97
ESCUELA POLITECNICA NACIONAL FACULTAD DE CIENCIAS FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y OPTIMIZACION COMBINATORIA PROYECTO PREVIO A LA OBTENCION DEL TITULO DE FISICO DIEGO MAURICIO DE LA TORRE PAEZ [email protected] DIRECTOR: Dr. Leonardo Basile [email protected] Quito, septiembre del 2009

FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

  • Upload
    lehuong

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Page 1: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

ESCUELA POLITECNICA NACIONAL

FACULTAD DE CIENCIAS

FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y

OPTIMIZACION COMBINATORIA

PROYECTO PREVIO A LA OBTENCION DEL TITULO DE FISICO

DIEGO MAURICIO DE LA TORRE PAEZ

[email protected]

DIRECTOR: Dr. Leonardo Basile

[email protected]

Quito, septiembre del 2009

Page 2: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios
Page 3: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios
Page 4: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios
Page 5: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios
Page 6: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

RESUMEN

Los primeros vidrios de espín fueron aleaciones del tipo AuFe o CuMn, que

presentaban el siguiente comportamiento: Los espines (dipolos magnéticos) de las

impurezas (Fe,Mn) producen una polarización magnética en los electrones de con-

ducción del metal (Au,Cu), la cual es ferromagnética para ciertas distancias y anti-

ferromagnética para otras distancias. Esta polarización magnética produce el apa-

recimiento de campos magnéticos locales. Posteriormente los espines tratan de

alinearse de acuerdo con el campo local. Puesto que las impurezas son colocadas

en el metal de forma aleatoria, algunas interacciones serán ferromagnéticas y otras

anti-ferromagnéticas. De esta manera surgen los ingredientes básicos de los vidrios

de espín que son: la aleatoriedad de las posiciones de los espines (desorden) y la

competencia entre las interacciones (frustración).

Estos conceptos han sido desarrollados en el campo de los vidrios de espín por

más de treinta años. De esta manera se destacan dos teorías que dan cuenta de

sus propiedades de equilibrio: La teoría “replica-symmetry-breaking” (RSB), la cual

es una solución del modelo de campo medio para los vidrios de espín, y la teoría

de los “droplets” creada para ver si las características de modelos con alcance finito

se mantenían en modelos con interacciones de corto alcance. La dicotomía entre

estas dos teorías ha sido un tema de investigación por mucho tiempo, y es aquí

donde las técnicas numéricas sirven para juzgar la validez de ellas.

Esto es una muestra de que las relaciones entre la física y las ciencias de la

computación van creciendo cada día más. Por ejemplo, se hará uso de las simula-

ciones de Monte Carlo y, en particular, de la simulación de réplicas, para encontrar

los estados base de los vidrios de espín. Mediante otro enfoque se verá también

cómo se puede transformar un problema de física estadística (encontrar el esta-

do base de los vidrios de espín) a un problema de la optimización combinatoria, y

1

Page 7: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

2

poder utilizar los algoritmos más aptos para encontrar una solución

Puesto que las simulaciones para los vidrios de espín en dos dimensiones son

más fáciles de realizar que para dimensiones superiores, este trabajo se centrara

solo en simulaciones en 2D, que es donde existen algunos problemas no resueltos,

que ameritan continuar con su estudio. Precisamente en una de esas interrogantes

se ha de centrar la atención, a saber, la determinación de los estados base y la

posibilidad de una transición a una temperatura diferente de cero. También se com-

prueba algunas consecuencia de la teoría RSB, que son entre otras: la complejidad

en el paisajismo de la energía libre, y la organización ultramétrica de los estados

base.

Este problema se resolverá mediante la implementación de un algoritmo que

halle los estados base del sistema en (2D) con condiciones de frontera periódicas,

interacciones tipo ±J a campo nulo y a primeros vecinos. Posteriormente se calcula

la energía ∆ de las paredes de dominio igual a ∆ = Ep−Ea, donde Ep es la energía

mediante condiciones de frontera periódicas y Ea mediante condiciones antiperió-

dicas. Finalmente se estima el exponente de “stiffness” θs que está estrechamente

relacionado con ∆. En base al valor de θs y siguiendo los criterios de la literatura se

determina si existe la posibilidad de una transición de fase.

Page 8: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

PRESENTACION

En este trabajo se estudia el estado base de los vidrios de espín mediante los

métodos tradicionales de la física estadística y mediante la optimización combina-

toria. Este último se está expandiendo rápidamente en el estudio de estos sistemas

y hoy por hoy atrae la atención de un número grande de científicos y en particular

la de los físicos, puesto que ha resultado ser un método muy poderoso y eficaz

cuando se combina con otras técnicas de investigación. Para esto se presenta el

siguiente plan a seguir:

El primer capítulo está dedicado a los conceptos básicos de los fenómenos críti-

cos. Se ha introducido varias notas históricas de la forma en que se han desarrolla-

do los acontecimientos, con el fin de entender la problemática que surgía con cada

nuevo descubrimiento.

En el Capítulo 2 se presentan las definiciones principales de los sistemas com-

plejos, como es el caso de los vidrios de espín. También se presenta un nuevo

método para realizar los promedios en los casos que se presenten imposibles de

realizar de la manera tradicional se puede intentar por este método. En el Capítulo

3 se presenta los modelos (EA) y (SK) para los vidrios de espín, se presta mayor

atención a este último por ser de mayor complejidad.

En el Capítulo 4 se comienza con el estudio de la optimización combinatoria, un

campo muy extenso que pertenece a la informática y a la investigación operativa.

Este campo abarca un gran número de problemas, pero aquí nos referiremos sólo a

aquellos en los que es necesario maximizar ó minimizar una función f(Sk) llamada

función objeto, que depende de un conjunto S1, S2, . . . , Sm de todas las posibles

soluciones del problema que describe la función objeto. Para esto se utiliza el en-

foque de la teoría de los grafos y poliedros. Principalmente se ve como se puede

pasar un problema de la física estadística a un problema combinatorio. En particular

3

Page 9: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

4

se estudia el problema de máximo corte sobre un grafo ponderado. En el Capítulo

5 se estudian los algoritmos necesarios para resolver el problema de los vidrios de

espín desde dos puntos de vista diferentes. Mediante los métodos de Monte Carlo y

el que pertenece a la optimización combinatoria, el método de ramificación y corte.

Finalmente en los dos últimos capítulos se presenta los resultados obtenidos y las

conclusiones respectivamente

Page 10: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

Índice general

1. Elementos Básicos de la Física Estadística de las Transiciones de Fase

Continuas 7

1.1. Caracterización de las transiciones de fase continuas . . . . . . . . . 8

1.2. Teoría del Campo Medio . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1. Modelo de Ising en aproximación de campo medio . . . . . . . 11

1.3. Modelo de Rango Infinito . . . . . . . . . . . . . . . . . . . . . . . . . 13

2. Conceptos Básicos en Sistemas Desordenados 15

2.1. Desorden y frustración . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Cantidades Auto-promediadas . . . . . . . . . . . . . . . . . . . . . . 17

2.3. Promedio “Annealed” y “Quenched” . . . . . . . . . . . . . . . . . . . 18

2.4. Teoría de Réplicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5. Estados Puros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6. “Overlap” y “self-overlap” . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7. Distribución del “overlap” . . . . . . . . . . . . . . . . . . . . . . . . . 22

3. Teoría de campo medio de los vidrios de espín 25

3.1. Introducción a los vidrios de espín . . . . . . . . . . . . . . . . . . . . 26

3.2. Modelo de Edward-Anderson . . . . . . . . . . . . . . . . . . . . . . . 27

3.3. Modelo de Sherrinton-Kirkpatrick . . . . . . . . . . . . . . . . . . . . . 27

3.4. “Replica symmetry breaking” . . . . . . . . . . . . . . . . . . . . . . . 31

3.5. Teoría de “Droplet” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4. Optimización Combinatoria 36

4.1. Complejidad Algorítmica . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5

Page 11: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

6

4.2. Optimización Combinatoria y Mecánica Estadística . . . . . . . . . . . 39

4.3. Conceptos Básicos de Teoría de Grafos . . . . . . . . . . . . . . . . . 41

4.4. Conceptos Básicos de la Teoría de Poliedros . . . . . . . . . . . . . . 43

5. Simulaciones Numéricas 46

5.1. Elementos generales en las simulaciones de MC . . . . . . . . . . . . 49

5.2. Algoritmos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1. Algoritmo de Réplicas de Monte Carlo . . . . . . . . . . . . . . 53

5.2.2. Algoritmo de ramificación y corte . . . . . . . . . . . . . . . . . 56

6. Análisis de Resultados 60

7. Conclusiones 70

A. Código Fuente algoritmo RMC 72

Page 12: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

Capítulo 1

Elementos Básicos de la Física

Estadística de las Transiciones de

Fase Continuas

Las primeras transiciones de fase que se conocían, hasta comienzos del siglo

XX, tienen la característica de que una o más de las derivadas primeras de la ener-

gía libre (tal como: la entropía, el volumen, la densidad, magnetización y otros pa-

rámetros molares) sufren cambios discontinuos1. La discontinuidad de la entropía

da lugar al calor latente de transición. Además, discontinuidades de las derivadas

segundas de la energía libre, análogos a los saltos finitos del volumen molar y en-

tropía, se observan muy raramente2 [1, 2].

Esto motivó a P. Ehrenfest a dar una primera clasificación de las transiciones

de fase. De acuerdo con este esquema, una transición de fase es de n-ésimo or-

den si la n-ésima derivada de la energía libre respecto a uno cualesquiera de sus

argumentos es discontinua. Así, se entendía que una transición de fase de segun-

do orden o continua, es aquella sin discontinuidad en las derivadas primeras de la

energía libre [3].

Hoy en día, esta clasificación es inadecuada, pues, para la mayoría de las transi-

1Saltos en las derivadas de la energía libre.2Actualmente se cree que la aparición de superconductividad para campo magnético nulo es la

única transición de fase de segundo orden en la cual las derivadas de la energía libre tienen un salto

finito.

7

Page 13: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

8

ciones de fase continuas una o más de las derivadas segundas en realidad diverge,

en lugar de exhibir una discontinuidad

A continuación se expondrá los conceptos básicos de las transiciones de fase

continuas.También se revisa el paradigma de una transición de fase continua que

es la transición para-ferro magnética y finalmente se revisara el modelo de Ising en

la aproximación de campo medio.

1.1. Caracterización de las transiciones de fase con-

tinuas

Una de las ideas más importantes para la caracterización de las transiciones de

fase es el parámetro de orden, el cual fue introducido por Landau. La idea general

es que en cualquier transición de fase continua es posible identificar una cantidad

macroscópica (esto es, relacionada de alguna manera con parámetros termodiná-

micos del sistema), la cual se anula idénticamente en una de las fases (general-

mente la fase de altas temperaturas T > Tc, donde Tc es la temperatura crítica a la

cual se da la transición de fase) y es diferente de cero en la otra fase (generalmente

a bajas temperaturas T < Tc). En una transición de fase continua este parámetro de

orden3 es continuo en Tc, con lo cual tiende a cero continuamente al aproximarnos

a Tc desde temperaturas menores, un ejemplo es la magnetización en un material

ferromagnético. El punto central está en saber escoger correctamente el parámetro

de orden, lamentablemente no existe un procedimiento único para ello. Sin embar-

go, en base de un análisis de las condiciones y restricciones físicas del problema

la arbitrariedad en la elección se limita. Una de estas restricciones es la existencia

de un parámetro termodinámico conjugado4 al parámetro de orden, a los cuales los

notaremos genéricamente como B y Φ, respectivamente [4, 5, 6].

3El parámetro de orden no necesariamente es un escalar, pudiendo ser un vector, con D el

número de componentes del parámetro4El parámetro de orden conjugado es simplemente la variable intensiva que resulta de derivar la

energía libre respecto del parámetro de orden

Page 14: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

9

Transición para-ferromagnética

La transición de fase para-ferromagnética es el cambio de los sólidos ferromag-

néticos (como ejemplo tenemos al hierro) de un estado paramagnético a uno fe-

rromagnético a una temperatura muy precisa llamada temperatura de Curie Tc. El

material es paramagnético a temperaturas T > Tc, es decir, en ausencia de campo

magnético externo presenta magnetización nula o posee una magnetización propor-

cional al campo externo si este se encuentra presente. La fase ferromagnética se

presenta a temperaturas T < Tc. Esto quiere decir que el material presenta magne-

tización aún en ausencia de campo magnético externo. Así decimos que el material

presenta magnetización espontánea, Mo(T ) [6]5

A fin de continuar con la descripción, es necesario aplicar las anteriores defini-

ciones. En primer lugar, parece obvio tomar a la magnetización como parámetro de

orden (esto no siempre es tan fácil). Se observa una discontinuidad en Tc de la deri-

vada de la magnetización específica (mo) y, a primera vista esto estaría de acuerdo

con los criterios de Ehrenfest. Sin embargo, ésta no es una simple discontinuidad,

ya que para T → Tc la derivada primera de mo diverge con una ley de potencias, así:

mo(T ) ∼ (Tc −T )β. Por otra parte, el calor específico a campo nulo diverge en Tc de

la forma C(T ) ∼| T −Tc |−α para | T−Tc

Tc|≪ 1. Otra cantidad que diverge con una ley

de potencias es la susceptibilidad magnética a campo nulo: χ(T ) ∼| T − Tc |−γ para

| T−Tc

Tc|≪ 1. Finalmente a lo largo de la isoterma crítica T = Tc la magnetización

varia con el campo magnético externo con una ley de potencia m(B, Tc) ∼ B1δ . De

esta manera se ilustra el papel que juegan ciertos exponentes (exponentes críticos)

en este tipo de transiciones. Existen más ejemplos de sistemas críticos que pre-

sentan este tipo de comportamiento asintótico, algunos de los cuales tienen valores

iguales de los exponentes críticos; se llega al concepto de universalidad [7, 8].

Universalidad

Los sistemas críticos pueden agruparse en categorías, donde los sistemas per-

tenecientes a una misma categoría presentan todos los mismos exponentes críti-

5Para los materiales ferromagnéticos isótropos la magnetización se orienta aleatoriamente, mien-

tras que para los materiales uniaxiales se alinea siguiendo la dirección de alguno de los ejes crista-

linos

Page 15: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

10

cos. Este fenómeno se conoce como universalidad y las distintas categorías como

clases de universalidad. Las clases de universalidad están determinadas sólo por

las siguientes propiedades [9, 10]:

La dimensión espacial d del sistema.

La dimensión D del parámetro de orden6

El carácter de corto alcance7 de las interacciones

1.2. Teoría del Campo Medio

El primer intento de explicar las propiedades ferromagnéticas de los cuerpos fue

realizado por B. Rozing en 1892 [11], el cual supuso la existencia de campos mag-

néticos moleculares complementarios en el interior de los cuerpos ferromagnéticos.

Posteriormente, P. Langevin en 1905, presentó una teoría para el paramagnetis-

mo cuyo modelo es el de N partículas idénticas distinguibles, sin interacción entre

ellas, cada una con un momento magnético µ que puede orientarse libremente en

un campo magnético exterior H. Años más tarde (1907) P. Weiss, inspirado por la

hipótesis de Rozing y guiado por la teoría de Langevin, desarrolló una teoría feno-

menológica del ferromagnetismo conocida hoy con el nombre de Teoría de Campo

Medio de Weiss, la cual asume que todo espín experimenta la presencia de un

campo molecular efectivo Heff proporcional al momento magnético de los espines

restantes [12].

W. Lenz en 1920 propuso a su alumno de doctorado E. Ising explicar el ferro-

magnetismo a partir de los nuevos conceptos que habían surgido con el desarrollo

de la mecánica cuántica, es decir, a partir del concepto de espín. Lenz intuyó que

considerando las interacciones entre los espines de la red cristalina, de modo que

primase el que los espines próximos fuesen paralelos y desfavoreciese si fuesen

antiparalelos, podía esperarse estabilidad de un estado ordenado a temperaturas

suficientemente bajas, cuando las interacciones predominen sobre la agitación tér-

mica. Si esto ocurría por debajo de una temperatura bien definida, se tendría el6La dimensión del parámetro de orden esta estrechamente relacionada con las simetrías del

hamiltoniano del sistema7Interacciones que decaen rápidamente con la distancia

Page 16: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

11

primer modelo microscópico del ferromagnetismo. Si bien Ising demostró8 (1924)

que el modelo unidimensional no presentaba la transición esperada, erróneamente

afirmó que el modelo es inadecuado para explicar el ferromagnetismo a dimensio-

nes mayores. Este error llevó a W. Heisenberg (1928) a proponer interacciones más

complicadas entre los espines, las consideró vectoriales, sin embargo el aporte im-

portante que hizo fue el de dar la interpretación del campo molecular efectivo en

términos de las interacciones de intercambio Jij entre los espines Si y Sj localiza-

dos en los puntos (i, j) de la red [7]. En 1936 R. Peierls demostró la existencia de

estados ordenados en el modelo de Ising en dos dimensiones a bajas temperaturas,

esto hizo que muchos investigadores consideraran el modelo de Ising. Así es como

L. Onsager [14] (en 1944 mediante el álgebra de cuaterniones) presentó el primer

cálculo exacto de la función de partición del modelo de Ising en dos dimensiones a

campo nulo [14].

En los años siguientes se retomó la teoría de campo medio propuesta por Weiss

y se aplicó conjuntamente con las ideas expuestas anteriormente dando origen a

diferentes interpretaciones. De esta manera, podemos decir que en nuestros días, el

Término Teorías de Campo Medio tiene una amplia denominación y se refiere a un

conjunto de teorías y aproximaciones fenomenológicas con ciertas características

en común. En las siguientes secciones se vera algunas interpretaciones de teorías

de campo medio necesarias para el estudio de los vidrios de espín.

1.2.1. Modelo de Ising en aproximación de campo medio

El modelo más simple para las transiciones de fase es el modelo de Ising (ver re-

ferencias [15], el modelo de Ising mediante procesos de Markov [16]), y aún cuando

está resuelto exactamente para una dimensión y dos dimensiones a campo nulo, es

extremadamente difícil resolverlo en dimensiones mayores, donde se debe ejecutar

una suma de 2N términos que aparecen en la función de partición. Así, se puede

buscar una variación de este modelo que sea más fácil de tratar matemáticamen-

te. Entre las aproximaciones más utilizadas esta el campo molecular de Weiss (un

modelo más elaborado se encuentra en [17].

