. Fundamentos

    2.1. Equilibrio vapor Lquido

    2.1.1. La naturaleza del equilibrio

    Se conoce al equilibrio como una condicin esttica donde, con el tiempo, no ocurre cambio

    alguno en las propiedades macroscpicas de un sistema, lo cual implica un balance de todos los

    potenciales que pueden ocasionar un cambio.

    Un sistema aislado que consta de las fases en contacto estrecho lquido y vapor, con el tiempo

    alcanza un estado final en donde no existe tendencia para que suceda un cambio dentro del mismo.

    La temperatura, la presin y las composiciones de fase logran los valores finales que en adelante

    permanecen fijos. El sistema se halla en equilibrio. Pero a nivel microscpico no son estticas las

    condiciones. Las molculas contenidas en una fase en un instante dado son diferentes a las que

    despus ocupan la misma fase. Las molculas con velocidades lo suficiente altas prximas a la zona

    interfacial superan las fuerzas superficiales y atraviesan a la otra fase. De cualquier modo, la rapidez

    promedio de intercambio de molculas es igual en ambas direcciones, sin que ocurra transferencia

    neta de material a travs de la zona interfacial.

    2.1.2 Medidas de la composicin

    Las tres medidas ms comunes de la composicin son: fraccin masa, fraccin mol y

    concentracin molar:

    =

    =

    (1)

    =

    =

    (2)

    =

    =

    (3)

    Donde , es la masa de la especia , es el nmero de moles de la especie , es el volumen molar de la mezcla, es la concentracin molar y es el flujo volumtrico.

    2.1.3 Regla de fase. Teorema de Duhem

    Para sistemas de fases mltiples en equilibrio, el nmero de variables independientes que deben

    fijarse en forma arbitraria a fin de establecer su estado intensivo se proporciona por la regla de las

    fases de J. Willard Gibbs11.

    = 2 + (4)

    Don de es el nmero de fases, N es el nmero de especies qumicas y F representa los grados de

    libertad del sistema. El estado intensivo de un sistema en equilibrio se establece cuando su

    temperatura, presin y composiciones de todas las fases se encuentran fijas. Una fase es una regin

    homognea de materia; gas, lquido o slido. Las variables de la regla de las fases son propiedades

    intensivas (T, P y N 1 fraccin mol) las cuales son independientes de la extensin del sistema y de

    las fases individuales

    1 Josiah Willard Gibbs (1839 1903), fsico matemtico estadounidense.

  • El teorema de Duhem, se aplica a sistemas cerrados en equilibrio, para los cuales se fijan los estados

    extensivos e intensivos del sistema, el cual queda totalmente determinado.

    Para cualquier sistema cerrado que se forma originalmente por las masas conocidas de especies

    qumicas prescritas, el estado de equilibrio se determina por completo cuando se fijan dos variables

    independientes cualesquiera.

    2.2. Modelos simples para el equilibrio vapor lquido

    2.2.1. Ley de Raoult

    Las dos principales suposiciones que se requieren para reducir los clculos de EVL para la ley de

    Raoult2 son:

    La fase vapor es un gas ideal. Se aplica a presiones de bajas a moderadas

    La fase lquida es una solucin ideal. Las especies que constituyen el sistema son

    qumicamente semejantes.

    La expresin matemtica que revela las dos conjeturas listadas, y proporciona una expresin

    cuantitativa de la ley de Raoult es:

    = ( = 1, 2, , ) (5)

    Donde es una fraccin mol de fase lquida, es una fraccin mol de la fase vapor, es la presion

    del sistema y es la presin de vapor de las especies puras a la temperatura del sistema.

    2.2.2. Dependencia de la presin de vapor de los lquidos con la temperatura

    La presin de saturacin de una especie i se puede obtener a partir de la ecuacin de Antoine que

    describe la relacin entre la temperatura y la presin de saturacin del vapor de sustancias puras,

    matemticamente expresada como:

    log10 =

    () + ( ) (6)

    Donde A, B y C son constantes y est disponible para una gran cantidad de especies. Cada conjunto

    de constantes es vlido para un intervalo determinado de temperaturas y no se debe utilizar fuera de

    ese intervalo.

