65
EXAMEN TEÓRICO

EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

EXAMEN TEÓRICO

Page 2: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

2

Instrucciones generales para el examen teórico 1. Este examen contiene 65 páginas para 6 problemas teóricos y tiene una duración total de 5:00

horas. La Tabla Periódica de los Elementos se encuentra al final de este folleto. No separe las páginas. A lo largo del examen encontrará 9 páginas en blanco que puedes utilizar para cálculos adicionales o cualquier cosa que necesites.

2. Comienza cuando te lo indiquen. 3. Antes de iniciar tu trabajo, tendrás 30 minutos para leer cuidadosamente todo el examen. 4. Resuelva el examen completo con bolígrafo o lapicero de tinta negra (NO escriba con lápiz). 5. Escribe tu nombre y tu código de identificación en el encabezado de la primera hoja.

Adicionalmente se te proporcionará un número correlativo el cual deberás escribir en cada hoja del examen.

6. Usa solamente la calculadora que se te ha proporcionado. No se permitirá el préstamo de ningún material durante el desarrollo de la prueba.

7. Dispondrás de 4 horas con 30 minutos para llevar a cabo la prueba y escribir tus respuestas en los espacios correspondientes. Lo que escribas fuera de los cuadros o en las páginas en blanco que se encuentran en el examen, no será evaluado.

8. Se dará un aviso 15 minutos antes de finalizar el tiempo estipulado. 9. Cuando escuches la señal de terminar, deja de trabajar inmediatamente, en caso contrario, el

problema que estés escribiendo será anulado. 10. Cuando termines el examen coloca todas tus hojas en el sobre provisto, ciérralo en presencia

del profesor que supervisa el examen. Solamente las hojas que se encuentren en el sobre cerrado serán corregidas.

11. No salgas del aula de examen antes de que te lo autoricen. 12. Es esencial que entregues el enunciado del examen con su nombre y código y que te asegures

que todas las páginas lleven su correlativo.

Page 3: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

3

Constantes, Fórmulas y Ecuaciones

Constante de Avogadro NA = 6,022 1023 mol–1

Constante de Faraday F = 96485 C mol-1

Constante Universal de los

Gases Ideales

R = 82,06 atm cm3 mol-1 K-1 R = 1,987 cal mol-1 K-1

R = 8,314 J mol-1 K-1

Densidad promedio del sudor ρ sudor = 1,0035 g cm-3

Entalpía de enlace (H – O) ΔH°298,15K = 102,3 kcal mol-1

Entalpía de formación: H(g) ΔfH°298,15K = 52,096 kcal mol-1

Entalpía de formación: O(g) ΔfH°298,15K = 59,553 kcal mol-1

Equivalencia entre L y μL 1L=1x106 μL

Presión atmosférica 1 atm = 1,01325 105 Pa = 760 mmHg

Valores de constantes de acidez y solubilidad

H2SO4: pKa1 = fuerte / pKa2 = 1,92

H2CO3: pKa1 = 6,37 / pKa2 = 10,25

HNO3: pKa = fuerte

CaCO3: Kps = 4,47 × 10-9

Ecuación del gas ideal PV = nRT

Ecuación de Arrhenius k = Ae-Ea/RT

Ecuación cinética genérica integrada (orden n) [𝑅]−𝑛+1 − [𝑅]0−𝑛+1

−𝑛 + 1= 𝑘𝑡

Ecuación integrada de primer orden [R] = [R]0e­kt

Grados Celsius a Kelvin K = (°C + 273,15°C) × (K °C-1)

Ecuación de Van’t Hoff ln (

𝐾2

𝐾1) = −

∆𝐻𝑜

𝑅(

1

𝑇2−

1

𝑇1)

Energía Libre de Gibbs ΔG° = -RTlnK = ΔH° - TΔS°

Ecuación de Beer- Lambert A = ε l C

Page 4: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

4

Numeral 1 2 3 4 Total

Puntaje 15,00 5,00 15,00 5,00 40,0

Calificación

Problema Teórico 1 (10,0%)

Azúcares y Aminoácidos

La producción de azúcar en El Salvador se ha convertido en una pieza clave en el engranaje de la economía salvadoreña, el cultivo está presente en al menos 13 de los 14 departamentos del país y el sector provee de empleo directo a más de 50 mil personas según la Fundación del Azúcar (FUNDAZUCAR). Son aproximadamente 8000 hectáreas de tierra en las que se cultiva la caña y actualmente esta industria constituye el 4.2% de las exportaciones y el 4% de la generación de energía eléctrica a nivel nacional.

Page 5: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

5

La sacarosa (conocida como azúcar de mesa) es un disacárido compuesto por los monosacáridos D-glucosa y fructosa. En el siguiente problema trabajará con otros compuestos disacáridos, así como la síntesis de aminoácidos. Parte 1

Las glucosidasas (también conocidas como glucósido hidrolasas) son enzimas que catalizan la

hidrólisis de enlaces glucosídicos para generar glúcidos menores, un ejemplo es la lactasa, una

enzima tipo β-galactosidasa. Su acción es imprescindible en el proceso de conversión de la lactosa

(disacárido), en sus componentes D-glucosa y galactosa.

Un disacárido X (C11H20O10) es hidrolizado por la acción enzimática de la α-D-glucosidasa,

obteniéndose la D-glucosa y una D-pentosa. El disacárido X, no reacciona con el reactivo de Fehling,

y el producto de la metilación exhaustiva de X con sulfato de dimetilo en hidróxido de sodio, es el

derivado hepta metil éter Y, el cual por hidrólisis ácida produce 2,3,4,6-tetra-O-metil-D-glucosa y

tri-O-metil pentosa Z. Al hacer reaccionar Z con bromo en agua se obtiene el ácido 2,3,4-tri-O-metil-

D-ribónico (ácido aldónico derivado del 3 epímero de la D-xilosa).

Page 6: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

6

1. Asigne las estructuras de X (conformación de Haworth), Y (conformación de Haworth) y Z (estructura de Fischer).

X (Conformación de Haworth)

Y (conformación de Haworth)

Z (Estructura de Fisher)

Page 7: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

7

Parte 2

La reacción con metaperyodato (IO4−), es una ruptura oxidativa que recibe el nombre de reacción de

Malaprade, donde el enlace carbono-carbono (C-C) de los monosacáridos se rompe en presencia

del ion (IO4−) cuando ambos carbonos presentan grupos hidroxilo, grupos carbonilo o un grupo

hidroxilo y un grupo carbonilo adyacente.