8Notas históricas del modelo de Ising se encuentran en la referencia [13]

Page 17: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

12

Modelo de ising

Considere una red en dos dimensiones con N sitios, cada uno de los cuales

tiene asociado una variable de espín clásica discreta Si = ±1, donde el índice i

denota un sitio de red i = 1, 2, . . . , N . Estas variables representan las dos posibles

orientaciones de un momento magnético asociado a un espín 12

en la dirección del

eje fácil de magnetización. El número total de estados de este sistema es 2N . La

energía total de este sistema esta dado por el siguiente hamiltoniano.

El hamiltoniano de Ising con interacción entre los primeros vecinos en dimensión

arbitraria de N espines.

H = −J∑

<ij>

SiSj − h

N∑

i=1

Si (1.1)

donde h es el campo magnético externo y J es la interacción de intercambio entre

los espines. Para un átomo particular i(llamado central), se tiene que la interacción

del i-ésimo átomo vendrá dado por el hamiltoniano

H = −JSi

n∑

j=1,j "=i

Sj − hSi (1.2)

donde el primer término representa la interacción del espín i con los n vecinos más

cercanos. De esta manera se dice que cada espín interactúa con un campo local

bi = J∑

j

Sj + h (1.3)

Si se considera a b como un conjunto de magnitudes aleatorias discretas indepen-

dientes, entonces la desviación en torno a su valor medio es

∆bi = bi − 〈bi〉 (1.4)

Para una red con invariancia traslacional la cantidad 〈Sj〉 es independiente del sitio

j y por lo tanto

〈Sj〉 = m =1

N

i

〈Si〉 (1.5)

es la magnetización media por espín. La aproximación de campo medio consiste en

despreciar las fluctuaciones ∆hi. Bajo esta aproximación cada espín se encuentra

Page 18: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

13

en presencia de un campo efectivo uniforme generado por los restantes espines de

la red.

Heff = Jzm + h (1.6)

donde z es el número de coordinación.

La función de partición de un conjunto de espines en presencia de un campo

uniforme h es Z = ZN1 , donde Z1 =

∑si=±1 exp(βhSi) = 2 cosh(βh), donde β es el

valor inverso de la temperatura. La magnetización media resultante es:

m =< Si >= tanh(βh) (1.7)

remplazando la expresión (1.7) en (1.6) se llega a una ecuación autoconsistente

para m

m = tanh[β(Jzm + h)] (1.8)

La solución a esta ecuación se la puede hallar gráficamente (fig. ). Además la ecua-

ción (1.8) determina el parámetro de orden m. El caso para h = 0 da la magnetiza-

ción espontánea, que puede ser resuelta gráficamente, obtenemos una solución no

trivial(m (= 0) si y solo si βJz > 1. Para βJz = Jz/T = 1, la temperatura crítica es

Tc = Jz

1.3. Modelo de Rango Infinito

Como se dijo, la teoría de campo medio es una aproximación. Sin embargo, da

una solución exacta en el caso de un modelo con interacciones de rango infinito9.

El hamiltoniano del modelo de Ising en dos dimensiones es [18]:

H = − J

2N

i"=j

SiSj − h∑

i

Si (1.9)

el primer sumatorio corre para todos los pares de sitios diferentes (i = 1, 2 . . . , N ; j =

1, 2 . . . , N ; i (= j). Aplicando la definición de función de partición Z = Trsiexp(−βE),

se tiene.

Z = Tr exp(βJ

2N(∑

i

Si)2 − βJ

2+ βh

i

Si) (1.10)

9Interacciones que se dan entre todos los pares de sitios de la red

Page 19: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

14

mediante un cambio de variables en los términos cuadrados introduciendo la iden-

tidad de Hubbard-Stratonovitch

exp(λa2

2) =

√λ

∫ ∞

−∞

dx exp[−λx2

2+ aλx] (1.11)

con los siguientes cambios a = βJ y x =∑

i Si/√

N , se encuentra que

Tr

√βJN

∫ ∞

−∞

dm exp[−NJβm2

2+ Jmβ

i

Si + βh∑

i

Si]

=

√βJN

∫ ∞

−∞

dm exp[−NJβm2

2+ N log (2 cosh β(Jm + h)] (1.12)

La integral anterior puede ser evaluada por cualquier método en particular, uti-

lizaremos el método de Laplace puesto que en el límite termodinámico N → ∞ la

integral (1.12) se acerca asintóticamente al valor más grande del integrando, enton-

ces, el valor de la variable de integración m que da el valor máximo del integrando,

está determinado por la condición de punto de silladura [18], así:

∂m(−βJ

2m2 + log(2 cosh β(Jm + h))) = 0 (1.13)

o

m = tanh β(Jm + h) (1.14)

La ecuación anterior está de acuerdo con la solución (1.8) mediante la teoría de

campo medio, con solo remplazar J por J/N y z con N . De esta manera la teoría

de campo medio nos da la solución exacta para el modelo de rango infinito.

Page 20: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

Capítulo 2

Conceptos Básicos en Sistemas

Desordenados

En este capítulo se tratara los conceptos y métodos básicos para desarrollar la

teoría de los sistemas desordenados y en particular los vidrios de espín. Para re-

ferirnos a los promedios habituales de la física estadística utilizaremos la notación

〈. . . 〉 y los promedios para una distribución P (J) mediante [. . . ], un promedio dife-

rente a los casos anteriores lo aclararemos mediante un sub-índice así 〈. . . 〉promedio.

2.1. Desorden y frustración

El desorden y frustración [18, 19, 20, 21, 22], los dos ingredientes fundamentales

de los vidrios de espín, pueden ser abordados de la siguiente manera.

El desorden denominado congelado “quenched” se manifiesta en los sistemas

que presentan de forma explícita en su hamiltoniano dos tipos de conjuntos de

variables aleatorias: σ distribuidas con el peso de Boltzmann y las variables Jcon una función de distribución P (J).

H = H(σ, J) (2.1)

Este tipo de desorden se caracteriza porque los elementos del sistema descritos

por las variables σ tienen tiempos de reacción mucho menores que los elemen-

tos del sistema descritos por las variables J; es decir, las variables J se las

puede considerar como constantes dentro de la escala de tiempo de fluctución de

15

Page 21: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

16

las variables σ. Los vidrios de espín son un ejemplo de sistemas que presentan

desorden congelado. La primera dificultad que surge en estos sistemas es como

llevar a cabo los promedios sobre el desorden.

Otro tipo de desorden es el templado “annealed”. En sistemas que presentan

este tipo de desorden los dos conjuntos de variables σ y J deben ser tratados

en igualdad de condiciones, puesto que los tiempos de reacción son comparables.

Existen algunos sistemas donde el desorden no esta presente en el hamilto-

niano, pero está en una forma auto-generada “self-generated”. Este es el caso de

los vidrios, donde el hamiltoniano tiene la forma típica [23].

H =∑

ij

V (ri − rj) (2.2)

donde las variables σ están representadas por las posiciones de las partículas ri,

y la función V (r) es un potencial específico (por ejemplo: Lennard-Jones).

Para explicar el concepto de frustración [24], consideremos un sistema com-

puesto por cuatro espines llamado plaqueta, dispuestos como se muestra en la

Figura(2.1), donde las interacciones “quenched” entre los espines son de la forma

Jij = ±1, con la siguiente orientación en los espines ↑ y ↓ [25].

Tomemos el caso de la parte izquierda de la Figura(2.1), en la que J1,J3 son

positivas y J2,J4 son negativas (o cualquier otra combinación donde el producto

J1J2J3J4 sea positivo), entonces el estado del sistema será único (excepto para un

cambio global del valor de los espines), puesto que todos los espines están acopla-

dos de forma tal que, cualquier par de interacciones entre los espines contribuyen

a una situación energéticamente favorable del sistema. Sin embargo, si el producto

J1J2J3J4 es negativo, como se muestra en la parte derecha de la Figura(2.1), el

estado del sistema es degenerado. Por ejemplo si fijamos el valor del espín de la

esquina superior comprendido entre J1 y J3 y a partir de este recorremos la pla-

queta en sentido horario, fijando los restantes espines de manera que contribuyan

favorablemente a la energía del sistema, llegamos a una situación de indetermina-

ción del valor del último espín, pues este debe ser orientado hacia arriba↑ si quiere

satisfacer una relación favorable con su vecino mediante J3, al mismo tiempo se

debe cumplir con la situación opuesta en el caso de J2. Esta situación en la que es

imposible hallar una configuración única de los espines que satisfagan los enlaces

impuestos se conoce como frustración [25].

Page 22: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

17

↑↑ J1=+

J2=−

↓J3=+

J4=−

↑↑ J1=+

?

J2=−

↑J3=+

J4=+

Figura 2.1: La figura de la izquierda no presenta frustración, mientras que existe frustración en la

figura de la derecha

Se puede demostrar que siempre existe frustración en cualquier circuito cerra-

do de un número cualesquiera de espines, siempre y cuando el producto de las

interacciones a lo largo de dicho circuito sea negativo. Es importante notar que la

frustración introducida en este ejemplo se debe al desorden (caso que nos intere-

sa), sin embargo no siempre se da, también se puede dar casos de frustración sin

desorden.

2.2. Cantidades Auto-promediadas

La presencia del desorden congelado en el hamiltoniano hace que las cosas se

compliquen un poco más de lo que habitualmente son cuando éste depende solo

de los grados de libertad del sistema en cuestión. Ahora, se debe trabajar con dos

conjuntos de variables aleatorias (SJ). Así pues, las propiedades físicas y en

particular la energía libre depende del desorden, en otras palabras, las propiedades

físicas de los vidrios de espín serán diferentes para cada realización diferente del

desorden; esto contradice el sentido que debe tener una teoría que pretenda expli-

car un fenómeno objetivamente. Para soslayar este problema es necesario utilizar

cantidades “independientes” del desorden. Estas cantidades son llamadas “self-

averaging” [20] y sucede que sus fluctuaciones generadas por el desorden tienden a

cero dentro del límite termodinámico. Como ejemplo de cantidades “self-averaging”

tenemos a la energía libre [23, 25, 26].

[F 2] − [F ]2 = O(1

N) (2.3)

Page 23: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

18

Existe un argumento para decir que las cantidades extensivas deben ser “self-

averaging” [20]): Consideremos un sistema macroscópico que puede ser dividido en

un número N1 de sub-sistemas macroscópicos (1 ≪ N1 ≪ N ). Entonces la energía

libre del sistema será igual a la suma de energías libre de cada sub-sistemas, más

la contribución que resulta de la interacción entre los contornos de los sub-sistema,

tomando en cuenta solo interacciones de corto alcance, las interacciones de borde

se pueden despreciar en el límite termodinámico y la cantidad extensiva (energía

libre) es simplemente la suma de contribuciones de cada sub-sistema. Cada una

de estas contribuciones representa una variable aleatoria independiente, entonces

mediante el teorema del límite central aplicado a la suma de estas cantidades se

llega a la ecuación (2.3).

2.3. Promedio “Annealed” y “Quenched”

En la sección anterior hemos intuido los inconvenientes que resultarían si las

cantidades que caracterizan el sistema dependieran del desorden J ; así, para de-

terminar sus promedios, éstas primero deben cumplir con el concepto de “self-

averaging”, la energía libre es una cantidad “self-averaging” [26].

Sabemos que la mayoría de los observables termodinámicos se dan a través del

logaritmo de la función de partición, con solo ejecutar la siguiente integral.

[F ] = − 1

βN

∫ ∞

−∞

dJp(J) log[Z(σ, J)] (2.4)

con Z = Trσ exp[−βH(σ, J)]. Dicha integral es muy difícil de calcular, puesto

que existe un logaritmo en J . Podemos estar tentados a definir la siguiente cantidad,

〈F 〉ann = − 1

βNlog

∫ ∞

−∞

dJp(J)[Z(σ, J)] (2.5)

la cual es más fácil de calcular. Sin embargo, esta no es la solución correcta. La

diferencia entre las dos integrales, está en el papel que juega el desorden J . En la

ecuación (2.4) primero se integra sobre los grados de libertad, posteriormente se

toma el logaritmo y finalmente se integra sobre J . De esta forma, las constantes

de acoplamiento son fijadas; es decir, “quenched” para cada integración sobre los

espines. En otras palabras, las constantes de acoplamiento y los espines no fluc-

tuan juntos como ya se dijo antes; para cada realización del desorden calculamos

Page 24: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

19

la energía libre y posteriormente promediamos sobre el desorden. Esta clase de

promedio es llamado “quenched” [26].

En la ecuación (2.5), se ve que tanto el desorden J , como los grados de liber-

tad σ son considerados en igualdad de condiciones, y por lo tanto, al desorden se

lo puede considerar como un grado de libertad adicional. Esta segunda clase de

promedio es llamado “annealed”, y aún cuando ésta sea correcta a altas tempera-

turas, donde las fluctuaciones introducidas por el desorden es irrelevante, ésta no

es correcta a temperaturas bajas [26].

Otra manera de ver esto es que, en el caso “annealed” en realidad estamos

promediando la función de partición Z antes que la energía libre F , pero, como ya

señalamos antes, F es una cantidad extensiva, mientras que Z no lo es, y por lo

tanto, la función de partición no es “self-averaging” [20].

2.4. Teoría de Réplicas

El promedio "quenched"que acabamos de enunciar no es tan fácil de calcular

por la dependencia del log(Z) sobre J , lo que conduce a desarrollar una técnica que

facilite su cálculo, esta es el método de réplicas. Sam Edwards y Philip Anderson

fueron los primeros en aplicar este método al estudio de los vidrios de espín.

La idea fundamental del método de réplicas [27] consiste en cambiar el orden

en el que se realizan los cálculos a la hora de efectuar los promedios tomando

la ecuación (2.4), se dijo que primero se integraría sobre los grados de libertad,

se toma el logaritmo y finalmente se integra sobre el desorden. Ahora, primero se

promedia sobre el desorden, dejando los cálculos adicionales para más tarde, esto

se lleva ha cabo mediante la ayuda de las siguientes identidades matemáticas:

log Z = lımn→0

Zn − 1

n(2.6)

x = lımn→0

1

nlog(1 + nx) (2.7)

se logra poner fuera de la integral al logaritmo, así.

[F ] = −T lımn→0

1

nlog

∫ ∞

−∞

dJp(J)ZnJ (2.8)

Page 25: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

20

ahora ya se puede ejecutar la integración sobre J . Se puede pensar que el término

ZnJ es la función de partición de un nuevo sistema que consiste de un conjunto de n

réplicas idénticas al sistema original. Si se etiqueta cada una de las réplicas por el

sub indice i, donde i corre desde 1 a n, se tiene.

ZnJ =

∫ ∞

−∞

n∏

i=1

dσi exp(−β

n∑

i

H(σi, J)) (2.9)

Para el problema que surge ahora se debe tener cuidado en interpretar los resulta-

dos, puesto que, siempre se tiene en mente a n como un entero positivo, hecho que

contradice a la hora de extrapolar n a 0 [27].

2.5. Estados Puros

Una de las ideas más importantes de la física estadística está en pasar de

un problema dinámico a un problema estático, es decir, relacionar los promedios

temporales del sistema con los promedios en un ensamble de tal sistema. Esta

idea originalmente desarrollada por Boltzmann, puede enunciarse de la siguiente

manera[8]: Consideremos una magnitud física A cuyo valor en un instante de tiem-

po t viene dada por A(t) = A(Q(t), P (t)); donde Q y P representan un conjunto

de coordenadas y momentos generalizados. Si se pudiera observar la evolución

temporal del sistema durante un intervalo de tiempo extremadamente largo se con-

cluiría que, independientemente de las condiciones iniciales, el sistema alcanzará

el equilibrio y se mantendrá en dicho estado rápidamente respecto del tiempo de

observación. En otras palabras, el promedio temporal de la magnitud A es igual a

su valor en el equilibrio [23]. Así:

Aequi = lımτ→∞

A(t) = lımτ→∞

1

τ

∫ τ

0

A[P (t), Q(t)]dt (2.10)

Para hallar la solución a la ecuación anterior, es necesario conocer la trayectoria

del sistema en el espacio de fases (Q,P ) tarea que es muy difícil (innecesaria e

imposible) para los sistemas estadísticos. Es en este punto donde la idea de Bol-

tzmann juega un papel trascendental. Resumiendo se afirma que todos los puntos

de la región del espacio de fase definida por el estado macroscópico del sistema

Page 26: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

21

son igualmente probables. Si se define una función f de densidad de los puntos re-

presentativos del sistema podemos calcular el promedio de A en la región R como

[8]:

〈A〉 =

R

A(P,Q)f(Q,P ; t)dV (2.11)

La hipótesis ergódica [8, 28] supone que los promedios (2.10) y (2.11) son igua-

les. Uno de los fenómenos que se dan en cualquier transición de fase es el de

rompimiento de la ergodicidad, pues a temperaturas bajas (T < Tc) y en el límite

termodinámico, el espacio de fase del sistema se divide en varias partes (dos en el

caso del ferromagnetismo), cada una de las cuales está separada por una barrera

infinita, a esto es lo que se conoce como estados puros. Los observables termodi-

námicos tienen su contribución solo de los estados comprendidos entre las barreras

infinitas. Nuevamente en el caso del ferromagnetismo las dos regiones en que se

ha dividido el espacio de fase se dice que están relacionadas por simetría, la misma

que ha sido espontáneamente rota y se sospecha que es la simetría respecto a un

cambio general de la magnetización [20].

En los vidrios de espín la ruptura espontánea de la simetría también tiene lugar,

pero es mucho más difícil saber cuál es, esto se debe a que dicha simetría esta ínti-

mamente relacionada con el desorden, además ésta no sucede a una temperatura

Tc fija, sino a toda temperatura T < Tc [20].

