EspVect_art1

Embed Size (px)

Citation preview

  • 8/7/2019 EspVect_art1

    1/51

    1

    Espacios Vectoriales, Rectas y Planos

    M.Sc. Alcides Astorga M.

    Instituto Tecnologico de Costa Rica

    Escuela de Matematica

    Revista digital Matematica, educacion e internet (www.cidse.itcr.ac.cr)

  • 8/7/2019 EspVect_art1

    2/51

    2

    El singular incidente de la Tribu Vectorial

    Se cuenta que una vez existio una tribu de indios que

    crean firmemente que las flechas eran vectores. Si

    queran matar a un ciervo que se encontraba directa-

    mente al Noroeste, no disparaban una flecha al Nooeste,

    sino que disparaban dos flechas simultaneamente, una

    directamente hacia el Oeste, confiados en que la

    poderosa resultante de las dos flechas mataran al ciervo.

    Los cientficos escepticos han dudado de la veracidad de

    este rumor, basandose en que no se ha encontrado las

    mas ligera huella de la existencia de tal tribu. Ahora

    bien, la absoluta desaparicion de la tribu, a consecuen-

    cia de la inanicion, es precisamente lo que cualquiera

    hubiera esperado, dudas las condiciones. Y, puesto que

    la teora afirma que la tribu existio confirma dos cosas

    tan diversas como el comportamiento no vertical de las

    flechas y el principio darwinista de la seleccion natu-ral, no es, seguramente, una teora que pueda rechaz-

    arse a la ligera.

    (Tomado de la revista Cuadernos de Educacion Matematica, Vol.1, Departamento de Matematicas,

    UNAM, Mexico.)

    Creditos

    Edicion y composicion Word: Alcides Astorga M.

    Edicion y composicion LaTeX: Lisseth Angulo, Walter Mora F.

    Graficos (version LaTeX): Walter Mora F.

    Comentarios y correcciones: escribir a [email protected]

  • 8/7/2019 EspVect_art1

    3/51

    Contenido

    1.1 Espacios vectoriales reales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.1.1 Ejemplos de espacios vectoriales reales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.1.2 Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1.1.3 Combinacion lineal de vectores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1.1.4 Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    1.1.5 Dependencia lineal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    1.1.6 Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    1.1.7 Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    1.1.8 Vectores paralelos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    1.1.9 Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    1.1.10 Independencia lineal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    1.1.11 Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    1.1.12 Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    1.1.13 Base de unn espacio vectorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    1.1.14 Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    1.2 Los espacios vectoriales R3 y R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    1.2.1 Representacion de vectores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    1.2.2 Regla del paralelogramo para sumar vectores . . . . . . . . . . . . . . . . . . . . . . . . . 18

    1.2.3 Longitud de un vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    1.2.4 Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    1.2.5 Vectores unitarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    1.2.6 Producto escalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    1.2.7 Vectores perpendiculares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    1.2.8 Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    1.2.9 Angulo entre vectores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    1.2.10 Proyeccion vectorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    1.2.11 Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    1.2.12 Producto vectorial en R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    3

  • 8/7/2019 EspVect_art1

    4/51

    4

    1.3 Rectas en R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    1.3.1 Diferentes formas de expresar la ecuacion de una recta en R3 . . . . . . . . . . . . . . . . 32

    1.3.2 Ecuacion de una recta en R3 cuando se conocen dos puntos . . . . . . . . . . . . . . . . . 34

    1.3.3 Rectas paralelas y rectas perpendiculares . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    1.3.4 Angulos entre rectas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    1.4 Planos en R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    1.4.1 Ecuacion cartesiana del plano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    1.4.2 Ecuacion del plano cuando se conocen tres puntos . . . . . . . . . . . . . . . . . . . . . . 37

    1.4.3 Planos paralelos, planos perpendiculares y angulos entre planos . . . . . . . . . . . . . . . 38

    1.4.4 Rectas y planos paralelos. Rectas y planos perpendiculares . . . . . . . . . . . . . . . . . 40

    1.5 Algunos ejemplos resueltos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

  • 8/7/2019 EspVect_art1

    5/51

    Espacios vectoriales reales Prof. Alcides Astorga Morales 5

    1.1 Espacios vectoriales reales

    Sea V un conjunto sobre el cual se definen dos operaciones, a saber:

    1.) La suma

    Si u V y v V, entonces (u + v) V

    2.) La multiplicacion escalar

    Si R y u V, entonces u V.

    V se dice que es un espacio vectorial real para las operaciones definidas anteriormente, si estas cumplen las

    siguientes propiedades:

    a.) u + v = v + u, para todo u, v en V.

    b.) (u + v) + w = v + (u + w), para todo u,v,w en V.

    c.) Existe un elemento en V, denotado 0 y llamado vector cero, tal que para todo u en V cumple que

    u + 0 = 0 + u = u.

    d.) Para todo u en V, existe un elemento en V, denotado u, tal que u + (u) = u + u = 0.

    e.) ( + ) u = u + u, para todo , en R, y para todo u en V.

    f.) (u + v) = v + u, para todo en R, y para todo u, v en V.

    g.) () u = ( u) , para todo , en R, y para todo u en V.

    h.) 1 u = u, para todo u en R.

    Los elementos de un espacio vectorial reciben el nombre de vectores.

    1.1.1 Ejemplos de espacios vectoriales reales

    1. Sea V el conjunto de las matrices cuadradas de orden 2, con entradas en el conjunto de los numeros reales,

    esto es:

    V = a bc d

    /a,b,c,d son numeros reales

    entonces V con las operaciones siguientes es un espacio vectorial.

    i.) Suma

    Si u =

    a b

    c d

    y v =

    e f

    g h

    entonces u + v =

    a b

    c d

    +

    e f

    g h

    =

    a + e b + f

    c + g d + h

  • 8/7/2019 EspVect_art1

    6/51

    6

    ii.) Multiplicacion escalar

    Si u =

    a b

    c d

    entonces u =

    a b

    c d

    =

    a b

    c d

    2. Sea Pn el conjunto formado por todos los polinomios de grado menor o igual que n, esto es

    Pn =

    anxn + an1x

    n1 + + a1x + a0 / an, an1, , a1, a0 son numeros reales

    .

    Se puede verificar que Pn con las operaciones suma y multiplicacion escalar que se definen a continuacion

    constituye un espacio vectorial.

    i.) Suma

    Sean p(x) y q(x) dos polinomios en Pn tales que:

    p(x) = anxn + an1x

    n1 + + a1x + a0 , q(x) = bnxn + bn1xn1 + + b1x + b0

    Entonces se define:

    p(x) + q(x) = (anxn + an1x

    n1 + + a1x + a0) + (bnxn + bn1xn1 + + b1x + b0)

    = (an + bn)xn + (an1 + bn1)x

    n1 + + (a1 + b1)x + (a0 + b0)

    ii.) Multiplicacion escalar

    Sea p(x) = anxn + an1xn1 + + a1x + a0 y R, entonces se define

    p(x) = (anxn + an1x

    n1 + + a1x + a0) = (an)xn + (an1)xn1 + + (a1)x + (a0)

    3. Se define el conjunto Rn de la siguiente manera:

    Rn = {(x1, x2, x3, , xn) / xi R para i = 1, 2, 3, , n}

    En Rn se define la suma y la multiplicacion escalar de la siguiente forma:

    i.) Suma

    Sean x, y en Rn tales que x = (x1, x2, x3,...,xn), y = (y1, y2, y3,...,yn), entonces

    x + y = (x1 + y1, x2 + y2, x3 + y3,...,xn + yn)

  • 8/7/2019 EspVect_art1

    7/51

    Espacios vectoriales reales Prof. Alcides Astorga Morales 7

    ii.) La multiplicacion escalar

    Sea x = (x1, x2, x3,...,xn) y R, se define:

    x = (x1, x2, x3,...,xn) = (x1, x2, x3,...,xn)

    Se puede verificar que Rn es un espacio vectorial con las dos operaciones definidas anteriormente.

    Dos casos especiales, que se analizaran posteriormente, lo constituyen:

    a. R2 = { (x, y) / x R, y R}b. R3 = { (x,y,z) / x R, y R, z R}

    1.1.2 Ejercicios

    1. Sean a y b dos numeros reales, tales que a < b. Sea C[a, b] el conjunto de las funciones continuas de valor

    real definidas en [a, b].

    En C[a, b] se define la suma de funciones y la multiplicaci on escalar de la siguiente forma:

    i.) Suma

    (f + g)(x) = f(x) + g(x)

    ii.) Multiplicacion escalar

    ( f)(x) = f(x)

    Verifique que C[a, b], con las operaciones definidas anteriormente es un espacio vectorial.