Al hacer reaccionar el compuesto metil

α-D-glucopiranósido a una oxidación de

Malaprade, produce 1 mol de ácido

fórmico, más un compuesto (A). Por otro

lado, cuando un metil glucósido (B) es

tratado de la misma forma que el

compuesto anterior, es decir con

metaperyodato, del cual se consume 1

mol, y no hay formación de ácido

fórmico, pero si del compuesto (A).

2. Dibuje las estructuras de los compuestos (A) y (B).

Estructura de A

Estructura de B

Page 8: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

8

Parte 3

Se cree que los primeros aminoácidos se sintetizaron a partir de formaldehído, amoniaco, cianuro

de hidrógeno y agua, compuestos sencillos presentes en la atmósfera primitiva. Una posible síntesis

implica una serie de ataques nucleofílicos y transferencia de protones.

3. Escribe las reacciones involucradas en la formación de la glicina utilizando los compuestos

mencionados anteriormente.

i.

ii.

iii.

Page 9: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

9

4. Escriba el mecanismo para la reacción iii. de la cual se obtiene como producto final glicina

Page 10: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

10

Page 11: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

11

Page 12: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

12

Numeral 1 2 3 4 5 Total

Puntaje 10,25 12,00 10,00 10,00 10,00 52,25

Calificación

Problema Teórico 2 (10,0%)

Pupusawa, la tierra que nos sustenta

La comida popular salvadoreña destaca por la variedad de sabores, hay platos típicos dulces, ácidos,

salados, amargos y platillos con sabores combinados. El plato por excelencia popular de los

salvadoreños es “la pupusa”, del pipil pupusawa (su nombre popular), y también recibió el nombre

popotlax, de la conjugación Náhuatl “popotl” que significa relleno y “tlaxkalli” que significa tortilla.

La pupusa es un alimento preparado a mano, a base de maíz o arroz, rellena generalmente de frijol

frito, quesillo (un tipo de queso) y chicharrón (proveniente del cerdo); a esta combinación se le llama

pupusa revuelta, sin embargo, la combinación de ingredientes puede variar o incluir otra variedad.

Una investigación salvadoreña de la Universidad Centroamericana “José Simeón Cañas” con apoyo

del Instituto de Nutrición de Centroamérica y Panamá, reveló el contenido nutricional proximal de

los alimentos elaborados con materias primas regionales, consumidos por la mayor parte de la

población salvadoreña en su dieta usual y durante sus festividades. Esta información puede

Page 13: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

13

encontrarse en la obra publicada “Composición Química de Alimentos Populares en El Salvador”.

Los datos concernientes a la pupusa se muestran a continuación:

Nombre común

Composición en 100 g de pupusa a base de maíz Valor

energético (kcal)

Humedad (%)

Proteína (%)

Grasas (g) Fibra

cruda (g) Carbohidratos

totales (g) Ceniza (g)

Pupusa de chicharrón

245 46,3 10,5 11,0 1,1 30,8 1,4

Pupusa de frijoles

204 49,8 6,3 3,0 1,0 40,0 0,9

Pupusa de queso

189 53,8 11,9 6,1 0,9 26,2 2,0

Pupusa de revueltas

242 48,7 7,9 12,0 1,2 29,8 1,6

El cuerpo humano obtiene su fuente energética de los alimentos, metabolizando grasas,

carbohidratos y nutrientes. Independientemente de las condiciones del entorno, el cuerpo humano

realiza sus funciones anatómicas y fisiológicas a temperatura constante y posee una habilidad

termorreguladora, intercambiando constantemente calor con el entorno. Cuando se eleva la

temperatura corporal, se elimina calor evaporando sudor hacia el entorno, el cual es básicamente

agua, por lo que el proceso implica la conversión endotérmica de agua líquida a vapor de agua:

𝐻2𝑂(𝑙) → 𝐻2𝑂(𝑔) ∆𝐻 > 0

1. La cantidad de entalpía intercambiada en este proceso termorregulador es el 25,74% del valor

absoluto (módulo) de ∆𝑓𝐻298,15𝐾° de un mol de 𝐻2𝑂(𝑔), utilizando los valores entálpicos de la

tabla de datos inicial, determine el ∆𝐻 (kcal/mol) del proceso de sudoración.

Nota: la entalpía de enlace o entalpía de disociación de enlace se define como la energía necesaria

para realizar una ruptura homolítica en fase gaseosa. Por ejemplo, para una molécula diatómica:

Page 14: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

14

2. La masa promedio de una pupusa tradicional es 87,96 gramos. Si una persona ingiere 2 pupusas

revueltas y 2 pupusas de chicharrón en la cena, todas a base de maíz y no se almacena nada de energía en su cuerpo, calcule el volumen de agua que tendría que perderse en forma de sudor a fin de mantener constante su temperatura corporal. (Si no logró obtener el valor del

∆𝑯̅̅ ̅̅𝒔𝒖𝒅𝒐𝒓𝒂𝒄𝒊ó𝒏, utilice el valor de 10,0 kcal mol-1).

Page 15: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

15

Page 16: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

16

Las pupusas son un platillo de bajo costo de preparación, pero requiere de ciertos conocimientos

para que tenga un sabor único, por lo que se complementa con una salsa de tomate y un curtido de

repollo para acentuar el sabor. El “curtido” es una preparación a base de vinagre; contiene repollo,

zanahoria, cebolla, chile según el gusto, y condimentos.

