178
Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 1 Geometría analítica I Programa desarrollado Cuatrimestre DOS Programa de la asignatura: Geometría analítica I Clave: 050910205 Agosto 2010

Geometría Analítica

Embed Size (px)

DESCRIPTION

Programa desarrollado de Geometría Analítica

Citation preview

Page 1: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 1

Geometría analítica I Programa desarrollado

Cuatrimestre DOS

Programa de la asignatura:

Geometría analítica I

Clave:

050910205

Agosto 2010

Page 2: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 2

Geometría analítica I Programa desarrollado

Índice I. Información general de la asignatura

a. Ficha de identificación

b. Descripción

c. Propósito

II. Competencias a desarrollar

III. Temario

IV. Metodología de trabajo

V. Evaluación

VI. Material de apoyo

VII. Desarrollo de contenidos por unidad

a. Unidad 1

b. Unidad 2

c. Unidad 3

d. Unidad 4

Page 3: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 3

Geometría analítica I Programa desarrollado

I. Información general de la asignatura

a. Ficha de identificación

Nombre de la Licenciatura o

Ingeniería: Licenciatura en matemáticas

Nombre del curso o asignatura: Geometría analítica I

Clave de asignatura: 050910205

Seriación: Geometría analítica II

Cuatrimestre: 2

Horas contempladas: 72

b. Descripción

La asignatura de Geometría analítica I relaciona dos grandes ramas de la matemática: la geometría y el álgebra. El curso

permitirá introducirse al estudio de los sistemas de coordenadas y los métodos de la geometría analítica, favoreciendo el

uso e integración de los conocimientos adquiridos en aritmética, álgebra, geometría y trigonometría.

Por medio de la resolución de problemas y de los métodos propios de la geometría analítica, el estudiante desarrollará

otras habilidades del pensamiento matemático, como son el análisis, el razonamiento y la comunicación, que le permitan

interpretar su entorno espacial desde un enfoque geométrico analítico.

Debido al tipo de razonamientos que involucra la asignatura de Geometría analítica I permite al estudiante a desarrollar

argumentaciones basadas en modelos matemáticos concretos y a la generación de los mismos. El método analítico que

propicia la asignatura de igual manera permite en los estudiantes adentrarse al análisis de información cualitativa.

La asignatura de Geometría analítica I se encuentra en el segundo cuatrimestre y está ligada con la asignatura de

Geometría analítica II que se llevará en el tercer cuatrimestre de la licenciatura de Matemáticas. Asimismo,

transversalmente tanto esta asignatura como Geometría analítica II tienen amplia relación con Cálculo diferencial e

integral, con Álgebra lineal y con Cálculo en varias variables, debido al manejo de las estructuras algebraicas, el empleo de

vectores y la visualización espacial.

Page 4: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 4

Geometría analítica I Programa desarrollado

c. Propósito

Ubicarás el sistema de coordenadas cartesiano y lo utilizarás para representar e interpretar tu entorno espacial

desde un enfoque geométrico-analítico.

Desarrollarás habilidades para el análisis, el razonamiento y la comunicación de tu pensamiento a través de la

solución de problemas.

Reconocerás las propiedades de la recta y las cónicas, así como de la ecuación lineal y de la ecuación general de

segundo grado.

Definirás el concepto de lugar geométrico y los dos problemas fundamentales de la Geometría analítica:

a) Dada una ecuación, construir la gráfica correspondiente e interpretarla geométricamente.

b) Dada una gráfica, determinar la condición que cumplen los puntos de la misma, es decir, determinar su

ecuación.

Aplicarás los métodos de la Geometría analítica para modelar y estudiar fenómenos, tanto de la matemática

como de otros contextos y ciencias.

II. Competencia(s) a desarrollar

Competencia general

Utilizarás las propiedades de los lugares geométricos para la resolución de problemas en un contexto matemático o de

modelación de situaciones diversas analizando la relación entre las condiciones descritas en un problema, en unas

ecuaciones o por medio de una representación gráfica.

Competencias específicas

Resolver problemas geométricos utilizando el concepto de sistema de coordenadas rectangulares y lugar

geométrico para analizar, describir e interpretar las relaciones de un objeto en el espacio mediante su

representación en el plano.

Deducir ecuaciones de la recta mediante las condiciones que la determinan para resolver problemas de tipo

euclidiano, de lugares geométricos y de situaciones en diferentes contextos.

Analizar los lugares geométricos de las cónicas para que, a partir de la ecuación, se determine su gráfica y

viceversa por medio de la relación de su definición y sus propiedades.

Utilizar la geometría analítica para modelar fenómenos físicos y sociales aplicando las propiedades, ecuaciones o

gráficas de los lugares geométricos.

Page 5: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 5

Geometría analítica I Programa desarrollado

III. Temario

1. Introducción a la geometría analítica

1.1. Conceptos básicos

1.1.1. Sistema de coordenadas rectangulares o cartesianas

1.1.2. Distancia entre dos puntos

1.1.3. División de un segmento en una razón dada

1.2. Lugar geométrico

2. La recta

2.1. Condiciones que determinan una recta

2.1.1. La recta como una curva de pendiente constante

2.2. Ecuaciones de la recta

2.2.1. Ecuación punto-pendiente

2.2.2. Ecuación pendiente-ordenada al origen

2.2.3. Ecuación de la recta que pasa por dos puntos

2.2.4. Ecuación general de la recta

2.3. Aplicaciones

2.3.1. Ángulo entre dos rectas

2.3.2. Condiciones de paralelismo y perpendicularidad

2.3.3. Distancia de un punto a una recta

2.3.4. Familia de rectas

3. Secciones cónicas

3.1. Introducción a las secciones cónicas

3.2. Circunferencia

3.2.1. Definición

3.2.2. Ecuación canónica de la circunferencia

3.2.3. Ecuación general de la circunferencia

3.2.4. Familia de circunferencias

3.3. Parábola

3.3.1. Definición

3.3.2. Ecuación canónica de la parábola

3.3.3. Ecuación general de la parábola

3.4. Elipse

3.4.1. Definición

3.4.2. Ecuación canónica de la elipse

3.4.3. Ecuación general de la elipse

Page 6: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 6

Geometría analítica I Programa desarrollado

3.5. Hipérbola

3.5.1. Definición

3.5.2. Ecuación canónica de la hipérbola

3.5.3. Ecuación general de la hipérbola

3.6. La ecuación general de segundo grado

4. Problemas clásicos de geometría analítica

4.1. Definiciones alternativas de las secciones cónicas

4.1.1. Deducción de las cónicas usando las esferas de Dandelin

4.1.2. Definición de las cónicas por su excentricidad

4.2. Rectas tangentes a cónicas

4.2.1. Tangentes a la circunferencia

4.2.2. Tangentes a la parábola

4.2.3. Tangentes a la elipse

4.2.4. Tangentes a la hipérbola

4.3. Aplicaciones

4.3.1. Propiedades de la reflexión de las cónicas

4.3.2. Las cónicas y la astronomía

4.3.3. Problemas de movimiento

4.3.4. Otros problemas que usan la geometría analítica

IV. Metodología de trabajo

En el curso de Geometría analítica I se empleará la metodología del Aprendizaje Basado en Problemas (ABP), ya que tiene

el propósito de desarrollar las habilidades que te permitan usar de manera activa las matemáticas, ya sea en la resolución

de un problema en contexto, o en la aplicación dentro de la propia área de las matemáticas. Para ello, en los ejemplos,

problemas y actividades propuestas, se consideran habilidades del pensamiento como la formulación de conjeturas, la

modelación, la graficación y la revisión sistemática de los conocimientos adquiridos (por ejemplo, por medio de

autoevaluaciones), que no son propiamente temas a estudiar, sino que se desarrollarán a lo largo de todo el curso.

Con este propósito, además de la presentación de conceptos y procedimientos, se utilizarán escenas desarrolladas en

geometría dinámica con el propósito de que, a partir de la variación de parámetros, seas capaz de identificar propiedades

de objetos geométricos y sus relaciones con las ecuaciones, que permanecen constantes. Asimismo, al manipular los

objetos (geométricos o algebraicos), se realizan actividades de exploración, formulación de conjeturas y verificación. En

general, cada escena está pensada para mostrar una propiedad o relación específica, el propósito es que interactúes con

ellas y que las preguntas que la acompañan te permitan enfocar tu análisis en propiedades o relaciones específicas, para

analizar casos particulares y, en ocasiones, llegar a generalizaciones a partir de lo observado. También puedes utilizar este

recurso para verificar resultados u operaciones.

Page 7: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 7

Geometría analítica I Programa desarrollado

Al leer un artículo o ensayo se recomienda tener a la mano un diccionario para consultar las palabras que se desconocen

y, como estrategia de estudio, realizar después un resumen, un cuadro sinóptico o un mapa conceptual. Entonces ¿qué se

necesita para leer un texto de matemáticas? Lo primero es tener a mano lápiz y papel a un lado con el propósito de

realizar anotaciones, dibujar diagramas o representaciones de los enunciados de un problema, o quizá una gráfica, hacer

los cálculos, es decir, los procedimientos y completar los pasos que en ocasiones el autor omite por considerarlos como

una consecuencia lógica de dicho procedimiento. Una estrategia útil es realizar, por una parte, un formulario, y en

especial un mapa de conceptos o mapa mental de lo visto en el tema que se vaya integrando con lo que a lo largo del

curso vas aprendiendo. Lo anterior lo podemos resumir en ser un lector activo o en la estrategia de leer-haciendo.

En este sentido, no se debe pensar de manera aislada, los métodos de la geometría analítica no se deberán reducir a la

manipulación de expresiones simbólicas desvinculadas de un contexto que les dé sentido a las preguntas que se deben

responder. En los problemas que te presentaremos, será necesario además de encontrar, por ejemplo, la ecuación de una

recta, analizar el contexto y decidir para qué valores tiene sentido esta representación.

Es recomendable que se tenga, como herramienta de estudio, una calculadora graficadora y con sistemas de álgebra

computacional (CAS, por sus siglas en inglés).

Consideramos importante el trabajo en equipo y la interacción con tus compañeros, por una parte, porque promueve la

comunicación escrita con lenguaje matemático, por otra parte, como un medio de análisis y reflexión a partir de la

capacidad de leer críticamente las formulaciones hechas por tus compañeros y la auto y coevaluación, al ser ellos los que

desarrollen estrategias para verificar y validar los resultados de los problemas. Esto se logrará a través de herramientas

como el blog y los foros, entre otras.

En la sección Para saber más… se presentan lecturas relacionadas con los temas estudiados y ligas a sitios interactivos

que te permitirán ejercitar los procedimientos mostrados.

Si bien el (la) Facilitador(a) será tu guía durante el proceso de aprendizaje, diseñando estrategias que propicien un

aprendizaje verdaderamente significativo, facilitando la comprensión del contenido y relacionando éste con tus

conocimientos previos, no esperes que responda sí o no a la pregunta de “¿Profesor, estoy bien?”. Su labor es orientarte

por medio de preguntas o sugiriéndote recursos o estrategias que guíen tu camino para que por ti mismo logres llegar a la

solución. También es importante que identifiques las estrategias que a lo largo del curso te presentaremos, tanto de

resolución de problemas como de verificación de tus resultados, de manera que confíes en tu capacidad para enfrentarte

a una tarea matemática, desde modelar un problema, utilizar diferentes registros para representarlo (tablas, gráficas,

diagramas, explicación verbal) hasta la capacidad de validar, por ti mismo, el resultado obtenido y dar la respuesta dentro

de un contexto.

Page 8: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 8

Geometría analítica I Programa desarrollado

Como estrategia de evaluación se utiliza una actividad de aprendizaje por unidad, en la cual deberás resolver uno o más

problemas que integren varios elementos de lo que vas conociendo a lo largo del curso. En ellas se considerará tanto la

comprensión que lograste del problema como la planeación (es decir, el procedimiento seguido para su solución) y el

resultado obtenido.

La función del (la) Facilitador(a) durante la revisión se centrará en la evaluación, como un proceso de revisión de los

avances y dificultades que presentes a la hora de trabajar los contenidos, y en la retroalimentación (tanto en las

actividades como en la respuesta de las dudas en foros), de manera que el experimentar caminos de solución, que no

siempre llevan a una respuesta correcta, sea una oportunidad de aprendizaje. Si bien también tendrá que asignarte una

calificación, es importante que envíes con tiempo tus actividades para que tenga oportunidad de enviarte sus

observaciones y de esa forma puedas complementarlas o corregirlas de manera que la evaluación final sea sobre el

proceso de aprendizaje en su totalidad.

V. Evaluación

En el marco del Programa de la ESAD, la evaluación se conceptualiza como un proceso participativo, sistemático y

ordenado que inicia desde el momento en que el estudiante ingresa al aula virtual. Por lo que se le considera desde un

enfoque integral y continuo.

Por lo anterior, para aprobar la asignatura, se espera la participación responsable y activa del estudiante así como una

comunicación estrecha con su facilitador para que pueda evaluar objetivamente su desempeño. Para lo cual es necesaria

la recolección de evidencias que permitan apreciar el proceso de aprendizaje de contenidos: declarativos,

procedimentales y actitudinales.

En este contexto la evaluación es parte del proceso de aprendizaje, en el que la retroalimentación permanente es

fundamental para promover el aprendizaje significativo y reconocer el esfuerzo. Es requisito indispensable la entrega

oportuna de cada una de las tareas, actividades y evidencias así como la participación en foros y demás actividades

programadas en cada una de las unidades, y conforme a las indicaciones dadas. La calificación se asignará de acuerdo con

la rúbrica establecida para cada actividad, por lo que es importante que el estudiante la revise antes realizarla.

A continuación presentamos el esquema general de evaluación.

Page 9: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 9

Geometría analítica I Programa desarrollado

ESQUEMA DE EVALUACIÓN

Foros y base de datos 10%

Actividades formativas 30%

E-portafolio. 50% Evidencias 40%

Autorreflexiones 10%

Examen final 10%

CALIFICACIÓN FINAL 100%

Cabe señalar que para aprobar la asignatura, se debe de obtener la calificación mínima indicada por la ESAD.

VI. Material de apoyo

Bibliografía básica

Lehman, Ch. (2006) Geometría analítica. México: Limusa Wesley.

Oteyza, E.; Lam, E.; Hernández, C.; Carrillo, A.; Ramírez, A. (2005). Geometría analítica. (Segunda edición). México:

Pearson Educación de México, S. A. de C. V.