    2. Sea N[a, b] el subconjunto de C[a, b], definido de la siguiente forma:

    N[a, b] =

    f C[a, b]/

    ba

    f(x) dx = 0

    Verifique que N[a, b] con las operaciones definidas en el punto 1 de este ejercicio es un espacio vectorial.

    3. Verifique que si se define Pn como

    Pn =

    anxn + an1x

    n1 + + a1x + a0 / an, an1, , a1, a0 son numeros enteros

    entonces Pn con las operaciones definidas en el punto 2 del ejemplo anterior, no es un espacio vectorial real.

    1.1.3 Combinacion lineal de vectores.

    Sean v1, v2, v3,...,vn vectores de un espacio vectorial real V. Sea v otro vector en V. Se dice que v se puede

    escribir como combinacion lineal de los vectores v1, v2, v3,...,vn si existen numeros reales 1, 2, 3,...,n tales

    que

    v = 1v1 + 2v2 + 3v3 + ... + nvn

  • 8/7/2019 EspVect_art1

    8/51

    8

    Ejemplo 1

    Sean u = (1, 2), v = (1, 2) y w = (2, 3) vectores en R2.Exprese, si es posible, u como combinacion lineal de v y w.

    Solucion

    Se tiene que determinar dos numeros reales, los cuales denotamos y , tales que

    (1, 2) = (1, 2) + (2, 3)

    De la igualdad anterior se tiene que

    (1, 2) = ( + 2, 2 + 3)

    De donde se obtiene que 1 = + 22 = 2 + 3

    Resolviendo el sistema de ecuaciones anterior se concluye que = 7 y = 4, y por lo tanto:

    (1, 2) = 7(1, 2) 4(2, 3)

    1.1.4 Ejercicios

    Sean u = (1, 2, 1), v = (0, 1, 1), w = (1, 1, 0) y r = (1, 0, 1) vectores en R3.Exprese u como combinacion lineal de v, w y r.

    1.1.5 Dependencia lineal.

    Sean v1, v2, v3,...,vn vectores de un espacio vectorial real V. Se dice que v1, v2, v3,...,vn son linealmente depen-

    dientes si para cualesquiera numeros reales 1, 2, 3,...,n tales que cumplan

    1v1 + 1v2 + 1v3 + ... + 1vn = 0 (0 denota el vector cero de V)

    entonces existe algun i en {1, 2, 3,...,n} tal que i = 0.Ejemplo 2

    Sean u = (1, 2), v = (3, 5) y w = (7, 11) vectores en R2.

    Determine si u, v y w son linealmente dependientes.

    Solucion

    Supongase que existen , y tales que (1, 2) + (3, 5) + (7, 11) = (0, 0)

  • 8/7/2019 EspVect_art1

    9/51

    Espacios vectoriales reales Prof. Alcides Astorga Morales 9

    (1, 2) + (3, 5) + (7, 11) = (0, 0)

    = ( + 3+ 7, 2 + 5+ 11) = (0, 0)

    =

    + 3+ 7 = 0

    2 + 5+ 11 = 0(I)

    Multiplicando la primera ecuacion por -2, la segunda por 1 y luego sumandolas, se tiene

    2 6 14 = 02 + 5+ 11 = 0

    3 = 0 Por lo que = 3

    Sustituyendo el valor de en la ecuacion + 3+ 7 = 0

    + 3(3) + 7 = 0 = = 2

    Como el sistema de ecuaciones (I) tiene infinitas soluciones, entonces u, v y w son linealmente dependientes,

    pues, por ejemplo, se puede tomar = 1, de donde = 2 y = 3.

    1.1.6 Ejercicios

    Sean u = (1, 0, 1), v = (1, 2, 3) y w = (1, 6, 7) vectores en R3. Determine si u,v,w son vectores linealmentedependientes.

    Teorema 1

    Sean v1, v2, v3,...,vn vectores de un espacio vectorial real V. Diremos que v1, v2, v3,...,vn son linealmente de-

    pendientes si uno cualquiera de estos vectores se puede representar como combinacion lineal de los otros n 1vectores, esto es, si es posible determinar 1, 2,...,i1, i+1,...,n tales que

    vi = 1v1 + 2v2 + ... + i1vi1 + i+1vi+1 + ... + nvn

    1.1.7 Ejercicios

    Sean u = (1, 1, 1), v = (0, 2, 3) y w = (2, 0, 5) vectores en R3. Utilizando el criterio anterior, determine siu,v,w son linealmente dependientes.

  • 8/7/2019 EspVect_art1

    10/51

    10

    1.1.8 Vectores paralelos

    Sean u y v dos vectores de un espacio vectorial V. Se dice que u y v son paralelos, si u y v son linealmente dependi-

    entes, y por el teorema anterior, se puede decir que u y v son paralelos si existe un numero real tal que u = v.

    1.1.9 Ejercicios

    En cada uno de los casos siguientes, determine si cada par de vectores dados son paralelos.

    a.) u = (1, 3), v = (0, 1) b.) u = (1, 1, 0), v = (4, 4, 0)

    1.1.10 Independencia lineal

    Sean v1, v2, v3,...,vn vectores de un espacio vectorial real V. Se dice que v1, v2, v3,...,vn son linealmente inde-

    pendientes si para cualesquiera numeros reales 1, 2, 3,...,n tales que cumplan

    1v1 + 2v2 + 3v3 + ... + nvn = 0 (0 denota el vector cero de V)

    entonces, para todo i, con i = 1, 2, 3, 4,...,n se cumple que i = 0.

    Ejemplo 3

    Sean u = (1, 2, 0), v = (3, 0, 2) y w = (0, 1, 1) vectores en R3. Determine si u, v y w son linealmente inde-pendientes.

    Solucion

    Sopongase que existen , y tales que (1, 2, 0) + (3, 0, 2) + (0, 1, 1) = (0, 0, 0)

    (1, 2, 0) + (3, 0, 2) + (0, 1, 1) = (0, 0, 0)

    = ( 3, 2 + , 2+ ) = (0, 0, 0)

    =

    3 = 02 + = 0

    2+ = 0

  • 8/7/2019 EspVect_art1

    11/51

    Espacios vectoriales reales Prof. Alcides Astorga Morales 11

    Multiplicando la ecuacion uno por 2, la ecuacion dos por 1, y luego sumando estas ecuaciones se obtiene que

    2 6 = 02 + = 0

    6+ = 0 o sea que = 6

    Sustituyendo este valor de en la ecuacion tres se tiene que

    2+ = 2+ 6 = 8 = 0 = = 0

    Por lo que, = 0, pues = 6, y sustituyendo en cualquiera de las ecuaciones anteriores los valores de y

    obtenidos, se tiene que tambien = 0.

    Como = = = 0 entonces se concluye que u,v,w son linealmente independientes.

    1.1.11 Ejercicios

    Sean u = (1, 2, 4), v = (0, 2, 2) y w = (3, 1, 2). Verifique que u, v y w son linealmente independientes.

    Teorema 2

    Sean u, v dos vectores en R2 tales que u = (x1, x2), v = (y1, y2), y sea

    D = x1 x2y1 y2

    Si D = 0 , entonces u, v son vectores linealmente dependientes, en caso contrario, u, v son linealmente indepen-

    dientes.

    Teorema 3

    Sean u,v,w vectores en R2 tales que u = (x1, x2, x3), v = (y1, y2, y3), w = (z1, z2, z3), y sea

    D =

    x1 x2 x3

    y1 y2 y3

    z1 z2 z3

    Si D = 0 , entonces u,v,w son vectores linealmente dependientes, en caso contrario, son linealmente indepen-

    dientes.

  • 8/7/2019 EspVect_art1

    12/51

    12

    1.1.12 Ejercicios

    Determine si los siguientes vectores son dependientes o linealmente independientes.

    1.) u = (4, 5), v = (2, 7)2.) u = (3, 5,

    2), v = (

    3, 0, 4), w = (3, 1, 2)

    1.1.13 Base de unn espacio vectorial

    Sean v1, v2, v3,...,vn vectores, diferentes del vector cero, de un espacio vectorial V. Se dice que el conjunto

    {v1, v2, v3,...,vn} constituye una base de V, y a su vez se dice que V tiene dimenci on n, si cumple las siguientescondiciones:

    i.) Los vectores v1, v2, v3,...,vn son linealmente independientes

    ii.) Todos los elementos de V se pueden expresar como combinacion lineal de v1, v2, v3,...,vn. Cuando se

    cumple esta condicion se dice que {v1, v2, v3,...,vn} genera a V.