1 L de extracto del “curtido” se somete a separación cromatográfica por columna, se obtiene agua

en su mayoría, 55 cm3 de ácido acético y 3,25 cm3 de un compuesto líquido desconocido con

densidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido

se coloca en un dispositivo de válvula con capacidad de 115,0 cm3, el cual se sumerge en un baño a

temperatura constante de 85℃. El sistema inicialmente está abierto a la presión atmosférica de

0,962 atm. Se observó que la sustancia realizó ebullición a 77℃; la válvula se cierra al alcanzar el

equilibrio con los alrededores (el entorno) y se deja enfriar hasta temperatura ambiente. El sistema

sin el compuesto líquido pesaba 145,2335 g, el sistema cerrado al finalizar el procedimiento pesó

145,4069 g a temperatura ambiente. Los compuestos posibles debido a la procedencia del curtido

son:

Fórmula CH4O C2H6O C2H4O CH2O C3H6O

Nombre IUPAC Metanol Etanol Etanal Metanal Propanona

3. Asumiendo idealidad, determine la identidad del líquido desconocido.

Page 17: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

17

Se define como vida útil de un alimento al periodo en el que mantiene sus características sensoriales

y de seguridad aceptables para el consumidor. En el platillo de la pupusa, la salsa de tomate

(acompañante) es la que tiene un tiempo de vida útil menor; para alargar este periodo se utiliza

como preservante ácido cítrico, el cual a temperatura ambiente fermenta en el medio nutritivo en

presencia de bacterias Pseudomonas aeruginosa (Bacillus ayocyaneus). Éstas transforman el ácido

cítrico en cuerpos cetónicos (ácido 3-oxoglutárico y acetona) fáciles de rastrear químicamente; una

ecuación cualitativa de la reacción es:

Se registran los porcentajes de “cuerpos cetónicos” a diferentes intervalos de tiempo, con respecto

a la concentración inicial de 0,02 mol L-1 de una solución nutritiva de ácido cítrico en salsa de tomate.

Page 18: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

18

Tiempo de incubación / horas 4 13 19 27 55 72

Porcentaje de conversión del ácido cítrico en

cuerpos cetónicos 24 57 71 82 97 99

4. Con los datos anteriores, determine el orden de la cinética de degradación (de la forma 𝑟 =

𝑘[𝑅]𝑛) el ácido cítrico como preservante de la salsa de tomate a temperatura ambiente (25℃) por el método de Powell, suponiendo una relación 1:1 de cuerpos cetónicos – ácido cítrico. (Nota: No utilice el tiempo cero al graficar, y trabaje en horas. Utilice la página transparente).

En el método de Powell el parámetro del eje “x”, log10 𝜙, se define como log10(𝑘[𝑅]0𝑛−1𝑡), dado

que con los datos experimentales se representa el log10 𝑡, la gráfica experimental difiere de la

gráfica universal (de la página transparente) en un valor constante de log10(𝑘[𝑅]0𝑛−1), implicando

que para hacer coincidir las gráficas se debe desplazar arbitrariamente la representación universal

hacia la izquierda o derecha, mientras los ejes “x” se mantienen superpuestos y los ejes “y”

permanecen paralelos.

Espacio de cálculos y/o deducciones.

Page 19: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

19

Complete:

Tiempo / horas 4 13 19 27 55 72

Concentración de ácido cítrico / mol L-1

log10 𝑡

𝛼 / ([𝑅] [𝑅]𝑜⁄ )

Ubique los puntos:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

𝛼(A

LFA

)

LOG(T)

Gráfica experimental de Powell

Page 20: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

20

5. Se ha comprobado que cuando se ha consumido el 55% de la concentración del preservante, la salsa de tomate se acidifica de tal manera que su vida útil se da por terminada. Estime el tiempo de vida útil de la salsa de tomate cuando ésta se refrigera a 5℃ con una concentración inicial de preservante de 0,02 mol L-1, considerando que por cada 10℃ de aumento de temperatura, la constante de velocidad se duplica. El valor de la constante de velocidad (a 25°C) de la degradación del preservante según los datos anteriores es de 0,0636 (las unidades son las correspondientes al orden de reacción encontrado con el tiempo expresado en hora).

Nota: Si no pudo encontrar el orden de degradación del preservante, escoja un orden de reacción.

Page 21: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

21

Page 22: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

22

Numeral 1 2 3 4 5 6 Total

Puntaje 1,50 2,50 4,00 4,00 4,00 4,50 20,50

Calificación

Problema Teórico 3 (10,0 %)

El Salvador es Tierra de Volcanes I: Parque de Los Volcanes

El Parque Nacional Los Volcanes de El Salvador cuenta con una extensión de 4500 hectáreas, entre

tierras estatales, municipales y privadas que es administrado por el Ministerio de Medio Ambiente

y Recursos Naturales; incluye los volcanes de Santa Ana, Izalco y el lago de Coatepeque. Tanto el

lago de Coatepeque y los volcanes de Santa Ana e Izalco presentan actividad volcánica y fumarólica.

Page 23: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

23

Los gases volcánicos emitidos por el complejo antes citado son principalmente vapor de agua (H2O),

dióxido de carbono (CO2) y dióxido de azufre (SO2). Los gases son liberados a través de fumarolas o

en forma difusa a través del suelo.

Las emisiones del volcán de Santa Ana están compuestas mayoritariamente de vapor de agua; a

menudo emite dióxido de azufre (SO2) con flujos comprendidos entre 130 y 390 toneladas por día.

Además, en los últimos 25 años se han reportado tres períodos de desgasificación intensa (durante

los años 1992, 2000 y 2004), donde las emisiones de SO2 alcanzaron las 600 toneladas por día.

El Grupo de Investigación Vulcanológica de la Universidad de El Salvador (GIV-UES) hace mediciones

periódicamente sobre los principales parámetros asociados a la actividad volcánica en la zona del

Parque Nacional Los Volcanes.

Uno de los principales gases de origen volcánico que miden los integrantes del GIV-UES es el SO2,

para lo cual la mezcla de gases se hizo pasar a un flujo de 2,5 L min-1 a través de una disolución de

hidróxido de sodio por un total de 59 min. El SO2 de la mezcla fue retenido como sulfito de acuerdo

con la siguiente ecuación:

𝑆𝑂2(𝑔) + 2𝑂𝐻−(𝑎𝑐) → 𝑆𝑂32−(𝑎𝑐) + 𝐻2𝑂(𝑙)

Después de la acidificación con HCl, el sulfito fue titulado con 5,15 mL de KIO3 3,00 × 10-3 mol L-1.

Los pares redox involucrados son 𝐼𝑂3−/𝐼𝐶𝑙2

− y 𝑆𝑂42−/𝑆𝑂3

2−. 1. Escriba la ecuación química balanceada

Page 24: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

24

2. Utilice 1,2 g L-1 para la densidad de la mezcla y calcule la concentración de SO2 en ppm (mg kg-1

de mezcla gaseosa).