Bibliografía complementaria

Murillo, J. (s.f.). Geometría analítica. En

http://www.sectormatematica.cl/librosmat/geometria%20_analitica.zip

Recuperado el 15 de agostode 2010.

Fuller, G. & Tarwater, F. (1995). Geometría analítica. (Séptima edición). México: Pearson Educación.

Documentos electrónicos y páginas web

Proyecto Descartes

http://recursostic.educacion.es/descartes/web/

Se seleccionarán páginas del Proyecto Descartes, material desarrollado a partir de escenas interactivas con el

propósito de que sirvan como explicaciones alternativas de los contenidos y como espacio para desarrollar

ejercicios de práctica que le permitan al alumno lograr un dominio de la parte algorítmica.

Page 10: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 10

Geometría analítica I Programa desarrollado

Centro Virtual de Divulgación de las Matemáticas de la Real Sociedad Matemática Española

http://www.divulgamat.net/

http://divulgamat.ehu.es/

Página de divulgación de las matemáticas. El propósito de incluir referencias a este sitio es relacionar la

matemática con nuestro entorno y promover, al mismo tiempo que los aprendizajes específicos de la asignatura,

el desarrollo de la cultura matemática del estudiante.

Los elementos de Euclides

http://www.euclides.org/menu/elements_esp/indiceeuclides.htm

Página que contiene el libro de los Elementos, de Euclides, junto con algunas animaciones que permiten

comprender mejor las definiciones geométricas.

Portal de Geogebra

http://www.geogebra.org/cms/

Programa de geometría dinámica con el cual se desarrollaron las escenas y que permite graficar.

Sitios de calculadoras en línea

http://www.calculadora.net/

http://www.calculadoraonline.net/cientifica/

Calculadoras científicas disponibles para acceso en línea.

http://web2.0calc.com/ (con posibilidad de graficación)

Calculadoras con poder de graficación y con sistema de cómputo algebraico CAS (Computer Algebra System)

http://www.wiris.net/planetamatematico.com/wiris/es/index.html

http://www.planetamatematico.com/index.php?option=com_content&task=view&id=644&Itemid=158

Recursos multimedia

Videos desarrollados para la Educación Media Superior a Distancia (EMSAD). Se han seleccionado aquellos que

permitan servir de repaso a los conocimientos previos que debería tener el estudiante para resolver con éxito los

problemas, tales como: Sistemas de ecuaciones lineales, Funciones trigonométricas, etcétera.

Page 11: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 11

Geometría analítica I Programa desarrollado

VII. Desarrollo de contenidos por unidad

Unidad 1. Introduccción a la Geometría analítica

Propósito

En esta unidad:

Reconocerás los objetos y la notación propia de la geometría analítica, incluyendo las propiedades geométricas de

figuras elementales, desde una perspectiva analítica.

Articularás los conocimientos de manera que, a partir de lo que se conoce, puedas averiguar lo que se ignora,

combinando datos y relaciones tanto geométricas como algebraicas.

Competencia específica

Resolverás problemas geométricos utilizando el concepto de sistema de coordenadas rectangulares y lugar geométrico

para analizar, describir e interpretar las relaciones de un objeto en el espacio mediante su representación en el plano.

Presentación de la unidad

“Un científico merecedor de tal nombre, sobre todo un matemático,

experimenta en su trabajo la misma impresión que un artista; su placer es

tan grande y de la misma naturaleza”.

Henri Poincaré

Bienvenidos al curso de Geometría analítica, una de las ramas más interesantes de las matemáticas, pues en ella se

unifican dos grandes líneas de pensamiento: el álgebra y la geometría. El propósito es estudiar un objeto geométrico

asociándole una ecuación. Esta idea de apariencia tan sencilla le tomó mucho tiempo al ser humano llegar a construirla,

para ello fue necesario poner la curva en un plano con un sistema de referencia. En este curso utilizaremos el sistema de

coordenadas rectangulares, pero existen otros, como el sistema de coordenadas polares.

Page 12: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 12

Geometría analítica I Programa desarrollado

El sistema de coordenadas rectangulares es un sistema de referencia conformado por dos ejes perpendiculares, el plano

con este sistema particular se denomina plano cartesiano, en honor al filósofo y matemático René Descartes, fundador de

la geometría analítica, cuyo origen se remonta solamente al siglo XVII, cuando en 1637, Descartes publica el apéndice “La

Geometría” como un ejemplo de su obra El discurso del método.

En el primer tema definiremos el sistema de coordenadas rectangulares, el cual será el sistema de referencia con respecto

al cual realizaremos las deducciones de otras fórmulas que nos serán útiles durante la resolución de problemas, por

ejemplo, la distancia entre dos puntos o el punto medio de un segmento. Además, te presentaremos las convenciones

que se utilizan en geometría analítica para que te familiarices con su lenguaje.

En el segundo tema introduciremos un concepto nuevo, el “lugar geométrico”, y lo ilustraremos con algunos ejemplos

basados en nociones de geometría que te son familiares. Este será un primer acercamiento, después continuaremos con

el estudio de otros lugares geométricos más complejos e interesantes, como son la línea recta o las secciones cónicas, en

las unidades 2 y 3, respectivamente.

1.1. Conceptos básicos

Desde la perspectiva de la geometría analítica, cuando se estudia un objeto geométrico (un punto, una recta, la mediana,

una circunferencia, etcétera) se desea encontrar una relación algebraica entre las coordenadas de los puntos que lo

conforman. Además, cuando se tiene una ecuación, es posible estudiarla a través de su gráfica en el plano cartesiano,

asociando a cada pareja de números que la satisfacen un punto en el plano cartesiano. De esta manera, estudiando la

expresión algebraica es posible obtener información del objeto geométrico y viceversa, analizando el objeto geométrico

es posible deducir la información del objeto algebraico. Este es, a grandes rasgos, el método que nos propone la

geometría analítica.

1.1.1. Sistema de coordenadas rectangulares o cartesianas

Te invitamos a que veas dentro del aula el video Ejes coordenados, en donde se explica cómo se construye un sistema de

coordenadas rectangulares, los elementos que lo definen, así como otras propiedades interesantes.

En el plano cartesiano a cada par ordenado de números reales le corresponde un punto en el plano; de la misma

manera, cada punto está definido solamente por un par ordenado. A esta relación entre los puntos del plano y los pares

de números reales se le denomina correspondencia uno a uno.

Page 13: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 13

Geometría analítica I Programa desarrollado

El par ordenado está definido por la abscisa del punto , seguido de la ordenada del punto .

La coordenada , o abscisa, de un punto es la distancia dirigida del eje al punto.

La coordenada , u ordenada, de un punto es la distancia dirigida del eje al punto.1

Existen diferentes maneras para denominar a un punto, una de ellas es asignarle una letra, por ejemplo , o escribir

solamente sus coordenadas . Sin embargo, es muy común presentar tanto el nombre como las coordenadas del

punto al mismo tiempo, . Por otra parte, algunos autores prefieren la notación , lo que quiere decir que

es el nombre del punto y este punto es igual a las coordenadas , por la correspondencia uno a uno. A lo largo de

este curso emplearemos las diversas notaciones porque es importante que te familiarices con todas ellas.

Para dar un orden, muchas veces usamos subíndices. Por ejemplo, si se tienen dos puntos diferentes, se pueden nombrar

y

O también,

y

Cuando dos puntos son iguales, tanto sus abscisas como sus ordenadas son iguales entre sí.

1.1.2. Distancia entre dos puntos

En muchos problemas se requiere conocer la distancia entre dos puntos cualesquiera o la longitud del segmento de recta

que los une, lo cual se puede calcular a partir de las coordenadas de los puntos o las coordenadas de los extremos del

segmento, respectivamente.

La clave para deducir una fórmula que nos permita hacerlo con facilidad consiste en ubicar en el plano dos puntos

cualesquiera, y , después formar un triángulo rectángulo de hipotenusa y emplear el Teorema de

Pitágoras*.

Lee con atención la deducción de la fórmula para calcular la distancia entre dos puntos. Conforme estás leyendo analiza

con cuidado paso a paso para asegurarte que comprendes lo que se está haciendo y que eres capaz de realizar las

operaciones que allí se muestran.

En la siguiente escena, verifica que la relación encontrada se cumple para cualquier segmento (horizontal, vertical u

oblicuo) sin importar en qué cuadrante se encuentren sus extremos.

1 Fuller, G. & Tarwater, F. (1995), Geometría analítica. (Séptima edición). México: Pearson Educación. p. 5.

Page 14: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 14

Geometría analítica I Programa desarrollado

Un segmento de recta se clasificará como horizontal, vertical u oblicuo (inclinado), dependiendo de si el segmento es

paralelo al eje , al eje o a ninguno de los ejes.

Distancia entre dos puntos

La distancia entre dos puntos y del plano se denota por la expresión y está dada por la

fórmula:

Donde es el punto inicial y es el punto final.

Consejo. Observa que en la fórmula es importante el orden. En la expresión primero se nombre el punto 1 y

luego el punto 2, mientras que, al sustituir en las diferencias, primero va la abscisa (u ordenada) del punto 2 y se resta la

abscisa (u ordenada) del punto 1. Ten cuidado con esta convención; para evitar errores siempre define cuál es el punto

que consideras como inicial y cuál es el punto final .

Analicemos dos casos particulares de la distancia entre dos puntos.

a) Segmento horizontal.

Si el segmento que une los dos puntos es horizontal, las coordenadas de sus extremos serán:

Page 15: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 15

Geometría analítica I Programa desarrollado

Analiza la siguiente figura y date cuenta de que la ordenada de ambos puntos tiene el mismo valor.

Sustituyendo en la fórmula de distancia entre dos puntos.

b) Segmento vertical.

Si el segmento es vertical, las coordenadas de sus extremos serán:

Ahora es la abscisa de los puntos la que tiene el mismo valor.

Page 16: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 16

Geometría analítica I Programa desarrollado

Siguiendo un procedimiento similar al desarrollado en el segmento horizontal, obtenemos que la distancia es:

Recuerda la estrategia de leer-haciendo. Sería una buena práctica para ti el verificar este resultado siguiendo como

modelo lo mostrado en el segmento horizontal.

1.1.3. División de un segmento en una razón dada

Si y son los extremos de un segmento dirigido de recta , y es un punto que divide a

dicho segmento en una razón dada por la fórmula

Razón: una razón se puede expresar por medio de un cociente o por la siguiente igualdad

entonces las coordenadas del punto están determinadas por:

Donde

1 2 1 2, ; 1 1

x rx y ryx y

r r

1r

1r se lee como: “Para todo valor de diferente de ”

Un caso particular que encontramos es cuando , por lo que, al sustituir en las ecuaciones anteriores, se reducen a lo

siguiente:

Page 17: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 17

Geometría analítica I Programa desarrollado

De esta forma se encuentran las coordenadas del punto medio de un segmento.

Transformemos a palabras la expresión para determinar las coordenadas del punto medio: la abscisa del punto medio es

el promedio (o semisuma) de las abscisas de los extremos; su ordenada es el promedio de las ordenadas de los extremos.

1.2. Lugar geométrico

Cuando se nos presenta un enunciado con la intención de encontrar el lugar geométrico, es una buena estrategia realizar

un diagrama de la situación, primero de un caso particular, como el mostrado con la distancia fija de , y después

pensar en la generalización, tal es el caso de considerar la distancia fija de unidades, donde puede ser un número

cualquiera.

Como seguramente ya has descubierto, el lugar geométrico que se forma corresponde a dos rectas paralelas que se

encuentran a unidades de distancia de la recta de referencia.

En otros casos, el lugar geométrico nos permite definir de una nueva manera objetos ya conocidos.

Probablemente la siguiente definición te es muy familiar:

La mediatriz es la “recta perpendicular que corta un segmento en su punto medio”.2

Otra definición es:

La mediatriz es el lugar geométrico de los puntos del plano que equidistan* de dos puntos fijos.

O de manera más formal:

La mediatriz de un segmento de extremos y es el lugar geométrico de los puntos que

equidistan de A y B.

¿Son equivalentes estas dos definiciones? Vuélvelas a leer con atención. Si consideras que los puntos fijos pueden unirse

por un segmento, entonces los extremos de dicho segmento serían justamente los puntos fijos, por lo tanto, ambas

definiciones establecen la misma propiedad geométrica que se debe cumplir.

2 http://buscon.rae.es/draeI/SrvltGUIBusUsual?TIPO_HTML=2&TIPO_BUS=3&LEMA=mediatriz

Page 18: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 18

Geometría analítica I Programa desarrollado

A partir de la condición de que el lugar geométrico está definido por el conjunto de puntos que satisfacen determinadas

propiedades geométricas y con tus conocimientos previos de álgebra, te será posible responder a la pregunta ¿cuál es la

ecuación de la mediatriz de un segmento?

Con lo que hasta ahora has estudiado tienes todas las herramientas para responder esa pregunta. ¡Inténtalo! Recuerda

que no existe un único camino para obtener una respuesta. Compara tu solución (o los avances que hayas logrado) con la

propuesta que a continuación te mostramos.

Para deducir la ecuación de un lugar geométrico es importante determinar lo que conocemos:

a) los datos (pueden estar implícitos en el enunciado)

b) y las relaciones (en este caso la definición de mediatriz como lugar geométrico y las relaciones que podemos

deducir a partir de esta información).

Solución:

Definimos los extremos del segmento y las coordenadas del punto cualquiera:

Sean y los extremos del segmento y un punto cualquiera.

Consejo. Observa que los subíndices nos indican que los puntos están definidos (son valores fijos) y cuando las

coordenadas del punto no tienen subíndices significa que dicho punto puede tomar cualquier valor.

Identificamos la condición descrita:

“los puntos que equidistan de A y B.”

Esto quiere decir que la distancia de a debe ser igual que la distancia de a .

También conocemos la fórmula para calcular la distancia entre dos puntos, por lo que podemos escribir

Desarrollamos y reducimos la expresión algebraica a su forma más simple.

Page 19: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 19

Geometría analítica I Programa desarrollado

Escribimos lo que conocemos, nuestro punto de partida

Sustituimos por la fórmula de distancia entre dos puntos

Eliminamos el radical (elevamos al cuadrado ambos miembros de la igualdad)

Desarrollamos los binomios

Igualamos la ecuación a cero

Reducimos términos semejantes

Factorizamos con respecto a y a porque son las coordenadas del punto .

Sabemos además que , al ser coordenadas conocidas, en realidad son números.