    Ejemplo 4

    Sean u = (1, 2) y v = (3, 5). Demuestre que {u, v} constituye una base de R2.

    Solucion

    i.) u y v son linealmente independientes

    Supongase que existen y tales que: (1, 2) + (3, 5) = (0, 0)

    (1, 2) + (3, 5) = (0, 0)

    = ( + 3, 2 + 5) = (0, 0))

    = + 3 = 0

    2 + 5 = 0= multiplicando por 2

    = + 3 = 0

    2 + 5 = 0

    11 = 0 = = 0

    Sustituyendo el valor de en + 3 = 0, se tiene que = 0.

  • 8/7/2019 EspVect_art1

    13/51

    Espacios vectoriales reales Prof. Alcides Astorga Morales 13

    Como = = 0, entonces u y v son linealmente independientes.

    ii. {u, v} generan a R2.

    En este caso se debe demostrar que para cualquier vector w en R2, existen y tales que:

    w = u + v

    Sea que w = (x, y), entonces

    w = u + v

    = (x, y) = (1, 2) + (3, 5)

    = (x, y) = ( + 3, 2 + 5)

    =

    x = + 3y = 2 + 5

    Del sistema de ecuaciones anterior se debe despejar tanto como en terminos de x y y.

    x = + 3y = 2 + 5

    =

    2x = 2 + 6y = 2 + 5

    2x + y = 11 = =2x + y

    11 ()

    Sustituyendo el valor de en la ecuacion x = + 3, se tiene que

    x = + 3( 2x + y11

    )

    = x = 11 + 6x + 3y11

    = 11x = 11 + 6x + 3y

    = 11 = 11x + 6x + 3y

    = 11 = 5x + 3y

    = = 11x + 6x + 3y11

    ()

  • 8/7/2019 EspVect_art1

    14/51

    14

    Por lo anterior, dado cualquier vector w = (x, y) en R2 siempre es posible expresarlo como combinacion

    lineal de u y v, utilizando () y (), de la siguiente forma:

    (x, y) =5x + 3y

    11(1, 2) + 2x + y

    11(3, 5)

    Por (i) y (ii) se concluye que {(1, 2), (3, 5)} es una base de R2 y por tanto tiene dimencion 2.

    1.1.14 Ejercicios

    1.) Sean u = (2, 5) y v = (3, 1) vectores en R2. Determine si {u, v} es una base de R2.

    2.) Sean u = (2, 1, 1) , v = (1, 3, 1) y w = (0, 2, 4) vectores en R3. Determine si {u,v,w} es una base de R3.

    3.) Sean u = (1, 1, 1) , v = (1, 0, 1) y w = (1, 2, 1) vectores en R3. Determine si {u,v,w} es una base deR3.

    Teorema 4

    Sea V un espacio vectorial real de dimension n.

    a.) La base de V no es unica.

    b.) Todas las bases de V tienen exactamente n elementos.

    c.) Cualquier subconjunto de V que contenga n+ 1 vector es linealmente dependiente.

    d.) Si un subconjunto de V tiene n vectores linealmente independientes, entonces es una base de V.

    Ejemplo 5

    Sean u = (1, 5, 2), v = (0, 2, 3) y w = (1, 1, 1) vectores en R3.Sabiendo que R3 es un espacio vectorial real de dimencion 3, verique que

    {u,v,w

    }es una base de R3.

    Solucion

    Como R3 es un espacio vectorial de dimencion 3, y se tienen tres vectores de R3, basta demostrar que u, v y w

    son linealmente independientes. Para hacer esto calculemos D, donde

    D =

    1 5 20 2 31 1 1

    = 5 0 + 11 = 16

  • 8/7/2019 EspVect_art1

    15/51

    Los espacios vectorialesR3 yR3 Prof. Alcides Astorga Morales 15

    Como D = 0, entonces los vectores u,v,w son linealmente independientes y por lo tanto {u,v,w} es una basede R3.

    1.2 Los espacios vectoriales R3 y R3

    1.2.1 Representacion de vectores

    El espacio vectorial R2 corresponde a lo que se denomina el plano real y tiene dimencion 2. Tradicionalmente

    se toma para este espacio como base el conjunto de vectores {i, j} tal que:

    i = (1, 0) y j = (0, 1)

    El conjunto {i, j} recibe el nombre de base canonica.

    En la representacion geometrica de elementos de este espacio, el vector i corresponde en el sistema de coorde-

    nadas al eje x, y el vector j corresponde al eje y.

    As cualquier vector u = (x, y) en el plano se acostumbra escribir como

    u = (x, y) = xi + yj

    Los numeros reales x, y reciben el nombre de componentes del vector u en la base {i,j}.

    Similarmente, el espacio vectorial R3 corresponde al espacio real y su dimencion es 3. La base con que se trabaja

    generalmente es {i,j, k} dondei = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)

    Usando esta base, se tiene que si u = (x,y,z) entonces

    u = (x,y,z) = xi + yj + zk

    Los numeros reales x,y,z reciben el nombre de componentes del vector (x,y,z) en la base {i,j, k} y esta recibeel nombre de base canonica.

    En la representacion geometrica de elementos de este espacio el vector i corresponde al eje x, el j corresponde

    al eje y, y el vector k al eje z.

  • 8/7/2019 EspVect_art1

    16/51

    16

    Nota

    Mientras no se mencione lo contrario, se supondra que todos los vectores en R2 y R3, estan dados en la base

    canonica.

    Segmento de recta dirigidoSean P y Q dos puntos en R2 o R3, entonces el segmento de recta dirigido de P a Q (en este orden), y

    denotadoP Q, se define como el segmento de recta que se extiende de P a Q, a P se le llama punto inicial

    y a Q punto terminal.

    Si dos segmentos de rectaP Q y

    RS tienen la misma longitud y direccion se dice que son equivalentes.

    Representacion geometrica de un vectorLa representacion geometrica de un vector u, cuyas componentes vienen dadas con respecto a la base

    canonica, consiste de todos los segmentos de recta dirigidos equivalentes a u.

    Y

    X

    Figura 1.1:

    Asimismo:

    Los vectores cuyo punto inicial es el origen O, y punto terminal es P, se acostumbran a denotar como OP.Si u es un vector tal que u =

    OP, entonces las componentes de u seran las coordenadas del punto P, e

    inversamente, diremos que si P es un punto, entoncesOP es el vector cuyo punto inicial es el origen y

  • 8/7/2019 EspVect_art1

    17/51

    Los espacios vectorialesR3 yR3 Prof. Alcides Astorga Morales 17

    cuyo punto terminal es P.

    j

    y

    x i

    O

    P= (x , y) = xi + yi

    Figura 1.2:

    K

    j

    o

    P = ( x, y, z) = xi + yj + zk

    z

    y

    x

    Figura 1.3:

    Si u es un vector tal que u = P Q, donde P y Q son dos puntos, entonces diremos que u tiene comopunto inicial P y como punto terminal Q. Ademas, se puede verificar que este vector corresponde al vectorOQ OP, cuyas componentes estan dadas en la base canonica, y el cual es un vector cuyo punto iniciales el origen y las coordenadas del punto terminal son las mismas que las de Q - P. Por lo anterior, se

    acostumbra escribir:

    P Q =

    OQ OP

  • 8/7/2019 EspVect_art1

    18/51

    18

    1.2.2 Regla del paralelogramo para sumar vectores

    La suma de vectores de R2 y R3 tiene una representacion grafica muy interesante. Para ilustrarla, supongase

    que se tienen dos vectores u y v cuyas componenetes estan dadas en la base canonica. El resultado de sumar u

    con v se puede representar como el vector u+v, el cual coincide con el vector situado a lo largo de la diagonal del

    paralelogramo de lados u y v. Dicho paralelogramo, como se nota en la siguiente figura, se obtiene trasladando

    los vectores u y v hasta que el punto inicial de cada vector coincida con el punto terminal del otro vector.

    u + v

    u

    v

    v

    u

    Figura 1.4:

    1.2.3 Longitud de un vector

    Sea u un vector, la longitud (magnitud, norma) de u se denota como u, se tienen los siguientes casos:

    i. Si u = (x, y) entonces u =

    x2 + y2.

    ii. Si u = (x,y,z) entonces

    u

    = x2 + y2 + z2.

    iii. Si u =AB donde A = (x1, y1) y B = (x2, y2) entonces

    u =AB =

    OB OA = (x2 x1, y2 y1)

    Por lo que u = AB =

    (x2 x1)2 + (y2 y1)2.