Concentración de SO2 en mg kg-1

En algunas ocasiones la concentración de SO2 pueden determinarla burbujeando la muestra

proveniente de las fumarolas a través de una trampa que contiene peróxido de hidrógeno. La

oxidación del SO2 por el peróxido de hidrógeno produce ácido sulfúrico, cuya concentración se

determina por titulación con hidróxido de sodio, utilizando fenolftaleína como indicador.

3. Para una muestra en particular, se burbujea un flujo de gas fumarólico de 1,25 L min-1 durante

60 min y se gastaron 10,10 mL de NaOH 2,44 × 10-2 mol L-1 para alcanzar el punto final. Calcule

Page 25: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

25

la concentración de SO2 (en μL L-1 de gas fumarólico) en la muestra. Asuma la densidad del SO2

de 2,86 g L-1 a la temperatura de la muestra.

Concentración de SO2 en μL L-1

Page 26: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

26

Como se mencionó previamente, el lago de Coatepeque es parte del Parque Los Volcanes. La caldera

de Coatepeque se encuentra junto al complejo volcánico de Santa Ana y su nombre significa en

lenguaje nahuatl “Cerro de Culebras”. Posee una extensión de 25,3 kilómetros cuadrados y una

profundidad máxima de 115 metros.

En los terrenos aledaños al lago se encuentran plantaciones cafetaleras, en donde se utilizan

pesticidas para proteger los cultivos y producir buenas cosechas. Se sospecha que algunos de estos

pesticidas contienen arsénico, el cual por escorrentía es lavado hacia las aguas del lago.

Para comprobar si un plaguicida específico es fuente de contaminación de arsénico, se tomó una

muestra de 1,01 g del plaguicida y se convirtió el arsénico presente en H3AsO4 mediante el

tratamiento adecuado. Posteriormente se neutraliza el ácido y se agregaron exactamente 40,00 mL

de AgNO3 6,22×10-2 mol L-1 para precipitar cuantitativamente el arsénico como Ag3AsO4. El exceso

de Ag+ en el filtrado y lavados del precipitado se valora con 10,80 mL de KSCN 0,10 mol L-1. La

ecuación que representa la reacción de valoración es:

𝐴𝑔+ (𝑎𝑐) + 𝑆𝐶𝑁−(𝑎𝑐) → 𝐴𝑔𝑆𝐶𝑁 (𝑠)

4. Calcule el porcentaje de arsénico expresado como As2O3 en la muestra de plaguicida escribiendo las ecuaciones químicas involucradas en dichos cálculos.

Page 27: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

27

Porcentaje de As2O3 en la muestra

En octubre de 2005, debido a la actividad del volcán de Santa Ana, hubo una erupción que expulsó

toneladas de cenizas y rocas, provocando la aparición de lluvia ácida en las zonas vecinas al volcán.

Page 28: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

28

La lluvia ácida (pH del agua lluvia que oscila entre 3,5 y 5,5) posee cantidades variables de Ácido

Sulfúrico y Ácido Nítrico disueltos (junto a CO2 disuelto). Ambos ácidos se forman al oxidarse el

dióxido de azufre y el dióxido de nitrógeno con el ozono o el oxígeno atmosférico (catalizado por

aerosoles) y su posterior disolución en el agua, lo cual es inferior al pH normal del agua el cual es de

aproximadamente 6,5.

5. Determinar el valor de pH en una gota de agua que posee una concentración de ácido sulfúrico 1,00 x 10-4 mol L-1, ácido nítrico 5,00 x 10-5 mol L-1 y CO2 disuelto de 3,00 x 10-3 mol L-1.

Page 29: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

29

pH de la gota de agua

La lluvia ácida es capaz de modificar el pH de lagos, afectando considerablemente los componentes

iónicos de estas. Esto puede influir en la solubilidad de las especies químicas que forman parte de

los sedimentos y los equilibrios iónicos presentes en el dicho ecosistema marino.

6. Suponiendo que el lago de Coatepeque fue alcanzado por cantidades considerables de agua proveniente de la lluvia ácida y su pH disminuyó hasta un valor de 5,8. Determine la solubilidad (en g L-1) del carbonato de calcio presente en los sedimentos del lago de Coatepeque a este pH suponiendo que no hay presencia de otros iones que tengan influencia en el equilibrio de solubilidad del carbonato de calcio.

Page 30: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

30

Solubilidad de CaCO3 en g L-1

Page 31: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

31

Page 32: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

32

Numeral 1 2 3 4 5 6 7 8 9 10 Total

Puntaje 1,60 1,50 1,50 1,00 1,00 2,50 1,00 1,00 0,50 1,00 12,6

Calificación

Problema Teórico 4 (10,0%)

El Salvador es Tierra de Volcanes II: Volcán de Izalco

D

Parte 1 El Volcán de Izalco es el más joven de los volcanes de El Salvador y uno de los más jóvenes del continente americano. Durante el período de 1966 a 1988, se descubrieron, en las fumarolas (fisura o grieta en un terreno volcánico donde salen vapores) ubicadas en el volcán Izalco, una serie de

Page 33: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

33

elementos que forman compuestos inorgánicos únicos. El compuesto A despierta la curiosidad al ser utilizado industrialmente como catalizador. A se compone por el metal vanadio y oxígeno. 1. El compuesto A se somete a electrólisis, por 20 min a 100 mA depositando 0,317 g de vanadio

metálico en uno de los electrodos. ¿Cuál es el número de oxidación del vanadio en el compuesto A? ¿Cuál es la fórmula química de A? Deje constancia de sus cálculos.

A Estado de Oxidación de V:

Nota: a partir de ahora, en todos los compuestos que contengan vanadio, utilice el estado de oxidación del vanadio que calculó para el compuesto A. Una posible explicación para la presencia del metal vanadio indica que dicho metal, ubicado dentro del cráter, reacciona con las corrientes de flúor gaseoso, F2, formando el compuesto volátil F. Dicho compuesto volátil sube hasta la superficie de la fumarola y se hidroliza, con el vapor de agua, para formar, como únicos productos, el compuesto A y fluoruro de hidrógeno, HF.

Page 34: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

34

2. Escriba las ecuaciones químicas que indiquen la síntesis del compuesto F y su posterior hidrólisis para formar el compuesto A.)