2.6. “Overlap” y “self-overlap”

Se sabe bien que en los sistemas magnéticos no desordenados el parámetro

de orden es la magnetización m = 1N

∑Ni=1〈σi〉, la cual es cero en la fase de al-

tas temperaturas y diferente de cero en la fase de bajas temperaturas, donde la

simetría ha sido rota. Ahora bien, de forma análoga en los sistemas desordenados,

en particular los vidrios de espín, se pensaría que un buen parámetro de orden es

m = 1N

∑Ni=1 [〈σi〉]; sin embargo, debido al desorden este parámetro es igual a ce-

ro a toda temperatura [29]. Otro parámetro es el introducido por Edward-Anderson

[29].

qEA =1

N

N∑

i=1

[〈σi〉2] (2.12)

Page 27: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

22

El parámetro qEA es un caso particular de una cantidad más general llamada over-

lap. El sentido físico de este parámetro es el de medir la similitud de dos configura-

ciones o dos estados. Si tenemos dos configuraciones cualesquiera σ y τ , se define

su “overlap” como:

qστ =1

N

N∑

i=1

σiτi (2.13)

En el caso de espines tipo Ising Si = ±1, qστ puede tomar los valores de (1,-1,0)

segun σ, τ coincidan, exista una anti-correlación ó estén totalmente no correlacio-

nadas respectivamente. El “overlap” de una configuración con si misma, se llama

“self-overlap” y entre dos estados α, β debido al rompimiento ergódico se puede

definir como [30]:

qαβ =1

N

N∑

i=1

〈σi〉α〈σi〉β (2.14)

Mientras que su “self-overlap” como [30]:

qαα =1

N

N∑

i=1

〈σi〉2α (2.15)

El “self-overlap” mide el tamaño del estado en el espacio de fase; mientras más

grande es qαα, más pequeño es el estado, es decir, el número de configuraciones

que pertenecen al estado es pequeño. Como ejemplo podemos ver el caso del

ferromagnetismo, en la fase (estado) paramagnética (no existe rompimiento de la

ergodicidad) su “self-overlap” es igual a cero.

En el límite T → 0 cada uno de los estados se concentra en sus configuraciones

con la energía más baja, en este caso el “self-overlap” de cada estado es igual a

uno, puesto que es el “self-overlap” de una configuración. Cuando la temperatura

aumenta más configuraciones participan en el estado y el “self-overlap” se hace

más pequeño que uno [30].

2.7. Distribución del “overlap”

Siguiendo las teorías de campo medio para los vidrios de espín se encontrara

una infinidad de estados puros a baja temperatura. En estos casos, es útil introducir

Page 28: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

23

q

P (q)

Figura 2.2: En la fase paramagnética

la probabilidad de distribución de todos los posibles valores de los “overlaps” entre

los estados [31].

P (q) =∑

αβ

wαwβδ(q − qαβ) (2.16)

con el peso estadístico wα = Zα

Z, donde Zα es la función de partición del estado

α, la suma se extiende a todos los pares de estados. Siguiendo con el ejemplo del

ferromagnetismo, tenemos las siguientes posibilidades. En la fase paramagnética

q = 0, por lo tanto, la función P (q) es una función delta (fig.2.2). En el estado

ferromagnético (T < Tc) hay dos estados caracterizados por la magnetización ±m,

por lo tanto, la función P (q) es una función delta en los punto q = m2 y q = −m2

(fig.2.3). Un caso más interesante se da en los vidrios de espín; cuando entre los

puntos de la figura anterior hay una curva continua, esto se debe a una sucesión

continua de transiciones de fase que se da en los vidrios de espín (rompimiento de

la ergodicidad se da par toda T < Tc), (fig.2.4).

Page 29: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

24

−2m2 −1m2 −0m2 0m2 0m2 1m2 2m2

P (q)

q

Figura 2.3: En la fase ferromagnética

-1.5 -1 -0.5 0 0.5 1 1.5

q

P(q)

Figura 2.4: En la fase de vidrios de espín

Page 30: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

Capítulo 3

Teoría de campo medio de los

vidrios de espín

En el capítulo precedente se estudio los conceptos básicos y artificios nece-

sarios para desarrollar la teoría de los vidrios de espín. Ahora se aplicara todas

esas definiciones a un caso particular de modelo de vidrios de espín, el modelo

de Sherrington-Kirkpatrick (SK), al cual se lo considera como solución exacta en el

caso de rango infinito, esto es una de las interpretaciones que se dan dentro de las

teorías de campo medio [31].

En este capítulo se comenzara con una breve descripción del primer modelo de

los vidrios de espín, basado sobre la interacción RKKY (Ruderman, Kittel, Kasuya y

Yoshida) [32], seguidamente se describirá el modelo de Edward-Anderson (EA), el

cual toma en cuenta solo las interacciones entre los espines más cercanos. Poste-

riormente nos centraremos en el modelo SK mediante el formalismo de la teoría de

replicas1, que en una primera aproximación las consideraremos que son un simple

artificio que facilita el cálculo, dando origen a la solución conocida como simetría

de replicas “replica-symmetric solution” (RS). Finalmente, se vera la necesidad de

abandonar la solución RS, por su inestabilidad y principalmente por generar entro-

pía negativa, así llegamos a uno de los conceptos fundamentales de la física de

los vidrios de espín que es el rompimiento de la ergoricidad y a la solución “replica

symmetry breaking” (RSB).

1Algunas veces, el modelo SK, es resuelto desde el punto de vista académico heurísticamente

(incorrecto) , también puede ser resuelto siguiendo la teoría de perturbaciones a altas temperaturas

25

Page 31: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

26

3.1. Introducción a los vidrios de espín

Aunque no es fácil resumir el desarrollo de los vidrios de espín, ni describir las

técnicas teóricas, numéricas, así como sus resultados experimentales, vamos a de-

tallar los rasgos más representativos de estos sistemas y otros que nos ayudarán

en nuestro objetivo. Para un estudio más detallado se puede ver las siguientes re-

ferencias [29, 30, 33, 34, 35, 36]. Experimentalmente los primeros vidrios de espín

“spin glasses” fueron aleaciones entre los metales de transición (Au,Ag, Cu, P t) y

materiales magnéticos (Fe, Mn) en el límite diluido (e.d, donde la concentración

del material magnético tiende a cero). Propiedades características de los prime-

ros vidrios de espín son: a baja temperatura se manifiesta un pico definido en la

susceptibilidad magnética χ(T ) en torno a una temperatura crítica Tc, el calor espe-

cífico C(T ) presenta un comportamiento suave en torno a Tc. Este comportamiento

es inusual e inesperado dentro del estudio de las transiciones de fase. Además,

cuando se ejecutan experimentos de dispersión de neutrones, se encuentra que

bajo Tc no se muestra un orden espacial de la orientación de los espines [33].

Uno de los primeros modelos fue presentado sobre la base de la interacción

RKKY (Ruderman, Kittel, Kasuya, Yoshida) (ver referencia [34]). Así pues, el mo-

delo afirma que el gas de electrones de conducción resulta en una imanación rá-

pidamente oscilante en la proximidad de un espín localizado en un ion magnético;

posteriormente, un segundo espín situado a una distancia r del primero percibe

la imanación anterior, dando lugar a una interacción de intercambio indirecta en-

tre los dos espines, que resulta aproximadamente en una energía dada por H =∑

J(ri − rj)SiSk +anisotropias, y su interacción como J(r) = Jocos(2KF r+ϕo)

(kF r)3, r → ∞,

donde Jo y ϕo son constantes, y KF el número de onda de Fermi. Puesto que las

distancias entre los espines son aleatorias, algunas interacciones entre estos será

en algunos casos positivas, favoreciendo la alineación paralela, y otras negativa, fa-

voreciendo la alineación antiparalela, y así se presenta un ingrediente fundamental

que son las frustraciones. Este modelo es muy difícil de estudiar, por consiguiente,

se hace necesario buscar otros modelos más simplificados como veremos en las

secciones siguientes [34].

Page 32: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

27

3.2. Modelo de Edward-Anderson

El hamiltoniano dentro del modelo de Edward-Anderson(EA)[37] se expresa co-

mo

H = −∑

<i,j>

JijSiSj − h∑

i

Si (3.1)

donde la primera suma se lleva a cabo para los vecinos más próximos, las variables

Si son tipo Ising (Si = ±1) y Jij son las interacciones de intercambio diferentes

para cada par de espines (i, j). Cada Jij se supone distribuida independientemente

mediante una función de distribución P (Jij), generalmente del tipo Gaussiana.

P (Jij) =1

J

√1

2πexp−

(Jij−Jo)2

2J2 (3.2)

P (Jij) = pδ(Jij − J) + (1 − p)δ(Jij + J) (3.3)

La ecuación (3.2) es una distribución gaussiana donde Jo es su valor medio y J2 la

variancia, mientras que en (3.3) Jij puede ser (> 0) ó (< 0), con probabilidad p y

(1 − p) respectivamente [29].

3.3. Modelo de Sherrinton-Kirkpatrick

El modelo propuesto por David Sherrington y Scott Kirkpatrick en 1975 [38] para

el estudio de los vidrios de espín, consiste en que todos los espines están conec-

tados entre si, es decir, es la versión de rango infinito del modelo EA. Aun cuando

este modelo es menos realista que uno de rango corto, su estudio da una buena

idea de la naturaleza de los vidrios de espín.

En el marco de la aproximación de campo medio el modelo (SK) se resuelve

mediante un análisis teórico muy complejo, para lo cual se hace uso del formulismo

de la teoría de las réplicas (sec. 2.4). El modelo de SK tiene el mismo hamiltoniano

que en el modelo EA (ecuación 3.1) y con ayuda de la ecuación (2.6) se realiza el

promedio de la potencia n-ésima de la función de partición [35, 36].

[Zn] =∑

Sαi =±1

∫ ∞

−∞

(∏

<ij>

P (Jij)dJij) exp(β∑

<ij>

Jij

n∑

α=1

Sαi Sjα + hβ

N∑

i=1

n∑

α=1

Sαi ) (3.4)

Page 33: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

28

donde α es el índice de las réplicas, y la integración en Jij se lo hace completando

el cuadrado e independientemente para cada par (i, j), además usando la propie-

dad (Sαi )2 = 1, para todo α, i y haciendo un cambio de varia qαβ para el término

(∑

Sαi Sβ

i )2 y mα para (∑

Sαi )2 mediante la identidad (1.11).

[Zn] = exp(Nβ2J2n

4)

∫ ∏

α<β

dqαβ

∫ ∏

α

dmα

. exp(−N(βJ)2

2

α<β

q2αβ − NβJo

2

α

m2α + N log TreL) (3.5)

con L = β2J2∑

α<β qαβSαSβ + β∑

α(Jomα + h)Sα.

Usando la ecuación (2.6) y tomando en cuenta que el argumento de la expo-

nencial es proporcional a N , en la integral de arriba, y considerando que podemos

tomar el límite N → ∞ antes que el límite n → 0, dicha integral puede resolverse

por el método de Laplace [39]. Así se llega a la expresión de la energía libre por

espín mediante el método de réplicas.

−βf = lımn→0

−β2J2

4n

α"=β

q2αβ − βJ0

2n

α

m2α +

β2J2

4+

1

nlog TreL (3.6)

siguiendo con el método, es necesario ahora calcular las ecuaciones de punto de

silladura (saddle point), es decir, las condiciones extremales de la energía libre res-

pecto a las variables qαβ y mαδf

δqαβ= δf

δmα= 0 con (α (= β).

qαβ =1

β2J2

∂qαβ

log TreL =TrSαSβeL

TreL(3.7)

mα =1

βJ0

∂mα

log TreL =TrSαeL

TreL(3.8)

Con el fin de calcular la energía libre y los parámetros de orden, es necesario

saber como depende qαβ y mα sobre los índices de las réplicas α y β. A simple

vista, se podría pensar que los índices de las réplicas no tienen ningún efecto sobre

la física del sistema, puesto que se han introducido de una manera artificial. Por

lo tanto, se asume que qαβ= q y mα=m, para todo α, β, a esto se le conoce como

“replica-symmetric solution”.

Esta solución del modelo SK establece una diagrama de fase ver Figura (3.1) el

cual presenta diferentes posibilidades cuando se pasa de una fase a otra. A medida

Page 34: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

29

PARAMAGNETICA

FERROMAGNETICA

VIDRIOS DE ESPIN

u0

kBT

Figura 3.1: Diagrama de fase del modelo SK considerando la simetría de las réplicas

que la temperatura desciende existen dos alternativas, podemos pasar de la fase

paramagnética a la fase de vidrio de espín ó pasar primero a la fase ferromagnética

y posteriormente a la fase de vidrio de espín [36].

Siguiendo con los cálculos se podría determinar los observables termodinámi-

cos. Así la expresión para la susceptibilidad muestra un pico muy pronunciado a una

temperatura definida, propiedad característica de los vidrio de espín, esto es cohe-

rente con los experimentos (ver Figura 3.2). Sin embargo, la entropía del sistema

se hace negativa en T = 0 con S = −0,17 lo cual no tiene sentido físico. Además,

de Almeida y Thouless mostraron en 1978 que la SK-solución es inestable a tem-

peraturas bajas, tanto en la fase de vidrios de espín como en el ferromagnetismo.

Ellos determinaron una line de estabilidad “AT-line” ver Figura (3.3)

Poco tiempo después Giorgio Parisi 1979 presento una solución conocida como

“Replica symmetry breking” (RSB) donde las réplicas del sistema no se consideran

iguales, más bien se rompe la simetría de las réplicas de una manera muy especí-

fica [35].

Page 35: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

30

Figura 3.2: Susceptibilidad Magnética χ Vs T para AuxFe1−x. Por Cannella and Mydosh

0

B

T

ESTABLE

INESTABLE

AT−Line

Tc

(PARA)

(FERRO o VE)

Figura 3.3: Bajo la línea AT la solución SK es inestable en el plano B-T

Page 36: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

31

3.4. “Replica symmetry breaking”

La solución correcta del modelo SK bajo la línea AT sugiere el rompimiento de

las réplicas de una manera muy particular, concretamente se dota al espacio de

los índices de las réplicas de una estructura métrica, ha esto se lo conoce como

solución de Parisi [35].

La solución del modelo SK, mediante la teoría de réplicas, lleva a considerar a

los qαβ como elementos de una matriz simétrica, todos iguales, excepto los elemen-

tos de la diagonal que son igual a cero.

0

0 q0

0

q0 0

0

0

Ahora el método de Parisi puede ser considerado como una serie de subdivisiones

de la matriz (nxn). Primero la matriz es subdividida en nm1

x nm1

bloques de tamaño

m1xm1, dentro de los bloques de la diagonal principal, los elementos q0, son reem-

plazados por q1. El siguiente es un ejemplo para el caso n = 6,m1 = 3.

0 q1 q1

q1 0 q1 q0

q1 q1 0

0 q1 q1

q0 q1 0 q1

q1 q1 0

(3.9)

Este primer paso es conocido como “first-step RSB”. Segundo, se vuelve a subdivi-

dir los bloque de la diagonal principal en m1

m2xm1

m2sub bloques y en cada uno de estos

remplazamos q1 por q2. Por ejemplo, para el caso n = 12,m1 = 6,m2 = 3.

Page 37: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

32

0 q2 q2

q2 0 q2 q1

q2 q2 0

0 q2 q2 q0

q1 q2 0 q2

q2 q2 0

0 q2 q2

q2 0 q2 q1

q2 q2 0

q0 0 q2 q2

q1 q2 0 q2

q2 q2 0

Tercero, repetimos este proceso infinitamente, de esta manera se introduce

m1,m2,m3, . . . números enteros, con el siguiente orden

n ≥ m1 ≥ m2 ≥ m3 · · · ≥ 1 (3.10)

Sin embargo, como punto final consideramos que n → 0 tiende a cero de una

manera continua y analítica, se invierte el orden de la ecuación (3.10)

n = 0 ≤ m1 ≤ m2 ≤ m3 · · · ≤ 1 (3.11)

en el límite, mi es continua: mi → x, donde x se considera un parámetro de para-

metrización de la distancia entre dos índices de las réplicas con 0 ≤ x ≤ 1. Por lo

tanto, la información del conjunto qi y mi, estará contenida en una función q(x)

continua, definida en un intervalo de longitud igual a uno.

El significado físico de q(x) se tiene relacionando q(x) con la distribución de

probabilidad del solapamiento q (ver sección 2.6 ) entre los estados puros (sección

2.5 ) antes que entre las réplicas. Notando x(q) como la función inversa de q(x),

tenemos que

x(q) =

∫ q

−∞

dq′

P (q′

) (3.12)

con

P (q) =∑

α,β

PαPβδ(q − qαβ) (3.13)

Page 38: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

33

Nuevamente los índices α y β corresponden a estados puros no a replicas, qαβ es

el “overlap” entre dos estados puros α y β, y Pα es la probabilidad de encontrar al

sistema en el estado puro α.

Generalmente no se da una solución a la ecuación (3.6) respecto a q(x) por

ser demasiado complicado. A cambio se busca un desarrollo mediante la teoría de

Landau cuando la temperatura esta cerca al punto crítico entonces q(x) es pequeño.

Las principales interpretaciones físicas que resulta de la solución RSB son las

siguientes:

Paisajismo rugoso de la energía libre A temperaturas bajas el paisajismo

de la energía es muy rugoso y complicado, es decir, el mínimo absoluto esta

rodeado por otros mínimos ligeramente superiores y separados por barreras

de energía grandes [40]. Figura (3.4).

Distribución del “overlap” Existe un número muy grande de soluciones y

por lo tanto se espera que la distribución P (q) posea un comportamiento par-

ticular. A campo magnético nulo P (q) será simétrica y el valor medio de q será

cero, por lo tanto se representa como P (|q|). Si existe campo magnético P (q)

deja de ser simétrica. La forma más general de P (q) es [40]:

P (q) = aδ(q − qmin) + g(q) + bδ(q − qmax) (3.14)

donde a, b son constantes positivas , g es una función regular y qmin, qmax

son el solapamiento mínimo y máximo. La solución de Parisi proporciona el

siguiente comportamiento de P (q). Fig (3.5).