    2.2.3. Clculos de los puntos de roco y de burbuja con la ley de Raoult

    Hay cuatro maneras de conocer los puntos de rocos y de burbuja:

    BUBL P: Calcular {} y P, conocidas {} y T

    DEW P: Calcular {} y P, conocidas {} y T

    BUBL T: Calcular {} y T, conocidas {} y P

    DEW T: Calcular {} y T, conocidas {} y P

    Ya que = 1, la ecuacin (5) se suma sobre todas las especies para obtener:

    =

    (7)

    2 Francois Marie Raoult (1830 1901) qumico francs

  • sta ecuacin encuentra utilidad en los clculos del punto de burbuja, donde se desconoce la

    composicin de la fase vapor.

    Cuando = 1, la ecuacin (5) se resuelve para aplicarlo en los clculos del punto de roco, donde no se conocen las composiciones de la fase lquida:

    =1

    (8)

    2.2.4. Ley de Henry

    Enuncia que a una temperatura constante, la cantidad de gas disuelta en un lquido es directamente

    proporcional a la presin parcial que ejerce ese gas sobre el lquido.

    La ley de Henry3 es aplicada para presiones lo suficientemente bajas como para suponer que la fase

    vapor es un gas ideal. Matemticamente se represente como:

    = (9)

    Donde es la constante de Henry, en la cual los valores proceden de experimentos.

    2.3. Equilibrio Vapor Lquido (EVL) mediante la ley de Raoult modificada

    Para presiones de bajas a moderadas, una ecuacin ms efectiva para EVL se obtiene cuando se

    abandona la segunda suposicin de la Ley de Raoult, y se toman en cuenta las desviaciones de la

    idealidad de las soluciones en la fase lquida. La Ley de Raoult modificada se obtiene cuando , un coeficiente de actividad, se inserta en la Ley de Raoult, ecuacin (5):

    = (10)

    Los clculos de punto de burbuja y de punto de roco hechos con esta ecuacin son un poco ms

    complejos que los mismos clculos realizados con la ley de Raoult. Los coeficientes de actividad son

    funciones de la temperatura y de la composicin de la fase lquida que se pueden obtener de la

    experimentacin. Por lo que tambin se modifican las ecuaciones (7) y (8).

    2.3.1. EVL a partir de las correlaciones del valor de K

    Una observacin conveniente de la tendencia de una especie qumica conocida para repartirse de

    preferencia entre las fases vapor y lquido es la relacin de equilibrio Ki, definida como:

    =

    (11)

    Es til como una medida de ligereza de la especie, de su tendencia para favorecer la fase de vapor.

    Cuando Ki es mayor a la unidad, la especie i exhibe una mayor concentracin en la fase vapor; pero

    cuando es menor, presenta una mayor concentracin en la fase lquida, y se considera como un

    componente pesado. Para la ley de Raoult, ecuacin (5), el valor de K queda definida:

    =

    (12)

    Y con referencia a la ecuacin (10), seala que la Ley de Raoult modificada es:

    3 William Henry (1775 1836), qumico ingls.

  • =

    (13)

    2.4. Termodinmica de soluciones

    2.4.1. Relacin de una propiedad fundamental

    La ecuacin (14) relaciona la energa de Gibbs total de cualquier sistema cerrado a sus variables

    cannicas, la temperatura y la presin:

    () = () () (14)

    Donde n es el nmero total de moles del sistema.