  • 8/7/2019 EspVect_art1

    19/51

    Los espacios vectorialesR3 yR3 Prof. Alcides Astorga Morales 19

    iv. Si u =AB donde A = (x1, y1, z1) y B = (x2, y2, z2) entonces

    u =AB =

    OB OA = (x2 x1, y2 y1, z2 z1).

    Por lo que: u = AB =

    (x2 x1)2 + (y2 y1)2 + (z2 z1)2.

    1.2.4 Ejercicios

    Calcular la magnitud de los vectores siguientes

    1.)AB si A =(2, 3, 0) y B =(3, 4, 5)

    2.) u = (2, 1)

    3.) u = (1, 2, 6)

    Teorema 5

    Sean u y v dos vectores y un numero real, entonces se cumple que:

    a.) u 0

    b.) u = || u

    c.) u + v u + v

    1.2.5 Vectores unitarios

    Sea v un vector. Se dice que v es unitario si cumple que v = 1.

    Teorema 6

    Sea v un vector diferente del vector cero, entonces se cumple que u = vv es un vector unitario.

    Por ejemplo, si v = (2, 2, 1) entonces se tiene que v = (2)2 + 22 + 12 = 3

  • 8/7/2019 EspVect_art1

    20/51

    20

    Sea u = vv =1

    3(2, 2, 1) = (2

    3,

    2

    3,

    1

    3), entonces u =

    4

    9+

    4

    9+

    1

    9= 1

    1.2.6 Producto escalar

    a.) Sean u = (x1, y2) y v = (x2, y2). El producto escalar o producto punto de u y v, denotado u v, se definecomo el munero real que viene dado por

    u v = x1x2 + y1y2

    b.) Sean u = (x1, y2.z1) y v = (x2, y2, z2). El producto escalar o producto punto de u y v, denotado u v, se

    define como el munero real que viene dado por

    u v = x1x2 + y1y2 + z1z2

    Nota

    Recuerde que el producto escalar se dos vectores siempre es un numero real.

    Ejemplo 6

    Calcular el producto escalar de los siguientes vectores

    1.) u = (2, 5), v = (3, 1)

    2.) u = (3, 1, 4), v = (1, 7, 1)

    Solucion

    1.) u v = (2, 5)(3, 1) = (2)(3) + (5)(1) = 6 + 5 = 1

    2.) u v = (3, 1, 4)(1, 7, 1) = (3)(1) + (1)(7) + (4)(1) = 3 7 + 4 = 0

    1.2.7 Vectores perpendiculares

    Sean u y v dos vectores diferentes de cero. Se dice que u y v son perpendiculares (ortogonales) si se cumple que

    u v = 0.

  • 8/7/2019 EspVect_art1

    21/51

    Los espacios vectorialesR3 yR3 Prof. Alcides Astorga Morales 21

    1.2.8 Ejercicios

    De entre los siguientes vectores determine cuales son p erpendiculares entre s:

    1.) u = (

    2, 4), v = (1, 0.5), w = (1, 0)

    2.) u = (1, 2, 2), v = (1, 5, 2), w = (2, 0, 1)

    Teorema 7

    Sean u, v vectores y un numero real, entonces

    a.) u v = v u

    b.) ( u) v = (v u)

    c.) u2 = u u

    Ejemplo 7

    Sean u = (1, 0, 3) y v = (2, 1, 4) vectores en R3.

    Determine los vectores w en R3 que satisfagan simultaneamente las siguientes condiciones:

    a.) w se puede expresar como combinacion lineal de u y v.

    b.) w es perpendicular a u.

    c.) w = 44

    Solucion

    Sea w = (x,y,z) el vector buscado.

    Por (a), existen y tales que (x,y,z) = (1, 0, 3) + (2, 1, 4)

    De donde se concluye que

  • 8/7/2019 EspVect_art1

    22/51

    22

    x = 2 (i)

    y = (ii)

    z = 3 + 4 (iii)

    Por (b), como w es perpendicular a u, entonces se concluye que:

    (x,y,z)(1, 0, 3) = 0, o sea que

    x + 3z = 0, de donde

    x = 3z

    Por (i) y (iii) se tiene que x = 2, z = 3 + 4, por lo que:

    x = 3z

    = 2 = 3(3 + 4)

    = 2 = 9 12)

    = + 9 = 12+ 2, obteniendose que

    =

    Como = , entonces sustituyendo en (i) y (iii) se tiene que

    x =

    2 =

    2 =

    3, por lo tanto, x =

    3 (iv)

    z = 3 + 4 = 3+ 4 = , por lo tanto, z = (v)

    Por (c), se tiene que w = 44, de donde se tiene que

    x2 + y2 + z2 =

    44, o sea, que x2 + y2 + z2 = 44, usando (ii), (iv) y (v) se tiene que

    x2 + y2 + z2 = 44

  • 8/7/2019 EspVect_art1

    23/51

    Los espacios vectorialesR3 yR3 Prof. Alcides Astorga Morales 23

    = (3)2 + 2 + 2 = 44

    =

    92 + 22 = 44

    = 112 = 44

    = 2 = 4

    = = 2, = 2

    Si = 2, entonces x = 6, y = 2, z = 2.

    Si = 2, entonces x = 6, y = 2, z = 2.

    Rspuesta: Los vectores que cumplen las condiciones dadas son (6, 2, 2) y (6, 2, 2).

    1.2.9 Angulo entre vectores

    i. Sean u y v dos vectores diferentes de cero no paralelos, cuyos puntos iniciales coinciden con el origen.

    Entonces se define el angulo entre los vectores u y v como el angulo no negativo mas pequeno formado

    por estos vectores. Por lo anterior [0, ].

    ii. Si u y v son vectores paralelos diferentes de cero, o sea existe R tal que u = v, entonces se define elangulo entre u y v de la siguiente forma:

    a.) si > 0, entonces = 0.

    b.) si < 0, entonces = .

    Teorema 8

    Sean u y v vectores diferentes de cero y no paralelos. Si es el angulo entre u y v, entonces

    cos =u v

    u vEjemplo 8

    Sean u y v dos vectores tales que u = (2, 1) y v = (1, 3), calcule la medida del angulo entre u y v.

  • 8/7/2019 EspVect_art1

    24/51

    24

    Solucion

    Sea el angulo buscado

    u v = (2, 1)(1, 3) = 2 + 3 = 1

    u = (2)2 + 12 v = 12 + 32

    Por lo que cos =1

    (5)(10), y entonces se tiene que = arccos (

    1

    50) 1.5507 (en radianes).

    1.2.10 Proyeccion vectorial

    Sean u y v dos vectores diferentes de cero, entonces la proyeccion de u sobre v es un vector denotado Proyv el

    cual viene dado por

    Proyvu = v donde se tiene que = u vv2

    Note que la proyeccion de u sobre v es un vector paralelo a v.

    u

    v

    Proy uv

    Figura 1.5:

    Ejemplo 9

    Sea u = (2, 3) y v = (1, 4). Determine la proyeccion de u sobre v.

  • 8/7/2019 EspVect_art1

    25/51

    Los espacios vectorialesR3 yR3 Prof. Alcides Astorga Morales 25

    u

    v

    vProy U

    Figura 1.6:

    Solucion

    =(2, 3)(1, 4)

    12 + (4)2 =2 + 12

    1 + 16=

    14

    17

    Por lo que Proyvu =14

    17(1, 4) = ( 14

    17,5617

    )

    1.2.11 Ejercicios

    Para cada par de vectores que se dan a continuaci on determine la proyeccion de u sobre v.

    1.) u = (3, 2, 1), v = (1, 2, 1).

    2.) u = (0.5, 3, 0.25), v = (2, 12, 1)

    1.2.12 Producto vectorial en R3

    Sean u = (x1, y1, z1) y v = (x2, y2, z2) vectores en R3. Se define el producto vectorial (producto cruz, producto

    exterior), denotado u v, como el vector que viene dado por

    u v = (y1z2 z1y2, z1x2 x1z2, x1y2 y1x2)

    Nota

    Tenga presente que el producto vectorial se define unicamente para vectores enR3

    La forma de como calcular el producto vectorial de dos vectores tal y como esta enunciada en la definicion

    anterior es difcil de recordar. Es por esto que dicho resultado se puede escribir en forma indicada utilizando

  • 8/7/2019 EspVect_art1

    26/51

    26

    determinantes, de la siguiente forma

    u v =i j k

    x1 y1 z1

    x2 y2 z2

    ()

    Note que en realidad, () no es un determinante por cuanto i, j y k no son numeros reales y por lo tanto elresultado de () no es un numero real.