Estructura Ultramétrica Los diferentes estados puros que aparecen son or-

ganizados de una manera jerárquica (ultramétrica). Un espacio es ultramétrico

si la distancia d entre dos puntos cualesquiera del espacio verifica la siguiente

condición [40]:

dα,γ ≥ max(dα,β, dβ,γ) (3.15)

La ecuación anterior en función de los solapamientos para tres estados arbi-

trarios es:

qα,γ ≥ mim(qα,β, qβ,γ) (3.16)

Page 39: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

34

0

F

Espacio configuracion

Figura 3.4: Paisajismo de la enegía libre

0

P(q)

qmax

q

Figura 3.5: P (q) para el modelo SK

Page 40: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

35

Estado base

Estado base

i

flipped

l

Figura 3.6: Droplet

3.5. Teoría de “Droplet”

En la sección anterior se ha descrito un modelo de espín con interacción a todos

los vecinos y se han enumerado diversas propiedades que surgen del análisis del

modelo. Podemos preguntarnos si estas características se mantienen en un modelo

donde las interacciones sean de corto alcance (modelo de EA) [41].

A fin de contestar esta interrogante se desarrollo la teoría de “droplets” (“droplets

scaling” (DS)), la cual es una teoría fenomenológica que tiene su origen en las leyes

de escala y cuya principal finalidad es entender la fase de vidrios de espín cuya fase

se supone totalmente influenciada por el estado base.

Las hipótesis sobre las cuales se sustenta esta teoría son las siguientes: pri-

mero, la fase de baja temperatura a campo nulo contiene sólo un estado puro (dos

si tenemos encuenta la simetría) y por tanto P (q) es trivial (consiste en dos del-

tas de Dirac). Segundo, tiene que ver con la noción de “droplet”: un “droplet” se

define como la energía de excitación más baja que tiene una longitud de escala l

en torno a un espín i dado y una superficie fractal de dimensión ds, mas pequeña

que la dimensión espacial d, ver Figura(3.6). Esta excitación es la que domina la

fase de vidrio de espín, cambiar la orientación de un “droplet” se necesita de una

energía proporcional a lθ, donde θ es el exponente “droplet”. Por analogía respecto

a la energía de excitación mediante las paredes de dominio se espera que θ = θs

(exponencial de “stiffness”)

Page 41: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

Capítulo 4

Optimización Combinatoria

La optimización combinatoria es un dominio de la informática y la investigación

operativa, cuyo campo de aplicación está ampliamente difundido. Entre los proble-

mas que resuelve la optimización combinatoria están: ¿cómo se debe buscar el

itinerario más corto para un cartero que atiende un número determinado de pobla-

dos? (problema del cartero chino), ¿en cuántas partes dividen un espacio n planos,

si de cuatro cualquiera de ellos ninguno pasa por un mismo punto; de tres, ninguno

pasa por una misma recta y de dos, ninguno es paralelo, mientras que cualesquiera

tres planos tienen un punto común?; la elaboración de un horario de clases para

una escuela. . . [42].

Según el enfoque que se le de, a los distintos problemas combinatorios, estos

pueden ser clasificados así: en unos se resuelve la existencia o no existencia de las

soluciones, en otros es necesario calcular el número de soluciones del problema (a

este tipo de problemas se les conoce como problema de enumeración); por último,

de un conjunto que posee todas las soluciones del problema se elige aquellas que

poseen cierta propiedad en grado máximo o mínimo. Los problemas de este último

tipo se denominan extremales o simplemente problema de optimización.

En lo que sigue nos centraremos en los problemas de optimización. Para su ca-

racterización necesitamos definir dos elementos esenciales: primeramente un con-

junto finito de configuraciones del sistema en cuestión y, segundo, una función de

costo relacionada con las configuraciones. El problema de optimización combina-

toria consiste en hallar la configuración para la cual la función de costo es mínima

[42]

36

Page 42: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

37

En las siguientes dos secciones vamos a dar los principales conceptos en los

que se basa la optimización combinatoria y algunas herramientas para la resolución

y clasificación de los distintos problemas que se presentan.

4.1. Complejidad Algorítmica

Todos tenemos una idea bastante clara de lo que es un algoritmo y alguna no-

ción del grado de dificultad cuando comparamos diferentes algoritmos que cumplen

un determinado propósito. Pues bien, esas ideas pueden ser resumidas como si-

gue: un algoritmo es un procedimiento o método de cálculo con unas reglas bien

determinadas que conducen a la resolución de un problema específico en un nú-

mero finito de pasos [43]. Así podemos decir que un problema algorítmico π(I, Q)

consta de un conjunto I de todas las posibles entradas para el problema, llamado el

conjunto de instancias, y de una pregunta Q sobre esas instancias. La complejidad

de un algoritmo (complejidad algorítmica) es una medida de los recursos (tiempo,

memoria) que se requiere para su ejecución en función del tamaño de los datos de

entrada. Ahora bien, vamos a dar la definición formal de complejidad de un algo-

ritmo, mediante el orden de crecimiento de la función c(I), donde c(I) representa

el número de operaciones elementales requeridas, que en el peor de los casos

depende del tamaño I de la entrada [42].

Existen cinco formas de notar los diferentes órdenes de crecimiento de una fun-

ción que son: o,O, Θ,∼, Ω; pero explicaremos solo el segundo caso.

Definicion 1 Sean f y g dos funciones definidas sobre el conjunto de los números

naturales, f, g : N → N. El orden de crecimiento de g es menor o igual que el de f , lo

cual se nota por g(x) = O(f(x)), si existe una constante k > 0 tal que g(n) ≤ kf(n)

para todo n ∈ N [43].

La jerarquía de órdenes (en orden de crecimiento) es la siguiente: O(1),O(log n),

O(n), O(n log n), O(n2), O(n3), O(2n), O(n!), O(nn). Diremos que un algoritmo es poli-

nomial cuando el número de operaciones que efectúa está acotado por una función

polinomial en el tamaño de su entrada. Si el tamaño de la entrada es n y la fun-

ción polinomial es f(n), decimos que el algoritmo tiene complejidad O(f(n)). Un

algoritmo es eficiente si su complejidad es polinómica.

Page 43: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

38

Decimos que un problema es de decisión cuando las posibles respuestas a la

pregunta Q son SI ó NO. Un problema de este tipo se clasifica como [43]:

Problema de la clase P: Para los problemas de este tipo hay un algoritmo

determinista de tiempo polinomial que resuelve el problema

Problema de la clase NP (“Nondeterministic Polynomial”): Los problemas de

este tipo se caracterizan por que pueden ser resueltos por algoritmos poli-

nómicos no deterministas, en otras palabras, cuando cualquier instancia que

produce respuesta SI posee una comprobación de correctitud (también llama-

da certificado) verificable en tiempo polinomial, en el tamaño de la instancia y

la búsqueda de dicha certificación puede que requiera un tiempo exponencial.

Claramente, P⊆NP. Sin embargo, no se sabe si esta inclusión se cumple es-

trictamente, P=NP se conjetura que no se cumple, es uno de los problemas

que se mantienen abiertos.

Definicion 2 Sean π1(I1, Q1) y π2(I2, Q2) dos problemas de decisión. Una transfor-

mación polinomial (reducción polinómica) de π1 en π2, lo cual se denota por π1 ∝ π2,

es una función f : I1 → I2 que satisface las siguientes dos condiciones [42]:

1. f puede computarse en tiempo polinomial.

2. Para toda instancia D ∈ I1, D produce respuesta SI para π1 si y sólo si f(D)

produce respuesta SI para π2

Un problema de decisión π pertenece a la clase NP-completo, cuando se satisfacen

las siguientes condiciones:

π ∈ NP

Para todo problema π′

de la clase NP se cumple que π′ ∝ π.

Un problema de decisión π es de la clase NP-hard si existe un problema π′

de la

clase NP-completo tal que se cumpla la siguiente condición:

π′ ∝ π.

Page 44: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

39

La técnica usual para probar que un problema π es NP-completo1 es la siguiente:

elegir en forma apropiada un problema π′

que ya sabemos que es NP-completo

y luego probar que π ∈ NP y que π′

es transformable polinomialmente en π. Si y

sólo si probáramos esta segunda parte habríamos probado que el problema π es

“NP-hard” [43, 42].

4.2. Optimización Combinatoria y Mecánica Estadís-

tica

A fin de determinar cuáles son las relaciones entre la optimización combinato-

ria y la física estadística, se toma como ejemplo el modelo de Ising. Determinar

el estado fundamental de tal sistema2 quiere decir hallar la configuración de espi-

nes S1, S2 . . . , Sn que minimice la energía del sistema; este es un problema de

optimización combinatoria. Más generalmente podemos decir que todos los proble-

mas de física estadística con un hamiltoniano a una temperatura específica pueden

ser considerados como un problema de optimización combinatoria, por lo tanto las

configuraciones son los micro-estados y la función de costo, la energía. Recípro-

camente todo problema de optimización combinatoria puede ser considerado como

un problema de física estadística, para esto es suficiente considerar la función de

costo como el hamiltoniano del sistema. Más relaciones podemos ver en la tabla

4.1.1No se conoce ningún algoritmo polinomial para resolver un problema NP-completo. Surge la

definición de NP-completitud que si se encontrara un algoritmo polinomial para un problema de esta

clase, todo problema en N sería polinomial, entonces P=NP; sin embargo se sospecha que no existe

tal algoritmo2Puesto que el modelo de Ising es no desordenado, el cálculo del estado fundamental es un

problema trivial. Este no es el caso en los vidrios de espín, que debido al desorden y frustraciones,

la situación es mucho más compleja. Hallar el estado base de los vidrios de espín es un ejemplo de

problema NP-completo

Page 45: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

40

Física estadística Optimización combinatoria

Estado fundamental Óptimo

Energía del estado fundamental Costo de la optimización

Hamiltoniano, energía Función de costo

Micro-estado Configuración

Espacio de fase Ensamble de configuraciones

Primeros estados excitados Configuraciones cuasi óptimas

Cuadro 4.1: Correspondencia entre la física estadística y optimización combinatoria

Versión estocástica de la optimización combinatoria

En física, son importantes las propiedades genéricas de los sistemas desorde-

nados y raramente en propiedades específicas de una muestra dada. En efecto, se

quieren conocer las propiedades estadísticas (valores medios, desviaciones, etc)

sobre el ensamble de muestras posibles. Para poder utilizar la optimización combi-

natoria es necesario transponer las nociones de ensamble de la física estadística3

Tipos de algoritmos

Los algoritmos que existen para resolver un problema combinatorio y, en parti-

cular, hallar el estado base de un sistema, son susceptibles de clasificarse en dos

grupos: los algoritmos “exactos” o completos y los algoritmos “heurísticos” o in-

completos. Los algoritmos del primer grupo determinan y aseguran un mínimo de

la función de costo; desafortunadamente estos son muy lentos. Por otra parte, los

algoritmos heurísticos proporcionan una solución aceptable pero no la solución óp-

tima, un ejemplo de este tipo son los algoritmos elaborados mediante los métodos

de Monte Carlo3Esto se verá más adelante en la simulación “annealing”

Page 46: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

41

•Bb

¯¯c

""DDDD

DDDD

A•a

<<zzzzzzzz

d ""DDDD

DDDD

e

²²

•Cg

||zzzz

zzzz

•E

hww

kXX

D•p33

n""DD

DDDD

DD

f77

i// •F lkk

j

OO

m||zz

zzzz

zz

•G

Figura 4.1:

4.3. Conceptos Básicos de Teoría de Grafos

Antes de dar las definiciones correctas de los elementos básicos que constituyen

la teoría de los grafos, primero se describe los conceptos más simples. Considere-

mos un conjunto de puntos, de número finito o no, pero distintos y numerables,

dispuestos como se indica en la fig.4.1. Los puntos de la figura se llaman vértices, y

están unidos por líneas orientadas llamadas arcos. Así A están unida directamente

a B por el arco a, a D por el arco e, etc. La figura descrita representa un grafo.

Una descripción un poco más elaborada es la siguiente: consideremos un conjunto

de seis objetos: A,B,C,D,E, F,G. A cada uno de los objetos de este conjunto

hacemos corresponder cero, uno, dos o más objetos del mismo conjunto; mediante

una relación Γ. Por ejemplo.

Γ(A) = B, D, EΓ(B) = A,C

Γ(C) = EΓ(D) = D,E, F, G, Γ(E) = D,E

Γ(F ) = C, F, G, Γ(G) = ∅ (4.1)

Por lo tanto el conjunto A, B, C, D, E, F, G y las correspondencias (4.1) constitu-

yen un grafo, representado por la figura (fig.4.1)

Definicion 3 Se denomina grafo orientado una terna G = (X, A, ϕ) compuesta de

Page 47: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

42

•2

•1a1 55

a2

==||||||||

a11

²²

•3a4oo

a3

aaBBBBBBBB

a7

§§°°°°°°°°°°°°°°°

•6a10 !!B

BBBB

BBB •4 a9ii

a6

hhQQQQQQQQQQQQQQQ

a5

XX111111111111111

•5a8

==||||||||

Figura 4.2: Grafo orientado

un conjunto no vacío X, cuyos elementos se llaman vértices de un conjunto A de

arcos y de una función ϕ : A → XxX, la cual a todo arco a elemento de A se le

hace corresponder un par ordenado (p, q) de vértices denominados finales de dicho

arco.(ver fig.4.2)

Un arco, cuyos finales p, q se encuentran en un mismo vértice se llama lazo.

Definicion 4 Un grafo se dice simple, si para cualquier par de vértices p, q se unen

mediante un arco a lo sumo.

Definicion 5 Dado un grafo orientado simple G con los vértices x1, x2,. . . xn. Se

llama matriza de adyacencia de dicho grafo a una matriz cuadrada de orden n,

donde bij = 1, si en G existe el arco (xi, xj); y bij = 0, si en G no existe el arco

(xi, xj)

Así, la matriz de adyacencia del grafo expuesto en la figura (4.2), tiene la forma

siguiente.

. x1 x2 x3 x4 x5 x6

x1 1 1 1 1 0 1

x2 0 0 0 0 0 0

x3 0 1 0 0 1 0

x4 0 1 0 1 0 0

x5 0 0 0 1 0 0

x6 0 0 0 0 1 0

Page 48: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

43

La matriz de adyacencia define completamente la estructura del grafo. Por ejem-

plo, la suma de todos los elementos de la fila xi de la matriz B da el número de arcos

que tienen el vértice xi como su vértice original, y la suma de elementos de la co-

lumna xi da el número de arcos en los que xi figura como vértice final.

Se debe distinguir entre grafo orientado y grafo no orientado (o, simplemente

grafo), para este último se sustituye los conceptos de arco por arista, y vértices por

nodos. En un grafo el conjunto E de aristas y la función Ω pone a cada arista a ∈ E

le ponen correspondencia un par no ordenado de nodos (p, q) = (q, p), que se de-

nominan extremos de dicha arista. Además, los conceptos introducidos para grafos

orientados, pueden ser extendidos a los grafos no orientados si consideramos que

una arista no orientada (p, q) corresponde a un par de arcos pq y qp.

Definicion 6 Sean x,y ∈ X, se dice que hay un camino en G de x a y si existe una

sucesión finita no vacía de aristas (x, v1), (v1, v2) . . . , (vn, y).

En este caso, x e y se llaman los extremos del camino, el número de aristas del

camino se llama la longitud del camino. Si los vértices no se repiten el camino

se dice propio o simple. Además si hay un camino no simple entre dos vértices,

también habrá un camino simple entre ellos. Cuando los dos extremos de un camino

son iguales, el camino se llama circuito o camino cerrado. Llamaremos ciclo a un

circuito simple, un vértice a se dice accesible desde el vértice b si existe un camino

entre ellos. Todo vértice es accesible respecto a si mismo

Definicion 7 Un camino hamiltoniano es un camino que recorre todos los vértices

de un grafo sin pasar dos veces por el mismo vértice. Si el camino es cerrado se

dice un ciclo hamiltoniano.

Un grafo G se dice hamiltoniano si tiene un ciclo hamiltoniano.

4.4. Conceptos Básicos de la Teoría de Poliedros

Consideremos una ecuación lineal en las m incógnitas x1, x2, . . . , xm, escrita de

la siguiente manera: c1x1 + c2x2 + · · · + cmxm = b, o en notación matricial cx = b,

donde c = (c1, c2, . . . , cm) y x = (x1, x2, . . . , xm).

Page 49: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

44

Definicion 8 Dado un conjunto finito A, denotemos por RA el espacio lineal de los

vectores reales x con una componente xe para todo e ∈ A. El conjunto de todos

los puntos que satisfacen la ecuación cx = b, es decir, el conjunto de todas las

soluciones de su ecuación lineal recibe el nombre de hiperplano

La dimensión del hiperplano es una unidad menor que la dimensión del espacio

total.

Teorema 1 Un subconjunto A ⊆ Rm es un hiperplano si y solamente si existe una

correspondencia uno a uno entre A y Rm−1 tal que las distancias entre puntos co-

rrespondientes sean iguales.

Definicion 9 El semiespacio cerrado ó simplemente semiespacio es el conjunto

x ∈ RA : cx ≤ b [44].

La envolvente lineal de X subconjunto de Rm es el conjunto de todos los puntos

de la forma∑

x∈X λxx, donde λx ∈ R para todo x ∈ X. Sus elementos se llaman

combinaciones lineales de X, y se pueden distinguir tres casos principales:

1. Si∑

x∈X λx = 1; el conjunto se llama envolvente afín y sus elementos combi-

naciones afines

2. Si λx ≥ 0 ∀x ∈ X; el conjunto se llama envolvente cónica (cono generado por

X) y lo representamos por cone(X), a sus elementos se les llama combinacio-

nes cónicas.

3. Si∑

x∈X λx = 1 y λx ≥ 0 ∀x ∈ X; el conjunto se llama envolvente convexa

y lo representamos por conv(X) y sus elementos se les llama combinaciones

convexas

Un poliedro es la intersección de un número finito de semiespacios en Rm. En

conclusión un poliedro es representable a través de un sistema lineal finito cx ≤ b.

Uno de los resultados principales en la teoría de poliedros es el siguiente teorema

debido a Weyl y Minkowski.

Teorema 2 Para todo poliedro P = x ∈ Rv : cx ≤ b existen conjuntos finitos X,Y

subconjuntos de Rv tales que P = conv(X) + cone(Y ). Recíprocamente, para todo

par de conjuntos X,Y subconjuntos de Rv existe un sistema lineal finito cx ≤ b tal

que conv(X) + cone(Y ) = x ∈ Rv : cx ≤ b [44].

