45
M M é é todos para la estimaci todos para la estimaci ó ó n de n de sedimentos sedimentos”

Estimacion de Los Sedimentos C Lehmann

Embed Size (px)

Citation preview

  • MMtodos para la estimacitodos para la estimacin de n de sedimentossedimentos

  • ALPS

    JURA

    FLAT L

    AND

    Europakarte

  • Densidad de la Populacion Suiza Densidad de la Populacion Suiza

  • populacion densa Uso del suelo: conflicto entre la natura y la actividad humana

  • Hace pocos anos: elaboracion de mapas de riesgo

    estimacion del arrastre de fondo= una herramienta importante para la elaboracion de mapas de riesgo y la planificacion del ordenamiento territorial tanto como para la planificacion y construccion de medidas de proteccion

    2 metodos para la estimation del aporte de sedimentos en cuencas alpinas

  • Como determinar Como determinar el aporte de los el aporte de los

    sedimentos?sedimentos?

  • Estimacin del Transporte de Sedimentos a travs de Depsitos

    Estimation of sediment transport by sediment retention Estimation of sediment transport by sediment retention reservoirsreservoirs

  • por una red depor una red demedicionmedicion

  • Por la calculacion a travez de formulasPor la calculacion a travez de formulas

    ??

  • Dos metodologias para Dos metodologias para la estimacion la estimacion ..

  • project

    development

    Estimated Process

    Estimated bed load

    Lehmann Gertsch

    PH D Thesis 1993

    80 torrents, 1987-1992

    Sediment transport

    Bed load balancesTotal Bed load charge

    Return period100 years

    PH D Thesis 2009

    58 events , 1987-2005

    Debris flows

    Bed load balancesTotal Bed load charge

    Return period>100 years

    Metodologia

  • Metodologia Lehmann

  • A Handbook with description of the method is available

  • Erosion + Transport

    Accumulation ?

    Retention Basin planned

    Sediment yield? Scenarios?

  • Procedure to assess sediment yield in mountain streams

    Procedimiento de la Estimacin del Aporte de Sedimentos en Torrentes

    Preparations

    Collect data

    Study and interpret data

    First evaluation of mountain stream

    Collection and processing ofdischarge information

    Field Work

    Assign mountain stream to a category:- no debris flow stream- debris flow stream with deposits- debris flow stream without deposits

    Record parameters applicable tocategory

    Analysis

    Calculation of sediment yield at the conefor the corresponding category

    Plausibility check and sensitivityanalysis

    Check results of prepartion work againstfield conditions

  • Assessment in the field

  • Alta relevancia Relevancia posibleRelevancia probable

    Deslizamiento

    Transporte enBarranca

    Flujo de Lodo

    Falla de la Escarpa

    Transporteen el Ri

    Fuente Fuente de erosion?de erosion?

    Cual de los Cual de los procesos es procesos es relevante ?relevante ?

  • Calculo con formulaCalculo con formulaT

    ran

    spo

    rtkapa

    zitt

    gross

    klein

    Bannwald

  • Pendiente

  • ?? Dimensiones?

  • Aporte lateral: Deslizamientos

  • ?espesor

    longuitud

  • Ejemplos para la estimacion de los volumenes

  • Propuestas para cada tipo de fuente

    de sedimentos

  • Procedure:Determination of sediment balance for each channel section

    Level of operation: Handbook Theory book Computer program for calculation

    Procedimiento: Determinacin de la Erosin y de la Acumulacin para cada seccin del Torrente

    Herramientas para el Procedimiento: Manual Libro Especializado Programa de Computacin

    Assessment of sediment yield in mountain streams

    Estimacin del Aporte de Sedimentos en Torrentes

    ...por tramos...

  • Estimation of sediment transport in small mountain streamsResultado de la Estimacin del Transporte de

    Sedimentos en el Torrente Guppenruns

    Sediment transport during a 100-year flood in the Guppenruns

    Cross section Nr.