    Teorema 9

    Sean u, v y w vectores en R3 y sea un numero real, entonces se cumple que:

    1.) u 0 = 0 v = 0 (0 denota el vector cero)

    2.) u v = (v u)

    3.) ( u) v = (u v)

    4.) u (v + w) = (v u) + (v w)

    5.) (u v) w = u (v w)

    6.) u (u v) = 0(esta propiedad lo que afirma es que (u v) es perpendicular a u)

    7.) v (u v) = 0(esta propiedad lo que afirma es que (u v) es perpendicular a v)

    8.) u y v son paralelos u v = 0

    9.) Si es el angulo entre u y v ( se supone que u y v no son paralelos) entonces

    u v = u v sin .

    10.) El area de un paralelogramo generado por los vectores u y v viene dada por u v.

    En particular el area del triangulo de lados u y v, viene dada poru v

    2.

    Ejemplo 10

    Sean A, B y C dos puntos en R3 tales que A = (1, 2, 1), B = (3, 1, 7) y C = (7, 4, 2).a.) Verifique que A, B y C son los vertices de un triangulo isosceles.

  • 8/7/2019 EspVect_art1

    27/51

    Los espacios vectorialesR3 yR3 Prof. Alcides Astorga Morales 27

    b.) Calcule la medida del angulo cuyo vertices es C.

    c.) Calcule el area del triangulo de vertices A, B y C.

    Solucion

    a.) Una forma de determinar si el triangulo de vertices A, B y C es isosceles es verificando que tiene dos lados

    que miden lo mismo.

    A

    B

    C

    Figura 1.7:

    i.) CA = OA OC = (1, 2, 1) (7, 4, 2) = (6, 2, 3)

    = (6)2 + (2)2 + 32 = 7

    ii.) CB = OB OC = (4, 5, 9) = (4)2 + (5)2 + 92 = 122

    iii.) BA = OA OB = (2, 3, 6) = (2)2 + 32 + (9)2 = 7Como CA = BA, entonces el triangulo de vertices A, B y C es isosceles.

    b.) Calculemos la medida del angulo cuyo vertice es C

    Si denota la medida del angulo cuyo vertice es C, entonces

    cos =CA CB

    CA CB =(6, 2, 3) (4, 5, 9)

    (7)(

    122)=

    24 + 10 + 27

    7

    122

  • 8/7/2019 EspVect_art1

    28/51

    28

    C

    alfa

    A

    B

    Figura 1.8:

    Por lo que = arccos(61

    7

    122), o sea que 0.6616 (en radianes).

    c.) Para calcular el area del triangulo se puede usar cualquiera de las formulas

    1

    2CB CA, 1

    2AC AB, 1

    2CB AB

    En este ejemplo usaremos1

    2CB CA

    CB

    CA =

    i j k

    4

    5 9

    6 2 3= 3i

    42j

    22k

    Por lo que CB CA = 2257

    Respuesta:

    El area del triangulo de vertices A, B y C viene dada por

    2257

    2

    Ejemplo 11

    Determine el vector C en R3 que cumpla las siguientes condiciones

    a.) Forma un angulo de 6

    con el vector A, donde A = (0, 1, 0)

    b.) Es ortogonal al vector B, donde B = (0, 1, 3)

  • 8/7/2019 EspVect_art1

    29/51

    Los espacios vectorialesR3 yR3 Prof. Alcides Astorga Morales 29

    c.) C = 2

    Solucion

    Sea C = (a,b,c)

    Por la informacion (a) se tiene que

    cos

    6=

    A CA C =

    (0, 1, 0) (a,b,c)(0, 1, 0) 2 =

    b

    2

    Por lo que 3

    2=

    b

    2, o sea, b =

    3

    Por la informacion (b) se tiene que C B = 0

    C B = 0 = (a,b,c) (0, 1, 3) = 0

    = b + c3 = 0, pero como b = 3

    = 3 + c3 = 0

    = c = 1

    Por la informacion (c), se tiene que C = 2, por lo tanto:

    C = 2 = a2 + b2 + c2 = 2, pero como b = 3, c = 1

    = a2 + 3 + 1 = 2

    = a2 + 4 = 2

    = a2 + 4 = 4

    = a2 = 0

    = a = 0.

  • 8/7/2019 EspVect_art1

    30/51

    30

    Respuesta

    El vector buscado es (0,

    3, 1).

    Ejemplo 12

    Sea u = (2, 1, 1) y v = (1, 6, 2).Determine para que valores de k se cumple que el vector w = (4, k, 1) se puede expresar como combinacionlineal de u y v.

    Solucion

    El vector w se puede expresar como combinacion lineal de u y v si existen y tales que:

    (4, k, 1) = (2, 1, 1) + (1, 6, 2)

    = (4, k, 1) = (2, , ) + (, 6, 2)

    =

    2 + = 4 6 = k + 2 = 1

    Para resolver este sistema se toma la primera y tercera ecuacion

    2 + = 4

    + 2 = 1 =

    2 + = 4

    2 4 = 23 = 6 = = 2 ()

    Sustituyendo = 2 en la primera ecuacion se tiene que 2 + (2) = 4, por lo que = 3.

    Sustituyendo = 3 y =

    2 en la ecuacion

    6 = k se tiene que

    3 6(2) = k, o sea que k = 9.

    Respuesta

    El valor de k para que w se pueda expresar como combinacion lineal de u y v es 9.

    Ejemplo 13

  • 8/7/2019 EspVect_art1

    31/51

    Los espacios vectorialesR3 yR3 Prof. Alcides Astorga Morales 31

    Considere los puntos A = (2, 2, 2), B = (3, 0, 2) y C = (4, 5, 7).

    Sean v =OC,

    OC es el vector de punto inicial el origen y punto terminal de C.

    w = OB, OB es el vector de punto inicial el origen y punto terminal de B.

    Sea u =OD, la proyeccion vectorial del vector

    OC sobre el vector

    OB.

    Calcule el area del triangulo cuyos vertices son los puntos A, B, y D (D es el punto terminal del vectorOD).

    Solucion

    Como primer paso calculemos u, donde u = Proywv = w y ademas se tiene que

    = OC OBOB OB = (4, 5, 7) (3, 0, 2)(3, 0, 2) (3, 0, 2) = 12 + 0 + 149 + 0 + 4 = 2613 = 2

    Por lo queOD =

    OB = 2(3, 0, 2) = (6, 0, 4)

    Como segundo paso calculemos el area del triangulo de vertices A, B y D.

    AB = OB OA = (1, 2, 0)

    AD =

    OD OA = (4, 2, 2)

    El area buscada viene dada porAD AB

    2

    AD

    AB

    =

    i j k

    4

    2 2

    1 2 0=

    4i + 2j

    6k

    Por lo queAD AB

    2=

    (4)2 + 22 + (6)2

    2=

    56

    2=

    2

    14

    2=

    56

    Respuesta

    El area buscada es de

    56 (u.l)2.

  • 8/7/2019 EspVect_art1

    32/51

    32

    1.3 Rectas en R3

    Sea A un punto en R3 y sea B un vector en R3, con B diferente al vector cero.

    Se define la recta L que pasa por A y tiene como vector director a B como el conjunto de puntos X que cumplen

    con la condicion OX OA = tB, con t R (1)

    OA

    A

    X

    AX

    y

    z

    o

    u

    L

    OX

    Figura 1.9:

    En otras palabras X esta en la recta L, si y solo si el vectorOX OA es paralelo el vector B.

    La ecuacion (1) recibe el nombre de ecuacion vectorial de la recta L que pasa por A y es paralela a B.

    1.3.1 Diferentes formas de expresar la ecuacion de una recta en R3

    Sea A un punto y B un vector en R3.

    Sea L la recta de ecuacionOX =

    OA + tB, com t R.

    Sean X = (x,y,z), A = (a1, a2, a3) y B = (b1, b2, b3), entonces se tiene:

    Ecuaciones parametricas de una rectaOX =

    OA + tB = (x,y,z) = (a1, a2, a3) + t(b1, b2, b3), de donde realizando las correspondientes

    operaciones se tiene que

    x = a1 + tb1y = a2 + tb2z = a3 + tb3

    con t R (2)

  • 8/7/2019 EspVect_art1

    33/51

    Rectas en R3 Prof. Alcides Astorga Morales 33

    Las ecuaciones anteriores reciben el nombre de ecuaciones parametricas de la recta que pasa por (a1, a2, a3) y

    cuyo vector director es (b1, b2, b3).