Reescribimos la ecuación, para poder “despejar” , es decir, resolver la ecuación para .

Page 20: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 20

Geometría analítica I Programa desarrollado

Escribimos un enunciado con nuestra solución

La ecuación de la mediatriz es

Lo que nos quiere decir la ecuación anterior es que todos los puntos de coordenadas que cumplan la igualdad

pertenecerán a la mediatriz de un segmento cuyos extremos son y .

En ocasiones simplemente escribiremos los desarrollos, incluso omitiendo algunos pasos,

pero será parte de tu aprendizaje que, al leer, completes de manera independiente los

pasos faltantes y procures explicarte qué es lo que se está haciendo de un renglón a otro.

Leer la solución que otro propone hace que todo parezca sencillo y simple, pero para

aprender necesitas aceptar el reto de resolver el problema (ejemplo o ejercicio) por ti

mismo. Como dice un conocido proverbio chino:

Lo que escucho, lo olvido.

Lo que veo, lo recuerdo.

Lo que hago, lo comprendo.

Verifiquemos esta ecuación para un caso particular.

Sean los puntos y los extremos de un segmento. Comprueba que el punto pertenece a la

mediatriz del segmento .

Solución:

Podemos asegurar que, si el punto pertenece a la mediatriz, entonces al sustituir sus coordenadas en la siguiente

ecuación se deberá cumplir la igualdad.

Por lo tanto, lo que debemos hacer es sustituir los valores dados en el problema y realizar las operaciones para verificar

que la igualdad es verdadera.

Page 21: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 21

Geometría analítica I Programa desarrollado

Consejo. Una estrategia para no confundirte al realizar la sustitución es escribir de manera explícita los datos del

problema.

, por lo tanto, y

, por lo tanto, y

, por lo que para este caso particular, y

Quod erat demonstrandum es una locución latina que significa ‘lo que se quería demostrar’ y se abrevia QED.

Existen varias construcciones de lugares geométricos; en las siguientes unidades analizaremos la recta y las secciones

cónicas desde esta perspectiva.

Conclusiones

A lo largo de esta unidad hemos mostrado cómo se relaciona el álgebra con la geometría, por lo que podemos decir que

en la geometría analítica “se hace geometría al hacer álgebra, y se ve el álgebra a través de la geometría” 3.

En cuanto a la necesidad de establecer un sistema de referencia, además del potencial que brinda para resolver

problemas del ámbito estrictamente matemático, podemos darnos cuenta de su importancia, por su presencia en nuestro

entorno, como es el caso de los usos horarios, que definen que en nuestro país tengamos tres zonas: centro, pacífico y

3 School Mathematics Study Group (SMSG), (1967). Geometría analítica: ¿qué es? y ¿por qué se estudia?, Stanford University.

Traducción incluida en: IPN (2006). Geometría Analítica. Libro para el estudiante. México: IPN-Dirección de publicaciones. p. 132.

Page 22: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 22

Geometría analítica I Programa desarrollado

noroeste.4 En cuanto a la ubicación espacial, está presente en las guías que muestran los planos de la ciudad o en

sistemas tan sofisticados como el sistema de posicionamiento global, mejor conocido como GPS, que ya está integrado en

los dispositivos de comunicación móvil o de navegación de los automóviles. ¿Se te ocurren otros ejemplos?

Consideraciones específicas de la unidad

En esta unidad se trabajará con lecturas complementarias, con escenas y con la resolución de problemas (o realizar

deducciones) como medio de aprendizaje.

El propósito de las escenas es que interactúes con los objetos y visualices las relaciones expresadas en un enunciado, o el

lugar geométrico de los ejemplos.

En particular, las preguntas de las escenas de Puntos notables (1 y 2) tienen el propósito de mostrarte la necesidad de

manejar con suficiencia los conceptos previos de geometría, que se estudiaron desde el nivel básico hasta el bachillerato.

Algunos de estos conceptos se han identificado por medio de subrayar la palabra clave y colocar a la derecha el símbolo *,

por ejemplo, puntos notables* de un triángulo, el cual no es un tema propio de estudio de la geometría analítica, pero es

necesario conocerlo para modelar o resolver problemas más interesantes.

Fuentes de consulta

School Mathematics Study Group (SMSG), (1967). Geometría analítica: ¿qué es? y ¿por qué se estudia? Estados

Unidos: Stanford University.

Traducción incluida en: IPN (2006). Geometría Analítica. Libro para el estudiante. México: IPN-Dirección de

publicaciones. p. 132.

Ley del sistema de horario en los Estados Unidos Mexicanos. En

http://www.diputados.gob.mx/LeyesBiblio/pdf/239.pdf. Recuperado el 25 de agosto de 2010.

http://buscon.rae.es/draeI/SrvltGUIBusUsual?TIPO_HTML=2&TIPO_BUS=3&LEMA=mediatriz

Fuller, G. & Tarwater, F. (1995). Geometría analítica. (Séptima edición). México: Pearson Educación.

4 Ley del sistema de horario en los Estados Unidos Mexicanos. En http://www.diputados.gob.mx/LeyesBiblio/pdf/239.pdf.

Recuperado el 25 de agosto de 2010.

Page 23: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 23

Geometría analítica I Programa desarrollado

Unidad 2. La recta

Propósito

En esta unidad:

Realizarás deducciones de las ecuaciones de la recta a partir de su definición de lugar geométrico y las aplicarás a

la solución de problemas.

Reconocerás el lenguaje utilizado en los teoremas y su proceso de demostración.

Articularás las diferentes ecuaciones de las rectas, las definiciones y teoremas, para que, a partir de lo que se

conoce, puedas proponer una estrategia de solución de un problema, así como verificar tu resultado.

Competencia específica

Deducirás ecuaciones de la recta mediante las condiciones que la determinan para resolver problemas de tipo euclidiano,

de lugares geométricos y de situaciones en diferentes contextos.

Presentación de la unidad

El poeta debe ser capaz de ver lo que los demás no ven,

debe ver más profundamente que otras personas.

Y el matemático debe hacer lo mismo…

Sonia Kovalévskaya5

Sonia Kovalévskaya (1850-1891). Fue la primera matemática rusa reconocida y la primera mujer que consiguió una plaza

de profesora universitaria en Europa (Suecia, 1881).

Posiblemente su investigación más importante fue la que realizó sobre la rotación de un cuerpo sólido alrededor de un

punto fijo, por la que recibió el Premio Bordin de la Academia de Ciencias de París y más tarde el premio de la Academia

de Ciencias de Suecia.

5http://www.educared.org.ar/enfoco/recursos/archivo/2008/10/01/mujeres_matematicas_sus_contribuciones_al_progreso_de_la_disciplina.asp

Page 24: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 24

Geometría analítica I Programa desarrollado

El estudio de la recta inicia desde que somos niños, junto con los elementos geométricos fundamentales: el punto, la

recta, el plano y figuras planas. Conforme crecemos lo estudiamos desde otra perspectiva, por ejemplo, en la secundaria

se espera que se identifiquen, interpreten y expresen las relaciones de proporcionalidad directa, lo cual gráficamente es

una recta.6 Durante el bachillerato se sigue estudiando la recta, pero ahora como una función lineal, porque muchos de

los procesos o fenómenos que se estudian en matemática, y en otras ciencias, tienen un comportamiento lineal, es decir,

en ellos intervienen dos variables que se relacionan por medio de una ecuación que representa una recta. ¿Hemos

concluido? En realidad el camino al conocimiento continúa. En esta ocasión, todo lo anterior está presente en el estudio

de la recta, pero ahora lo enfocaremos desde su definición como lugar geométrico y las formas que puede adoptar su

ecuación.

2.1. Condiciones que determinan una recta

Para iniciar con el estudio de la recta, intenta recordar todo lo que conoces acerca de ella. Seguramente te vendrán

muchas ideas a la mente porque es un objeto con el que interactuamos desde niños.

Las propiedades fundamentales de la recta, de acuerdo con la geometría euclideana son7:

Por dos puntos distintos pasa una, y sólo una, recta.

Dos rectas distintas se cortan en un solo punto, o son paralelas.

Otras características de la recta son:

La recta es una sucesión continua de puntos en una sola dimensión que se prolonga al infinito en ambos sentidos.

La distancia más corta entre dos puntos está en una línea recta (en la geometría euclidiana).

La recta es un conjunto de puntos situados a lo largo de la intersección de dos planos.

Veamos ahora la definición de la recta como lugar geométrico.

6 http://www.reformasecundaria.sep.gob.mx/matematicas/index.htm

7 Oteyza, E., et al. (2005). Geometría analítica. (Segunda edición). México: Pearson Educación. p. 32.

Page 25: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 25

Geometría analítica I Programa desarrollado

2.1.1. La recta como una curva de pendiente constante

Llamamos línea recta al lugar geométrico de todos los puntos contenidos en el plano tales

que, tomados dos puntos diferentes cualesquiera, y del lugar, el valor

de la pendiente resulta siempre constante.8

Al leer la definición, resalta la palabra clave de la misma, es decir, el concepto de pendiente.

Dados dos puntos cualesquiera y , la pendiente entre ellos queda

determinada por el cociente entre la diferencia de las ordenadas y la diferencia de las

abscisas de dichos puntos, es decir,

Consejo. Cuando leas una definición pon atención a las condiciones que se expresan, en este caso indican que .

¿Te has preguntado por qué en la definición de pendiente se establece la condición de que y sean distintas, o sea,

? ¿Qué sucedería si estos valores son iguales?

Por otra parte, si unimos los dos puntos con un segmento y formamos un triángulo rectángulo, cuyos catetos son

paralelos a los ejes, se cumple también la siguiente relación:

Consejo. Realiza un repaso de las funciones trigonométricas* y las funciones trigonométricas inversas* (su definición y

propiedades), además de las identidades trigonométricas*, en especial de la tangente*.

El ángulo de inclinación de una recta es el ángulo que forma la recta con el eje en su

dirección positiva y se mide a partir del eje en sentido opuesto al movimiento de las

manecillas del reloj.

8 Lehman, Ch. (1965). Geometría analítica. México: Unión tipográfica editorial hispano americana. Reimpresión de 1967. p. 57.

Page 26: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 26

Geometría analítica I Programa desarrollado

Para comprender un enunciado, ya sea una definición o el planteamiento de un problema, una estrategia muy útil es

realizar un diagrama (lo más general posible) para representar la situación.

De la figura podemos deducir

Se llama pendiente o coeficiente angular de una recta a la tangente de su ángulo de

inclinación.9

Unamos lo que hasta ahora conocemos:

,

La pendiente de una recta no vertical es

Por lo tanto, conociendo el ángulo de inclinación es posible calcular la pendiente de una recta y viceversa, es decir,

conociendo la pendiente es posible calcular el ángulo de inclinación de la recta

9 Lehman, Ch. (1965). Geometría analítica. México: Unión tipográfica editorial hispano americana. Reimpresión de 1967. p. 17.

Page 27: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 27

Geometría analítica I Programa desarrollado

En conclusión:

La pendiente de una recta es un número que mide la inclinación y su signo indica hacia dónde está inclinada. De forma

coloquial, podemos hacer las siguientes afirmaciones.

Si el signo de la pendiente es positivo, la recta está inclinada hacia la derecha. Por el contrario, si el signo de la

pendiente es negativo, la recta está inclinada hacia la izquierda.

Cuando el valor absoluto de la pendiente es muy grande la recta es casi vertical, en cambio cuando el valor

absoluto de la pendiente es muy pequeño la recta es casi horizontal. Si el valor de la pendiente es cero, la recta es

horizontal.

Por último, la pendiente de una recta vertical no está definida.

De todo lo visto hasta ahora, podemos concluir que, geométricamente, una recta queda perfectamente determinada por

una de las siguientes condiciones:

a) dos puntos

b) uno de sus puntos y su pendiente (es decir, su inclinación)

2.2. Ecuaciones de la recta

Hemos mencionado que los dos problemas fundamentales de la geometría analítica son:

a) dado el lugar geométrico, en un sistema de coordenadas, obtener su ecuación.

b) dada la ecuación en un sistema de coordenadas, determinar la gráfica o lugar geométrico de los puntos que

satisfacen dicha ecuación.

Retomemos el primer problema: dado el lugar geométrico obtener su ecuación. Para ello, obtendremos la ecuación de la

recta, a partir de su definición como lugar geométrico.

2.2.1. Ecuación punto-pendiente

De acuerdo con la definición de la recta como lugar geométrico, sabemos que es el lugar geométrico de los puntos del

plano, tales que el valor de la pendiente siempre es constante. Nuestro reto es determinar la ecuación de la recta si

conocemos uno de sus puntos y su pendiente.

Page 28: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 28

Geometría analítica I Programa desarrollado

Por la definición de la recta, sabemos que los puntos que pertenecen a ella satisfacen la ecuación

Satisfacen: Decimos que “un punto satisface cierta ecuación” para indicar que las coordenadas de al

sustituirse en dicha ecuación nos dan una igualdad numérica. Por ejemplo, el punto satisface la

ecuación , pues al sustituir las coordenadas de obtenemos ; en cambio el punto

no lo satisface, pues la igualdad es falsa.

Conocemos el valor de la pendiente y las coordenadas de uno de sus puntos . Las coordenadas del segundo

punto no las conocemos, por lo que, al ser un punto cualquiera, lo definiremos como

Como y satisfacen la ecuación, entonces sustituimos los valores en la ecuación (1) y resolvemos para .

Como la ecuación está definida en función de un punto y la pendiente, generalmente se le conoce como ecuación de la

forma punto-pendiente, o simplemente, ecuación punto-pendiente. Algunos autores prefieren dejarla expresada como

en (2), en nuestro curso la definiremos como en (3).

Ecuación de la forma punto-pendiente

La recta de pendiente que pasa por un punto conocido, , tiene por ecuación

Nota. Con propósitos didácticos hemos utilizado un color para los datos que conocemos y uno distinto para las

coordenadas de un “punto cualquiera”, perteneciente a la recta. En adelante, será parte de tu aprendizaje el que

identifiques cuáles son las condiciones conocidas, es decir, aquellas condiciones que están dadas explícita, o

implícitamente, en el planteamiento del problema, ya sea un enunciado o un diagrama.

¿Qué sucede cuando el punto conocido es precisamente el origen del sistema de coordenadas? La ecuación se reduce a la

forma , un caso particular de la anterior.