Síntesis de F 𝑽(𝒔) + 𝟓 𝟐⁄ 𝑭𝟐(𝒈) → 𝑽𝑭𝟓(𝒈)

Hidrólisis de F 𝟐𝑽𝑭𝟓(𝒈) + 𝟓𝑯𝟐𝑶(𝒈) → 𝑽𝟐𝑶𝟓(𝒔) + 𝟏𝟎𝑯𝑭(𝒈)

Dichos minerales únicos son analizados por captura de neutrones; un proceso en el cual, los núcleos estables de la muestra se unen con un neutrón para generar núcleos inestables que decaen naturalmente, liberando energías características que son utilizadas para su identificación elemental. A través de dicho análisis se confirma la presencia de vanadio y se descubre la presencia de los metales Y y W. El isótopo de mayor abundancia del metal Y captura un neutrón y luego de la liberación de energía gamma y un decaimiento beta negativo forma uno de los isótopos naturales más abundantes, Z. La nucleosíntesis del isótopo Z es producto de la unión de un núcleo de Ca-40 con seis partículas alfa y dos posteriores decaimientos beta positivo (positrón). 3. Escriba las reacciones nucleares de la nucleosíntesis de Z. (1,5 puntos)

Z

Page 35: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

35

4. Escriba las reacciones nucleares involucradas en la identificación de Y por activación de neutrones. (1,0 punto)

Y

El metal W posee diversos tipos de ordenamiento cristalino a diferentes temperaturas: A temperatura ambiente, presenta una distribución cúbica centrada en el cuerpo (ρ = 7,882g∙cm-3); mientras que, a temperaturas mayores de los 900°C, presenta una distribución cúbica centrada en las caras (ρ = 8,591g∙cm-3). El cambio de temperatura ambiente a una temperatura mayor a los 900°C, genera una expansión en el volumen de la celda unitaria de un 83,49%, con respecto al volumen inicial. 5. Identificar el metal W; sabiendo que, para la distribución cúbica centrada en el cuerpo, el

parámetro de celda es a0 = 0,2866nm. (1,0 puntos: 0,5 punto Valores Z, 0,25 puntos ecuación PM, 0,25 puntos algebra y cálculos)

∆𝑉 =𝑚2

𝜌2−

𝑚1

𝜌1=

𝑃𝑀𝑊 𝑁𝐴⁄ × 𝑍𝑐𝑒𝑙𝑙,2

𝜌2−

𝑃𝑀𝑊 𝑁𝐴⁄ × 𝑍𝑐𝑒𝑙𝑙,1

𝜌1

∆𝑉 = %𝑉 × 𝑉1 = %𝑉 × (𝑎01)3 𝑃𝑀𝑊

𝑁𝐴× (

𝑍𝑐𝑒𝑙𝑙,2

𝜌2−

𝑍𝑐𝑒𝑙𝑙,1

𝜌1)

𝑃𝑀𝑊 =%𝑉 × 𝑁𝐴 × (𝑎01)

3

(𝑍𝑐𝑒𝑙𝑙,2

𝜌2−

𝑍𝑐𝑒𝑙𝑙,1

𝜌1)

𝑃𝑀𝑊

=0,8349 × 6,02 × 1023𝑚𝑜𝑙−1 × (2,866 × 10−8𝑐𝑚)3

(4

8,591𝑔 ∙ 𝑐𝑚−3 −2

7,882𝑔 ∙ 𝑐𝑚−3)

BCC 𝑍𝑐𝑒𝑙𝑙,1 = 2

𝜌= 7,882𝑔𝑐𝑚−3

FCC 𝑍𝑐𝑒𝑙𝑙,1 = 4

𝜌= 8,591𝑔𝑐𝑚−3

𝑃𝑀𝑊 = 55,85𝑔 ∙ 𝑚𝑜𝑙−1 W Hierro (Fe)

Page 36: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

36

Parte 2 Los compuestos B y C también presentes en las fumarolas del volcán poseen propiedades magnéticas únicas. Para su identificación, se realiza un análisis por microsonda electrónica. Los resultados se presentan en la siguiente tabla:

Compuestos Concentración (% Masa / Masa)

A* H** I***

B 49,44 21,62 28,94

C 53,34 46,66 0,00

*A es el mismo compuesto de vanadio de la parte I **H es el óxido más estable presente en la naturaleza del metal cobre. ***I es el óxido más estable presente en la naturaleza del metal hierro. 6. Determinar la fórmula empírica de los compuestos B y C. (2,50 puntos en total) B Asumiendo 100g de muestra