Page 50: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

45

Un polítopo es un poliedro acotado, es decir, un poliedro P para el que existen

l, u ∈ RE tales que P ⊆ x ≤ R

E : l ≤ x ≤ u. En función del teorema anterior un

polítopo es la envolvente convexa de un conjunto X finito de puntos [44].

Page 51: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

Capítulo 5

Simulaciones Numéricas

Una clase particular de sistemas magnéticos son los vidrios de espín, cuyas

propiedades peculiares de frustración y desorden entre los enlaces hacen que el

sistema exhiba una dinámica extremadamente lenta1, es decir, que el paisajismo

de la energía libre sea muy rugosa haciendo que el sistema quede atrapado en un

estado meta-estable en torno a un mínimo local. Esto es una de las razones por

las cuales las simulaciones de vidrios de espín y en general de sistemas complejos

son difíciles. Para salvar esta dificultad2, es decir, acelerar la relajación del sistema,

se han desarrollado toda una serie de algoritmos de Monte Carlo (MC), que se les

conoce bajo el término genérico de “Extended Ensemble Monte Carlo” [45] que a

su vez pueden clasificarse así:

“Simulated Tempering” [45, 46, 47, 48, 49, 50] está estrechamente relacionado

con “simulated annealing”3 [31, 48, 51, 52], pero aquí la temperatura se considera

como una variable dinámica mas. Para poder alcanzar el equilibrio estadístico del

sistema (con respecto a la distribución de Bolzmann P (S) ∝ exp−βH(S) ) se

escoge una distribución nueva P (S, Σ), con un conjunto Σ que contiene un

1Son varias las situaciones en las que existe un relajamiento lento, entre estas se encuentran las

transiciones de fase continuas cerca del punto crítico que da origen al fenómeno de crítical slowing

down, otra situación que se presenta es la nucleation asociada con las transiciones de fase de primer

orden.2No es la única motivación por la cual se introducen artificialmente ensambles; por ejemplo: en

la resolución de integrales o sumatorias múltiples, que a su vez tiene aplicación en la forma en que

podemos recorrer un espacio de fase de algún sistema estadístico.3Calcula el mínimo de una función

46

Page 52: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

47

número grande de variables adicionales.

La idea básica es que P sea una distribución de Boltzmann para cualquier con-

junto Σ dado, a expensas de escoger un conjunto de β adecuado. La dinámi-

ca del sistema ha pasado a un espacio de temperaturas S → (S, βα) con

α = 1, . . . , A = const. La función que se tiene en el equilibrio es Pequi(S, βα) =exp(−HEXT (S,α))

ZEXTdonde HEXT = βαH(S) − gα y ZEXT =

∑Aα=1 expgα Z(βα). Para

un valor fijo de α la suma Z(βα) es la función de partición del sistema original con

los tradicionales pesos de Boltzmann. Así, la probabilidad de encontrar al siste-

ma con un valor dado de α es Pequi(α) =∑

S Pequi(S, βα), en otras palabras

βαf(βα) = − log Z(βα), con f(βα) la energía libre. Si escogemos gα = βαf(βα), todos

los valores de α tienen la misma probabilidad 1/ZEXT , ZEXT = A.

La probabilidad que el sistema pase de un valor de temperatura a otro valor

consecutivo (valores ordenados) será proporcional a la variación del hamiltoniano

extendido para una cierta configuración ∆HEXT = Einstδ − (gm+1 − gm), donde δ =

βm+1−βm y Einst es la energía instantánea. El valor de gm+1 puede ser determinado

mediante un desarrollo en series de potencia en torno a βα. Se tiene que gm+1 =

E(βα)δ + C(βα)δ2

2+ O(δ3), donde E(βα) es la energía media en βα y C(β) = 〈H2〉 −

〈H〉2.Mediante este procedimiento se evita quedar atrapado por barreras altas de

energía. Mientras el sistema se mueve en el espacio de temperaturas este pasa

continuamente del estado de altas a bajas temperaturas visitando nuevos mínimos

locales. El algoritmo satisface la condición de balance detallado.

La parte mas difícil consiste en determinar los valores de gα para que coincidan

con la energía libre, esto se puede realizar mediante un proceso iterativo dentro

del mismo programa. Los pasos generales para ejecutar este algoritmo son los

siguientes:

Dada una configuración inicial S del sistema.

Se ejecuta un primer corrimiento usando cualquier algoritmo por ejemplo Me-

tropolis para obtener un primer valor de la energía libre.

Corremos la rutina de simulated tempering, cambiando en tiempo de ejecución

los valores anteriores de energía libre, con el fin de obtener una probabilidad

constante para los distintos valores de temperatura.

Page 53: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

48

Finalmente repetimos el paso anterior hasta alcanzar el equilibrio termodiná-

mico realizamos los promedios de las cantidades de interés.

“Exchange Monte Carlo” a esta familla pertenecen algoritmos como: las cade-

nas acopladas de Metropolis, Parallel Tempering (PT) [45, 46, 47, 48, 49, 50]. Este

último es una mejora de simulated tempering. La ventaja es que no se necesita

calcular la energía libre.

En el algoritmo de (PT) se consideran M sistemas idénticos al original (pero

cada uno de ellos en diferente estado termodinámico) y M valores de β. Pues-

to que las replicas no interaccionan entre ellas el espacio de fases está dado

por S=S1xS2. . . xSM. En cada uno de los cuales se puede realizar una

simulación canónica (NV T ) con H(Si) el hamiltoniano, posteriormente se mez-

clan las configuraciones vecinas. La función de partición del sistema extendido es

ZEXT =∏M

i=1 Z(βi) con Z(βi) =∑

Siexp(−βiH(Si)).

La probabilidad de tomar una configuración S para un conjunto de valores

de β es P (S; β1, . . . , βM) =exp(−

PMi=1 βiH(Si))

ZEXT. Ahora si definimos un proceso tipo

Markov (cadena de Markov 5.1) para el sistema extendido, haciendo que P cumpla

la condición de balance detallado determinamos la relación entre las probabilidades

de transición W (S1, β1; S2, β2) (La probabilidad condicional de alcanzar S2 estando

en S1 sin cambiar los valores de β1 y β2) y W (S2, β1; S1, β2), esta es: W (S1,β1;S2,β2)W (S2,β1;S1,β2)

=

exp(−∆), donde ∆ = (β2 − β1)(H(S1) − H(S2)).

Nuevamente podemos utilizar el algoritmo de Metropolis para ejecutar (PT): Si

∆ < 0 aceptamos la transición, caso contrario se acepta con probabilidad exp(−∆).

Los pasos generales de (PT) son:

Generamos y realizamos la dinámica de M replicas independientes del siste-

ma.

Ensayamos las transiciones entre todos los pares de replicas (S1, β1) y (S2, β2).

Aceptando el cambio considerando el valor de ∆

Realizamos los pasos anteriores hasta alcanzar el equilibrio termodinámico.

Finalmente realizamos los promedios de los observables.

Multicanónical Monte Carlo [53] esta técnica calcula los valores esperados pa-

ra un conjunto de m valores β1 < β2 . . . < βm, realizando en cada uno de ellos una

Page 54: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

49

simulación canónica, posteriormente por medio de técnicas de re-pesado (“multi-

histograms reweighting”) extrapola los valores esperados para un rango de tempe-

raturas en torno a cada uno de los elementos de T.

Uno de los algoritmos más exitosos para el estudio de los vidrios de espín en 2D

son las Replicas de Monte Carlo (RMC) ideado por Swendsen and Wang [54], este

es equivalente al algoritmo de “Exchange Monte Carlo” en el límite de dimensiones

altas. Este algoritmo lo desarrollaremos en la sección (5.1).

Todos estos algoritmos son utilizados para resolver un gran número de modelos

de sistemas complejos en varios campos de la ciencia y la ingeniería, tales como:

modelos de espín (modelos de Ising, modelos de Plotts, modelos de campos aleato-

rios, modelos cuánticos de espín, vidrios de espín) [47, 49, 54, 55, 56], modelos de

polímeros, el plegamiento de proteínas, modelos de moléculas en agua y el vacío

[46], modelos de redes gauge, modelos de gravedad cuántica, etc.

También existen los llamados algoritmos completos que a diferencia de los ante-

riores (algoritmos heurísticos) [57] proporcionan la solución exacta de un problema

extremal (mínimo de una función); desafortunadamente estos son difíciles de imple-

mentar, lentos y requieren la mayoría de los recursos computacionales. Sin embar-

go hemos implementado el algoritmo de ramificación y corte “branch and cut” cuya

variante para los vidrios de espín lleva el nombre de el problema de máximo corte

“Max-cut problem” [58]. Este problema nos señala la relación que se ha establecido

entre una clase de problemas de la optimización combinatoria conocidos como pro-

blemas NP-difíciles “NP-hard problems” y los vidrios de espín. En la sección (5.2.2)

retomaremos de nuevo el problema de corte máximo para hallar los estados base

de los vidrios de espín.

5.1. Elementos generales en las simulaciones de MC

Muestreo Simple y Pesado

El crecimiento exponencial en el número de configuraciones con el tamaño del

sistema N es completamente general e independiente del modelo, ya que siendo la

entropía una magnitud extensiva tendremos que, a bajas temperaturas S ∝ N . La

evaluación de la función de partición Z por enumeración de todas las configuracio-

Page 55: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

50

nes resulta un método inviable. En principio existen dos procedimientos generales

por los cuales podemos evaluar adecuadamente Z para N grandes [46, 59]

De acuerdo al muestreo simple podemos escoger un subconjunto de M con-

figuraciones del sistema completamente al azar, de tal manera que la probabili-

dad de tomar una cualesquiera de las configuraciones es igual para todas. De es-

ta manera podemos aproximar los valores medios 〈A〉 mediante los estimadoresPM

i exp(−βEαi)AαiPM

i exp(−βEαi). Este método es inadecuado para el estudio de sistemas que or-

denan a bajas temperaturas, pues la mayor parte de las configuraciones poseen

probabilidad casi nula, excepto el estado fundamental y los primeros estados ex-

citados. Este inconveniente puede ser solucionado mediante el muestreo pesado

(“importance sampling”) que permite diferenciar entre las configuraciones que más

aportan a Z a una temperatura dada.

Para esto se supone que se eligen las configuraciones con la distribución 4

pα = exp (−βHSα)/Z (5.1)

la cual nos proporciona la mediada de la contribución a la suma total. Entonces

el valor 〈A〉 se transforma en un simple promedio aritmético de Aα sobre las M

configuraciones. Sin embargo seguimos con el problema pues pα depende de Z,

esto se soluciona mediante el uso de los procesos tipo Markov.

Cadenas de Markov

Los métodos de muestreo pesado importantes en la física estadística se basan

en las cadenas de Markov. Un proceso de Markov se define como aquel proceso

que tiene que ver solo con un instante anterior inmediato, es decir, la probabilidad

de evolución de un sistema que habiendo pasado por los estados x1 al tiempo t1,

x2 al tiempo t2, etc se encuentre en el estado xn al tiempo tn dependa solo del

estado anterior a n es P (x1, t1; . . . ; xn−1, tn−1 || Xn, tn) = P (Xn−1, tn−1 || Xn, tn).

De esta manera, un proceso de Markov puede pensarse como una secuencia de

4Esta puede ser una distribución cualesquiera ρα no-uniforme que sea compatible con los pro-

medios termodinámicos ξα =pα

ρα

Aα, e introduciendo nuevos estimadores ξ =1

M

∑M

i=1ξαi, llegado

finalmente a los siguientes promedios 〈ξ〉ρ =∑W

α=1pαAα = 〈A〉p. Pero es conveniente una medida

pα tipo Gibbs debido a que maximiza la entropía y estadísticamente tiene propiedades de un proceso

de Markov.

Page 56: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

51

transiciones, las cuales son estadísticamente independientes entre si, ademas si

las variables estocásticas X toman valores discretos se habla de una cadena de

Markov [46, 59].

Balance detallado y ergodicidad

Para generar una cadena de Markov de estados α1, α2, . . . , con distribución de

probabilidad estacionaria P (α, t) = pα los cuales se utiliza para el muestreo pesado,

es decir, dada una configuración inicial α1 se genera una nueva configuración α2, de

acuerdo a una probabilidad de transición P (α1 → α2). P debe satisfacer las siguien-

tes hipótesis con el fin de alcanzar una distribución pα estacionaria ver referencia

[59].

1. Accesibilidad o ergodicidad Dado dos estados cualesquiera, existe una su-

cesión finita de estados tal que:

P (α → α1)P (α1 → α2) . . . P (αM → α) (= 0 (5.2)

2. Balance detallado o microreversibilidad: Para todas las transiciones P (α →α1) satisface la relación

pαP (α → α1) = pα1P (α1 → α) (5.3)

Algoritmo de Metropolis

La condición (5.3) puede reescribirse mediante la ecuación (5.1) como P (αi→αj)

P (αj→αi)

= exp(−β∆E) con ∆E = Ei−Ej5, pero de ninguna manera se puede especificar la

probabilidad de transición (Pαi → αj) de forma única, se tiene la libertad de precisar

P de la forma más sencilla posible. Una de las más utilizadas es:

Pαi→αj=

τ−10 exp(−β∆E) si ∆E > 0

τ−10 si ∆E ≤ 0

(5.4)

5Son definidos los valores que puede tomar ∆E en una o dos dimensiones para el modelo de

Ising. En dos dimensiones ∆E es igual a ±8J , ±4J y 0

Page 57: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

52

Donde τ0 es una constante de normalización que vale 1 para el caso en que los si-

tios de red son escogidos secuencialmente, y N−1 en el caso aleatorio. El esquema

general del algoritmo de Metropolis utilizando la probabilidad de transición P es:

1. Se elige una configuración arbitraria αi

2. Se elige una nueva configuración αj por algún método6, y se calcula ∆E.

3. Si ∆E < 0 se acepta la nueva configuración αj como la siguiente en la cadena.

4. Si ∆E > 0 se genera un número aleatorio r y la nueva configuración se acepta

si r ≤ exp(−β∆E) y se rechaza con probabilidad 1 − exp(−β∆E).

5. Se repiten los pasos 1, 2, 3 y 4 con la nueva configuración (Si o Sj), hasta

obtener las condiciones necesarias de equilibrio.

5.2. Algoritmos

Los códigos que se desarrollaran a fin de implementar los algoritmos de (RMC)

y Metropolis para los vidrios de espín tienen la desventaja que demandan una alta

velocidad de procesamiento y en la mayoría de los casos la asignación dinámica de

memoria es limitada. Una alternativa para mitigar en algo este inconveniente es el

uso de una técnica de programación llamada código multi-espín.

Esta técnica nos permite disminuir el tiempo de ejecución en un factor conside-

rable respecto a un código tradicional mediante la manipulación de bits a través de

funciones que nos proporciona nuestra CPU. Estas funciones incluyen operadores

lógicos y operadores a nivel de bits como: AND (∧), OR (∨), OR-exclusivo (⊕), des-

plazamiento a la izquierda (≪), desplazamiento a la derecha (≫), desplazamiento

a uno NOT (−), etc.

6La nueva configuración puede elegirse dependiendo de las características del problema. En los

modelos de redes de espines se elige una nueva configuración eligiendo un espín Si e invertirlo

(“spin flip”). En la sección (5.2.1) se verá otra forma de generar configuraciones mediante clusters

Page 58: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

53

NOMBRE SIMBOLO C/C++ FORTRAN

AND ∧ & IAND

OR ∨ | IOR

XOR ⊕ IEOR

NOT - ∼ NOT

shift left ≪ ≪ ISHFT

shift right ≫ ≫ RSHIFT

Cuadro 5.1: Operadores a nivel de bits en C/C++ y FORTRAN

5.2.1. Algoritmo de Réplicas de Monte Carlo

El algoritmo (RMC) fué desarrollado por Swendsen y Wang, siendo uno de los

algoritmos más exitosos en la simulasión de los vidrios de espín en dos dimensio-

nes. Haciendo uso de una colección de sistemas en diferentes temperaturas Ti se

espera alcanzar el equilibrio rápidamente incluso para valores grandes de tempe-

ratura, posteriormente esta información se transmitirá a la zona de bajas tempera-

turas, la simulación de esta colección debe realizarse simultáneamente. También

se introduce una dinámica de clusters definidos entre dos pares de réplicas veci-

nas τ = S1S2, estas son las ideas fundamentales sobre las cuales se desarrolla el

algoritmo (RMC).

Consideremos la configuración de un par de réplicas S1 y S2, donde su

hamiltoniano es:

Hpar(S1, S2) = −∑

<i,j>

β1JijS1i S

1j + β2JijS

2i S

2j (5.5)

Para el modelo de red cuadrada en 2D, la suma < i, j > se extiende a los primeros

vecinos, Jij son las constantes de acoplamiento que toman los valores de +1 y

−1, β1 y β2 son los valores inversos de temperatura de las respectivas réplicas con

la constante de Bolzmann kB = 1. La probabilidad de distribución conjunta es el

producto de la distribución de Boltzmann de cada una de las réplicas

p =exp(−Hpar(S1, S2))

Zext

(5.6)

donde Zext es la función de partición extendida, los movimientos de Monte Carlo

que se permiten se deben desarrollar bajo el criterio de balance detallado, es decir,

Page 59: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

54

1 2 3 4 1 2 3 4

2

3

4

1

tau−cluster= −1tau−cluster= −1

tau−cluster= 1

tau−espin= Si*Ci

Figura 5.1: Dinámica de cluster

p debe satisfacer la ecuación (5.3). Continuando con la descripción del algoritmo,

se construye una nueva configuración de espines sobre otra red a través de la

siguiente definición τ -espín, τi = S1i S

2i , posteriormente se forman los cluster (sitios

vecinos conectados por el mismo τ -espín) sobre dicha red, es decir, dos sitios i y j

están conectados y pertenecen al mismo cluster si τi = τj. Así los τ -clusters pueden

tomar solo valores de ±1 y la dinámica se dá sobre los clusters no sobre un espín

individual Si. Figura (5.1). Se reescribe Hpar como:

Hpar = −∑

<ij>

TijS1i S

1j (5.7)

donde Tij = (β1 + β2τiτj)Jij. También podemos asignar a cada cluster una nueva

variable ηa, entonces se puede pensar en una interacción entre clusters gobernado

Page 60: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

55

por un hamiltoniano efectivo Hclus de la forma.