    Para el caso ms general de un sistema abierto, de fase nica, el material puede moverse hacia adentro

    o hacia fuera del sistema, y nG se convierte en una funcin de los nmeros de moles de las especies

    qumicas presentes, T y P; y se busque explicacin en la relacin funcional:

    = (, , 1, 2, , , ) (15)

    La derivada total de nG en este caso es:

    () = [()

    ]

    ,

    + [()

    ]

    ,

    + [()

    ]

    ,,

    (16)

    El potencial qumico de la especie i en la mezcla se define como:

    [()

    ]

    ,,

    (17)

    Y las dems derivadas parciales como:

    = [()

    ]

    ,

    (18)

    = [()

    ]

    ,

    (19)

    Con esta definicin, y sustituyendo las ecuaciones (17), (18) y (19) en la ecuacin (16) se tiene:

    () = () () +

    (20)

    La ecuacin (14) es la relacin de una propiedad fundamental vlida para sistemas fluidos de fase

    nica con masa y composiciones variables. Para el caso particular de un mol de solucin, n=1 y ni=xi:

    () = +

    (21)

    Cuando la energa de Gibbs se expresa en funcin de sus variables cannicas, desempea el papel

    de una funcin generadora, que proporciona los medios para calcular las dems propiedades

    termodinmicas mediante operaciones matemticas simples (realizando derivas y lgebra

    elemental), y de manera implcita representa la informacin ntegra de la propiedad.

  • 2.4.2. Potencial qumico y equilibrio de fase

    Para un sistema cerrado que consta de dos fases en equilibrio, cada fase individual es un sistema

    abierto con respecto a la otra, y es posible producir transferencia de masa entre las mismas. Para cada

    fase es posible escribir la ecuacin (14):

    () = () () +

    (22)

    () = () () +

    (23)

    Donde los subndices y , identifican las fases. En este caso la suposicin es que el equilibrio implica uniformidad en T y P en todas las partes del sistema.

    El cambio en la energa de Gibbs total para el sistema de dos fases es la suma de dichas ecuaciones.

    Cuando cada propiedad del sistema total se expresa por una ecuacin de la forma:

    = () + () (24)

    La suma de las ecuaciones (22) y (23) es:

    () = () () +

    +

    (25)

    Ya que el sistema de dos fases es cerrado, tambin la ecuacin (14) resulta vlida, la comparacin de

    las dos ecuaciones muestra que, en el equilibrio:

    +

    = 0 (26)

    Los cambios y

    resultan de la transferencia de masa entre las fases; por lo tanto, la

    conservacin de masa sugiere que:

    =

    (27)

    (

    )

    = 0

    (28)

    Las cantidades son independientes y arbtrarias, debido a lo cual la nica manera en que el lado

    izquierdo de la segunda ecuacin (28) pueda ser cero, es que cada trmino entre parntesis sea cero.

    Por tanto:

    =

    = =

    ( = 1, 2, , ) (29)

    Donde N es el nmero de especies presentes en el sistema, es la fase en la que se est trabajando en un sistema multifases, donde se puede decir que T y P es la misma en todas las fases.

    En estos trminos, fases mltiples con valores iguales de T y P se hallan en equilibrio cuando el

    potencial qumico de cada especie es el mismo en todas las fases.

  • 2.4.3. Propiedades parciales

    La definicin del potencial qumico en la ecuacin (17) como la derivada de nG con respecto al

    nmero de mol, propone que otras derivadas de esta clase resultan de utilidad en la termodinmica de

    soluciones. As, la propiedad molar parcial , correspondiente a la especie i de la solucin se define como:

    [()

    ]

    ,,

    (30)

    sta es una funcin de respuesta, es decir, es una medida de la respuesta de la propiedad total de nM

    ante la adicin, bajo T y P constantes, de una cantidad diferencial de la especie i a una cantidad finita

    de solucin.

    La comparacin entre las ecuaciones (17) y (30) escrita para la energa de Gibbs, muestra que el

    potencial es idntico a la energa de Gibbs molar parcial; es decir:

    (31)

    El volumen molar parcial se define como:

    [()

    ]

    ,,

    (32)

    2.4.4. Modelo de mezcla de gas ideal

    A pesar de su limitada capacidad para describir el comportamiento de mezclas reales, el modelo de

    mezcla de gas ideal proporciona una base conceptual sobre la cual se desarrolla la termodinmica de

    soluciones. Es un modelo de propiedad til ya que:

    Tiene fundamentos moleculares

    Se aproxima a la realidad en el lmite bien definido de presin cero.