Page 29: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 29

Geometría analítica I Programa desarrollado

2.2.2. Ecuación punto-pendiente ordenada al origen

Veamos otra forma de representar la ecuación de la recta. Si se conoce la pendiente y el punto en donde la recta

interseca* al eje de las ordenadas, ¿cuál es la ecuación de la recta?

Un primer paso para resolver un problema es asegurarte de comprender el enunciado, por lo que sería importante que

antes de seguir leyendo visualices el diagrama que permite representar la situación propuesta.

¿Listo? Ahora comprueba tu diagrama.

En general, se adopta la siguiente convención para nombrar los puntos donde la recta toca o interseca a los ejes.

La abscisa de un punto donde la curva toca o interseca* el eje se llama abscisa al origen

o intersección con el eje eje , y la ordenada de un punto donde una curva toca o

cruza el eje se llama ordenada al origen o intersección con el eje .10

Podemos definir las coordenadas del punto

Y sustituirlas en la ecuación de la forma punto-pendiente

10

Fuller, G. & Dalton, T. (1995) Geometría analítica. (Séptima edición). México: Pearson Educación. p. 40.

Page 30: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 30

Geometría analítica I Programa desarrollado

Ecuación de la forma pendiente-ordenada al origen

La recta que tiene una pendiente y pasa por el punto , es decir, la ordenada al

origen, tiene por ecuación:

Analicemos qué sucede cuando la recta es horizontal o vertical.

a) Recta horizontal o paralela al eje de las abscisas.

Como la recta es horizontal, podemos obtener su pendiente:

Además, sabemos que pasará por el punto

Sustituyendo estos valores en , tenemos:

En otras palabras, en una recta horizontal, el valor de la ordenada de todos los puntos que pertenecen a ella es , sin

importar el valor que tengan sus abscisas. Por lo tanto, la recta horizontal es el lugar geométrico de todos los puntos que

se encuentran a una distancia del eje .

b) Recta vertical o paralela al eje de las ordenadas.

Elegimos el punto de intersección de la recta con el eje , es decir,

Encontramos el valor de la pendiente,

Recordemos la definición de pendiente,

por lo que sustituyendo valores,

Sabemos que cuando se divide un número entre otro cada vez mayor, que tiende a infinito, el cociente tiende a cero

Page 31: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 31

Geometría analítica I Programa desarrollado

De manera análoga al caso anterior, en una recta vertical, la abscisa de todos los puntos que pertenecen a esa recta es .

La recta vertical es el lugar geométrico de todos los puntos que se encuentran a una distancia del eje .

A partir de las definiciones anteriores, podemos establecer las ecuaciones de los ejes.

Ecuaciones de los ejes

Eje horizontal:

Eje vertical:

La ecuación pendiente-ordenada al origen es una forma muy importante de expresar la recta porque nos permite conocer

dos elementos geométricos que facilitan su graficación:

a) La ordenada al origen, es decir, el punto de intersección de la recta con el eje de las ordenadas.

b) La pendiente

2.2.3. Ecuación de la recta que pasa por dos puntos

Habíamos mencionado que, geométricamente, una recta queda perfectamente determinada por dos de sus puntos. Lo

mismo sucederá de manera analítica, la ecuación de una recta también puede determinarse conociendo las coordenadas

de sus puntos.

Ecuación de la recta que pasa por dos puntos dados

La recta que pasa por dos puntos dados y , tiene por ecuación

Aunque algunos autores prefieren escribirla como:

Tener la ecuación de la recta que pasa por dos puntos dados significa que si conocemos las coordenadas de los puntos se

pueden sustituir directamente en una expresión y con ésta se puede establecer la ecuación de la recta.

Page 32: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 32

Geometría analítica I Programa desarrollado

2.2.4. Ecuación general de la recta

La ecuación de una recta, en el sistema de coordenadas rectangulares, se puede escribir de la forma lineal.

En esta ecuación, o deben ser diferentes de cero y puede o no ser igual a cero.

Notamos que los tres coeficientes, en la forma general, son constantes reales, es decir, pueden tomar cualquier valor real,

siempre que y no sean simultáneamente nulos.

Vista la ecuación de la recta en su forma general, no son evidentes los elementos geométricos que nos permiten

graficarla (dos puntos, un punto y su pendiente), por lo que en ocasiones será necesario transformar la ecuación general

de una recta a una forma que nos brinde información para representarla en el plano cartesiano y poder así resolver un

problema.

Por ejemplo, para transformar la ecuación general de la recta a la forma pendiente-ordenada al origen, necesitamos

resolver la ecuación para .

De esta manera, a partir de los coeficientes de la ecuación general de la recta podemos conocer, a simple vista, los

valores de la pendiente, , y de la ordenada al origen, .

Sugerencia para trazar la línea recta

Primer método. Tabulación.

Consiste en dar valores arbitrarios a la variable , de manera que se evalúa a en función de . De esta manera se

obtienen pares ordenados que corresponden a las coordenadas de algunos de los puntos que pertenecen a la recta, los

cuales se sitúan en el plano cartesiano y se unen.

Este método de tabulación será de utilidad para graficar otras curvas, como las que estudiaremos más adelante.

Ejemplo.

Trazar la línea recta

Page 33: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 33

Geometría analítica I Programa desarrollado

Coordenadas

Falta alternativo

-2

-1

0

1

2

Segundo método. A partir de la ordenada al origen y la pendiente.

El procedimiento es el siguiente:

a) Se grafica el punto , donde es la ordenada al origen.

b) Sabemos que

A partir del punto dado por la ordenada al origen representamos en magnitud el valor de a la derecha del punto.

Después representamos en magnitud el valor de hacia arriba, si el signo de la pendiente es positivo, o hacia abajo, si el

signo de la pendiente es negativo. Esto nos dará la ubicación del segundo punto por el que pasa la recta.

c) Como tenemos dos puntos, los unimos con una línea recta.

Page 34: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 34

Geometría analítica I Programa desarrollado

Ejemplo. Trazar la recta

De la ecuación, por inspección visual, podemos determinar que y

Tercer método. Determinando los puntos de intersección con los ejes coordenados.

Cuando nos dan la ecuación en su forma general, este método es muy útil. La idea es obtener el valor de la abscisa y de la

ordenada al origen, para ello, primero se iguala con cero, y después con cero. Lo que nos permite encontrar dos

puntos que simplemente hay que unir.

Ejemplo. Trazar la recta

Sea

Resolvemos para .

El primer punto es

Sea

Resolvemos para .

El segundo punto es

Page 35: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 35

Geometría analítica I Programa desarrollado

2.3. Aplicaciones

2.3.1. Ángulo entre dos rectas

La medida del ángulo que se forma entre dos rectas se enuncia por medio del siguiente teorema.

Teorema

Si es un ángulo entre dos rectas, y , entonces:

Donde es la pendiente del lado inicial y es la pendiente de la recta que forma el

lado terminal , considerando que el ángulo se mide en dirección contraria a las

manecillas del reloj, del lado inicial al lado final.

En ocasiones puede ser complicada la interpretación de un teorema, por lo cual, para darle sentido, conviene realizar un

diagrama general de la situación descrita.

Como puedes darte cuenta, el ángulo medido dependerá de la recta que consideremos como lado inicial y la que

definamos como lado final, respetando en todo momento la convención de que el ángulo se mide en dirección

contraria a las manecillas del reloj, del lado inicial al lado final . En el diagrama la dirección en la que se mide el ángulo

se indica con una flecha.

Page 36: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 36

Geometría analítica I Programa desarrollado

Si las ecuaciones de las rectas están dadas en forma general, tenemos:

Por lo que sus respectivas pendientes están definidas por:

Al sustituir en y simplificar, obtenemos:

Así, ya tienes dos formas de encontrar el ángulo entre dos rectas. De acuerdo con la información que conozcas podrás

elegir la más adecuada para obtener el valor de dicho ángulo.

Una de las habilidades que debes desarrollar como matemático es poder comprender cualquier texto con una deducción,

demostración o propuesta de solución de un problema. Realiza la siguiente actividad sobre la Demostración del ángulo

entre dos rectas.

2.3.2. Condiciones de paralelismo y perpendicularidad

Teorema

Dos rectas no verticales son paralelas si y sólo si sus pendientes son iguales.11

Las definiciones de inclinación y pendiente nos permiten deducir esta forma de enunciar el teorema acerca de rectas

paralelas. Si dos rectas tienen la misma pendiente, sus inclinaciones son iguales. Por geometría se sabe que son paralelas.

Recíprocamente, si dos rectas no verticales son paralelas, tendrán inclinaciones iguales y, por tanto, pendientes iguales.

11 Fuller, G. & Tarwater, F. (1995), Geometría analítica. (Séptima edición). México: Pearson Educación. p. 14

Page 37: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 37

Geometría analítica I Programa desarrollado

Sin embargo, algunos autores consideran que las condiciones de paralelismo y perpendicularidad se pueden deducir del

teorema del ángulo entre dos rectas, de manera que se deducen dos corolarios*.

Corolario

La condición necesaria y suficiente para que dos rectas sean paralelas es que sus

pendientes sean iguales. 12

Corolario

La condición necesaria y suficiente para que dos rectas sean perpendiculares entre sí es

que el producto de sus pendientes sea igual a .

Expresado de otra manera:

Dos rectas inclinadas son perpendiculares entre sí cuando una de las pendiente es el

recíproco negativo de la otra13:

2.3.3. Distancia de un punto a una recta

Para deducir esta fórmula, primero hagamos un ejemplo particular.

Calcular la distancia del punto a la recta

Paso 1. La distancia de un punto a una recta es la medida de la distancia más corta que hay entre el punto y la recta. Esto

se cumple para el segmento perpendicular que une al punto dado con la recta. A esta recta la llamaremos recta 1.

12

Lehman, Ch. (1989) Geometría analítica. México: Limusa Wesley. p. 23 13

Idem.

Page 38: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 38

Geometría analítica I Programa desarrollado

Por lo tanto, necesitamos encontrar la pendiente de la recta 1,

De allí podemos deducir que la pendiente de la recta es

Por lo que la pendiente del segmento perpendicular será

Es decir, el recíproco negativo de la pendiente

Paso 2. Encontramos la ecuación de la recta que es perpendicular a la recta 1 y que pasa por el punto (-4,-7). A esta nueva

recta la llamaremos recta 2.

Por la ecuación punto-pendiente es fácil hacerlo

O en su forma de ecuación general de la recta:

Page 39: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 39

Geometría analítica I Programa desarrollado

Paso 3. Ahora necesitamos encontrar el punto de intersección de la recta 1 y la recta 2. En otras palabras, resolver el

sistema de dos ecuaciones con dos incógnitas. La solución serán justamente las coordenadas del punto de intersección.

El punto de intersección es (1.17,-4.93)

Paso 4. La distancia del punto dado al punto de intersección es justamente la distancia del punto a la recta.

Nombremos al punto dado como y al punto de intersección

Sustituyendo en la fórmula para calcular la distancia entre dos puntos.

La distancia del punto (-4,-7) a la recta es de 5.57 unidades.

Ahora que comprendimos el procedimiento, podemos generalizar, es decir, encontrar una expresión para una recta y un

punto cualquiera en el plano.

Page 40: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 40

Geometría analítica I Programa desarrollado

Distancia de un punto a una recta

La distancia de una recta , llamada , a un punto dado puede

obtenerse por

La distancia de una recta al origen se obtiene sustituyendo en la expresión anterior el punto .

¿Cómo encontrarías la distancia entre dos rectas paralelas? Antes de continuar con la lectura, intenta proponer una

estrategia para responder a esta pregunta.

Para hallar la distancia entre dos rectas paralelas, se toma un punto cualquiera, de una de ellas y se calcula su distancia a

la otra recta.

Por ejemplo, sean y dos rectas paralelas, y un punto que pertenece a la primera recta, entonces la distancia entre

ellas queda determinada por

2.3.4. Familia de rectas

Cuando se habla de “familia de curvas”, se hace referencia a un conjunto de curvas que comparten alguna característica

en común, la cual puede ser una propiedad geométrica o una propiedad algebraica —resultado de variar en una

determinada ecuación alguna de las cantidades que intervienen en ella—. Se puede hablar de familia de rectas, de

circunferencias, etcétera.

La ecuación posee dos constantes, y , la pendiente y la ordenada al origen, respectivamente. Como

pudiste darte cuenta en la escena, si asignas valores definidos a estas dos constantes, entonces defines una única recta.

De manera que las cantidades y están fijas para una recta particular, pero cambian de una recta a otra, por lo que las

denominamos parámetros, ya que, de acuerdo al valor que les asignemos, se determinará una nueva recta. Cuando se

cambia solamente uno de estos parámetros, se forma una familia de rectas.

En la ecuación general de la recta, los coeficientes pueden ser considerados también parámetros.

Page 41: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 41

Geometría analítica I Programa desarrollado

Ejemplo. Escribe la ecuación de la familia de rectas que poseen la propiedad dada. En cada caso, asigna tres valores al

parámetro y grafica las rectas correspondientes.

a) Las rectas son paralelas a

Transformamos la ecuación a la forma pendiente-ordenada al origen

Por lo tanto la pendiente es , de manera que la ecuación de la familia de rectas es

La cual también la podemos escribir en su forma general, para ello transformamos la ecuación igualándola a cero

Como recordarás, por convención se prefiere escribir los coeficientes enteros, de manera que multiplicamos toda la

ecuación por 4

es una constante, por lo que podemos renombrarla como , así que la ecuación buscada es:

A continuación se muestran algunos miembros de esta familia de rectas, en cada caso se indica el valor propuesto para el

parámetro .

Page 42: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 42

Geometría analítica I Programa desarrollado

b) Las rectas son perpendiculares a

Analizando los coeficientes, podemos calcular su pendiente, de manera que la pendiente de la recta dada es

Por lo tanto, las rectas perpendiculares tendrán una pendiente de

De manera que nos interesa determinar la ecuación de la familia de rectas con pendiente

Sustituyendo en la forma pendiente ordenada-ordenada al origen, tenemos

Y en su forma general

¿Encuentras alguna relación entre esta ecuación y la obtenida como resultado en el inciso anterior? Presta especial

atención a los coeficientes y sus signos.

Ejemplo. Encuentra la familia de rectas que pasan por la intersección de y . Además, encuentra el miembro de esta familia de rectas que tiene pendiente 8.

Lo primero es resolver el sistema de ecuaciones:

Page 43: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 43

Geometría analítica I Programa desarrollado

El punto de intersección es

Por lo que el problema se transforma a encontrar la familia de rectas que pasan por ese punto. De manera que

probaremos con la ecuación punto-pendiente (dado que son los datos que conocemos del problema).