𝑛𝑉 =%

𝑚𝑚

𝑉2𝑂5

𝑃𝑀 𝑉2𝑂5× 2 =

49,44𝑔

181,88𝑔𝑚𝑜𝑙−1× 2

= 0,5437𝑚𝑜𝑙 𝑉

𝑛𝐶𝑢 =%

𝑚𝑚

𝐶𝑢𝑂

𝑃𝑀 𝐶𝑢𝑂=

21,62𝑔

79,564𝑔𝑚𝑜𝑙−1= 0,2717

𝑚𝑜𝑙 𝐶𝑢 }

𝑛𝐹𝑒 =%

𝑚𝑚 𝐹𝑒2𝑂3

𝑃𝑀 𝐹𝑒2𝑂3× 2

=28,94𝑔

159,6882𝑔𝑚𝑜𝑙−1× 2

= 0,3625𝑚𝑜𝑙 𝐹𝑒

𝑛𝑉

𝑛𝐶𝑢=

0,5437𝑚𝑜𝑙 𝑉

0,2717𝑚𝑜𝑙 𝐶𝑢≈ 2

𝑛𝐹𝑒

𝑛𝐶𝑢=

0,3625𝑚𝑜𝑙 𝐹𝑒

0,2717𝑚𝑜𝑙 𝐶𝑢= 1,334 ≈

4

3

𝑛𝑉𝑁𝑂𝑉 + 𝑛𝐶𝑢𝑁𝑂𝐶𝑢 + 𝑛𝐹𝑒𝑁𝑂𝐹𝑒 + 𝑛𝑂𝑁𝑂𝑂

= 0

6(+5) + 3(+2) + 4(+3) + 𝑛𝑂(−2) = 0 𝑛𝑂 = 24

𝑉6𝐶𝑢3𝐹𝑒4𝑂24 = 𝐶𝑢3𝐹𝑒4𝑉6𝑂24

= 𝐶𝑢3𝐹𝑒4(𝑉𝑂4)6

1,5 puntos

Page 37: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

37

C Asumiendo 100g de muestra

𝑛𝑉 =%

𝑚𝑚 𝑉2𝑂5

𝑃𝑀 𝑉2𝑂5× 2 =

53,34𝑔

181,88𝑔𝑚𝑜𝑙−1× 2

= 0,587𝑚𝑜𝑙 𝑉

𝑛𝐶𝑢 =%

𝑚𝑚 𝐶𝑢𝑂

𝑃𝑀 𝐶𝑢𝑂=

46,66𝑔

79,564𝑔𝑚𝑜𝑙−1

= 0,586𝑚𝑜𝑙 𝐶𝑢

𝑛𝑉

𝑛𝐶𝑢=

0,587𝑚𝑜𝑙 𝑉

0,586𝑚𝑜𝑙 𝐶𝑢≈ 1

𝑛𝑉𝑁𝑂𝑉 + 𝑛𝐶𝑢𝑁𝑂𝐶𝑢 + 𝑛𝑂𝑁𝑂𝑂 = 0

1(+5) + 1(+2) + 𝑛𝑂(−2) = 0 𝑛𝑂 = 3,5

𝑉1𝐶𝑢1𝑂3,5 = 𝑉2𝐶𝑢2𝑂7 = 𝐶𝑢2𝑉2𝑂7

7. Dibujar las fórmulas estructurales correspondientes a los aniones de los compuestos B y C

(ambos son oxoaniones del metal vanadio). No olvidar incluir la geometría en cada una de las fórmulas solicitadas.

Oxoanión de B Oxoanión de C (VO4)3-

(V2O7)4-

Page 38: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

38

Los minerales encontrados poseen propiedades electromagnéticas que en la actualidad son motivo de investigación. Por ejemplo, el Cu3(VO4)2 puede formar una batería reversible con Li; el cual, durante su proceso de descarga, genera una reacción de oxidación-reducción de intercambio catiónico entre Li y el catión del Cu3(VO4)2. 8. Escriba la reacción de descarga de la batería Li-Cu3(VO4)2.

𝟔𝑳𝒊(𝒔) + 𝑪𝒖𝟑(𝑽𝑶𝟒)𝟐(𝒔) → 𝟐𝑳𝒊𝟑𝑽𝑶𝟒(𝒔) + 𝟑𝑪𝒖(𝒔)

1,0 punto -0,25 puntos estequiometria

9. Identifique el cátodo y ánodo para el proceso de carga de la batería Li-Cu3(VO4)2.

Carga. Batería Li-Cu3(VO4)2

Cátodo Ánodo Li3VO4

Cu

10. Determine la masa activa (g∙mol-1) de la batería de Li-Cu3(VO4)2; la cual, se define como la masa involucrada en la transferencia de 1 mol de electrones entre los electrodos.

𝑀 =6𝑃𝑀𝐿𝑖 + 𝑃𝑀𝐶𝑢3(𝑉𝑂4)2

6

𝑀 =(6 × 6,9410 + 420,5162)𝑔 ∙ 𝑚𝑜𝑙−1

6

Masa Activa 0,0 puntos relación errónea electrones -0,25 puntos error cálculo

Page 39: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

39

Page 40: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

40

Numeral 1 2 3 4 5 6 7 8 9 10 Total

Puntaje 12,00 1,00 2,00 12,00 7,00 5,00 10,00 10,00 4,00 15,00 78,00

Calificación

Problema Teórico 5 (10,0 %)

Química Orgánica de Medicamentos y Drogas

Una de las aplicaciones más importantes de la Química Orgánica es la síntesis de fármacos que

permiten aliviar diversas dolencias que pueden aquejar al organismo humano. De igual forma,

pueden sintetizarse sustancias nocivas para nuestra salud y que en muchas ocasiones llevan a

generar adicción. En este problema se verán involucrados ambos tipos de sustancias.

Page 41: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

41

Parte 1

El paracetamol (acetaminofén) con propiedades analgésicas y antipiréticas que deriva de la

acetanilida, es un fármaco muy utilizado desde hace varias décadas y su fórmula molecular es

C8H9NO2.

El mencionado compuesto puede ser sintetizado a partir de benceno, siguiendo el esquema

presentado a continuación:

1. Dibuje las estructuras de los compuestos orgánicos y las fórmulas para las especies químicas

inorgánicas en A, B, C, D, E, F, G, H, I, J, K y la del acetaminofén.

A

B

C

Page 42: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

42

D

E

F

G

H

I

J

K

Acetaminofén

Page 43: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

43

2. Calcule el grado de insaturación del acetaminofén

3. Subraye la respuesta correcta para cada una de las siguientes preguntas:

I) La reacción en la que E participa para formar F se llama

a) Sustitución aromática electrófila (electrofílica)

b) Adición electrófila (electrofílica)

c) Hidrólisis

d) Sustitución nucleófila (nucleofílica)

II) El nombre que por su mecanismo recibe la reacción de F para formar G y H es:

a) Sustitución nucleófila (nucleofílica)

b) Sustitución aromática electrófila (electrofílica)

c) Sustitución electrófila (electrofílica)

d) Hidrólisis

III) A la reacción que se realiza cuando I se convierte en K se le llama:

a) Hidrólisis

b) Sustitución aromática electrófila (electrofílica)

c) Diazotización

d) Sustitución nucleófila (nucleofílica)

IV) La reacción de la anilina con NaNO2/HCl se conoce con el nombre de:

a) Aminación reductiva

b) Sustitución aromática electrófila (electrofílica)

c) Hidrólisis

d) Diazotización

Page 44: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

44

4. Escriba el mecanismo de la formación de los intermediarios de reacción de obtención de los productos G y H y encierre en un círculo el intermediario más estable, que justifica la formación de solo dos productos principales disustituidos (G y H) de la reacción de F con A y B, habiendo tres posibles.

Page 45: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

45

5. Escriba el mecanismo para la formación del producto principal M, de la reacción entre el acetaminofén y el 2-metil-1-clorobutano en presencia de AlCl3.

Page 46: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

46

6. Al reaccionar el acetaminofén con el 2-metil-1-clorobutano en presencia de AlCl3,

adicionalmente al producto “M” también se forma su isómero “N”. Cuando “K” es sometido a

la misma reacción, puede formar cuatro productos “O”, “P”, “Q” y “R”. Dibuje las estructuras

de los productos N, O, P, Q y R.