    Analticamente simple.

    El volumen molar de un gas ideal es independiente de la naturaleza del gas:

    =

    (33)

    El volumen molar parcial de la especie i de una mezcla de gas ideal se encuentra mediante la ecuacin

    (32)

    [()

    ]

    ,,

    = [ (

    )

    ]

    ,,

    =

    (

    )

    (34)

    Donde la igualdad final depende de la ecuacin = + . Este resultado significa que, para

    gases ideales a cierta T y P, el volumen molar parcial, el volumen molar de especie pura y el volumen

    molar de la mezcla son idnticos:

    =

    = =

    (35)

  • La presin parcial de la especie i en una mezcla de gas ideal se define como la presin que la especie

    i ejercera si ocupara todo el volumen molar de la mezcla. En estos trminos:

    =

    = (36)

    Donde yi es la fraccin molar de la especie i. La suma de las presiones parciales hace evidente la

    presin total.

    2.4.5. Teorema de Gibbs:

    Una propiedad molar parcial (con excepcin del volumen) de una especie constitutiva de una mezcla

    de gas ideal es igual a la correspondiente propiedad molar de la especie como un gas ideal puro a

    la temperatura de la mezcla, pero con una presin igual a su presin parcial en la mezcla.

    Esto se expresa matemticamente para una propiedad parcial genrica

    por la ecuacin:

    (, ) =

    (, ) (37)

    Como la entalpa de un gas ideal es independiente de la presin,

    (, ) =

    (, ) = (, ) (38)

    En forma ms simple:

    =

    (39)

    Donde

    es el valor de la especie pura i a las condiciones de T y P de la mezcla. Otra ecuacin

    anloga resulta para y otras propiedades que son independientes de la presin.

    La entropa de un gas ideal depende de la presin, como sigue:

    = ln ( ) (40)

    Integrando desde pi a P se obtiene:

    (, )

    (, ) = ln

    = ln

    = ln

    1

    = ln (41)

    De donde,

    (, ) =

    (, ) ln (42)

    Si se sustituye este resultado en la ecuacin (35) escrita para la entropa se obtiene:

    (, ) =

    (, ) ln (43)

    =

    ln (44)

    Donde

    es el valor de la especie pura a la T y P de la mezcla. Para la energa de Gibbs de una

    mezcla de gas ideal, = ; la relacin paralela para las propiedades parciales es:

    =

    (45)

  • Combinando las ecuaciones (37) y (42) queda:

    =

    + ln (46)

    = + ln (47)

    Por lo que la sumabilidad:

    =

    (48)

    =

    ln

    (49)

    =

    + ln

    (50)

    Una expresin alternativa para el potencial qumico

    se obtiene cuando

    de la ecuacin (45) se

    sustituye por una expresin que refleje su dependencia con T y P. Al escribir la ecuacin (14) para

    un gas ideal:

    =

    =

    = ln ( ) (51)

    Integrando se obtiene:

    = () + ln (52)

    Donde (), la constante de integracin a T constante depede de la especie y es una funcin nicamente de la temperatura. As la ecuacin (45) se escribe como:

    =

    = () + ln() (53)

    Donde el argumento del logaritmo es la presin parcial. Con la relacin de sumabilidad:

    = ()

    + ln()

    (54)

    2.4.6. Fugacidad y coeficiente de fugacidad: especies puras

    A partir de la ecuacin (29), resulta claro que el potencial qumico proporciona el criterio fundamental para el equilibrio de fase, lo cual tambin es cierto para el equilibrio en reaccin qumica.