Hclus(η) = −∑

a,b

Kabηaηb (5.8)

Donde la suma se efectúa entre los límites del cluster a y b, con las constantes

de acoplamiento entre clusters Ka,b =∑

i∈a,j∈b S1i S

1j (β

1 + β2τiτj). Ahora podemos

simular a (5.8) con cualquier método de Monte Carlo valido, como el algoritmo de

Metrópolis.

Código multi-espín de (RMC)

Usando la técnica de multi-espín generaremos el código para la ecuación (5.8),

la parte fundamental para llevar ha cabo la dinámica de clusters bajo cualquier algo-

ritmo se implementara a través de una rutina (función) llamada PRINCIPAL escrita

en los lenguajes de programación C/C++ y FORTRAN. La primera implementación

se hizo en C/C++, pero finalmente se escogió al lenguaje de programación FOR-

TRAN por ser más directo y eficiente a la hora de realizar un número extenso de

operaciones aritméticas. El algoritmo para la generación de los bit aleatorios (núme-

ros aleatorios) se ha tomado de la referencia [60]. El código completo se encuentra

en el apéndice (A).

Antes de escribir el codigo para RMC, fijemos las ideas de la técnica multi-espín

sobre el algoritmo de metrópolis. El código multi-espín del algoritmo de Metropolis

para el caso más simple esta dado para el modelo de Ising del ferromagnetismo

ecuación (1.1), donde las interacciones de intercambio Jij pueden ser todas po-

sitivas ó negativas (J = 1 ó J = −1). Tomemos un arreglo de espines en una

dimensión. Sea Si el bit que representa los dos estados del i-ésimo espín, si ejecu-

tamos el operador ⊕ sobre los bits i y j tenemos que Si ⊕ Sj es igual a 1 solamente

si los dos espines no están alineados. Así la expresión (Si ⊕ Si−1)∨(Si ⊕ Si+1) (que

representa la interacción entre los primeros vecinos) será igual a 1 solamente si uno

o ambos vecinos del espín i son opuestos a este. Por otro lado si generamos un

número aleatorio representado por el bit r el cual es 1 con probabilidad exp(−4βJ),

entonces la expresión (Si ⊕ Si−1)∨(Si ⊕ Si+1)∨r es 1 y se debería cambiar la orien-

tación del espín Si. En otras palabras, si escogemos un espín i de la red, se debe

fijar su nuevo valor Si mediante la siguiente ecuación (donde se ha permitido la

Page 61: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

56

interacción Si ⊕ Sj).

Si = Si ⊕ [(Si ⊕ Si−1) ∨ (Si ⊕ Si+1) ∨ r] (5.9)

que es la parte esencial de un paso de Monte Carlo (mcs), con la ventaja que po-

demos usar cadenas de 32 o 64 bits (espines) simultáneamente. Basta con escribir

el código en un lenguaje de programación apropiado para la ecuación (5.9) y se

tendrá un modelo numérico del ferromagnetismo.

5.2.2. Algoritmo de ramificación y corte

El método de ramificación y corte tiene su origen en el método de ramificación y

acotación, por lo tanto, primero vamos a comenzar explicando este método. Muchos

de los problemas de la clase NP-hard en optimización combinatoria y en particular

el problema de máximo corte se los enfrenta mediante la técnica de ramificación y

acotación7 (Branch and Bound), la cual enumera todas las posibles soluciones sin

tener que considerar a cada una de ellas logrando obtener una solución óptima.

Generándose un ordenamiento en forma de árbol decisional cuyas ramas son las

soluciones del problema [43].

Este método tiene dos ingredientes principales que son la ramificación y la aco-

tación. La ramificación consiste en dividir un conjunto S de todas las posibles solu-

ciones de cierto problema en subconjuntos S1, S2, . . . , Ss1. Cada uno de los cuales

se parte, a continuación, en subconjuntos Si1 , Si2, . . . , Sis2 (i = 1, 2, . . . , s1), etc. La

acotación consiste en que para un subconjunto obtenido mediante la ramificación,

se puede tomar como una cota inferior ó superior al mayor ó menor valor de la

función costo respectivamente en este subconjunto.

El algoritmo general de este método es el siguiente:

Como entrada tenemos una configuración cualesquiera del sistema

1. Fijamos el árbol inicial T como T = (S, ∅), donde S es el conjunto de todas

las soluciones viables, y marcamos a una como la solución activa. Fijamos

una cota superior U = ∞ (Un valor grande comparado con cualquier solución

óptima)7También se le conoce como método de particiones progresivas y estimaciones, método de ra-

mificaciones y fronteras, método de ramificación y poda

Page 62: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

57

2. Escogemos el siguiente vértice activo X del árbol T (si no existe ninguno,

paramos) y marcamos a X como vértice no activo. Encontramos una partición

del conjunto X, es decir, X = X1 ∪ X2 ∪ · · · ∪ Xt (ramificamos)

3. Para cada i = 1 . . . , t hacemos:

Buscamos una cota superior L sobre la función costo de cualquier solu-

ción Xi (Acotamos)

Si | Xi | =1 (se afirma que Xi = S y el costo(S) < U ) entonces: Fijamos

U = cost(S) y S∗ = S

Si | Xi |>1 y L < U entonces: Fijamos T = (V (T ) ∪ Xi, E(T ) ∪X,Xi) y marcamos Xi como activo

4. Regresamos al punto 2 y repetimos el proceso

Como salida tenemos una solución óptima S∗

Este método siempre encuentra una solución óptima. La implementación y la efi-

ciencia depende de cada problema en particular.

Método de Ramificación y Corte

El método de ramificación y corte [44] a menudo se combina con el método de

corte de planos, en el cual existe un conjunto de restricciones impuestas al proble-

ma en forma de desigualdades, es decir, las constricciones poliédricas dadas en la

definición 9 y el teorema 2, las cuales pueden ser resueltas mediante métodos de

programación lineal como el método simplex. Esto lo realizamos para cada nodo

del árbol decisional a este método se le llama método de ramificación y corte.

El algoritmo general es el siguiente (La salida y la entrada son las mismas que

en el algoritmo anterior):

1. Comenzamos con un subconjunto P = x : Ax ≤ b

2. Hallamos una cota superior US, resolviendo US = cx∗ = maxcx :: x ∈ P

3. Hallamos una cota inferior UI (mediante cualquier procedimiento heurísti-

co)(Cortamos)

Page 63: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

58

4. Si (US) = (UI) ó x∗ es un corte entonces: paramos

5. Caso contrario: Tomamos otro P (mejor) y regresamos al punto 2

6. Si no se puede halla un P entonces: Ramificamos

Generalmente el problema se presenta en escoger un buen conjunto P

Problema de corte máximo

El problema de máximo corte en un grafo ponderado (max-cut problem) se lo

puede enunciar de la siguiente manera: Dado un grafo G = (V, E) ponderado, en el

que a todo arco e ∈ E le corresponde los pesos cij ∈ R. Sea W ⊂ V (posiblemente

vacío). El corte δ(W ) es definido como el conjunto de arcos que tiene exactamente

un nodo incidente en W y el otro en V W = i ∈ V : i /∈ W. En fórmulas el corte

δ(W ) es:

δ(W ) = (i, j) ∈ E : i ∈ W, j ∈ V W (5.10)

El peso de un corte está dado por la suma de todos los pesos de sus arcos. El

problema de corte máximo consiste en hallar un corte de G con máximo peso.

Estados base de los vidrios de espín

A continuación vamos a ver la relación que existe entre el problema de corte

máximo y la determinación de los estados base de los vidrios de espín. Para esto

consideremos el modelo de Edwards-Anderson (EA) (ver sección 3.2) con valores

de Jij = ±1. El hamiltoniano del sistema es [58]:

H = −∑

<i,j>

JijSiSj − h

n∑

i

Si (5.11)

Si identificamos a los espines del sistema con el conjunto de vértices V =

1, 2, . . . , n de un grafo G = (V, E). Dos nodos i y j están conectados por un

arco e ∈ E si el espín i y j están acoplados por la interacción Jij. Para incluir el

campo magnético externo h, se introduce un nuevo vértice que lo notamos con o

y el espín correspondiente a este vértice con So. El vértice 0 está conectado por

los arcos (o, i) para todo espín i ∈ V y si fijamos Joi = h. Una configuración w del

sistema tiene una energía igual a:

Page 64: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

59

H(w) = −∑

(ij)∈E0

JijSiSj (5.12)

donde Eo es el conjunto de arcos del grafo Go = (Vo, Eo). El conjunto de vértices V

puede ser dividido en dos conjuntos V +0 y V −

0 , donde V +o = i ∈ Vo : Si = +1 y

V −o = i ∈ Vo : Si = −1. Se reescribe la ecuación (5.12)

H(w) = 2∑

ij∈δ(V +)

Jij −∑

(ij)∈Eo

Jij (5.13)

Por lo tanto, el hamiltoniano del sistema está en función del corte de un grafo y

ahora puede ser tratado como un problema de corte máximo.

Page 65: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

Capítulo 6

Análisis de Resultados

En los capítulos anteriores se ha visto que existen dos enfoques teóricos para

describir los vidrios de espín: La teoría de campo medio en la solución de Parisi

[33] y la teoría de “droplets” [61]. Recientemente, a causa de las evidencias experi-

mentales y extrapolaciones numéricas se ha presentado un nuevo modelo conocido

como TNT “trivial no trivial”, este nuevo enfoque sugiere una imagen intermedia en-

tre (RSB) y los “droples” por compartir resultados de ambas teorías [61].

Uno de los desafíos que presenta el estudio de los vidrios de espín en 2D y que

son objeto de estudio en este trabajo son: Primero, saber si existe una transición de

fase a una temperatura distinta de cero T (= 0. Esta idea se desarrollará a través del

cálculo de los estados base y los primeros estados excitados [43], procedimiento

muy conveniente para determinar si un sistema presenta una transición de un esta-

do ordenado (temperaturas bajas) a un estado desordenado (temperaturas altas) a

una temperatura Tc > 0. El enfoque general (no necesariamente para los vidrios de

espín) que seguimos es el siguiente [44].

1. Calculamos el estado base S(o)i y su energía E(o).

2. se modifica algunas constantes de acoplamiento Ji de forma que el estado

base cambie.

3. Calculamos el estado base del sistema modificado S(m)i y su energía E(m)

Las formas mas conocidas de excitar los estados es mediante las paredes de domi-

nio y los “droplets”. Las paredes de dominio (PD) se crean a través de las excitacio-

nes que se producen mediante el cambio de las condiciones de frontera periódicas

60

Page 66: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

61

y antiperiódicas, la diferencia de energía producida | ∆E |=| E(m)−E(o) | se conoce

como “stiffness” y está caracterizada por el exponente de “stiffness” θs que mediante

consideraciones teóricas tiene un comportamiento de la forma ∆E(L) ∝ Lθs [43].

Si θs > 0 se espera que el sistema presente una fase ordenada para T > 0,

mientras que si θs < 0 debería existir orden sólo a T = 0 y la longitud de correlación

ξ diverge para T → 0 como ξ ∼ T 1/θ. En la dimensión crítica, se tiene θ = 0 y se

espera una divergencia exponencial en la longitud de correlación [61].

Segundo, se buscará evidencia del paisajismo complejo de los estados base y

la distribución de estos en forma ultramétrica como lo predice la teoría de campo

medio en la solución de Parisi (sección 3.4). Para este propósito se utiliza el con-

cepto de solapamiento (“overlap”) qαβ entre las réplicas Sαi , Sβ

i y su distribución

P (q) promediada sobre el desorden [33].

qαβ =1

N

i

Sαi Sβ

i (6.1)

Sabemos que una estructura jerárquica ultramétrica está definida por las ecua-

ciones [51] (3.15) o (3.16). Desde el punto de vista geométrico los puntos de este

espacio forman solamente triángulos equiláteros e isósceles, es decir, al menos dos

“overlaps” deben ser iguales, así una forma equivalente de representar un espacio

ultramétrico en términos de los solapamientos de tres estados α, β, γ es:

qαγ ≤ qαβ ≤ qβγ (6.2)

con

qαγ = qαβ (6.3)

Las dos ecuaciones anteriores sirven para estudiar numéricamente la ultra-

metricidad del espacio [40]. Así tomaremos conjuntos de tres estados base y se

evalúa sus respectivos solapamientos ordenados según la ecuación (6.2), clara-

mente no se puede verificar la relación (6.3), en su lugar calculamos la diferencia

δq = qαγ − qαβ bajo la restricción que el solapamiento más grande qβγ pertenezca

a un cierto intervalo I. Se debe cumplir la condición que qβγ ∈ I para hacer posible

el análisis numérico debido a la infinidad de valores que pueden tomar los respecti-

vos solapamientos, posteriormente determinamos la distribución P (δq) para varios

valores de L su comportamiento revelara si existe un orden ultramétrico [62].

Page 67: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

62

El estudio de los vidrios de espín continua a través de cantidades como: la sus-

ceptibilidad para los vidrios de espín.

χ = N [〈q2〉] (6.4)

donde los corchetes denotan el promedio sobre el desorden y los “brackets” el pro-

medio termodinámico. Otra medida importante es el cumulant de Binder considera-

do como un parámetro de orden importante en el estudio de sistemas magnéticos.

g =1

2[3 − 〈q4〉

〈q2〉2 ] (6.5)

El comportamiento de estas dos cantidades para varios valores de L son determi-

nantes a la hora de determinar la existencia de una transición de fase.

Finalmente, La energía de los estados base y todos los observable calculados

para sistemas pequeños serán extrapolados mediante la técnica llamada escala-

miento de tamaño finito (“finite size scaling”) puesto que no es posible tratar numé-

ricamente sistemas estadísticos. Las formas más conocidas de escalamiento son

[22]:

χ ∼ L2−ηχ(L1ν (T − Tc)) (6.6)

para la susceptibilidad y

g ∼ g(L1ν (T − Tc)) (6.7)

para el cumulant de Binder, donde χ y g se llaman universales, η, ν son exponentes

críticos.

Modelo de Simulación

El modelo que se simula es el modelo de Edward-Anderson (EA) ±J , el cual

consiste de N espines cuyas variables toman sólo valores de Si = ±1. El hamil-

toniano que describe este modelo está dado por la ecuación (3.1) a campo nulo

h = 0, donde las variables de espín son colocadas aleatoriamente con probabilidad

(1/2) sobre los N = L ∗ L sitios de una red cuadrada de longitud L y las varibles

Jij = ±1 son “quenched”, al sistema se le impone condiciones de frontera periódi-

cas y antiperiódicas [63]. Figura (6.1).

Page 68: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

63

Ferro

Antiferro

espin arriba

espin abajo

Figura 6.1: Red cuadrada de tamaño L = 5

Resultados obtenidos

Para la primera parte de la simulación utilizaremos los siguientes valores de L

L = 5, 10, 15, 20, 24, 30, 35, 40, 45, 50, para cada valor se ensayaron 50 corridas, que

dan un promedio de 10.000 estados base calculados.

Los resultados se presentan en la Figura (6.2). Mientras se incrementa el ta-

maño del sistema la energía decrece monótonamente, entonces de acuerdo con

la literatura [44] podemos intentar un ajuste de curvas mediante una función de la

forma Eo(L) = Eo(∞) + aL−b. Ahora podemos estimar el valor de la energía cuan-

do L → ∞, que resulta en Eo(∞) = −1,39232 ± 0,00678. También se acostumbra

probar con una función exponencial de la forma Eo(L) = Eeo(∞) + a exp(bL) [58],

mediante esta función obtenemos Eeo(∞) = −1,39079 ± 0,00637. Se ejecutó el al-

goritmo mediante el método de ramificación y corte para los mismos valores de L.

Tenemos valores de Eo(∞) = −1,40112 ± 0,00538 y Eeo(∞) = −1,40351 ± 0,00541.

Estos valores son consistentes mediante otros procedimientos, a saber: método de

cluster Eo(∞) = −1,400 ± 0,005 [63], Eeo(∞) = −1,4015 ± 0,0008 [58].

Posteriormente calculamos la energía ∆ de las paredes de dominio imponien-

do las condiciones de frontera anti-periódicas1. Estas restricciones a la frontera se

1No son las únicas condiciones que podemos tomar, pero si las más frecuentes

Page 69: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

64

-1.41

-1.4

-1.39

-1.38

-1.37

-1.36

-1.35

0 10 20 30 40 50

E_

o(p

or

esp

in)

L

"energia_b.dat"f(x)

Figura 6.2: Energía de los estados base Eo en función de L. La curva de ajuste f(x)

es Eo(L) = E∞ + aLb donde Eo(∞) = −1,4015

mantienen únicamente en una dirección, tomemos la dirección x, mientras que con-

diciones libres o la frontera abierta dejamos en la dirección y.

Siguiendo con el análisis del exponente de “stiffness”, el signo positivo de θs

es interpretado como una señal de que existe una fase (fase de vidrio de espín) a

una temperatura distinta de cero. Los resultados se muestran en la Figura (6.3). La

estimación del exponente θ se logra mediante un ajuste de curvas para los datos

resultando en un valor de θs = −0,0421293 ± 0,002341. Otros resultados se citan en

[62] de θs =−0,056(6) y de θs=−0,25 en [64].

Para la segunda parte de la simulación usamos los valores descritos en la

Tabla(6), los valores de temperatura bajos y valores de N > 20 hacen que se di-

ficulte alcanzar el equilibrio del sistema, para superar este inconveniente al inicio de

cada corrida se descartan varios pasos de Monte Carlo y solo después se guardan

los datos obtenidos para su tratamiento.