    Ecuaciones simetricas de una recta

    Con respecto a las ecuaciones parametricas obtenidas en (2), si suponemos que b1 = 0, b2 = 0 y b3 = 0entonces se tiene que

    x = a1 + tb1 = x a1 = tb1, o sea que x a1b1

    = t (3)

    y = a2 + tb2 = x a2 = tb2, o sea que y a2b2

    = t (4)

    z = a3 + tb3 =

    x

    a3 = tb3, o sea que

    z a3b3

    = t (5)

    Como en las ecuaciones (3), (4) y (5) el lado izquierdo esta igualado a t, entonces se cumple que

    x a1b1

    =y a2

    b2=

    z a3b3

    Las ecuaciones anteriores reciben el nombre de ecuaciones simetricas de la recta que pasa por (a1, a2, a3) y tiene

    como vector director a (b1, b2, b3).

    Nota

    1.) Si b1 = 0, entonces las ecuaciones simetricas son: x = a1,y a2

    b2=

    z a3b3

    .

    2.) Si b2 = 0, entonces las ecuaciones simetricas son: y = a2,x a1

    b1=

    z a3b3

    .

    3.) Si b3 = 0, entonces las ecuaciones simetricas son: z = a3,x a1

    b1=

    y a2b2

    .

    Ejemplo 14

    Determine las ecuaciones parametricas y simetricas de la recta que pasa por el punto (2, 3, 1) y tiene comovector director a (5, 0, 4).

    Solucion

    1.) Ecuaciones parametricas

    x = 2 5ty = 3

    z = 1 + 4t, donde t R

  • 8/7/2019 EspVect_art1

    34/51

    34

    2.) Ecuaciones simetricas

    y = 3,x + 2

    5

    =z 1

    4

    1.3.2 Ecuacion de una recta en R3 cuando se conocen dos puntos

    Sean A y B dos puntos en R3. Entonces la ecuacion vectorial de la recta L que contiene a A y B viene dada

    por:OX =

    OA + t(

    OB OA), donde t R

    Ejemplo 15

    Sean A = (2, 3, 1) y B = (2, 1, 1) dos puntos en R3.Determine las ecuaciones parametricas y simetricas de la recta que contiene a A y B.

    Solucion

    Si se denota por D el vector director de la recta que pasa por A y B, entonces:

    D =OB OA, o sea D = (2, 1, 1) (2, 3, 1) = (4, 2, 2)

    Por lo que se tiene:

    1.) Ecuaciones parametricas

    x = 2 + 4ty = 3 2tz = 1 + 2t, con t R

    2.) Ecuaciones simetricasx + 2

    4=

    y 32 =

    z + 1

    2

    1.3.3 Rectas paralelas y rectas perpendiculares

    Dos rectas son paralelas si sus vectores directores son paralelos.

    Dos rectas son perpendiculares si sus vectores directores son perpendiculares.

  • 8/7/2019 EspVect_art1

    35/51

    Planos en R3 Prof. Alcides Astorga Morales 35

    1.3.4 Angulos entre rectas

    Se define el angulo que forman dos rectas como el angulo que determinan sus vectores directores.

    1.4 Planos en R3

    Sea N un vector en R3 diferente de cero. Sea T un punto en R3.

    Se dice que el conjunto de puntos X generan un plano que contiene al punto T, si cumplen que:

    (OX OT) N = 0 ()

    Si se denota por el plano que contiene a T y los puntos X en R3 que satisfacen (), entonces se dice que Nes el vector normal de .

    X

    y

    Z

    O

    X

    T

    n

    Figura 1.10:

    Note que () lo que afirma es que X pertenece al plano que contiene al punto T y cuyo vector normal es N siy solo si el vector

    OX OT es perpendicular a N.

  • 8/7/2019 EspVect_art1

    36/51

    36

    1.4.1 Ecuacion cartesiana del plano

    Si N = (a,b,c), X = (x,y,z) y T = (t1, t2, t3), entonces se tiene que:

    (OX OT) N = 0 = (x t1, y t2, z t3) (a,b,c) = 0

    = a(x t1) + b(y t2) + c(z t3) = 0

    = ax at1 + by bt2 + cz ct3 = 0

    = ax + by + cz + (at1 bt2 ct3) = 0

    =

    ax + by + cz + d, donde d =

    at1

    bt2

    ct3

    El resultado anterior se puede resumir as:

    Sea un plano que contiene al punto T = (t1, t2, t3) y cuyo vector normal es N = (a,b,c), entonces la ecuacion

    cartesiana de , viene dada por:

    a(x

    t1) + b(y t2) + c(z

    t3) = 0, o

    ax + by + cz + d, donde d = at1 bt2 ct3

    Ejemplo 16

    Determine la ecuacion cartesiana del plano que contiene el punto (2, 2, 1) y tiene como vector normal a (1, 1, 3).

    Solucion

    Sean X = (x,y,z), T = (2, 2, 1) y N = (1, 1, 3), entonces:

  • 8/7/2019 EspVect_art1

    37/51

    Planos en R3 Prof. Alcides Astorga Morales 37

    (OX OT) N = 0 = (x 2, y 2, z 1) (1, 1, 3) = 0

    =

    1(x

    2) + 1(y

    2) + 3(z

    1) = 0

    = x + 2 + y 2 + 3z 3 = 0

    = x + y + 3z 3 = 0

    Respuesta

    La ecuacion del plano que se busca es x + y + 3z 3 = 0.

    1.4.2 Ecuacion del plano cuando se conocen tres puntos

    Note que por la definicion de un plano, siempre es posible obtener su ecuacion si se conoce un punto plano y el

    vector normal a ese plano.

    En general tres puntos no alineados determinan en forma unica un plano, este hecho permite, dados tres puntos

    A, B y C, no alineados, calcular la ecuacion del plano que los contiene.

    Esto se hace de la siguiente forma:

    Sea el plano que contiene los puntos A, B y C.

    Ses u = AB y v = AC

    Calculese el vector N, donde N = u v. Recuerdese que N es un vector perpendicular a u y v.

    Si X es un punto de , entonces cualquiera de las igualdades

    (OX OA) N = 0, (OX OB) N = 0, (OX OC) N = 0

    puede utilizarse para obtener la ecuacion de .

    Nota

    En el caso anterior, el vector N puede ser cualquier vector paralelo a u v.

    Ejemplo 17

  • 8/7/2019 EspVect_art1

    38/51

    38

    Determinar la ecuacion del plano que contiene los puntos A = (2, 2, 2), B = (3, 1, 1) y C = (6, 4, 6).

    Solucion

    Llamaremos (OX OA) N = 0 la ecuacion buscada, donde X = (x,y,z) y ademas se tiene que

    N =AB AC = (OB OA) (OC OA)

    N =AB AC =

    i j k

    1 1 14 6 8

    = 2i + 4j 2k

    (OX OA) N = 0 = (x 2, y 2, z 2) (2, 4, 2) = 0

    = 2(x 2) + 4(y 2) 2(z 2) = 0

    = 2x + 4y 2z 8 = 0

    Respuesta

    La ecuacion buscada es 2x + 4y

    2z

    8 = 0

    1.4.3 Planos paralelos, planos perpendiculares y angulos entre planos

    Sea un plano, cuyo vector normal es N.

    Sea un plano, cuyo vector normal es N1.

    1.) Se dice que es paralelo a si y solo si N y N1 son perpendiculares.

    2.) Se diec que es perpendicular a si y solo si N y N1 son perpendiculares.

    3.) Se define el angulo formado por y , como el angulo que forman N y N1.

    Ejemplo 18

    Sea un plano de ecuacion 2x y + z = 0.

  • 8/7/2019 EspVect_art1

    39/51

    Planos en R3 Prof. Alcides Astorga Morales 39

    Sea un plano de ecuacion x + 2y z 1 = 0.

    Determine el angulo que forman y .

    Solucion

    Como vector normal de se puede tomar: (2, 1, 1)

    Como vector normal de se puede tomar: (1, 2, 1)

    Sea el angulo que forman y .

    Entonces cos =(2, 1, 1) (1, 2, 1)

    (2,

    1, 1)

    (1, 2,

    1)

    =2 2 1

    22 + (1)2 + 1212 + 22 + (

    1)2=

    16

    6=

    16

    = = arccos (16

    ) 1.738( en radianes )

    Ejemplo 19

    Sea un plano de ecuacion 2x 3y + 5z 1 = 0.

    Sea un plano de ecuacion 3x + 2y + 4z + 5 = 0.

    Determine la ecuacion del plano que contiene el (1, 2, 1) y es perpendicular a los planos y .

    Solucion

    Llamese el plano de cuya ecuacion se busca y sea ax + by + cz + d = 0 la ecuacion cartesiana de .

    Como es perpendicular a y a , entonces se tiene que (a,b,c) es perpendicular tanto a (2, 3, 5) - vectornormal de - como a (3, 2, 4) - vector normal de -, por lo que se puede tomar (a,b,c) como el producto vectorial

    de (2,

    3, 5) y (3, 2, 4).