    No obstante, se define con relacin a la energa interna y la entropa. Porque se desconocen los valores absolutos de la energa interna, tambin se desconocen para . Por otra parte, la ecuacin

    (53) indica que

    se aproxima hacia el infinito negativo cuando cualquier P o yi se aproxima a cero.

    En realidad esto no aplica para cualquier gas, sino slo para gases ideales. Aunque estas

    caractersticas no impiden el uso de los potenciales qumicos, la aplicacin del criterio de equilibrio

    se facilita mediante la introduccin de la fugacidad, una propiedad que toma el papel de pero que no muestra sus caracteristicas indeseables.

  • El origen del concepto de fugacidad reside en la ecuacin (52), la cual es vlida slo para la especie

    pura i en el estado del gas ideal. Para un fluido real se describe una ecuacin anloga que define a como la fugacidad de la especie i pura:

    = () + ln (55)

    Esta propiedad nueva , con unidades de presin sustituye a la P en la ecuacin (52), entonces:

    = (56)

    Resta la ecuacin (52) de la (55) y se obtiene la energa de Gibbs residual :

    =

    = ln (57)

    Ahora se define el coeficiente de fugacidad:

    =

    (58)

    Estas ecuaciones son aplicables a especies puras i en cualquier fase y en cualquier condicin

    2.5. Equilibrio vapor lquido para una especie pura La ecuacin (55), que define la fugacidad de la especie pura i, es posible escribirla para la especie i

    como un vapor saturado y como un lquido saturado a la misma temperatura:

    = () + ln

    (59)

    = () + ln

    (60)

    Restando:

    = ln

    (61)

    Esta ecuacin es aplicable al cambio de estado de lquido saturado o vapor saturado, ambos a

    temperatura T y a la presin de vapor . Entonces se tiene que:

    = 0 (62)

    =

    = (63)

    Donde indica el valor para cualquiera de los dos, ya sea lquido saturado o el vapor saturado.

    Principio fundamental de la ecuacion (63):

    Para una especie pura, que coexiste en las fases de lquido y de vapor estn en equilibrio cuando

    tienen la misma temperatura, presin y fugacidad.

    Una formulacin alternativa se apoya en los coeficientes de fugacidad correspondientes:

    =

    (64)

  • 2.5.1. Fugacidad y coeficiente de fugacidad: especies en solucin

    Para la especie i en una mezcla de gases reales o en una solucin de lquidos, la ecuacin anloga a

    la (53), la expresin del gas ideal es:

    = () + ln (65)

    Donde es la fugacidad de la especie i en la solucin sustituyendo la presin parcial . Ya que todas las fases en equilibrio se encuentran a la misma temperatura, entonces se tiene:

    =

    = =

    (66)

    De esta manera, fases mltiples a las mismas T y P estn en equilibrio cuando la fugacidad de cada

    especie componente es igual en todas las fases.

    La definicin de una propiedad residual es:

    = (67)

    Derivando con respecto a a T, P y constantes se obtiene:

    [()

    ]

    ,,

    = [()

    ]

    ,,

    [()

    ]

    ,,

    (68)

    Para una propiedad parcial molar se tiene:

    =

    (69)

    Al restar las ecuaciones (53) a (65) y con la identidad para obtener:

    = ln (70)

    Por definicin

    (71)

    A la relacin adimensional se le conoce como coeficiente de fugacidad de la especie i en la solucin.

    2.5.2. La relacin para una propiedad residual fundamental

    La relacin de una propiedad fundamental conocida por la ecuacin (20) se coloca en una forma

    alternativa a travs de la identidad matemtica:

    (

    )

    1

    ()

    2 (72)

    En esta ecuacin () se excluye por la ecuacin (20) y G se sustituye por su definicin, H-TS:

    (

    )

    2 +

    (73)

    Para un gas ideal:

  • (

    )

    2 +

    (74)

    Por lo que al restar la ecuacin (73) por (74), se tiene la relacin de una propiedad residual

    fundamental

    (

    )