N

O

P

Q

R

Page 47: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

47

Parte 2

Cinco de las estructuras presentadas a continuación corresponden a:

a) Dopamina b) Efedrina c) Cocaína d) Epinefrina e) Triptófano

O

OH

HO

HONH2

I II III IV

NH

N

O

OH

H2N

V VI VII VIII

NCH3

O

O

CH2OH

O

IX X XI

Page 48: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

48

7. Asigne el número romano de la estructura correspondiente, a cada una de las cinco sustancias tomando en cuenta la siguiente información:

Información Estructura

Dopamina: reacciona con NaOH, con anhídrido acético forma una amida N-

sustituida y en su estructura no contienen carbonos quirales (asimétricos).

Efedrina: reacciona con KMnO4, con anhídrido acético forma una amida N, N-

disustituida y en su estructura contienen dos carbonos quirales (asimétricos).

Cocaína: Presenta reacciones de hidrólisis, no presenta reacción de adición de

H2O en medio ácido, tiene 4 carbonos quirales (asimétricos).

Epinefrina: reacciona con K2Cr2O7 y calor, con cloruro de etanoilo forma una

amida N, N-disustituida. La epinefrina tiene un carbono quiral (asimétrico).

Triptófano: presenta un comportamiento anfótero, puede formar amidas y

ésteres, posee un número de insaturación de siete y posee un carbono quiral

(asimétrico).

8. Señale con un asterisco en cada una de las cinco estructuras los carbonos quirales (asimétricos)

y escriba la estructura de los enantiómeros para la epinefrina y efedrina, indicando la configuración (R) o (S) de sus carbonos quirales (asimétricos).

Enantiómeros epinefrina

Page 49: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

49

Enantiómeros efedrina

9. ¿Cuántos estereoisómeros tiene cada uno de los siguientes compuestos?

Dopamina:

Efedrina:

Epinefrina:

Triptófano:

Page 50: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

50

10. Escriba las ecuaciones químicas de las reacciones que a continuación se le indican.

a) Reacción de la dopamina con anhídrido acético.

b) Reacción de la efedrina con KMnO4.

c) Reacción de hidrólisis la cocaína

Page 51: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

51

d) Reacción de la epinefrina con cloruro de etanoilo.

e) Esterificación del triptófano con etanol y ácido sulfúrico

Page 52: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

52

Page 53: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

53

Page 54: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

54

Numeral 1 2 3 4 5 6 7 8 9 Total

Puntaje 3,50 1,50 1,75 1,25 1,50 0,50 3,00 5,00 2,00 20,00

Calificación

Problema Teórico 6 (10,0 %)

Química del Estilbeno

El estilbeno es un hidrocarburo aromático, que existe en dos formas isoméricas, cis y trans, cuya fórmula molecular es C14H12 que es capaz de decolorar el agua de bromo en tetracloruro de carbono. Cierto día en el laboratorio, Andrea, una joven laboratorista salvadoreña, tenía una muestra de estilbeno con una concentración de 0,100 mol L-1 del cual se desconocía su geometría. Esta se sometió a una isomerización a 280 °C utilizando benceno como solvente, hasta que se alcanzó el equilibrio según la siguiente reacción:

k1 Donde A y B representan a los isómeros geométricos del estilbeno inicial y el producto de la isomerización respectivamente.

A B k-1

Page 55: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

55

Mediante la experimentación se comprobó que la ley cinética que rige la relación de la concentración del estilbeno de la muestra respecto al tiempo obedece la siguiente ecuación matemática:

[𝐴]𝑡 =[𝐴]0

8,00 × 10−5 (𝑘−1 + 𝑘1𝑒−8,00×10−5𝑡) Donde [A]0 y [A]t son la concentración de estilbeno inicial y la concentración una vez transcurrido “t” segundos respectivamente.

k1 y k-1 representan las constantes de rapidez (velocidad) cinéticas de la reacción directa y de la inversa respectivamente. Durante el experimento también se anotaron las concentraciones del estilbeno que se fue produciendo a diferentes tiempos según la siguiente tabla.

Tiempo (min) Concentración (mol L-1)

10,0 0,0961

200 0,0488

400 0,0292

1. Encuentre los valores de k1 y k-1 con sus respectivas unidades

Page 56: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

56

K1= K-1 =

2. Si la ley cinética que comprende la reacción directa e inversa son de orden 1, determine el valor

de la constante de equilibrio durante la isomerización (si no encontró la respuesta en el ítem (inciso) anterior asuma que k1=7,00x10-5 y k-1=1,00x10-5)

K=

3. Con base en los resultados obtenidos previamente, escriba la reacción química de isomerización

del estilbeno dibujando cada estructura con su respectiva geometría y nombres IUPAC. (si no calculó el ítem (inciso) 2 asuma que K=6,00)

Page 57: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

57

4. Encuentre las concentraciones de ambas especies en el equilibrio (si no calculó el ítem (inciso) 2 asuma que K=6,00)

Aparte de este experimento, Andrea determinó el valor de la constante de equilibrio de la reacción

a dos temperaturas diferentes utilizando un catalizador de Yodo y una mezcla de ter-butilbenceno con benceno como solvente. Los resultados obtenidos por ella se muestran en la tabla de la derecha.

T (°C) Keq

30,0 1086,96

60,0 617,28

5. Determine el valor de ΔH° y ΔS° suponiendo que estas se mantienen constantes en este

intervalo de temperatura.

Page 58: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

58

ΔH= ΔS=

6. Marque con una “equis” (X) el gráfico acorde al proceso de isomerización del estilbeno.

Page 59: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

59

Andrea también descubrió que el estilbeno puede ser utilizado para la determinación cuantitativa de pesticidas halogenados al sintetizar un compuesto organometálico derivado de él. Para ello, propone la siguiente ruta sintética: El compuesto organometálico C (resultado de la reacción entre el estilbeno y el metal I) se utiliza para reacciones de transferencia de electrones como la deshalogenación reductiva de herbicidas. El esquema de reacciones para la síntesis del metal I y el estilbeno es presentada a continuación:

El mineral es un silicato de I y aluminio. El procedimiento de extracción del metal I, implica una disolución del mineral en H2SO4 y posterior reacción con Na2CO3 para separar el silicio y aluminio del compuesto III (que contiene 18,78% del metal I) en forma de SiO2 y Al(OH)3, respectivamente. Posteriormente, III es convertido y purificado en II para ser fundido y reducido electroquímicamente en el metal I.