Para la existencia de una transición de fase debería existir un valor fijo de g a una

temperatura T para todas las curvas de la Figura (6.4), es decir, todas las curvas

deberían cortarse en un sólo punto [44]. Sin embargo esto no sucede, el punto de

Page 70: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

65

1

1.5

2

2.5

3

10 20 30 40 50

De

lta

_E

L

"dominio.dat" using 1:2f(x)

Figura 6.3: “Stiffness” ∆E en función de L. La curva de ajuste f(x) es ∆E = aLθs

donde θs = −0,0421293

L Nensayos Npmct Npmcd

12 300 1,5E4 5E4

25 300 1,5E5 5E4

50 200 1,2E4 3E4

100 100 1E4 3E4

Cuadro 6.1: Parámetros de la simulación en 2D. Nensayos es el número de muestra (pro-

medio sobre el desorden), Npmct es el número de pasos de Monte Carlo en total, Npmcd es

el número de pasos de Monte Carlo descartados

Page 71: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

66

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

g

1/T

L = 10L = 20L = 50

L = 100

Figura 6.4: Cumulant de Binder g en función de β para diferentes tamaños de L

corte toma valores cada vez mayores con el aumento de L. Esto es un indicio de

que no existe una temperatura finita de transición T (= 0. Los resultados para la

susceptibilidad dada por la ecuación (6.4) se presentan en la Figura (6.5).

Las figuras (6.6) y (6.7) son el resultado de aplicar el escalamiento de tamaño

finito a las ecuaciones (6.6) y (6.7) respectivamente, el colapso más óptimo de las

curvas dan los siguientes valores en los exponentes críticos η = 0,28 y ν = 0,735.

con Tc = 0

La distribución del “overlap"se muestra en la figura (6.8). La distribución se

muestra sólo para dos valores de L y promediado sobre el desorden donde los

pesos son independientes del número de estados base.

La figura (6.10) presenta una simulación gráfica del modelo de vidrios de espín

en 2D. Se ilustra como los espines estaría interactuando unos con otros a una

determinada temperatura T .

Page 72: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

67

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8

ch

i

1/T

L = 10L = 20L = 50

L = 100

Figura 6.5: La susceptibilidad χ en función de β para diferentes tamaños de L

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

g

(T-T_c)L^1/nu

Finite size scaling: gL = 10L = 20L = 50

L = 100

Figura 6.6: Ley de escalamiento de g en función de TL0,3604

Page 73: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

68

0.01

0.1

1

10

0 1 2 3 4 5

Ch

i.L

^(e

ta-2

)

(T-T_c)L^1/nu

Finite size scaling: ChiL = 10L = 20L = 50

L = 100

Figura 6.7: Ley de escalamiento de chi en función de TL0,3604

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

P(q

)

q

L = 10L = 50

Figura 6.8: Distribución de P (q) en función de q

Page 74: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

69

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5

P(d

q)

dq

L = 10L = 20L = 30

Figura 6.9: Distribución P (δq) en función de dq para diferentes tamaños

Figura 6.10: Modelo de vidrios de espín en 2D a una tempertura T = 1,5

Page 75: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

Capítulo 7

Conclusiones

En este trabajo se calculó un número grande de estados base para el modelo

de vidrios de espín tipo Ising en 2D sobre una red cuadrada a primeros vecinos y

condiciones de frontera periódicas. Cálculos anteriores y simulaciones más sofisti-

cadas mediante algoritmos exactos coinciden con los resultados obtenidos aquí por

lo que se considera haber encontrado los estados base. La energía de los estados

base para un sistema infinito se estimó en Eo(∞) = −1,401512 ± 0,00531.

La teoría (RSB) predice un comportamiento complejo en el paisajismo de la

energía [61], que resulta en una función de distribución P (q) dotada de una re-

gión ancha casi constante para todos los valores de solapamiento entre los estados

base, excepto en q(max) donde P (q) es una delta de Dirac. De la figura (6.8) se en-

contró un comportamiento complejo de los estados base, pero no existe evidencias

claras que la meseta de P (q) se mantenga significativa para sistema con L grandes

y más aun para L → ∞.

Mediante la gráfica (6.9) se puede observar que las curvas coinciden para los

diferentes tamaños de la red, es decir, la distribución P (dq) es independiente del

tamaño L del sistema. Esto indica que no existe una estructura ultramétrica de los

estados base, pues para que exista dicha estructura P (dq) debería semejarse a una

función delta a medida que L crece como lo dice la teoría (RSB) [61].

Magnitudes como el “stiffness” ∆E y el exponente “stiffness” son dos valores

importantes para determinar la existencia de una transición de fase. Estas dos

cantidades se determinan a través del cálculo de los estados base y los prime-

ros estados excitados estos últimos mediante la generación de paredes de domi-

70

Page 76: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

71

nio imponiendo diferentes condiciones de frontera. Para el sistema infinito se hallo

θs = −0,0421293±0,002341 el valor negativo de θs indica que no existe una transición

de fase a una temperatura T (= 0, y sugiere que sólo existe transición a Tc = 0 quizá

con una dimensión crítica de dc > 2.

Otro enfoque para determinar la existencia de una transición de fase es a través

de la susceptibilidad χ y el “cumulant” de Binder g. De las figuras (6.4) y (6.5) se

puede observar que no existe un punto de corte único de las curvas para los dife-

rentes valores de L, más bien ciertas intersecciones aumentan conforme L crece,

esto es un claro indicio de que no existe una temperatura T (= 0 de transición.

Aplicando la técnica de escalamiento finito a los datos obtenidos y conforme a

las ecuaciones que la rigen, no se tiene un buen colapso (solapamiento) de las

curvas, aun cuando se ha ensayado un número grande de parámetros, esto hace

pensar que las ecuaciones (6.6) y (6.7) no corresponden a la realidad del modelo.

Los mejores valores de los parámetros que se tiene son η = 0,28 y ν = 0,735.

En el futuro se podría implementar una un algoritmo exacto que permita deter-

minar con claridad el equilibrio del sistema antes de proceder a la recopilación de

datos. En el algoritmo principal también sería conveniente ensayar diferentes alter-

nativas al algoritmo de baño caliente o de Metropolis.

Un paso importante sería extender el estudio de los vidrios de espín a tres di-

mensiones, para esto se debería contar con un conjunto de CPU conectados pa-

ralelamente e implementar la programación en paralelo. Los desafíos son grandes

pues fácilmente se extendería el estudio a más dimensiones que resultarían en apli-

caciones de uso práctico, a saber : procesamiento de la información, restauración

de imágenes, etc.

Page 77: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

Apéndice A

Código Fuente algoritmo RMC

! ===============================================

Program v id_esp in

! ===============================================

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗! Escuela P o l i t e c n i c a Nacional

! Departamento de F i s i c a

! Diego De La Torre

! Quito , 2009

!

!−−−− DESCRIPCION −−−−−−−! Simulacion en 2D para v i d r i o s de espin

! con in te racc iones quenched (+/−J ) a campo

! magnetico nulo y vecinos proximos :

! Hami l toniano= −suma( i , j )∗ J _ i j ∗S_i∗S_j .

!−−−− ALGORITMO −−−−−−−−−! A lgor i tmo de metropo l is , e s c r i t o en codigo

! mu l t i−espin para un conjunto de ocho r e p l i c a s .

!

!−−−− PARAMETROS −−−−−−−−−! _ Tamanio de l a red (Lmax<100)

! _ Semi l la ( gna )

72

Page 78: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

73

! _ Condiciones de i n i c i o de los espines

! (0= rden /?= a lea t )

! _ Ocho va lo res de temperatura : (Temp)

! _ Pasos monte ca r l o ( e q u i l i b r i o )

! _ Pasos monte ca r l o ( promedio )

! _ Pasos c l u s t e r

! _ I n t e r v a l o datos

!

!−−−− RESULTADOS −−−−−−−−! _ Energia estados base

! _ S u s c e p t i b i l i d a d magnetica

! _ Cumulant de Binder

! _ Overlap

! _ E s t a d i s t i c a ( D i s t r i b u c i o n e s )

!

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

use mis_datos

use a lgor i tmos

use e s t a d i s t i c a

use gna

use s a l i d a

i m p l i c i t none

integer : : i , j

c a l l i n i c i o

c a l l act_datos (N1,N2)

do i =1 ,pmc_equi

c a l l RMC(N1)

c a l l RMC(N2)

end do

Page 79: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

74

do i =1 ,pmc_prom

do j =1 , pmc_clus

c a l l RMC(N1)

c a l l RMC(N2)

end do

c a l l e n e r g i a _ t o t a l (N1, E1)

c a l l e n e r g i a _ t o t a l (N2, E2)

c a l l magne t i_ to ta l (N1, N2,OP1,OP2,OPN)

c a l l c o r r e l a _ t o t a l (OPN, E1 , E2 ,OP1,OP2)

end do

c a l l e s t a d i s t i c a

c a l l s a l i d a

end Program v id_esp in

! ===============================================

! 12345678912345678912345678912345678912345678912

! ===============================================

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−MODULE mis_datos

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−! −−−− CONTENIDO −−−−−! ( 1 ) D e f i n i c i o n de constantes .

! ( 2 ) D e f i n i c i o n de v a r i a b l e s Globales .

! ( 3 ) Subrout ine i n i c i o :

! Acepta los va lo res d e f i n i d o s por e l

! usuar io : Tamanio ( L ) , Temperatura (Temp) , e tc .

! ( 4 ) Subrout ine act_datos (N1,N2 ) :

! I n i c i a l i z a las v a r i a b l e : espin , constantes

! de acoplamiento , p robab i l i dades de

! t r a n s i c i o n , e tc .

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−IMPLICIT NONE

Page 80: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

75

!−−−−−−−−−−−−−−− Parameter ( constantes )

INTEGER , PARAMETER : : Lmax=100 ! Tamanio max red

INTEGER , PARAMETER : : r e p l i c a s =8 ! Num de r e p l

INTEGER , PARAMETER : : t iempo=16

INTEGER , PARAMETER : : numero=8

INTEGER , PARAMETER : : t o t a l _ r = r e p l i c a s ∗(1+64)

INTEGER , PARAMETER : : t o t a l _ n = r e p l i c a s ∗numero

INTEGER , PARAMETER : : t o t a l _ t = t o t a l _ n ∗ t iempo

!−−−−−−−−−−−−−−− Vara iab les Globales

REAL(KIND=8) : : Periodo ( rep l i cas , 0 : 6 4 )

REAL(KIND=8) : : Orden ( rep l i cas , numero )

REAL(KIND=8) : : F u l l ( r ep l i cas , t iempo : numero )

REAL(KIND=8) : : Bu f fe r ( rep l i cas , t iempo : numero )

REAL(KIND=8) : : Temp( r e p l i c a s )

REAL(KIND=8) : : probab ( rep l i cas , 0 : 4 )

INTEGER (KIND=4) : : convers ion (−1:1)

INTEGER (KIND=4) : : rango ( 0 : 1 ) ! red de va lo res

INTEGER (KIND=4) : : N1(Lmax , Lmax) ! red de espi

INTEGER (KIND=4) : : N2(Lmax , Lmax) ! red de espi

INTEGER (KIND=4) : : Jx (Lmax , Lmax) ! Cons acopla x

INTEGER (KIND=4) : : Jy (Lmax , Lmax) ! Cons acopla y

INTEGER (KIND=4) : : L , Dimen , semi l la , s e m i l l a _ i

INTEGER (KIND=4) : : i n i c i o_es , pmc_equi

INTEGER (KIND=4) : : pmc_prom , pmc_clus , intv_prom

!−−−−−−−−−−−−−−− Data

DATA Buf fe r / t o t a l _ t ∗0 .0 /

Page 81: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

76

DATA F u l l / t o t a l _ t ∗0 .0 /

DATA Orden / t o t a l _ n ∗0 .0 /

DATA Periodo / t o t a l _ r ∗0 .0 /

DATA convvers ion / 1 , 0 , 0 /

DATA rango /+1 ,−1/

CONTAINS

! ===============================================

SUBROUTINE i n i c i o

! ===============================================

IMPLICIT NONE

INTEGER : : unidad =5

INTEGER : : i

WRITE ( ∗ , ∗ ) ’ INGRESE TAMANIO DE RED Lmax=100 ’

READ( unidad , ∗ ) L

WRITE ( ∗ , ∗ ) ’ INGRESE SEMILLA (GNA) ’

READ( unidad , ∗ ) s e m i l l a _ i

sem i l l a = s e m i l l a _ i

WRITE ( ∗ , ∗ ) ’ INGRESE: 0= ORDEN u ? = ALEATO’

READ( unidad , ∗ ) i n i c i o _ e s

WRITE ( ∗ , ∗ ) ’ INGRESE: 8 VALORES TEMPERATURA’

READ( unidad , ∗ ) ( Temp( i ) , i =1 , r e p l i c a s )

WRITE ( ∗ , ∗ ) ’ INGRESE PASOS MC ( e q u i l ) ’

READ ( unidad , ∗ ) pmc_equi

WRITE ( ∗ , ∗ ) ’ INGRESE PASOS MC ( promedio ) ’

READ ( unidad , ∗ ) pmc_prom

WRITE ( ∗ , ∗ ) ’ INGRESE PASOS DINAMICA CLUSTER’

READ ( unidad , ∗ ) pmc_clus

WRITE ( ∗ , ∗ ) ’ INGRESE NUM. DATOS ( promedio ) ’

READ ( unidad , ∗ ) intv_prom

END SUBROUTINE i n i c i o

Page 82: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

77

! ===============================================

SUBROUTINE act_datos (N1,N2)

! ===============================================

IMPLICIT NONE

INTEGER : : i r e p l , i , j

dimen =L∗L

Lmin=L−1

MASK (1)=7

JBITS (1)=1

I1HEX =1

DO i r e p l =2 , r e p l i c a s

MASK ( i r e p l )= ISHFT (MASK ( i r e p l −1) ,4)

JBITS ( i r e p l )= ISHFT ( JBITS ( i r e p l −1) ,4)

I1HEX=I1HEX+JBITS ( i r e p l )

END DO

! Constantes de acoplamiento

MODEL1=I1HEX

BONDPR=0.0

PROBJ =0.5

DO j =1 ,L

DO i =1 ,L

IF ( ran1 ( ) . LT .PROBJ) THEN

Jx ( i , j )=0

ELSE

Jx ( i , j )=MODEL1

ENDIF

IF ( Jx ( i , j ) .EQ. 0 ) BONDPR=BONDPR+1.0

IF ( ran1 ( ) . LT .PROBJ) THEN

Jy ( i , j )=0

Page 83: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

78

ELSE

Jy ( i , j )=MODEL1

ENDIF

IF ( Jy ( i , j ) .EQ. 0 ) BONDPR=BONDPR+1.0

END DO

END DO

BONDPR=0.5∗BONDPR/ dimen

! F i j a espines en l a red y temperatura

sem i l l a = sem i l l a + i n i c i o _ e s

DO j =1 ,L

DO i =1 ,L

N1( i , j )=0

N2( i , j )=0

IF ( i n i c i o _ e s . eq . 0 ) GOTO 20

DO i r e p l =1 , r e p l i c a s

IF ( ran1 ( ) . l t . 0 . 5 ) N1( i , j )=N1( i , j )+ &

& JBITS ( i r e p l )

IF ( ran1 ( ) . l t . 0 . 5 ) N2( i , j )=N2( i , j )+ &

& JBITS ( i r e p l )

END DO

END DO

END DO

! Magnitud constantes de acoplam ( K=1/T ) Y

! Probab i l i dad de f l i p ( espin up y down)

20 DO i r e p l =1 , r e p l i c a s

BETA( i r e p l ) = 1 . 0 / T ( i r e p l )

DO j =0 ,4

EXPDEL=EXP( (4.0−2.0∗ j )∗BETA( i r e p l ) )

PROB( i r e p l , j ) = 1 . 0 / ( 1 . 0 +EXPDEL∗EXPDEL)

Page 84: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

79

END DO

END DO

DO i r e p l =2 , r e p l i c a s

DELTK( i r e p l )=BETA( i r e p l )−BETA( i r e p l −1)

END DO

END SUBROUTINE act_datos

END MODULE mis_datos

! ===============================================

! 12345678912345678912345678912345678912345678912

! ===============================================

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−MODULE a lgo r i tmo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−! −−−− CONTENIDO −−−−−! A lgor i tmo de r e p l i c a s de MC (RMC)

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−IMPLICIT NONE

CONTAINS

! ===============================================

SUBROUTINE RMC(N)

! ===============================================

INTEGER (KIND=4) i , j , k , l ,m, n

INTEGER espin , e s p i n b i t

i =Lmin

j =L

DO k=1 ,L

l =minimoL

m=L

DO n=1 ,L

i n d i c e =IEOR( N( n , j ) , Jx (m, j ) ) + &

& IEOR( N(m, k ) , Jy (m, j ) ) + &

& IEOR( N( l , j ) , Jx ( l , j ) ) + &

Page 85: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

80

& IEOR( N(m, i ) , Jy (m, i ) )

espin = 0

b i t e s p i n = 0

DO o=1 , r e p l i c a s

d i g i t o = IAND( INDEX , mask ( o ) )

d i g i t o = ISHFT ( d i g i t o , b i t e s p i n )

IF ( ran1 ( ) . LT .PROB( IREP , IDIGIT ) ) &

& IFLIP=IFLIP+JBITS ( IREP )

e s p i n b i t = esp inb i t −4

END DO

N(m, j ) = espin

l =m

m=n

END DO

i = j

j =k

END DO

END SUBROUTINE RMC

END MODULE a lgo r i tmo

! ===============================================

! 12345678912345678912345678912345678912345678912

! ===============================================

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−MODULE e s t a d i s t i c a

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−IMPLICIT NONE

CONTAINS

! ===============================================

SUBROUTINE e n e r g i a _ t o t a l (N,E)

! ===============================================

DO i r e p l =1 , r e p l i c a s

IE ( i r e p l )=0

Page 86: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

81

END DO

J=L

DO JP=1 ,L

I =L

DO IP =1 ,L

N0=N( I , J )

NNI=IEOR( N0 , N ( IP , J ) )

NNJ=IEOR( N0 , N ( I ,JP ) )

IEN=IEOR( NNI , Jx ( I , J ) )

& +IEOR( NNJ , JY ( I , J ) )

ISHBIT=0

DO i r e p l =1 , r e p l i c a s

IBITS=IAND( IEN , MASK( i r e p l ) )

IE ( i r e p l )= IE ( i r e p l )+ ISHFT ( IBITS , ISHBIT )