    2 +

    (75)

    Al sustituir la ecuacin (70) en (75), se obtiene cuando el coeficiente de fugacidad es conocido:

    (

    )

    2 + ln

    (76)

    Al dividir en primer lugar las ecuaciones (75) y (76) entre dP, con la restriccin a T u composicin

    constantes, y despus entre dT y la restriccin a P y composicin constantes, se obtiene:

    = [

    (

    )

    ]

    ,

    (77)

    = [

    (

    )

    ]

    ,

    (78)

    Adems de la ecuacin (76):

    ln = [ (

    )

    ]

    ,,

    (79)

    2.5.3. La regla de Lewis/Randall

    Restando la ecuacin (55) a (65) se produce la ecuacin general:

    = + ln (

    ) (80)

    Para el caso ideal:

    = + ln (

    ) (81)

    Por definicin:

    = (82)

    Esta ecuacin, conocida como regla de Lewis/Randall, se aplica a cada especie en una solucin ideal

    para cualquier condicin de temperatura, presin y composicin.

  • 2.6. Propiedades de exceso

    Una propiedad de exceso se define como la diferencia entre el valor real de la propiedad de una

    solucin y el valor que tendra como solucin ideal a las mismas temperatura, presin y composicin:

    = (83)

    = ( ) (84)

    =

    (85)

    Para el caso de la ecuacin (73)

    (

    )

    2 +

    (86)

    2.6.1. La energa de Gibbs de exceso y el coeficiente de actividad

    La ecuacin (65) es posible reescribirla

    = () + ln (87)

    De acuerdo a la ecuacin (82) para una solucin ideal, sta queda:

    = () + ln (88)

    Restando la ecuacin (88) a (87), da la energa de Gibbs de exceso parcial en funcin del coeficiente

    de actividad :

    = ln (89)

    (90)

    Para una solucin ideal la ecuacin (47) se puede escribir como:

    = (, ) + ln (91)

    Por tanto se tiene lo siguiente:

    = + ln (92)

    2.6.2. Relaciones de la propiedad de exceso

    Una formulacin alternativa para la ecuacin (86) se consigue introduciendo el coeficiente de

    actividad en la ecuacin (87):

    (

    )

    2 + ln

    (93)

    Las siguientes formulaciones de las ecuaciones de sumabilidad y de Gibbs/Duhem son consecuencia

    de que ln es una propiedad parcial con respecto a

    :

  • = ln

    (94)

    2.7. Propiedades de fase lquida a partir de la informacin de EVL

    2.7.1. Coeficiente de actividad

    Para clculos de los valores experimentales a presiones bajas:

    =

    =

    (95)

    2.7.2. Energa de Gibbs de exceso

    Para un sistema binario, la ecuacin (94) da:

    = 1 ln 1 + 2 ln 2 (96)

    2.7.3. Reduccin de datos

    = (211 + 122)12 (97)

    De la ecuacin (86) junto con la (89) se deduce que:

    ln = [ (

    )

    ]

    ,,

    (98)

    Con lo anterior, requiere de la derivada de

    con respecto a un nmero de moles, por lo que la

    ecuacin (97) se multiplica por n, y todas las fracciones molares se convierten a nmero de moles.

    De esta manera, en el lado derecho se sustituye a 1 por 1

    (1+2) y a 2 por

    2(1+2)

    . Ya que 1 +

    2, da como resultado:

    = (211 + 122) [

    12(1 + 2)2

    ] (99)

    Derivando con respecto a 1 y despus con respecto a 2, regresando de = 2 = 1 1:

    ln 1 = 22[12 + 2(21 12)1] (100)

    ln 2 = 12[21 + 2(12 21)2] (101)

    Las ltimas dos ecuaciones son las ecuaciones de Margules4 y representa un modelo emprico del

    comportamiento de la solucin empleado usualmente. Para soluciones infinitas, se convierte:

    ln 1 = 12 (1 = 0) (102)

    ln 2 = 21 (2 = 0) (103)