La ecuación anterior define la familia de rectas que pasan por el punto de intersección. Como nos piden el miembro de

esta familia tiene pendiente , solamente se debe sustituir en la ecuación este valor

O escrita en su forma general

Recuerda que no existe un solo camino para resolver un problema. Insistimos que la mejor manera de aprender es

resolver problemas por ti mismo, por lo que, antes de continuar leyendo los ejemplos, te recomendamos que intentes

resolver el problema propuesto por ti mismo y después compares tu solución con la que se muestra. No te preocupes si

no lo logras al primer intento, será la creatividad y la práctica lo que te permita elegir la vía adecuada de solución.

Ejemplo. Escribe la ecuación de la familia de rectas con pendiente , y encuentra las ecuaciones de dos rectas situadas

a 4 unidades del origen.

Se elige la ecuación , o en su forma general . Observa que en la primera ecuación el

parámetro es la ordenada al origen, mientras que en la segunda ecuación propuesta el parámetro es el coeficiente

independiente de la ecuación general de la recta.

Primera propuesta de solución:

Al estar las rectas situadas a dos unidades del origen, podemos elegir trasladarla sobre el eje de las ordenadas. Por lo

tanto, las soluciones que parecen evidentes son:

y

Ese es un error muy común, pero recuerda que la distancia de un punto a una recta se mide con la distancia

perpendicular del punto a la recta. Calcula esta distancia y comprueba que las ecuaciones anteriores no están a 4

unidades del origen.

Page 44: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 44

Geometría analítica I Programa desarrollado

Segunda propuesta de solución:

Sabemos que cada miembro de la familia de rectas es paralelo a la recta dada, a la cual llamaremos

.

Utilizando la fórmula para calcular la distancia de una recta a un punto

Por el enunciado del problema, podemos determinar las coordenadas del punto , ya que son las coordenadas del origen

Los coeficientes son y

Además, la distancia es igual a 4 unidades,

Sustituyendo

Resolviendo para

Por lo tanto, las ecuaciones de las rectas buscadas son:

A modo de práctica podrías graficar las ecuaciones de las rectas y comprobar las soluciones obtenidas.

En este segundo ejemplo decidimos mostrarte cómo no siempre se obtiene la solución al primer intento, por lo que no te

desanimes si al estar estudiando y resolviendo las actividades requieres probar más de un camino de solución.

Page 45: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 45

Geometría analítica I Programa desarrollado

Conclusiones

La principal contribución del álgebra a la geometría analítica es brindar un lenguaje escrito con el cual expresar las

relaciones geométricas, también proporciona un método con el cual se ha logrado, a lo largo de la historia, por una parte

demostrar resultados conocidos, pero también realizar descubrimientos y obtener resultados novedosos. Por su parte, la

geometría permite realizar una representación de las relaciones que el álgebra manifiesta, por medio de un sistema de

coordenadas y visualizar las propiedades que están implícitas en las relaciones escritas en lenguaje algebraico, pero que

desde la perspectiva de su lugar geométrico brinda un enfoque nuevo para su estudio. Esto se vuelve tangible durante el

estudio de las diferentes formas que tiene la ecuación de la recta, a partir de las propiedades geométricas que la definen,

por ejemplo, un punto y su pendiente, o dos puntos por los que pasa.

En conclusión, la ecuación de la recta es una sola, pero puede adoptar diversas formas, las cuales reciben nombres

especiales, de acuerdo con los elementos geométricos que están implícitos o las propiedades de su expresión algebraica,

como la ecuación general de la recta.

Consideraciones específicas de la unidad

En esta unidad se presta especial atención al proceso de demostración, sin ser todavía totalmente riguroso, nos interesa

que observes cómo se construye, es decir, como cada paso está fundamentado en relaciones previamente conocidas o

demostradas. En este sentido, una de las lecturas propuestas, en la sección Para saber más, proporciona estrategias para

la resolución de problemas, de manera que no es solamente un texto complementario.

Por otra parte, al mismo tiempo que aprendes sobre las demostraciones, las actividades formativas están enfocadas a

que reflexiones sobre el discurso utilizado en matemáticas, la manera en la que se expresan las ideas, promover una

nueva forma de lectura, en la que no basta con aceptar lo que está dicho, porque lo dice “el profesor”, sino que es

necesario reflexionar sobre su sustento matemático, sobre el significado, sobre las condiciones propuestas, etcétera.

Asimismo, la comunicación de ideas de manera escrita y utilizando adecuadamente el lenguaje propio de esta ciencia es

otra de las habilidades que deseamos promover. Lo anterior no está definido en un contenido, pero será tu carta de

presentación al desenvolverte en tu entorno profesional.

En la sección “Para saber más” proponemos una serie de recursos que te servirán para practicar los algoritmos que vayas

estructurando para utilizar las diferentes formas de la ecuación de la recta y atender a los problemas “dada su gráfica,

encontrar su ecuación” y “dada su ecuación, encontrar su gráfica”. En los ejemplos, en cambio, se ha buscado proponer

situaciones en donde no baste con la sustitución directa de los datos en una fórmula, sino que sea necesario identificar

“qué es lo que se conoce” y, a partir de eso, proponer una estrategia de solución.

Page 46: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 46

Geometría analítica I Programa desarrollado

Fuentes de consulta

http://divulgamat.ehu.es/weborriak/Historia/MateOspetsuak/Kovalevskaia.asp

Sugerencia: capítulo 2, La naturaleza de las matemáticas, y capítulo 9, El mundo matemático, de American

Association for Advancement of Science (AAAS). (1997). Ciencia: conocimiento para todos; proyecto 2061. En

http://www.project2061.org/esp/publications/sfaa/online/chap2.htm

http://www.project2061.org/esp/publications/sfaa/online/chap9.htm

Recuperado el 15 de agosto de 2010.

Sugerencia de sitio de internet en el que se resuelven sistemas de ecuaciones lineales.

http://www.portalplanetasedna.com.ar/ecuaciones_online.htm

Page 47: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 47

Geometría analítica I Programa desarrollado

Unidad 3. Secciones cónicas

Propósitos de la unidad

Identificar las relaciones entre el álgebra y la geometría para reconocer las relaciones existentes entre los aspectos

relevantes de una gráfica y los parámetros de la ecuación correspondiente, ya sea en su forma canónica o general.

Desarrollar habilidades para pasar de la definición de un lugar geométrico a una ecuación y la gráfica que lo representa.

Analizar los elementos geométricos para deducir la ecuación de la cónica o para graficarla.

Analizar la gráfica para identificar los elementos geométricos o la información necesaria para deducir la ecuación de la

cónica que la representa.

Competencia específica

Analizar los lugares geométricos de las cónicas para que, a partir de la ecuación, se determine su gráfica y viceversa por

medio de la relación de su definición y sus propiedades.

Presentación de la unidad

“Y pueden siempre reducirse así todas las cantidades desconocidas a una sola, cuando el

problema puede construirse mediante círculos y líneas rectas, o bien por secciones cónicas […]

Pero no me detengo a explicar esto con más detalle para no privar a cada uno del placer de

aprenderlo por sí mismo, ni impedir el cultivo útil del propio espíritu ejercitándolo, que es, a mi

parecer, la principal utilidad que puede obtenerse de esta ciencia”.

René Descartes en La Geometría (G.AT: VI, 374)

El estudio de las cónicas se remonta muchos siglos atrás. Apolonio de Perga (262-180 a. C.), gran matemático griego,

organizó el conocimiento de su época y realizó sus propias aportaciones en un tratado titulado Las cónicas. Sin embargo,

es a Menecmo (alrededor del 350 a. C.), también matemático griego, a quien se atribuye el descubrimiento de las cónicas.

Debe pasar mucho tiempo para que la obra de Apolonio llegue a Occidente a través de la matemática árabe. La primera

versión publicada en latín de los libros I al IV de Las cónicas se realiza en Venecia en 1547. Edmond Halley (1656-1742), el

Page 48: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 48

Geometría analítica I Programa desarrollado

descubridor de la órbita del cometa que lleva su nombre, publica en el año de 1710 la edición príncipe, en griego y en

latín, de la traducción de los libros que se habían conservado de Las cónicas de Apolonio.

Un giro importante en el estudio de estos objetos geométricos se da en el siglo XVIII, cuando René Descartes (1596-1650)

prueba que todas las cónicas se pueden describir por medio de una ecuación de segundo grado, pero ¿toda ecuación de

segundo grado será una cónica? Este hecho lo demostró más adelante Johan de Witt (1625-1672) en su obra Elementa

curvarum linearum.

Después de ellos, muchos matemáticos continuaron estudiando las cónicas. Por ejemplo, Blaise Pascal (1623-1662), quien

incluso estableció un teorema con su nombre dando inicio a la geometría proyectiva.

Como puedes darte cuenta, el camino recorrido ha sido largo, y ahora tienes la oportunidad de conocer las secciones

cónicas, que comprenden uno de los conjuntos de curvas más importantes en matemáticas, en opinión de algunos, por su

belleza “intrínseca”, en opinión de otros, por sus aplicaciones.14

3.1. Introducción a las secciones cónicas

Si bien el estudio de las cónicas inició hace más de 2000 años, sus definiciones han cambiado a lo largo del tiempo y han

permitido construir alguno de los más interesantes y completos estudios sobre cuerpos geométricos.

Consideremos como punto de partida el estudio hecho por el gran matemático griego Apolonio de Perga, ya que él fue

quien bautizó a las cónicas con los nombres que conocemos hoy día, clasificándolas en tres tipos:

elipse (significa deficiencia)

hipérbola (significa exageración)

parábola (significa equiparación)

Las cónicas es el nombre que se da a las formas que se obtienen al cortar un plano con un doble cono.

A las circunferencias, parábolas, elipses e hipérbolas se les denomina cónicas (o cónicas no degeneradas). En cambio, se

denomina cónicas degeneradas al punto, la línea recta o un par de líneas, las cuales también se obtienen por el corte de

un plano con el cono. En este curso enfocaremos nuestra atención al estudio de las cónicas no degeneradas.

14 Referencias consultadas: Pérez, M. A. (2009). Una historia de la matemática: retos y conquistas a través de sus personajes. Madrid. Collette, J. P. (1993). Historia de las matemáticas. Volumen 2. España: Siglo XXI Editores. Mankiewicz, R. (2005). Historia de las matemáticas: del cálculo al caos. Editorial Paidós.

Page 49: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 49

Geometría analítica I Programa desarrollado

En los siglos XVI y XVII, los matemáticos retomaron el estudio de las secciones cónicas, pero en lugar de hacerlo como los

griegos con una visión puramente geométrica, incorporaron las nociones de coordenadas y distancia, lo que les permitió

analizarlas como lugares geométricos de los puntos que verificaban propiedades particulares en términos de distancias.

Con esta perspectiva iniciaremos el estudio de las secciones cónicas.

3.2. Circunferencia

Fotografía realizada por el arqueólogo español Adolfo López Belando

en 1994 sobre uno de los motivos más importantes del arte rupestre

encontrado en Punta del Este, Cuba, las circunferencias concéntricas

de colores rojo y negro. 15

El círculo y la circunferencia son conceptos que hemos escuchado desde niños y nos son muy familiares. En el Diccionario

de la Real Academia Española se definen de la siguiente manera:

“Círculo: m. Geom. Área o superficie plana contenida dentro de una circunferencia.”16

“Circunferencia: f. Geom. Curva plana, cerrada, cuyos puntos son equidistantes de otro, el centro, situado en el mismo

plano.”17

15

http://www.naya.org.ar/congreso2002/ponencias/img/jose_alonso04.gif 16

http://buscon.rae.es/draeI/SrvltGUIBusUsual?TIPO_HTML=2&TIPO_BUS=3&LEMA=c%C3%ADrculo 17

http://buscon.rae.es/draeI/SrvltObtenerHtml?LEMA=circunferencia&SUPIND=0&CAREXT=10000&NEDIC=No

Page 50: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 50

Geometría analítica I Programa desarrollado

Sin embargo, no siempre fue de esta manera. Consulta las definiciones dadas por Euclides en su Libro de los elementos:

Libro I, definiciones 14 a 18.

3.2.1. Definición

Para su estudio, desde la perspectiva de lugar geométrico, daremos una nueva definición de circunferencia.

Una circunferencia es una curva plana que posee la propiedad única de que todos sus

puntos están a igual distancia (son equidistantes), de otro punto fijo, llamado centro, que

se encuentra en el mismo plano.

Observa que esta definición es equivalente a las que ya conocías, pero se enuncia como lugar geométrico. A continuación

deduciremos su ecuación.

3.2.2. Ecuación canónica de la circunferencia

Para definir la ecuación de la circunferencia, tomemos como punto de partida otra definición como lugar geométrico,

equivalente a la vista previamente.

La circunferencia es el lugar geométrico de un punto que se mueve en un plano de tal

manera que se conserva siempre a una distancia constante, llamada radio, de un punto fijo

de ese plano, llamado centro de la circunferencia.18

Cuando niños, seguramente muchas veces trazamos círculos con un compás, el procedimiento es bien conocido: abrimos

el compás a una distancia dada , fijamos su punta en un sitio, el centro, y trazamos la circunferencia. En el campo, las

personas hacían esto fijando una estaca de madera y tensando una cuerda (de una longitud conocida), de manera que al

girar la cuerda, teniendo la estaca como centro, dibujaban una circunferencia, un compás rudimentario. En ambos casos,

se cumple que todos los puntos trazados se encuentran a la misma distancia del centro. De manera que con estos

procedimientos se ha trazado el lugar geométrico de un punto que al moverse se mantiene equidistante del centro que se

ha fijado.

18

Lehman, p. 97.

Page 51: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 51

Geometría analítica I Programa desarrollado

Es momento de deducir su ecuación. Con este propósito en mente, vamos a establecer algunas convenciones:

1. Nombraremos al centro , en donde es el valor de la abscisa, y , el de la ordenada.

2. El punto será un punto cualquiera que pertenece a la circunferencia.

3. Llamaremos al radio, es decir, a la distancia que es constante.

Ahora, realicemos un diagrama para representar la situación.

Utilizamos la fórmula para calcular la distancia entre dos puntos, definiendo que sea el punto inicial y el punto final.

Elevamos al cuadrado ambos términos de la ecuación para que no existan radicales en la misma.

¡Enhorabuena! Acabas de deducir la ecuación de una circunferencia.