    (a,b,c) =

    i j k

    2 3 53 2 4

    = (22, 7, 13)

    De donde 22x + 7y + 13z + d = 0. Sustituyendo el punto dado (1, 2, 1) en esta ecuacion, se tiene que

    22(1) + 7(2) + 13(1) + d = 0

  • 8/7/2019 EspVect_art1

    40/51

    40

    = 22 + 14 + 13 + d = 0= d = 5

    Por lo que la ecuacion buscada es

    22 + 14 + 13

    5 = 0.

    1.4.4 Rectas y planos paralelos. Rectas y planos perpendiculares

    Sea L una recta de vector director d y sea un plano de vector normal n.

    a.) L es paralela a si y solo si d es perpendicular a n.

    b.) L es perpendicular a si y solo si d es paralelo a n.

    Ejemplo 20

    Determine la ecuacion del plano que satisface simultaneamente las siguientes condiciones:

    a.) Contiene los puntos A y B, donde A = (1, 2, 3) y B = (0, 1, 2) .

    b.) Es paralelo a la recta L de ecuacionx 1

    2

    = y + 1 = z

    2 .

    Solucion

    Sea ax + by + cz + d = 0 la ecuacion de .

    Como A y B estan contenidos en , entonces (a,b,c) es perpendicular a

    AB = OB OA.

    Como L es paralela a , entonces (a,b,c) es perpendicular a (2, 1, 1).

    Como (a,b,c) es perpendicular tanto a OB OA, como a (2, 1, 1), entonces (a,b,c) lo podemos tomar como elproducto vectorial de

    OB OA y (2, 1, 1).

    (a,b,c) = (OB OA) (2, 1, 1) =

    i j k

    1 1 12 1 1

    = (0, 3, 3)

    De donde la ecuacion de tiene la forma 3y + 3z + d = 0.

  • 8/7/2019 EspVect_art1

    41/51

    Algunos ejemplos resueltos Prof. Alcides Astorga Morales 41

    Como los puntos A y B pertenecen al plano , podemos sustituir cualquiera de estos puntos en la ecuacion

    anterior, para obtener el valor de d. Tomemos para esto A = (1, 2, 3):

    3y + 3z + d = 0 = 3(2) + 3(3) + d = 0

    = 6 + 9 + d = 0

    = d = 3

    Respuesta

    Por lo que la ecuacion buscada es 3y + 3z 3 = 0, o sea, y + z 1 = 0.

    1.5 Algunos ejemplos resueltos

    Ejemplo 21

    Sea L una recta de ecuacionx 1

    2=

    y + 1

    3 =z 7

    3

    Sea L1 una recta de ecuacionx + 5

    3=

    y 22 =

    z + 3

    1

    Determine (si existe) el punto de interseccion entre L y L1.

    Solucion

    Sea (x0, y0, z0) el punto de interseccion buscado.

    Sustituyendo este punto en la ecuacion de L se tiene que

    x0 12

    =y0 + 1

    3 =z0 7

    3=

    = x0 12

    = ,y0 + 1

    3 = ,z0 7

    3=

    = x0 = 2 + 1, y0 = 3 1, z0 = 3 + 7 ()

    Sustituyendo el punto (x0, y0, z0), en la ecuacion de L1, se tiene que

    x0 + 5

    3=

    y0 22 =

    z0 + 3

    1 = t

  • 8/7/2019 EspVect_art1

    42/51

    42

    = x0 + 53

    = t,y0 22 = t,

    z0 + 3

    1 = t

    =

    x0 = 3t

    5, y0 =

    2t + 2, z0 =

    t

    3 (

    )

    Por () y () se tiene que

    2 + 1 = 3t 5, 3 1 = 2t + 2, 3 + 7 = t 3

    Tomando la segunda y la terecera igualdad:

    3 1 = 2t + 23 + 7 = t 3

    6 = 3t 1 = t = 73

    Sustituyendo t =73

    en la tercera igualdad

    3 + 7 = t 3 = 3 + 7 = 73

    3

    = = 239

    Para determinar si existe punto de interseccion entre las dos rectas se debe verificar que el punto obtendo, en

    () y (), tanto para , como para t, es el mismo.

    i.) t =73

    ii.) =23

    9

    x0 =

    12 x0 =

    379

    y0 =20

    3y0 =

    20

    3

    z0 =23

    z0 =23

    Como los valores obtenidos para x0 son diferentes, entonces no existe punto de interseccion entre las dos rectas.

  • 8/7/2019 EspVect_art1

    43/51

    Algunos ejemplos resueltos Prof. Alcides Astorga Morales 43

    Ejemplo 22

    Considere los planos definidos por las ecuaciones:

    1 : x

    y = 2

    2 : x + 3y + 2z = 2

    3 : 2x + y z = 2

    Determine la ecuacion del plano que cumple simultaneamente las siguientes condiciones:

    a.) contiene la recta L, siendo L la recta de interseccion de los planos 1 y 2.

    b.) es perpendicular al plano 3.

    Solucion

    Sea ax + by + cz + d = 0 la ecuacion buscada.

    i.) Determinaremos la ecuacion de la recta L.

    De x y = 2 se tiene que x = y + 2 (1)

    Utilizando las ecuaciones de 1 y 2 se tiene

    x y = 2

    x + 3y + 2z = 2=

    3x 3y = 6

    x + 3y + 2z = 2

    6 = 3t 1 = t = 73

    O sea que, x =z 22 (2)

    De (1) y (2) se tiene que las ecuaciones simetricas de L, vienen dadas por

    x

    1=

    y + 2

    1=

    z 22

    y, por lo tanto, como su vector director se puede tomar (1, 1, 2).

    ii.) Como 3 es perpendicular a , entonces (a,b,c) es perpendicular a (2, 1, 1), ademas, como L estacontenida en , entonces (a,b,c) tambien debe ser perpendicular a (1, 1, 2). Por lo anterior, como(a,b,c) debe ser perpendicular a (2, 1, 1) y a (1, 1, 2), entonces podemos calcular el vector normal de de la siguiente forma:

    (a,b,c) = (1, 1, 2) (2, 1, 1) =i j k

    1 1 22 1 1

    = (1, 5, 3)

  • 8/7/2019 EspVect_art1

    44/51

    44

    De donde se tiene que x + 5y + 3z + d = 0

    Ademas, como L esta en el plano buscado cualquier punto que tomemos en L esta en el plano satisface, por

    tanto, la ecuacion anterior.

    Como las ecuaciones simetricas de L sonx

    1=

    y + 2

    1=

    z 22 , entonces se puede facilmente verificar que (2, 0, 0)

    satisface las igualdades anteriores.

    Sustituyendo este punto en x + 5y + 3z + d = 0, se tiene que 2 + 5(0) + 3(0) + d = 0, o sea que, d = 2.

    Respuesta

    La ecuacion buscada es x + 5y + 3z 2 = 0

    Ejemplo 23

    Sea L una recta de ecuacionx 2

    3=

    y 11 = z 2

    Sea R una recta de ecuacion (x,y,z) = (3, 2, 1) + t(2, 1, 1) donde t R

    Determine las ecuaciones parametricas de la recta T que cumple simultaneamente las siguientes condiciones:

    a.) T contiene el punto de interseccion entre L y R.

    b.) T es perpendicular a L y a R.

    Solucion

    Sea (x,y,z) = (a,b,c) + (d1, d2, d3), con R la ecuacion buscada

    i.) Calculemos (a,b,c), esto es, el punto de interseccion entre L y R

    Seaa 2

    3=

    b 11 = c 2 = , entonces:

    a = 2 + 3y = 3 2z = 1 + 2

    ()

  • 8/7/2019 EspVect_art1

    45/51

    Algunos ejemplos resueltos Prof. Alcides Astorga Morales 45

    De (a,b,c) = (3, 2, 1) + t(2, 1, 1) se tiene que

    a = 3 + 2tb = 2 + t

    c = 1 t()

    Si el punto (a,b,c) pertenece a las dos rectas, entonces se debe cumplir

    2 + 3 = 3 + 2t, o sea, 3 = 1 + 2t (1)

    1 = 2 + t, o sea, = 1 t (2)

    2 + = 1 t, o sea, = 1 t (3)

    Sustituyendo (2) en (1) se tiene

    3(1t) = 1+2t, de donde al simplificar queda que 45

    , y sustituyendo este valor en (2) obtenemos que =15

    .