    Para la ecuacin (10) se tiene para un sistema binario:

    4 Max Margules (1856 1920). Meteorlogo y fsico austriaco

  • = 111 + 222

    (104)

    Por tanto:

    =111

    111 + 222

    (105)

    2.7.4. Modelos para la energa de Gibbs de exceso

    Existen otras ecuaciones de uso comn para la correlacin de los coeficientes de actividad. Una serie

    de potencias, con ciertas ventajas es la expansin de Redlich/Kister:

    12= + (1 2) + (1 2)

    2 + (106)

    Donde 2 = 1 1, se genera en cada caso las expresiones especficas para ln 1 y ln 2 a partir de

    la ecuacin (98). Cuando = = = = 0,

    = 0, ln 1 = ln 2 = 0, 1 = 2 = 0 y la solucin

    es ideal. Si = = = 0, en tal caso:

    12= (107)

    Donde A es una constante para una temperatura conocida, las ecuaciones correspondientes para ln 1 y ln 2, son:

    ln 1 = 22 (108)

    ln 2 = 12 (109)

    Otra ecuacin muy conocida se obtiene cuando la expresin recproca 12

    se expresa como una

    funcin lineal de 1:

    12

    = + (1 2) = + (21 1) (110)

    Tambin se puede escribir como:

    12

    = (1 + 2) + (1 2) = (

    + )1 + ( )2 (111)

    Definiendo los parmetros + =1

    21 y

    =1

    12

    12

    =1

    21 +

    212

    (112)

    Realizando lgebra se obtiene:

    12=

    12 21

    12 1 + 21

    2 (113)

    Los coeficientes de actividad que resultan de esta ecuacin son:

  • ln 1 =12

    (1 +12

    121

    2)

    2 (114)

    ln 2 =21

    (1 +21

    212

    1)

    2 (115)

    Las ecuaciones (111) y (112) son las ecuaciones de van Laar5.

    2.7.5. Modelos de composicin local

    Se hace la suposicin de que, dentro de una solucin lquida, las composiciones locales, diferentes de

    la composicin global de las mezclas, se supone explican el orden de corto alcance y de las

    orientaciones moleculares no aleatorias que resultan de las diferencias en el tamao molecular y de

    las fuerzas intermoleculares.

    La ecuacin de Wilson:

    = 1 ln(1 + 212) 2 ln(2 + 121) (116)

    ln 1 = ln(1 + 212) + 2 (12

    1 + 212

    212 + 121

    ) (117)

    ln 2 = ln(2 + 121) 1 (12

    1 + 212

    212 + 121

    ) (118)

    A soluciones diluidas:

    ln 1 = ln 12 + 1 12 (119)

    ln 2 = ln 21 + 1 21 (120)

    La ecua NRTL incluye tres parmetros para un sistema binario y se escribe como:

    12=

    21211 + 221

    +1212

    2 + 112 (121)

    ln 1 = 22 [21 (

    211 + 221

    )2

    +1212

    (2 + 112)2] (122)

    ln 2 = 12 [12 (

    122 + 112

    )2

    +2121

    (1 + 221)2] (123)

    En este caso

    12 = exp(12) 21 = exp(21) 12 =12

    21 =21

    (124)

    5 Johannes Jacobus van Laar (1860 1938), fisicoqumico holands.

  • Donde , 12 21, parmetros especficos para un par de especies en particular, son independientes de la composicin y la temperatura. Para diluciones infinitas:

    ln 1 = 21 + 12 exp(12) (125)

    ln 2 = 12 + 21 exp(21) (126)

    Los modelos de composicin local tienen una flexibilidad limitada para el ajuste de la informacin,

    pero son adecuados para la mayora de los propsitos tcnicos. Adems, son de aplicacin extensa a

    sistemas multicomponentes, sin aadir ms parmetros de los requeridos para describir los sistemas

    binarios que los componen, (Smith, 2007).