De aquí en adelante, la denominaremos ecuación canónica de la circunferencia con centro en y radio , o

simplemente ecuación canónica de la circunferencia. Como podrás darte cuenta, los nombres en las matemáticas son

muy descriptivos. Se podría decir, de forma coloquial, que “ecuación canónica” es equivalente a la expresión “ecuación

puesta de la forma más conveniente”, ya que en ella aparecen de manera explícita sus elementos geométricos, que en el

caso de la circunferencia son el centro y el radio.

Page 52: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 52

Geometría analítica I Programa desarrollado

Cabe mencionar que a esta misma ecuación algunos autores la denominan ecuación ordinaria o también ecuación de la

forma centro-radio porque son los elementos que se pueden leer directamente de la misma.

Este resultado es tan importante que se enuncia en forma de teorema.

Teorema

La circunferencia cuyo centro se localiza en y cuyo radio es tiene por ecuación

Para todo mayor que cero.

¿Cuál sería la ecuación de la circunferencia con centro en el origen? Seguramente ya tienes la respuesta porque

solamente has sustituido las coordenadas del centro .

Este resultado se deduce del teorema de manera casi inmediata, por lo que se enuncia en un corolario, dado que es

también muy útil en el estudio de la geometría analítica.

Corolario

La circunferencia cuyo centro está en el origen, , y su radio es tiene por

ecuación

Para todo mayor que cero.

Ejemplo

Sea la circunferencia con centro en el punto y radio de de unidad. Encuentra su ecuación y realiza su gráfica.

Page 53: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 53

Geometría analítica I Programa desarrollado

Solución

Este es un ejemplo del caso más sencillo que se nos puede presentar, ya que el enunciado nos dice de manera explícita

los valores del centro y el radio, de esa forma solamente tenemos que sustituirlos en la ecuación canónica de la

circunferencia.

y

Este mismo problema se nos puede haber presentado de la siguiente forma.

Encuentra el lugar geométrico definido por la ecuación

Solución

En una inspección a simple vista, podemos reconocer que se parece a la ecuación de la circunferencia.

Page 54: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 54

Geometría analítica I Programa desarrollado

La reescribimos para que tenga la misma forma que la ecuación canónica

Por lo que se pueden deducir de la propia ecuación el centro y el radio de la circunferencia.

Con esos datos ya podemos construir el lugar geométrico, es decir, la gráfica de la circunferencia, y resolver el problema.

Existe todo un conjunto de problemas que podrían expresarse como: “Dada la gráfica, encontrar su ecuación”. A

continuación te mostramos un ejemplo.

Page 55: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 55

Geometría analítica I Programa desarrollado

Ejemplo

Encuentra la ecuación de la circunferencia que se muestra en la siguiente figura, en donde se ha indicado el diámetro de

la misma.

Este problema ya no es de aplicación inmediata de una fórmula. De manera que hay que establecer una estrategia para

resolverlo.

Lo primero es poder deducir las coordenadas del centro y la longitud del radio, así que manos a la obra.

De la figura podemos deducir que los extremos del diámetro tienen coordenadas y . Sabemos que el

diámetro es el doble del radio, por lo que el punto medio de este segmento, corresponderá con las coordenadas del

centro. Por fortuna, ya conocemos las ecuaciones para calcular las coordenadas del punto medio de un segmento, de

manera que nos permite deducir que el centro se encuentra en:

Para calcular el radio, basta encontrar la distancia del centro a uno de los extremos y como el segmento es horizontal, la

tarea se simplifica:

Con estos dos datos ya podemos escribir la ecuación de la circunferencia:

Nota. Como te habrás dado cuenta, en la ecuación canónica de la circunferencia, el signo que antecede a 1.5 y a 1 es

contrario al signo que tiene la abscisa y la ordenada del centro, respectivamente.

Page 56: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 56

Geometría analítica I Programa desarrollado

Después de analizar estos dos ejemplos, podrías pensar en las estrategias que se siguieron para su solución. Observa que,

para definir la ecuación canónica de la circunferencia, se requiere conocer (o deducir a partir de los elementos dados en

el problema) una de las siguientes condiciones:

a) El centro y el radio

b) El centro y uno de sus puntos

De esa manera, bastará sustituir los valores y realizar un poco de álgebra (en el segundo caso) para poder definir la

ecuación canónica de la circunferencia.

Si conoces su gráfica, podrías plantearte alguna estrategia a seguir para transformar el problema en uno de los casos

anteriores. Por ejemplo, procurar definir el centro y leer las coordenadas más sencillas que encontremos de uno de los

puntos que pertenece a la circunferencia. Otra alternativa es encontrar el centro y establecer la longitud del radio. Por

supuesto, esta propuesta no es exhaustiva, en cada caso necesitarás realizar un análisis de la situación y proponer un plan

de acción.

3.2.3. Ecuación general de la circunferencia

Nuestro propósito será encontrar la ecuación general de la circunferencia, para ello vamos a desarrollar la ecuación

canónica de la circunferencia, es decir, desarrollar los binomios al cuadrado:

Binomio al cuadrado: al elevar al cuadrado un binomio se obtiene un polinomio de tres términos, al cual se le llama

trinomio cuadrado perfecto (TCP).

En resumen:

Page 57: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 57

Geometría analítica I Programa desarrollado

Reorganizando los términos e igualando a cero,

Sea , La ecuación anterior la podemos escribir como

A esta última ecuación se le conoce como ecuación general de la circunferencia.

Ecuación general de la circunferencia:

Observa que en la ecuación general de la circunferencia los coeficientes de y son iguales a 1, por lo tanto, no se

escriben.

De lo anterior podemos deducir fácilmente las siguientes ecuaciones:

a) La circunferencia con centro en el origen:

b) La circunferencia con el centro sobre el eje :

c) La circunferencia cuyo centro está sobre el eje :

Ejemplo

Encuentra la ecuación de la circunferencia que pasa por los puntos , y y realiza su

gráfica.

Solución

Sabemos que la ecuación de la circunferencia se puede expresar de la forma

Entonces, podemos reformular nuestro problema de la siguiente manera, necesitamos encontrar los valores para los

coeficientes , y , de forma tal que la ecuación de la circunferencia se satisfaga con las coordenadas de cada uno de

los puntos que nos han dado.

Page 58: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 58

Geometría analítica I Programa desarrollado

Sustituimos los valores de las coordenadas de los puntos y se obtiene el siguiente sistema de ecuaciones

Desarrollando y simplificando, obtenemos:

Resolviendo el sistema de ecuaciones lineales*, de 3 ecuaciones con 3 incógnitas, tenemos:

Resolver un sistema de ecuaciones significa encontrar el conjunto de valores que satisfacen simultáneamente cada una de

sus ecuaciones. Existen diferentes métodos: igualación, sustitución, reducción y por determinantes.

Sustituyendo los valores en la ecuación general de la circunferencia, hemos resuelto una parte del problema

Ahora, para la segunda parte, necesitamos transformar la ecuación general de la circunferencia a la forma canónica.

La estrategia es completar el trinomio cuadrado perfecto (TCP)*.

Se reorganizan los términos

Se completa el TCP. Observa que en ambos lados de la igualdad agregamos los mismos valores

Y, finalmente, se factoriza

Page 59: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 59

Geometría analítica I Programa desarrollado

De esta última ecuación es posible leer las coordenadas del centro: y el radio se obtiene fácilmente:

Ahora ya puedes realizar la gráfica de la circunferencia.

Con este ejemplo, nos hemos dado cuenta de que, para definir la ecuación de una circunferencia, son necesarios por lo

menos tres puntos que pertenezcan a la misma. Si conocemos más puntos, bastará con elegir tres de ellos y realizar el

procedimiento que aquí se mostró.

Nota. Como una estrategia de estudio, cuando encuentres la solución a un problema, verifica el resultado que obtuviste.

Por ejemplo, al resolver el sistema de ecuaciones, podrías sustituir los valores encontrados para los coeficientes y

en cada una de las ecuaciones que conforman el sistema y asegurarte de que se cumple la igualdad. A continuación

mostramos la sustitución en la segunda ecuación del sistema.

Como pudiste darte cuenta, la ecuación general de la circunferencia no nos permite conocer, a simple vista, sus

elementos geométricos; sin embargo, están implícitos en la misma. Por la definición que hicimos de los coeficientes,

podemos, a partir de ellos, deducir las coordenadas del centro y el valor del radio.

Dado que , entonces (1)

De la misma forma, , por lo tanto (2)

Page 60: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 60

Geometría analítica I Programa desarrollado

El radio se deduce de la igualdad , resolviendo la ecuación para , tenemos:

(3)

Sustituyendo las ecuaciones (1) y (2) en (3)

En conclusión, a partir de los coeficientes de la ecuación general de la circunferencia se pueden determinar las

coordenadas del centro y el valor del radio por medio de las expresiones:

No es necesario que memorices estas fórmulas, sino que comprendas cómo se obtuvieron, para que en cualquier

momento que requieras de ellas, si no las recuerdas, seas capaz de deducirlas por ti mismo.

Así, ya conoces dos formas para poder graficar una circunferencia a partir de su ecuación general:

Transformar la ecuación general a la ecuación canónica, para que puedas deducir las coordenadas del centro y el valor del

radio. La estrategia clave es completar el TCP.

Utilizar las expresiones y ; en donde , y son los coeficientes de la ecuación

general .

Page 61: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 61

Geometría analítica I Programa desarrollado

Ejemplo.

Encuentra todas las circunferencias que pasan por el punto de intersección de las rectas y y

que tienen centro en el punto . Expresa las ecuaciones de las circunferencias encontradas en su forma general.

Antes de leer la solución, ¿cuántas circunferencias crees que vas a encontrar? Vamos a averiguarlo.

Solución

Lo primero será encontrar el punto de intersección de las rectas. Para ello necesitas resolver el sistema de ecuaciones, lo

que nos indica que el punto que satisface ambas ecuaciones pertenece a las dos rectas.

Al resolver el sistema de ecuaciones, se obtienen las coordenadas del punto donde se intersecan ambas rectas, es decir,

:

Sabemos también que cualquier circunferencia con centro en tiene la ecuación

Como ya conocemos el centro de la circunferencia y un punto por el que pasa, con estos datos podemos deducir el radio.

De aquí concluimos que solamente existe una circunferencia que cumple con las condiciones del problema y su ecuación

es:

Page 62: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 62

Geometría analítica I Programa desarrollado

Ahora, para transformar la ecuación a su forma general, basta con desarrollar la expresión e igualarla a cero. Realiza los

pasos intermedios y comprueba que la ecuación general de esta circunferencia es

Sería una buena práctica que, conforme vas leyendo las soluciones, realices en tu cuaderno las operaciones para

asegurarte que comprendes lo que realizas en cada paso, también que realices las gráficas, por ejemplo de la

circunferencia obtenida como solución.

3.2.4. Familia de circunferencias

En la ecuación canónica de la circunferencia existen tres constantes arbitrarias, las cuales son independientes entre sí: ,

y ; las dos primeras determinan las coordenadas del centro y la tercera es el radio de la circunferencia.

Ahora, si analizamos la ecuación de la circunferencia en su forma general, podemos identificar también tres constantes

arbitrarias que son independientes, los coeficiente , y .

De esta forma, podemos concluir que una circunferencia se determina analíticamente por tres condiciones

independientes, lo mismo sucede geométricamente (recuerda el ejemplo de los tres puntos que pertenecen a la

circunferencia).

Cuando una de esas condiciones no está definida, la denominamos parámetro, y en esos casos se obtiene una familia de

circunferencias que deben “satisfacer cierta condición”.

Lee-haciendo, los siguientes ejemplos.

Ejemplo.

Cualquier circunferencia que pasa por el centro tiene la siguiente ecuación:

Solución

Observa que, como el radio no está definido, lo nombramos , lo que indica que toma el valor de una constante

arbitraria. Así, para cada valor distinto de se tendrá la gráfica de una circunferencia, de manera que esta ecuación

representa una familia de circunferencias muy especial: las circunferencias concéntricas*.

Page 63: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 63

Geometría analítica I Programa desarrollado

Algunos ejemplos de esta familia de circunferencias concéntricas, cuyo centro es , se muestran a continuación.

¿Podrías identificar el valor de para cada una de las circunferencias de este ejemplo? Inténtalo. Es sencillo si recuerdas

que representa el valor del radio.

Ejemplo. Encuentra la ecuación de la familia de circunferencias de radio de 2 unidades, cuyo centro se encuentra:

a) sobre la recta

b) sobre la recta

c) sobre la recta

d) sobre la recta

Solución

a) Al encontrarse el centro sobre la recta , podemos establecer que su abscisa es igual a 5. El centro de cualquier

círculo de esta familia tiene la forma , por lo tanto la ecuación de esta familia de circunferencias es

Page 64: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 64

Geometría analítica I Programa desarrollado

Algunos elementos de esta familia se muestran a continuación:

b) De manera similar al inciso anterior, podemos determinar que la ordenada del centro de esta familia de circunferencias

es 5, por lo tanto su centro se define por y la ecuación de la familia de circunferencias es

c) Las coordenadas del centro de esta familia de circunferencias se encuentran en la recta , es decir,

.

Lo que nos indica la expresión anterior es que los valores de la abscisa y la ordenada del centro son idénticos, por lo que

podemos igualarlos a una constante arbitraria, a la cual nombraremos . De esta forma, el centro queda definido por

.

Page 65: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 65

Geometría analítica I Programa desarrollado

Por lo tanto, la ecuación de esta familia de circunferencias es

En la siguiente imagen se muestran algunos miembros de esta familia. Identifica cuáles son las circunferencias que

corresponden a los valores de y .

(x-A)^2+(y-A)^2=4

Comprueba tu respuesta.

d) En este caso el centro se encuentra sobre la recta . Sustituimos los valores de y por los de las

coordenadas del centro, obteniendo la relación . Para no confundirnos, haremos que la abscisa del centro de

Page 66: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 66

Geometría analítica I Programa desarrollado

esta familia de circunferencias tome un valor arbitrario (parámetro), de manera que podemos conocer el valor de

su ordenada, el cual será .

Así, las coordenadas del centro quedan definidas por , cumpliéndose la condición de que se

encuentran sobre la recta.

Por lo que la ecuación de la familia de circunferencias de radio 2, cuyo centro se encuentra en la recta , tiene la

forma

En la siguiente imagen mostramos algunas circunferencias que pertenecen a esta familia.