Page 60: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

60

7. Identifique y escriba el nombre IUPAC de los compuestos IV, III, II y del metal I.

I

II

III

IV

La síntesis del estilbeno parte de la reacción de dimerización de G, para producir el compuesto F; este producto, reacciona con SOCl2 para formar E, un compuesto con un total de nueve insaturaciones; dicho compuesto (E), se somete a una reducción con NaBH4 para dar D y la reducción de D con Zn en CH3COOH genera el estilbeno. 8. Dibuje las estructuras desarrolladas de los compuestos C, D, E, F y G. No se penalizará por la

estereoquímica incorrecta de dichos compuestos.

C

D

Page 61: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

61

E

F

G

Andrea evaluó la deshalogenación reductiva de C con el ácido 4-clorofenoxiacético (4-CPA) en THF por 12 h. Los productos de la reacción se representan a través de la siguiente ecuación química:

Page 62: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

62

A 0,400 g de 4-CPA (186,59 gmol-1) en 10 mL de THF se enfrían a 0°C y se agrega 2 mmol de C. La mezcla se agita vigorosamente a temperatura ambiente por 12 h. Posteriormente, se detiene la reacción con la lenta adición de 15 mL de agua. Se diluye la mezcla con agua hasta un volumen final de 250 mL y se toma 1 mL para análisis. La concentración del fenol se mide al hacerlo reaccionar con aminoantipirina para formar un compuesto coloreado, de absortividad molar ε = 2393 Lmol-1cm-1, el cual es extraído en 25 mL de cloroformo. La absorbancia obtenida, en una celda con un camino óptico l = 1 cm y a 460 nm, es de 0,329. 9. Determinar el porcentaje de fenol formado en la reacción.

0

Porcentaje de fenol

Cl

OOH

O

OOH

O

+OH1) C, THF

2) H3O+

Page 63: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

63

Page 64: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Correlativo:

64

Page 65: EXAMEN TEÓRICOdensidad de 0,789 g cm-3. Para identificarlo se realiza un experimento, el compuesto desconocido ... En el platillo de la pupusa, la salsa de tomate (acompañante) es

Tabla Periódica de los Elementos

65

1 18

1

1

H

1.008

2

(2)

13

(13)

14

(14)

15

(15)

16

(16)

17

(17)

2

He

4.003

2

3

Li

6.941

4

Be

9.012

5

B

10.81

6

C

12.01

7

N

14.01

8

O

16.00

9

F

19.00

10

Ne

20.18

Elementos de Transición

3

11

Na

22.99

12

Mg

24.31

3

4

5

6

7

8

9

10

11

12

13

Al

26.98

14

Si

28.09

15

P

30.98

16

S

32.07

17

Cl

35.45

18

Ar

39.95

4

19

K

39.10

20

Ca

40.08

21

Sc

44.96

22

Ti

47.87

23

V

50.94

24

Cr

52.00

25

Mn

54.94

26

Fe

55.85

27

Co

58.93

28

Ni

58.69

29

Cu

63.55

30

Zn

65.41

31

Ga

69.72

32

Ge

72.61

33

As

74.92

34

Se

78.96

35

Br

79.90

36

Kr

83.80

5

37

Rb

85.47

38

Sr

87.62

39

Y

88.91

40

Zr

91.22

41

Nb

92.91

42

Mo

95.94

43

Tc

(97.9)

44

Ru

101.1

45

Rh

102.9

46

Pd

106.4

47

Ag

107.9

48

Cd

112.4

49

In

114.8

50

Sn

118.7

51

Sb

121.8

52

Te

127.6

53

I

126.9

54

Xe

131.3

6

55

Cs

132.9

56

Ba

137.3

57

La

138.9

72

Hf

178.5

73

Ta

180.9

74

W

183.8

75

Re

186.2

76

Os

190.2

77

Ir

192.2

78

Pt

195.1

79

Au

197.0

80

Hg

200.6

81

Tl

204.4

82

Pb

207.2

83

Bi

209.0

84

Po

(209.0)

85

At

(210.0)

86

Rn

(222.0)

7

87

Fr

(223.0)

88

Ra

(226.0)

89

Ac

(227.0)

104

Rf

(261.1)

105

Db

(262.1)

106

Sg

(263.1)

107

Bh

(262.1)

108

Hs

(265)

109

Mt

(266)

110

Ds

(271)

111

Rg

(272)

112

Cn

(285)

113

Uut

(284)

114

Fl

(289)

115

Uup

(288)

116

Lv

(292)

117

Uus

(294)

118

Uuo

(294)

6

Lantánidos

58

Ce

140.1

59

Pr

140.9

60

Nd

144.2

61

Pm

(144.9)

62

Sm

150.4

63

Eu

152.0

64

Gd

157.3

65

Tb

158.9

66

Dy

162.5

67

Ho

164.9

68

Er

167.3

69

Tm

168.9

70

Yb

173.0

71

Lu

174.0

7

Actínidos

90

Th

232.0

91

Pa

231.0

92

U

238.0

93

Np

(237.1)

94

Pu

(244.1)

95

Am

(243.1)

96

Cm

(247.1)

97

Bk

(247.1)

98

Cf

(251.1)

99

Es

(252.1)

100

Fm

(257.1)

101

Md

(258.1)

102

No

(259.1)

103

Lr

(260.1)

Lantánidos

58

Ce

140.1

59

Pr

140.9

60

Nd

144.2

61

Pm

(144.9)

62

Sm

150.4

63

Eu

152.0

64

Gd

157.3

65

Tb

158.9

66

Dy

162.5

67

Ho

164.9

68

Er

167.3

69

Tm

168.9

70

Yb

173.0

71

Lu

174.0

7

Actínidos

90

Th

232.0

91

Pa

231.0

92

U

238.0

93

Np

(237.1)

94

Pu

(244.1)

95

Am

(243.1)

96

Cm

(247.1)

97

Bk

(247.1)

98

Cf

(251.1)

99

Es

(252.1)

100

Fm

(257.1)

101

Md

(258.1)

102

No

(259.1)

103

Lr

(260.1)