    V

    o

    l

    u

    m

    e

    Transport capacitySediment yield

    Sediment potentialDeposits

  • 740

    760

    780

    800

    820

    840

    860

    880

    900

    920

    940

    0

    5000

    10000

    15000

    20000

    250007

    2

    5

    6

    7

    4

    5

    6

    7

    6

    5

    6

    7

    8

    5

    6

    7

    9

    9

    6

    8

    1

    5

    6

    8

    3

    5

    6

    8

    5

    5

    6

    8

    7

    5

    6

    8

    9

    5

    6

    /

    2

    4 6 8

    1

    0

    1

    2

    1

    4

    1

    6

    1

    8

    2

    0

    2

    2

    2

    4

    2

    6

    2

    8

    3

    0

    3

    2

    3

    4

    3

    6

    3

    8

    4

    0

    4

    2

    4

    4

    4

    5

    a

    4

    6

    a

    4

    8

    5

    0

    5

    2

    F

    e

    s

    t

    s

    t

    o

    f

    f

    f

    r

    a

    c

    h

    t

    (

    m

    3

    )

    Nr. der Querprofile

    Scenarios with a short and long rainfall input with a river bed widening

    Bornige BrckeMdg. Trmmelbach

    Mattebach

    Sefinenltschin

    untere --- obere Stechelbergbrcke

    change of bed levelBornige Brcke

    Mdg. Trmmelbach

    Mattebach

    Sefinenltschi

    untere --- obere Stechelbergbrcke

    Q = 83 m3/s Q = 57 m3/s

    Lange Ganglinie

  • Metodologia Gertsch

  • Assessment of hillslope processes

    Assessment of channel processes

    Bed load balances in all channel parts in dependance from scenario

    Total bed load at fan apex

    Composition of data Digital data, and field data

    Scenario definition qualitative, descriptive

    With the aid of developped assessment matrixes for hillslopes and channel automated programme

    Delineation of channel parts and adjoining slope parts

    Possible with GIS

    Extraction of input parameters

  • Combined impact of all influence factors Combined impact of all

    influence factors is essential for bed load mobilisation

    Every channel part is influenced by a unique and individual combination of influence-factors

    Combined impact = complex

    During the combined impact, the different influence-factors can: cumulate each other

    compete against each other eleminate each other I

    Influence-factor do not have the same weight in each situation

  • Understanding system element studying channel part

    Channel part to be assessed

    perspective

    Influence factors system element-level

    local disposition

  • Bed load supplyEdisriederbach, Sachseln

    rock

    Leimbach, Frutigen

    limited

    Milibach, Meiringen

    unlimited

    Local disposition

  • Torrent de Sax, Fully

    steep erosion flat deposition

    Rio de Tennasses, Chteau-dOex

    Channel gradient

    Local disposition

  • Channel part to be assessed

    perspective

    Interaction between system elements studying channel parts upstream

    conditions upstream

    Influence factors interaction-level

  • Runoff supply / catchment area aboveLes Creusats, Orsires

    Local disposition

  • Channel part to be assessed

    perspective

    flip-over-effects in the system looking for critical constallations or processes

    negative factors

    special conditions or processes

    release of extreme debris flows

    extreme erosion rates from release point untill fan apex flip-over-effect

    erosion rates > 30 m3/m

    Influence factors flip-over-level

  • Release of debris flows in bastion-moraines Rotlauibach, Guttannen (Foto: Flotron AG)

  • Confluence of several channels at the same locationRotlauibach, Guttannen (Foto: Flotron AG)

  • Assessment criteria Decision-making support Assessment and quantification

    Local disposition

    Transport process

    Repressing and increasing factors for

    erosion

    influence-factor-combination

    Assessment line

    Quantification

  • * 400m = 1600m3

    * 200m = 8000m3

    * 800m = 0m3

    * 130m = 11700m3

    Simulacion Evento 2004 (oleaje)

    Total = 21000 m3

    4m3/m40m3/m0m3/m

    90m3/m

  • * 400m = 1600m3

    * 200m = 2000m3

    * 800m = 0m3

    * 130m = 2210m3

    Scenario Flujo de escombros

    Total = 6000 m3

    4m3/m10m3/m0m3/m

    17m3/m

  • Scenario Bed load transport without release of debris flow

    Total = 1720 m3

    * 400m = 800m3

    * 200m = 400m3

    * 800m = 0m3

    * 130m = 520m3

    2m3/m2m3/m0m3/m

    4m3/m

  • Estimated Process

    Estimated bed loadReturn period

    Necessary time for application for a unit of 5km2-catchment

    ScaleChannel gradient

    Methode Lehmann Methode Gertsch

    Sediment transport

    Bed load balancesTotal Bed load charge

    Return period100 years

    3 days

    < 50 km2

    > 2%

    Debris flows

    Bed load balancesTotal Bed load charge

    Return period>100 years

    2 days

    < 10 km2

    > 10%

    Comparacion final

  • Gracias por su atencion!!!!!