Para darte cuenta si comprendiste el concepto de familia, te proponemos que grafiques otras circunferencias que

pertenezcan a la familia de este último inciso, para ello propón diferentes valores para , como pueden ser o

.

Resolvamos ahora un problema más retador.

Ejemplo. El centro de una circunferencia de radio se encuentra sobre el eje de las ordenadas (eje ). Encuentra los

valores de las coordenadas del centro que hacen que la circunferencia:

a) No toque al eje de las abscisas (eje ).

b) Toque en un solo punto al eje de las abscisas.

c) Tenga dos puntos de intersección con el eje de las abscisas.

Page 67: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 67

Geometría analítica I Programa desarrollado

Solución

Para resolver el problema, requerimos hacer un diagrama de la situación, lo puedes hacer a lápiz y papel, explorando

diferentes casos. ¿Listo?

Como el centro se encuentra sobre el eje de las ordenadas, podemos definir que su abscisa es , de manera que lo

que está cambiando es solamente el valor de su abscisa, es decir, . Además sabemos que el radio es igual a 3, por lo que,

con los datos que tenemos en este momento, podemos establecer la siguiente ecuación canónica de la circunferencia:

Esta ecuación da nombre a la familia de todas las circunferencias de radio 3 cuyo centro se encuentra sobre el eje de las

ordenadas.

Lo que nos interesa analizar son los valores de , que hacen que se cumplan las condiciones descritas en cada inciso.

Lo más sencillo es definir cuáles son los valores que hacen que el centro toque al eje de las abscisas en un solo punto;

esto se cumple cuando el punto forma parte de la circunferencia.

De allí podemos concluir que se tienen dos circunferencias que cumplen con la condición de tocar en un solo punto el eje

. La primera tiene centro en , y la segunda, en . Con esto damos respuesta al inciso b).

Page 68: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 68

Geometría analítica I Programa desarrollado

¿Qué sucede si ? Explora la escena de nuevo para todos los valores de mayores que 3. Como pudiste darte

cuenta, la circunferencia no toca en ningún momento el eje de las porque la distancia del centro a dicho eje se hace cada

vez mayor que la longitud del radio.

¿Qué sucede si 3? Vuelve otra vez a la escena. De allí podrás concluir que, para todos los valores de menores que 3,

la circunferencia tampoco toca al eje .

En conclusión, la respuesta al inciso a) es que las circunferencias cuya ecuación es

Para todos los valores de o , no tocarán al eje de las abscisas.

Por último, ¿qué crees que suceda cuando la ordenada del centro, , cumple con la siguiente condición ?

Comprueba lo que sucede en la escena. Varía los valores de la ordenada del centro dentro del intervalo .

Page 69: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 69

Geometría analítica I Programa desarrollado

Seguramente has encontrado ya la respuesta al inciso c). Cuando la ordenada del centro toma valores dentro del intervalo

, la circunferencia tiene dos puntos de intersección con el eje .

Consejo. Es conveniente que tengas presente la definición de un intervalo abierto, cerrado y semiabierto*, si no lo

recuerdas, este es un buen momento para que investigues.

3.3. Parábola

19

Para iniciar con este tema, haremos una actividad de construcción con regla y compás. Para obtener la figura deseada es

muy importante que leas con atención las instrucciones y las sigas cuidadosamente.

19

No tengo la referencia de esta fotografía, pero sólo es para que se tome de modelo.

Page 70: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 70

Geometría analítica I Programa desarrollado

3.3.1. Definición

La curva que construiste en la actividad de introducción a este tema se llama parábola y se define, como lugar

geométrico, de la siguiente manera.

Una parábola es el conjunto de puntos del plano que equidistan de una recta fija, llamada

directriz , y un punto fijo (que no se encuentra sobre esa recta), llamado foco .

En ocasiones, para dar sentido a las definiciones, conviene analizar un caso particular.

Ejemplo

Encuentra el lugar geométrico de los puntos que equidistan de y la recta .

Solución

Las coordenadas del foco corresponden a las coordenadas del punto fijo dado en el enunciado

La directriz , de la parábola, es la recta .

Encontrar el lugar geométrico significa identificar cuáles son los puntos del plano que cumplen con las condiciones

enunciadas:

La distancia de un punto, , que pertenece a dicho lugar geométrico, a , debe ser igual a la distancia de

dicho punto a la recta .

Expresado en lenguaje matemático:

La distancia de a podemos determinarla por la fórmula para calcular la distancia entre dos puntos.

Page 71: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 71

Geometría analítica I Programa desarrollado

Asimismo, para determinar la distancia de a utilizamos la fórmula para calcular la distancia de un punto a una recta.

A continuación hemos omitido unas partes en la explicación, las cuales tú deberás de completar. Reflexiona al respecto.

Paso 1. Sustituyendo (__) y (3) en (__)

Paso 2. Elevando al ________ ambos miembros

Paso 3. Desarrollando

Paso 4. Simplificando (Desarrolla las operaciones algebraicas necesarias

para simplificar la expresión anterior)

Paso 5. Resolviendo la ecuación para

Page 72: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 72

Geometría analítica I Programa desarrollado

El lugar geométrico buscado es el conjunto de puntos del plano que satisfacen la ecuación (la cual debe resultarte

muy familiar).

Consejo. En este ejemplo, del paso 1 al paso 2, utilizamos la definición del valor absoluto*:

Page 73: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 73

Geometría analítica I Programa desarrollado

Elementos geométricos de la parábola.

Foco

Directriz

Parábola

Por la definición conocemos:

El foco es un punto fijo en el plano

La directriz es una recta fija en el plano

La parábola es el conjunto de puntos que equidistan de la

directriz y del foco.

Vértice

El vértice es el punto de la parábola más cercano al foco y

a la directriz.

Por convención se denota con la letra y sus cordenadas

son .

Distancia

focal

La distancia focal es la magnitud de la distancia entre el

foco y el vértice de la parábola; se denota como .

La distancia entre el foco y el vértice es igual a la distancia

entre el vértice y la directriz.

Cuerda

La cuerda es el segmento de recta que une dos puntos

cualesquiera de la parábola.

La cuerda focal es la cuerda que pasa por el foco.

Page 74: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 74

Geometría analítica I Programa desarrollado

Lado recto

El lado recto es la cuerda paralela a la directriz que

pasa por el foco de la parábola.

Propiedades del lado recto:

Es perpendicular al segmento que une el vértice y el foco

(y también al eje de la parábola).

La distancia del lado recto a la directriz es .

La longitud del lado recto es .

La distancia del foco a uno de los extremos del lado recto

es igual a .

Eje de la

parábola

El eje de la parábola es la línea perpendicular a la directriz

que pasa por el foco. Por este motivo también se le llama

eje focal.

Tiene la propiedad de ser, además, el eje de simetría de la

parábola.

Page 75: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 75

Geometría analítica I Programa desarrollado

3.3.2. Ecuación canónica de la parábola

A continuación se estudiarán las ecuaciones canónicas de parábolas, cuyo eje es paralelo a alguno de los ejes

coordenados y cuyo vértice es .

Estas condiciones nos definen cuatro clasificaciones

Posición Abre hacia Diagrama ilustrativo

Horizontal

derecha

izquierda

Vertical

arriba

abajo

Page 76: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 76

Geometría analítica I Programa desarrollado

Si el vértice está en el origen, , se tendrán casos particulares de los anteriores.

Deducción de la ecuación canónica, con vértice y una distancia focal , de la parábola vertical.

Por la definición de la parábola y las condiciones propuestas, podemos realizar el siguiente diagrama para comenzar

nuestro análisis

Organicemos en una tabla la información que podemos deducir del diagrama.

Parábola Abre

hacia

Distancia

focal Vértice Foco

Directriz

Eje Q

Vertical arriba

Se elige un punto que pertenece a la parábola, de manera que la distancia del punto a la directriz es igual a la

longitud del segmento , el cual es perpendicular a la directriz. Por la definición de la parábola, podemos establecer la

siguiente igualdad:

Page 77: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 77

Geometría analítica I Programa desarrollado

Y seguiremos la misma lógica que utilizamos en el primer ejemplo de este tema.

Paso 1. Sustituyendo (2) y (3) en (1)

Paso 2. Elevando al cuadrado ambos miembros

Paso 3. Desarrollando

Paso 4. Simplificando

Paso 5. Factorizando

A la última ecuación se le conoce como ecuación canónica de la parábola vertical con vértice y distancia focal , o

simplemente, ecuación canónica de la parábola.

Sugerencia: para practicar y poner a prueba la comprensión de esta deducción, sigue un razonamiento análogo para

deducir las ecuaciones de las otras parábolas (la vertical que abre hacia abajo y las dos horizontales).

Page 78: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 78

Geometría analítica I Programa desarrollado

A continuación se muestran las ecuaciones canónicas de las parábolas, con vértice y cuya magnitud de la

distancia focal es .

Posición Abre hacia Ecuación canónica

Horizontal derecha

izquierda

Vertical arriba abajo

Nota. Algunos autores consideran que solamente existe una ecuación para la parábola horizontal y es

. ¿Parece idéntica a la anterior, no? En este caso es el valor de la distancia focal dirigida. De

manera que, si la parábola abre hacia la derecha, el signo de es positivo; mientras que, si abre hacia la izquierda, el

signo de es negativo. Ambas definiciones son equivalentes, lo importante es reflexionar sobre el significado de , al

momento de resolver un problema.

Al igual que en la circunferencia, los casos más sencillos para encontrar la ecuación de una parábola son aquellos en los

que nos dan directamente los valores que definen la ecuación canónica, por lo que basta con sustituirlos en ella, pero

generalmente, a partir de los datos enunciados será necesario deducir otros que nos permitan poder realizar la gráfica y

encontrar la ecuación, o quizá encontrar la ecuación a partir de los elementos geométricos de una gráfica. A continuación

te presentamos algunos ejemplos.

Ejemplo

Encuentra la ecuación y la gráfica de la parábola cuyo vértice se encuentra en el origen, su eje de simetría es paralelo a

uno de los ejes y pasa por el punto

Solución

Por el enunciado del problema sabemos que y pertenece a la parábola.

La condición “su eje de simetría es paralelo a uno de los ejes” nos indica que existen dos posibles casos:

a) La parábola es horizontal, por lo tanto su eje de simetría es paralelo al eje .

b) La parábola es vertical, por lo que su eje de simetría es paralelo al eje .

Page 79: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 79

Geometría analítica I Programa desarrollado

Siempre que te sea posible realiza un diagrama de la situación para comprender el enunciado propuesto y, de esta forma,

poder establecer una estrategia para la solución.

Al representar a y en el sistema de coordenadas, por la posición del punto que pertenece a la parábola con respecto

al vértice de la misma, podemos deducir que:

a) Es una parábola horizontal que abre hacia la izquierda, por lo que su ecuación tendrá la forma

b) Es una parábola vertical que abre hacia arriba, su ecuación tiene la forma

¿Y ahora, qué hacemos?

Como conocemos las coordenadas del punto , podemos sustituirlas en la ecuación de la parábola. Analicemos primero el

caso de la parábola horizontal.

Sustituyendo en (1)

Ya conocemos la distancia focal, por lo tanto regresamos a la ecuación canónica (1) y sustituimos este valor

Page 80: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 80

Geometría analítica I Programa desarrollado

Hemos resuelto la primera parte del problema: “la ecuación de la parábola horizontal que pasa por el origen y por el

punto

es ”

Consejo. Recuerda que es importante escribir enunciados para la solución del problema.

Aunque el problema no lo pide explícitamente, realizaremos la gráfica junto con sus elementos geométricos.

Paso 1. Ubicamos los datos del problema

En este caso sabemos que la parábola es horizontal y abre

a la izquierda; además de que su eje es el de las abscisas.

Paso 2. Sabemos que la distancia focal es

Por lo tanto, el foco estará a unidades a la izquierda de la

parábola, sobre su eje. El foco tiene coordenadas

.

Además, la directriz es la recta perpendicular al eje y

pasará por un punto ubicado sobre el eje de la parábola, a

unidades a la derecha del vértice.

La ecuación de la directriz es

Page 81: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 81

Geometría analítica I Programa desarrollado

Como la parábola es simétrica, podemos encontrar otro

punto por el que pasa, que será el reflejo del punto

respecto al eje de la parábola.

La coordenada del nuevo punto es .

Y, con estos tres puntos, ya es posible esbozar la gráfica de

la parábola.

Si deseas que tenga mayor precisión, propón nuevos

valores para y evalúa la expresión

Por ejemplo, sea , entonces , de manera que

la solución de la ecuación es y . Esto nos

permitió encontrar dos puntos más que pertenecen a esta

parábola.

Ecuación Descripción Distancia

focal Vértice Foco

Directriz

Eje

Parábola horizontal que

abre hacia la izquierda

Te queda a ti encontrar la parábola vertical que cumple con las condiciones propuestas en este ejemplo. Comprueba que

su ecuación es igual a . Por último, realiza su gráfica y completa la tabla.

Ecuación Descripción Distancia

focal Vértice Foco

Directriz

Eje

Parábola horizontal que

abre hacia la derecha

Page 82: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 82

Geometría analítica I Programa desarrollado

La otra clase de problemas que te puedes encontrar es, dada la gráfica de una parábola, deducir su ecuación.

Ejemplo

Encuentra la ecuación de la siguiente gráfica, en donde está indicado el lado recto.

Solución

Cuando toda la información que se tiene es la gráfica, se deberá hacer una lectura lo más precisa posible de las

coordenadas de los elementos de la misma. De la figura podemos deducir que los extremos del lado recto tienen

coordenadas y y fácilmente calcular su longitud .

Intenta resolver ese ejemplo en tu cuaderno y luego comparar tu procedimiento y resultado con el que se muestra a

continuación. Como bien sabes, no hay caminos únicos, pero, como dice el refrán “todos los caminos llevan a Roma” y, en

nuestro caso, deberán llevarnos a la ecuación de esta gráfica.

Por una parte, sabemos que la ecuación de esta parábola tiene la forma , de manera que

tenemos que averiguar los valores de , y .

Conocemos que una propiedad del lado recto es la siguiente , de allí podemos deducir el valor de .

Page 83: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 83

Geometría analítica I Programa desarrollado

Otra propiedad es que el punto medio del lado recto nos brinda las coordenadas del Foco, por lo tanto . De

allí es fácil establecer la ecuación del eje de la parábola . Como el vértice está situado sobre el eje, ya

podemos conocer su abscisa, es decir, .