ISHBIT=ISHBIT−4

END DO

I =IP

END DO

J=JP

END DO

DO i r e p l =1 , r e p l i c a s

E( i r e p l )= IE ( i r e p l )

END DO

END SUBROUTINE e n e r g i a _ t o t a l

! ===============================================

SUBROUTINE magne t i_ to ta l (N1, N2,ORD1,ORD2,ORD)

! ===============================================

Page 87: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

82

DO i r e p l =1 , r e p l i c a s

LORDR1( i r e p l )=0

LORDR2( i r e p l )=0

NORDER( i r e p l )=0

END DO

DO J=1 ,L

DO I =1 ,L

N10=N1( I , J )

N20=N2( I , J )

ISHBIT=0

DO 30 i r e p l =1 , r e p l i c a s

N1PICK = IAND( N10 , MASK( i r e p l ) )

N2PICK = IAND( N20 , MASK( i r e p l ) )

N1PICK = ISHFT (N1PICK , ISHBIT )

N2PICK = ISHFT (N2PICK , ISHBIT )

ITPICK = IEOR( N1PICK , M2PICK )

LORDR1( i r e p l ) = LORDR1( i r e p l )+N1PICK

LORDR2( i r e p l ) = LORDR2( i r e p l )+N2PICK

NORDER( i r e p l ) = NORDER( i r e p l )+ ITPICK

ISHBIT=ISHBIT−4

END DO

END DO

DO 40 i r e p l =1 , r e p l i c a s

ORDRL1( i r e p l ) = ABS(LORDR1( i r e p l )+ &

& LORDR1( i r e p l )−dimen )

ORDRL2( i r e p l ) = ABS(LORDR2( i r e p l )+ &

& LORDR2( i r e p l )−dimen )

IQ = IABS (NORDER( i r e p l )+NORDER( i r e p l )− &

& dimen )

Page 88: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

83

I IQ =64∗ IQ /FLOAT( dimen )

P( i r e p l , I IQ ) = P( i r e p l , I IQ )+1.0

ORDERN( i r e p l ) = IQ

END DO

END SUBROUTINE magne t i_ to ta l

END MODULE e s t a d i s t i c a

! ===============================================

! 12345678912345678912345678912345678912345678912

! ===============================================

MODULE s a l i d a

IMPLICIT NONE

! ===============================================

SUBROUTINE sal_datos

! ===============================================

INTEGER , PARAMETER : : unidad=6

CHARACTER∗23 DATE

CHARACTER∗20 NFCHAR(NUMF)

REAL SUSC( r e p l i c a s )

REAL X1( r e p l i c a s ) , X2( r e p l i c a s )

NFCHAR(1 )= ’Q=S1∗S2 ’

NFCHAR(2 )= ’ENERGIA 1 ’

NFCHAR(3 )= ’ENERGIA 2 ’

NFCHAR(4 )= ’MAGNETIZACION 1 ’

NFCHAR(5 )= ’MAGNETIZACION 2 ’

NFCHAR(6 )= ’MOMENT CON. PART’

NFCHAR(7 )= ’NUMERO CLUSTER’

NFCHAR(8 )= ’PROMEDIO PMC’

Page 89: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

84

OPEN(10 , FILE=" datos . d " ,FORM="FORMATTED" ,&

& STATUS="UNKNOWN" )

WRITE(10 ,∗ ) ’SIMULATION DE MONTE CARLO VIDRIOS &

& DE ESPIN EN 2D’

WRITE(10 ,∗ ) ’ALGORITMO DE RMC’

WRITE(10 ,100)L , pmc_equi , pmc_prom , i n i c i o _ e s

100 FORMAT(1X , ’ L = ’ , I4 , ’ pmc_prom= ’ , I8 , ’ &

& pmc_prom= ’ , I8 , ’ i n i c i o _ e s = ’ , I4 )

WRITE(10 ,110)BONDPR

110 FORMAT(1X , ’ + ENLACES ACTU. = ’ , F7 . 5 )

WRITE(10 ,120) ISEED0 , INITEMP

120 FORMAT(1X , ’ SEMILLA NUN. ALE= ’ , I10 , ’ &

& TEMPERATURA INICIAL = ’ , I4 )

WRITE(10 ,130)INTERV

130 FORMAT(1X , ’ ITERVALO DE DATOS= ’ , I4 )

WRITE(10 ,∗ )

OPEN(10 , FILE=" datos . d " ,FORM="FORMATTED" ,&

& STATUS="UNKNOWN" )

WRITE ( 1 0 ,∗ ) ’ REPLICA T TAU E1 ’ ,

& ’ N2 N1 N2 ’

DO i r e p l =1 , r e p l i c a s

WRITE(10 ,150) i r e p l , T ( i r e p l ) , (O( i r e p l ,NF) ,&

& NF=1 ,5)

WRITE ( 1 0 ,∗ ) ’ REPLICA T T∗XN T∗T∗C1 ’ ,

& ’ T∗T∗C2 T∗<M∗M>N T∗X2 ’

END DO

DO i r e p l =1 , r e p l i c a s

WRITE(10 ,140) i r e p l , T ( i r e p l ) , ( F ( i r e p l , 1 ,NF) ,

& NF=1 ,3) ,X1( i r e p l ) , X2( i r e p l )

Page 90: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

85

140 FORMAT(1X, I4 ,6 F12 . 5 )

WRITE ( 1 0 ,∗ ) ’REPLICA K N<Q2> N∗T<DM∗DM> ’ ,

& ’ (3−<Q4>/ <Q2>∗∗2) /2 ’ ,

& ’ <NC> AC. RATE’

DO IREP=1 , r e p l i c a s

WRITE(10 ,140) IREP ,BETA( IREP ) ,

& SUSC( IREP ) , F ( IREP , 1 , 4 ) , (O( IREP ,NF) ,NF=6 ,8)

WRITE ( 1 0 ,∗ ) ’ FUNC TIEMPO DE CORRELACION F(T ) ’

DO NF=1 ,5

WRITE(10 ,∗ )NF, ’ ES ’ ,NFCHAR(NF)

END DO

WRITE(10 ,160) ( T ( IREP ) , IREP=1 , r e p l i c a s )

DO IT =1 , ITIME

WRITE(10 ,170) ( IT −1)∗INTERV,&

& ( F( IREP , IT ,NF) , IREP=1 , r e p l i c a s )

WRITE(10 ,∗ )

150 FORMAT(1X , ’ T / T ’ , 8 F9 . 5 )

160 FORMAT(1X, I3 ,8F9 . 5 )

END DO

WRITE(10 ,∗ )

WRITE ( 1 0 ,∗ ) ’ DISTRIBUCION DEL PARAMETRO TAU’

WRITE ( 1 0 ,∗ ) ’ Q 1 2 3 4 5 ’ ,

& ’ 6 7 8 ’

DO 61 J=0 ,64

WRITE(10 ,170) J / 6 4 . 0 , (P( IREP , J ) ,&

& i r e p l =1 , r e p l i c a s )

END DO

170 FORMAT(1X, F7 .5 ,8F8 . 5 )

CLOSE(10 )

END SUBROUTINE s a l i d a

Page 91: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

86

END MODULE s a l i d a

! ===============================================

! 12345678912345678912345678912345678912345678912

! ===============================================

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−MODULE gna

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−! −−−− AUTOR −−−−−! Wi l l i am H. Press

! Numerical Recipes i n For t ran 77

! Rut ina para l a generacion de numeros

! a l e a t o r i o s ( gna ) [ 0 , 1 ] .

! .

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! ===============================================

FUNCTION ran1 ( idum )

! ===============================================

!−−−−−−− deg larac ion de v a r i a b l e s

INTEGER idum , IA , IM , IQ , IR ,NTAB, NDIV

REAL ran1 ,AM,EPS,RNMX

PARAMETER ( IA =16807,IM=2147483647, &

& AM= 1 . / IM , IQ=127773, IR=2836 ,

NTAB=32 ,NDIV=1+(IM−1)/NTAB, &

& EPS=1.2e−7,RNMX=1.−EPS)

INTEGER j , k , i v (NTAB) , i y

SAVE iv , i y

DATA i v /NTAB∗0 / , i y / 0 /

i f ( idum . l e . 0 . or . i y . eq . 0 ) then I n i t i a l i z e .

Page 92: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

87

idum=max(−idum , 1 )

do 11 j =NTAB+8,1,−1

k=idum / IQ

idum=IA ∗ ( idum−k∗ IQ)− IR∗k

i f ( idum . l t . 0 ) idum=idum+IM

i f ( j . l e .NTAB) i v ( j )= idum

enddo 11

i y = i v ( 1 )

endif

k=idum / IQ

idum=IA ∗ ( idum−k∗ IQ)− IR∗k

i f ( idum . l t . 0 ) idum=idum+IM

j =1+ i y / NDIV

i y = i v ( j )

i v ( j )= idum

ran1=min (AM∗ i y ,RNMX)

return

END FUNCTION ran1 ( idum )

END MODULE gna

Page 93: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

Bibliografía

[1] J. Guemez. Aplicaciones de Termodinámica Transiciones de fase. Departa-

mento de Física Aplicada, Universidad de Cantabria, 2003.

[2] Julio Gratton. Termodinámica Introducción a la Mecánica Estadística. Depar-

tamento de Física, Buenos Aires, 2003.

[3] Igor Herbut. A Modern Approach to Critical Phenomena. Cambridge University

Press, New York, 2007.

[4] H. E. Stanley. Introduction to Phase Transitions and Critical Phenomena. Cla-

rendon Press, Oxford, 1971.

[5] Pfeuty P. and Toulouse G. Introduction to the renormalization group and critical

phenomen. John Wiley and Sons, 1977.

[6] Shang keng Ma. Modern Theory of Critical Phenomena. Westview Press,

2000.

[7] Teunis C Dorlas. Statistical Mechanics Fundamentals and Model Solutions .

Institute of Physics Publishing, Bristol, 1999.

[8] R. K. Pathria. Statistical Mechanics. Butterworth Heinemann, New York, se-

cond edition, 1996.

[9] N. Goldenfeld. Lectures on Phase Transitions and The Renormalization Group.

Perseus Books, Illinois, 1992.

[10] Daniel C. Mattis. Statistical Mechanics Made Simple a Guide for Students and

Researchers. World Scientific Publishing Co. Pte. Ltd., 2003.

88

Page 94: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

89

[11] A. Timoreva S. Frish. Curso de Fisica General II. Mir, Moscu, 1968.

[12] Shang keng Ma. Statistical Mechanics. World Scientific Publishing Co. Pte.

Ltd., Singapore, 1993.

[13] Stephen G. Brush. History of the Lenz-Ising Model. Reviews of Modern Phy-

sics, 39:883–893, 1967.

[14] L. Onsager. Crystal Statistics. I. A Two-Dimensional Model with an Order-

Disorder Transition. Physical Review, 65:117–149, 1944.

[15] Walter Greiner and Ludwing Neise Horst Stocker. Thermodynamics and Sta-

tistical Mechanics. Springer-Verlag, Heidelberg, 1997.

[16] Ross. Kindermann and J. Laurie Snell. Markov Random Fields and Their Ap-

plications. American Mathematical Society, Rhode Island, 1980.

[17] P.R. Weiss. The Aplication of the Bethe-Peierls Method to Ferromagnetism.

Physical Review, 74:1493–1504, 1948.

[18] Anton Bovier. Statistical Mechanics of Disordered Systems, A Mathematical

Perspective. Cambridge University Press, New York, 2006.

[19] Kurt Binder and Walter Kob. Glassy materials and disordered solids. World

Scientific Publishing Co. Pte. Ltd., Singapore, 2005.

[20] Dotsenko V. Introduction to the Replica Theory of Disordered Statistical Sys-

tems. Cambridge University Press, New York, 2001.

[21] Anderson Philip W. Introduction Basic notions of condensed matter physics.

The Benjamin-Cummings Publishing, 1983.

[22] Anderson Philip W. A career in theoretical physics. Cambridge University

Press, 2004.

[23] Tommaso Castellani and Andrea Cavagna. Spin Glass Theory for Pedestrians.

cond-mat/0505032v1, 2005.

[24] G. Toulouse. Theory of the frustration effect in spin glasses: I. Communications

on Physics, 2:115–119, 1977.

Page 95: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

90

[25] David Sherrington. Spin Glasses. Department of Physics, University of Oxford,

2000.

[26] J. J. Ruiz-Lorenzo. Vidrios de spin: Paradigma de los sistemas complejos.

Revista Española de Fisica, 11(1):22–26, 1997.

[27] Jonathan S. Yedidia. Quenched Disorder Understanding Glasses using Varia-

tional Principle and the Replica. Lectures delivered at the Santa Fe Summer

School, 15-19:1–74, 1992.

[28] E. Ugalde. De la mecánica estadística a la teoría ergódica. Revista Mexicana

de Física, 53:191–194, 2007.

[29] M. Mézard G. Parisi and A. Virasoro. Spin-Glass Theory and Beyond. World

Scientific, Singapore, 1987.

[30] V. Dotsenko. An Introduction to the Theory of Spin Glasses and Neural Net-

works. World Scientific, 1994.

[31] Hidetoshi Nishimori. Statistical Physics of Spin glasses and Information Pro-

cessing An Introduction. Clarendon Press, Oxford, 2001.

[32] P. Bruno and C. Chappert. Ruderman-Kittel theory of oscillatory interlayer ex-

change coupling. Physical Review B, 46:261–270, 1992.

[33] K. Binder and A.P. Young. Spin glasses: experimental facts, theoretical con-

cepts, and open questions. Reviews of Modern Physics, 58:801–976, 1986.

[34] K. H Fischer and J.A. Hertz. Spin Glasses. Cambridge University Press, Cam-

bridge, 1991.

[35] Peter J. Ford. Spin Glass. Contemp Phys, 23:141–168, 1982.

[36] A.C.D. van Enter J.L. van Hemmen and J. Canisius. On a Classical Spin Glass

Model. Z. Phys. B- Condensed Matter, 50:311–336, 1983.

[37] S.F. Edwards and P.W. Anderson. Theory of spin glasses. Journal of Physics

F, 5:965–974, 1975.

Page 96: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

91

[38] D. Sherrington and S. Kirkpatrick. Solvable Model of a Spin-Glass. Physical

Review Letters, 35:1792–1796, 1975.

[39] C.M. Bender and S.A. Orszag. Advanced Mathematical Methods for Scientist

and Engineers. McGraw-Hill International Editions, Singapore, 1978.

[40] G. Toulouse R. Rammal and M.A. Virasoro. Ultrametricity for physicist. Rev.

Mod. Phys, 58:765, 1986.

[41] G. M. Grinstein Daniel S. Fisher and A. Khurana. Theory of random magnets.

Physics Today, December:56–67, 1988.

[42] K. Ribnikov. Analisis Combinatorio. Mir, Moscu, 1988.

[43] A.K. Hartmann and H. Rieger. Optimization Algorithms in Physics. Wiley-Vch,

Berlin, 2002.

[44] A.K. Hartmann and H. Rieger. New Optimization Algorithms in Physics. Wiley-

Vch, Berlin, 2004.

[45] Yukito Iba. Extended Ensemble Monte Carlo. cond-mat/0012323v2, 2001.

[46] Frenkel Daan. Understanding Molecular Simulation. Cambridge University

Press, Cambridge, 1996.

[47] G. Parisi E. Marinari and J.J. Ruiz-Lorenzo. Numerical Simulations of Spin

Glass Systems. cond-mat/9701016v1, 1997.

[48] David J. Earl and Michael W. Deem. Parallel tempering: Theory, applications,

and new perspectives. J. Chem. Phys., 7:3910–3916, 2005.

[49] K. Hukushima and K.Ñemoto. Exchange Monte Carlo Method and Application

to Spin Glass Simulations. J. Phys. Soc Japan, 65:1604, 1996.

[50] Enzo Marinari. Optimized Monte Carlo Methods. cond-mat/9612010v1, 1996.

[51] Paul Coddington. A Comparison of Annealing Techniques for Academic Course

Scheduling. Northeast Parallel Architectures Center, DHPC-045, 1998.

Page 97: FACULTAD DE CIENCIAS - Repositorio Digitalbibdigital.epn.edu.ec/bitstream/15000/1835/1/CD-2410.pdf · FISICA ESTADISTICA DE LOS VIDRIOS DE ESPIN Y ... RESUMEN Los primeros vidrios

92

[52] Jyh Shing. Neuro fuzzy and soft computing a computational approach. Cam-

bridge University Press, Cambridge, 1996.

[53] Bernd A. Berg. Multicanonical Simulations Step by Step. cond-mat/0206333v2,

2002.

[54] Jian-Sheng Wang and Robert H. Swendsen. Replica Monte Carlo Simulations

(Revisited). cond-mat/0407273v1, 2004.

[55] T. Berg B. A., Celik. New Approach to Spin Glass Simulations. Phys. Rev. Lett,

69:2292, 1992.

[56] Rehberg P. Keler, W. Simulated Tempering Approach to Spin Glass Simula-

tions. cond-mat/9402049, 1994.

[57] Oliver C. Martin. Probing Spin Glass with Heuristic Optimization Algoritms.

cond-mat/0408556v1, 2004.

[58] et al C. de Simone. Exact Ground States of Two-Dimensional +-J Ising Spin

Glasses. Journal of Statistical Physics, 84:1363–1371, 1996.

[59] Dieter W. Heermann. Computer Simulation Methods in Theoretical Physics.

Springer-Verlag, Heidelberg, 1990.

[60] William H. Press. Numerical Recipes in Fortran 77. Cambridge University

Press, Cambridge, 1996.

[61] N. Kawashima and H. Rieger. Recent Progress in Spin Glassses. arXiv:, cond-

mat/0312432v2:1–106, 2004.

[62] N. Kawashima and H. Rieger. FiniteSize Scaling Analysis of Exact Ground

States for J Spin Glass Models in 2D. Europhy lett, 39:85–90, 1997.

[63] Alexander K. Hartmann. Cluster-Exact Approximation of Spin Glass Grounds-

tates. Physica A, 224:480, 1996.

[64] M. Cieplak and J.R. Banavar. Spin Glasses. Journal Physics A, 23:4385, 1990.