    Sustituyendo45

    en () y = 15

    en () se tiene, en ambos casos que

    a =7

    5, b =

    65

    , c =9

    5,

    ii.) Como T es perpendicular a L y T es perpendicular a R, entonces se cumple que el vector director de T, se

    puede obtener por medio del producto vectorial de (3, 1, 1) y (2, 1, 1), o sea

    (d1, d2, d3) =

    i j k

    3 1 12 1 1

    = (0, 5, 5)

    Respuesta

    La ecuacion parametrica de la recta T viene dada por (x,y,z) = (7

    5,

    6

    5,

    9

    5) + (0, 0, 5), donde

    R.

    Ejemplo 24

    Hallar la ecuacion de la recta L que cumpla simultaneamente las siguientes condiciones:

    a.) Es perpendicular al plano que contiene los puntos: a = (3, 4, 2), B = (1, 5, 3) y C = (2, 1, 4).

  • 8/7/2019 EspVect_art1

    46/51

    46

    b.) Pasa por el punto de intereseccion de la recta de ecuacionx

    2= y 1 = z + 11 con el plano de ecuacion

    2x y z = 1.

    Solucion

    Sea (x,y,z) = (x0, y0, z0) + t(a,b,c) con t R, la ecuacion buscada.

    i.) Como la recta L es perpendicular al plano que contiene los puntos A, B y C, entonces su vector director es

    paralelo al vector normal del plano , y en particular se puede tomar

    (a,b,c) = (OA OB) (OC OB) =

    i j k

    4 -1 -1

    3 4 1

    = (5, 7, 13) (I)

    ii.) Sea x2 = y 1 = z + 11 = , entonces se tiene que

    x = 2, y = + 1, z = 1

    Suponiendo que (x0, y0, z0) es un punto de interseccion entre la recta dada y el plano dado, entonces

    x0 = 2, y0 = + 1, z0 = 1 (II)

    tambien satisfacen la ecuacion 2x y z = 1, por lo que

    2(2)

    ( + 1)

    (

    1) = 1, o sea que

    4 1 + + 1 = 1, de donde

    =1

    4

    Sustituyendo =1

    4en (II), se tiene que x0 =

    1

    2, y0 =

    5

    4, z0 =

    54

    Respuesta

    La ecuacion de la recta L es (x,y,z) = (1

    2,

    5

    4,54

    ) + t(5, 7, 13) con t R.

    Ejemplo 25

    Determinar la ecuacion de vectorial de la recta L, tal que

    i.) L es paralela a la recta L1, tal que L1 es la recta de interseccion de los planos

    : 2x + 3y z = 2

  • 8/7/2019 EspVect_art1

    47/51

    Algunos ejemplos resueltos Prof. Alcides Astorga Morales 47

    : x + y + z = 1

    ii.) L contiene el punto (1, 1,

    5)

    Solucion

    SeaOX =

    OA + tB, t R la ecuacion de la recta L.

    Sea N = (2, 3, 1) el vector normal del plano .

    Sea N = (

    1, 1, 1) el vector normal del plano .

    Sea D1 el vector director de la recta L1.

    Como L1 esta contenida tanto en el plano , como en , entonces se cumple que D1 es un vector perpendicular

    tanto a N como a N, y podemos tomar

    D1 = N N, o sea

    D1 =

    i j k

    2 3 11 1 1

    = (4, 1, 5)

    Como L es paralela a L1, podemos tomar a D1 como vector director de L.

    Respuesta

    La ecuacion vectorial de la recta L es (x,y,z) = (1, 1, 5) + t(4, 1, 5) con t R.

    Ejemplo 26

    Determine el vector w en R3 que cumple simultaneamente las siguientes condiciones:

    a.) Se puede expresar como combinacion lineal de los vectores u = (1, 0, 1), v = (1, 1, 0).

  • 8/7/2019 EspVect_art1

    48/51

    48

    b.) El vector w es perpendicular a la recta de ecuacionx

    2=

    y 11 =

    z

    3.

    c.) El vector w + (1, 0, 1) es paralelo a x + 2y + z 5 = 0.

    Solucion

    Sea w = (a,b,c) el vector buscado.

    Por la informacion (a) existen R y R tales que

    (a,b,c) = (1, 0, 1) + (1, 1, 0), o sea

    a = + , b = , c = (I)

    Por la informacion (b) se tiene que

    [(a,b,c) + (1, 0, 1)] (2, 1, 3) = 0

    = (a + 1, b , c 1)(2, 1, 3) = 0

    = 2(a + 1) b + 3(c 1) = 0

    =

    2a

    b + 3c

    1 = 0

    Sustituyendo los valores obtenidos en (I) en la ecuacion anterior tenemos que

    2( + ) + 3 1 = 0

    = 2 + 2 + 3 1 = 0

    = 2(a + 1) b + 3(c 1) = 0

    = 5 + 1 = 0 (II)

    Por la informacion (c) se tiene que w es un vector perpendicular al vector normal del plano, por lo que

    (1, 2, 1)(a,b,c) = 0

    = a + 2b + c = 0

  • 8/7/2019 EspVect_art1

    49/51

    Algunos ejemplos resueltos Prof. Alcides Astorga Morales 49

    Sustituyendo, los valores obtenidos en (I), en la ecuacion anterior se tiene que:

    ( + ) + 2+ = 0

    =

    + 2+ = 0

    = = 0

    Sustituyendo = 0 en (II), se tiene que =1

    5, de donde, segun (I) se concluye que

    w = (1

    5, 0,

    1

    5)

    Ejemplo 27

    Determine la distancia del punto P = (2, 3, 1) a la recta de ecuacion x 53 = y + 22 = z 82

    Solucion

    Sea L la recta de ecuacionx 5

    3=

    y + 2

    2=

    z 82 , y sea n = (3, 2, 2)

    Sea X0 = (x0, y0, z0) el punto de L tal que el vectorP X0 es perpendicular a n.

    Lo que nos interesa es calcular P X0 .

    Tenemos que (OX0 OP) n, o sea:

    [(x0, y0, z0) (2, 3, 1)](3, 2, 2) = 0

    = (x0 2, y0 3, z0 + 1)(3, 2, 2) = 0

    = 3x0 6 + 2y0 6 2z0 1 = 0

    = 3x0 + 2y0 2z0 = 14 (I)

    Como (x0, y0, z0) pertenece a L, entonces en particular

    x0 53

    =y0 + 2

    2=

    z0 82 =

    = x0 = 5 + 3, y0 = 2 + 2, z0 = 8 2 (II)

  • 8/7/2019 EspVect_art1

    50/51

    50

    Sustituyendo estos valores en (I), se tiene que:

    3x0 + 2y0 2z0 = 14

    = 3(5 + 3) + 2(2 + 2) 2(8 2) = 14

    = 15 + 9 4 + 4 16 + 4 = 14

    = 17 = 19 , por lo tanto = 1719

    Sustituyendo este valor de en (II) y realizando las operaciones correspondientes se tiene que

    x0 = 14717

    , y0 = 417

    , z0 = 9817

    AdemasOX0 OP = ( 142

    17,

    4

    17,

    98

    17) (2, 3, 1) = ( 108

    17,4717

    ,115

    17)

    = OX0 OP =

    (108

    17)2 + (

    4717

    )2 + (115

    17)2 9, 08

    Ejemplo 28

    Calcular la distancia del punto P, P = (3, 2, 1) al plano de ecuacion 4x 5y 3z = 1.

    Solucion

    Sea el plano de ecuacion 4x 5y 3z = 1 y sea n = (4, 5, 3)

    Lo que se busca es determinar OX OP donde X es un punto en para el cual se cumple que el vectorOXOP es perpendicular a , o sea que X P sea paralelo a n, esto es, existe un numero real , para el cual

    OX OP = n o tambien que OX = OP + n (I)

    Busquemos un punto M cualquiera del plano, por ejemplo, se puede verificar que el punto M = (0, 2, 3)satisface la ecuacion de .

  • 8/7/2019 EspVect_art1

    51/51

    Algunos ejemplos resueltos Prof. Alcides Astorga Morales 51

    Pero, como M y N estan en el mismo plano , entonces cumplen que

    (OM OX) n = 0, pero por (I), OX = OP + n

    =

    (OM

    OP

    n)

    n = 0

    = (OM OP) n ( n2) = 0

    = n2 = (OM OP) n

    = =OM OP) n

    n2

    =

    n =OM

    OP

    Como n =OM OP, entonces

    OM OP = n = n

    = (OM OP) n

    n2 n

    = (OM

    OP)

    n

    n2 n = (OM

    OP)

    n

    n

    =[(0, 2, 3) (3, 2, 1)] (4, 5, 3)

    (4, 5, 3) =2

    5

    2