Conocemos también que la distancia de a debe ser igual a . Por lo tanto,

Ya tenemos todos los elementos que necesitamos: , y .

La ecuación de esta gráfica es .

A modo de repaso, completaremos también la tabla, aunque, cuando estás resolviendo un problema, conviene que vayas

organizando en ella la información que obtienes en cada paso.

Ecuación Distancia focal Vértice Foco Directriz Eje

Sugerencias para trazar una parábola si se conoce su ecuación.

Localiza el vértice .

Determina el valor de la distancia focal, es decir, .

Page 84: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 84

Geometría analítica I Programa desarrollado

Por la forma de la ecuación determina si la parábola es horizontal o vertical, de acuerdo con la variable que esté elevada

al cuadrado ( , si es vertical, y si es horizontal)

Determina hacia qué lado abre la parábola, de acuerdo con el signo que antecede al coeficiente

Localiza el foco , que se encuentra a unidades del vértice, de acuerdo con la dirección hacia donde abre la parábola

Traza el eje de la parábola.

Traza la recta que contiene el lado recto (recuerda sus propiedades) y determina los extremos del segmento del lado

recto, los cuales están a unidades del foco.

Localiza algunos otros puntos de la parábola (por ejemplo, por medio de una tabla).

Esboza la parábola.

Otra forma es graficar la parábola por medio de la evaluación organizando los datos en una tabla y ubicando los puntos

encontrados en el plano cartesiano.

Sugerencia. Busca o crea tus propios ejercicios y practica para que seas un experto en trazar la parábola, es decir,

graficarla, conociendo su ecuación, así como resolviendo problemas en los que conozcas diferentes datos. Haz esto

mismo para los siguientes temas que estudiarás.

3.3.3. Ecuación general de la parábola

En el caso de la parábola se encontrarán dos formas de la ecuación general, la primera define a las parábolas verticales, y

la segunda, las horizontales.

El procedimiento a seguir es desarrollar las ecuaciones canónicas de la parábola e igualarlas a cero para encontrar su

respectiva ecuación general.

Consideremos la ecuación canónica de la parábola vertical. En este caso se considera la distancia focal dirigida.

Igualando a cero y reorganizando los términos

Page 85: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 85

Geometría analítica I Programa desarrollado

Nombraremos al coeficiente de , al coeficiente de y al término independiente.

De esta forma, la ecuación anterior podemos reescribirla como:

Donde

, y

Realizando un procedimiento similar para la ecuación canónica de la parábola horizontal

Se transforma en

Donde

, y

Observa en la siguiente tabla las similitudes y diferencias, entre las ecuaciones canónicas y generales, tanto para las

parábolas horizontales, como para las verticales. En la columna llamada “elementos geométricos” se muestra cómo en los

coeficientes de la ecuación general se encuentran implícitos los valores de las coordenadas del vértice y de la distancia

focal.

Ecuación general de la parábola

Parábola Ecuación canónica Ecuación general Elementos

geométricos

Vertical

Horizontal

,

Uno de los problemas característicos del estudio de la geometría analítica es dada la ecuación, encontrar su lugar

geométrico (o realizar su gráfica). A continuación te mostramos un ejemplo.

Ejemplo

Un fabricante de un nuevo juguete decidió realizar un estudio de mercado, y le entregaron como respuesta que sus

ingresos se podrán determinar por la ecuación , con la especificación de que representa el

Page 86: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 86

Geometría analítica I Programa desarrollado

precio del cochecito. A este fabricante le interesa determinar cuál es el precio al que debe vender su producto si desea

obtener la ganancia máxima, pero, desafortunadamente, la ecuación no le dice mucho.

Al verla le pareció que su estructura era similar a la ecuación general de una parábola vertical

Aunque en la que le habían dado tenía un coeficiente distinto de 1. Sin embargo, no se desanimó, lo primero que hizo

fue transformar la ecuación de los ingresos a la forma de la ecuación general de la parábola.

Se divide la ecuación entre el coeficiente del término cuadrático

Sin embargo, de esta forma todavía no le brindaba mucha información al comerciante. Por fortuna recordó que, si la

escribía en su forma canónica, los elementos geométricos le ayudarían, ya que el vértice podría representar el valor

máximo de la parábola, lo cual sería su solución. ¿Ya sabes por qué?

Se completa el TCP*

Se factoriza* el lado izquierdo de la igualdad

Ahora, el lado derecho

Page 87: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 87

Geometría analítica I Programa desarrollado

De la ecuación canónica de esta parábola, el comerciante pudo leer las coordenadas del vértice .

Además, pudo deducir que se trata de una parábola vertical que abre hacia abajo, por lo que quedó muy contento, ya que

esas coordenadas le indicaban el precio al que debía vender su producto y la ganancia máxima que el modelo predecía.

El precio al que debe vender su producto es $22.5 y espera ganar $202,500.

Con lo anterior ya había resuelto su problema, pero se preguntó ¿cómo sería el comportamiento de la gráfica de los

ingresos , dependiendo del precio al que decidiera vender su producto ?

¿Recuerdas las sugerencias para trazar una parábola si se conoce su ecuación? Pues a ponerlas en práctica.

Otra estrategia es encontrar los puntos en los que corta al eje , en esos casos el valor de . Resolviendo la siguiente

ecuación.

Por lo tanto, las soluciones son y

Page 88: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 88

Geometría analítica I Programa desarrollado

Consejo. Repasa cómo resolver ecuaciones de segundo grado*

La gráfica pasa por los puntos , y .

Nota. Como pudiste darte cuenta al resolver el problema, en todo momento se requiere dar significado a los valores que

se están obteniendo, de acuerdo al contexto. En este caso la variable define el precio del juguete, y la variable , la

ganancia, en función del precio de venta.

Otro aspecto importante a considerar es elegir una escala adecuada en los ejes que te permita visualizar la parábola.

En el contexto del problema, la parábola sólo cobra sentido para los valores del precio que se encuentran en el intervalo

.

¿Qué sucede si el juguete tiene un precio mayor que 45? La respuesta, desde el punto de vista del comerciante, es que

asegurará pérdidas.

¿Qué significaría que el juguete tuviera un precio negativo? ¿Es esto posible?

Para concluir este tema, te presentaremos otro ejemplo en el que verás una de las aplicaciones de la parábola.

Ejemplo

Puentes colgantes. Cuando un cable se cuelga de dos puntos, de manera que soporte una carga distribuida

uniformemente, es decir, que soporte un peso homogéneo mucho mayor que el peso del propio cable, de manera natural

adoptará la forma de la parábola.

Page 89: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 89

Geometría analítica I Programa desarrollado

Otra propiedad de la parábola se debe a que su forma es la solución a la situación de considerar la carga realizada desde

arriba, o tirando desde abajo. Lo que permite a los arquitectos realizar diseños funcionales y creativos para sus puentes.

Un estudiante de arquitectura admirador del arquitecto español Santiago Calatrava decidió inspirarse en su famoso

puente “Bac de Roda”, en Barcelona, para realizar un puente en su propia ciudad, en donde todavía el tren es un medio

importante de comunicación.

Santiago Calatrava: arquitecto español nacido en Valencia, España, en 1951. En muchos de sus puentes utiliza la solución

más conocida para el diseño, es decir, la parábola, pero juega con ellas cambiando la orientación y las fuerzas que

intervienen en su diseño para generar propuestas innovadoras a partir de un elemento bien conocido.

Para ello realizó las siguientes mediciones, sabe que el ancho de las vías por las que debe pasar su puente -al menos en su

proyecto- es de 200 m. Para hacer su plano, ha decidido hacer un modelo y para ello consideró que la mejor opción era

situar el vértice de la parábola sobre el eje y representar la vía por la que pasarán los autos como el eje . Sabe que

cada uno de los puntos (indicados en azul) se encuentra a 100 metros del origen.

Page 90: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 90

Geometría analítica I Programa desarrollado

De manera que sólo le faltaba determinar la ecuación de la parábola. ¿Puedes ayudarlo?

De su modelo determinó las coordenadas de los siguientes puntos:

, y .

Nota. Recuerda que en uno de los ejemplos se mostró que, para determinar una circunferencia, bastan tres puntos. En el

caso de la parábola por lo general se requieren más de tres, pero si se conoce, como dato adicional, que el eje de la

parábola es paralelo a uno de los ejes cartesianos, entonces también serán suficientes tres puntos no alineados para

poder determinar su ecuación.

Como ya se conocen tres puntos por los que pasa la parábola y su forma, parece sencillo pensar en sustituir sus

coordenadas en la ecuación general de la parábola vertical . De esta manera se obtienen tres

ecuaciones lineales con tres incógnitas, es decir, un sistema de ecuaciones que se puede resolver.

Resolviendo para la ecuación (1), se obtiene

Page 91: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 91

Geometría analítica I Programa desarrollado

Sustituyendo (4) en (2), y resolviendo para

Por lo tanto,

Sustituyendo (6) en (3)

Lo que nos indica esta ecuación es que por los puntos y , pasa una familia de parábolas, las cuales quedan

determinadas por el valor que se decida para la altura del vértice. Considerando siempre a ().

Transformando la ecuación a su forma canónica

Para conocer la distancia focal, podemos comparar esta última ecuación con la de la forma canónica

Page 92: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 92

Geometría analítica I Programa desarrollado

De manera que lo que la ecuación (8) establece es que tanto la distancia focal como la ordenada del vértice están

determinadas por la altura máxima que se desea para el puente.

Después de mucho pensarlo, y de cuidadosos análisis estructurales, el estudiante decidió que la mejor altura para el

diseño de su puente era de 20 metros. Además, decidió colocar un puntal cada 10 metros.

Ahora te toca a ti.

a) ¿Qué altura tendrá el puntal que se encuentra a 10 metros del extremo del puente?

b) ¿Y el que se encuentra a 10 metros del puntal que apoya al puente en su altura máxima?

El vértice tiene coordenadas . Por lo tanto, se puede establecer la ecuación de esta parábola en particular.

La ecuación que describe la forma del puente es

a) La coordenada del puntal que se encuentra a 10 metros del extremo del puente es

Page 93: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 93

Geometría analítica I Programa desarrollado

Por lo tanto, basta con sustituir este valor en la ecuación de la parábola

Resolviendo la ecuación

Como la parábola es simétrica, los puntales que se encuentran a 10 metros de los extremos del puente tienen una altura

de 3.8 metros.

b) Se procede de la misma forma para calcular la altura del puntal que se encuentra a 10 metros del puntal que apoya el

puente en su altura máxima. Observa que la altura máxima del puente está determinada por el vértice de la parábola. Por

lo tanto, la coordenada que nos interesa es

Estos puntales tendrán una altura de 19.8 metros.

Page 94: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 94

Geometría analítica I Programa desarrollado

3.4. Elipse

El Gran Teatro Nacional de Beijing, China, diseñado por Paul Andreu, es una increíble

manifestación arquitectónica. En su diseño, la capa exterior tiene forma de elipsoide, es decir,

la superficie generada por una elipse que gira alrededor de uno de sus ejes de simetría.

El método del jardinero.

Este tema lo iniciaremos con otra actividad. Para realizarla necesitas: una hoja blanca, dos tachuelas, hilo (de 10 a 15 cm)

y lápiz. También una tabla, o una superficie, en donde puedas fijar las tachuelas a la hoja.

En la tabla sujeta el hilo con dos tachuelas que tengan una

cierta distancia entre sí, que permita que el hilo quede un

poco suelto. Con el lápiz tensa el hilo y recorre el lápiz a lo

largo del hilo para dibujar una curva. ¿Te resulta familiar?

20

El lugar geométrico que acabas de trazar se llama elipse y tiene propiedades muy interesantes. A continuación te

presentaremos su definición como lugar geométrico y sus elementos.

20 http://i.ytimg.com/vi/81NbgFpAfOU/0.jpg

Page 95: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 95

Geometría analítica I Programa desarrollado

3.4.1. Definición

Una elipse es el lugar geométrico de todos los puntos de un plano que satisfacen la condición de

que al sumar las distancias de cada uno de ellos a dos puntos fijos sobre el plano, llamados focos,

la suma permanece constante.21

Una observación importante es que esa constante deberá ser mayor a la distancia que hay entre los focos.

De acuerdo con la definición, en la actividad que realizaste, los focos estaban determinados por el lugar en donde fijaste

las tachuelas, la distancia constante correspondía a la longitud del hilo, y los puntos pertenecientes a la elipse son los que

conforman el lugar geométrico que trazaste con el lápiz.

Si el eje mayor es paralelo al eje , la elipse es vertical. En cambio, si el eje mayor es paralelo al eje , entonces la elipse es

horizontal. Entonces, una de las claves para definir la orientación de la elipse se encuentra en determinar a qué eje

cartesiano es paralelo el eje mayor de la elipse.

3.4.2. Ecuación canónica de la elipse

Como podrás darte cuenta, las ideas que subyacen al estudio de la elipse son similares a las que se han empleado para

estudiar la circunferencia y la parábola. De manera que siguiendo un procedimiento análogo será posible deducir sus

ecuaciones canónicas

Por la definición de la elipse sabemos que un punto que pertenezca a esta curva, debe satisfacer la siguiente

condición

Donde k es una constante, que debe ser positiva, esto es y además debe ser mayor que la distancia entre los focos,

es decir, .

21

Efimov, N. (1969). Curso breve de Geometría Analítica. URSS (Moscú): Editorial MIR. p. 76.

Page 96: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 96

Geometría analítica I Programa desarrollado

A continuación te presentamos las ecuaciones canónicas de las elipses, horizontal y vertical, con centro fuera del origen,

sus elementos geométricos y sus gráficas correspondientes.

Ecuación canónica de la elipse horizontal con centro

fuera del origen

Ecuación canónica de la elipse vertical con centro

fuera del origen

Analicemos un problema interesante. ¿Cuál es la longitud del lado recto? Recuerda que el lado recto es la cuerda focal

que es perpendicular al eje mayor.

Page 97: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 97

Geometría analítica I Programa desarrollado

Ejemplo

Las cuerdas focales.

¿Cuál es la longitud del lado recto? Consideremos la ecuación canónica de la elipse horizontal con centro en el origen.

Como la elipse es simétrica, podemos calcular solamente una de ellas. La ecuación de la recta que contiene la cuerda

focal que pasa por es . De donde podemos deducir que los extremos de la cuerda focal tienen coordenadas

y .

Vamos a sustituir las coordenadas del punto en la ecuación canónica de la elipse

Como nos interesa el valor de la ordenada, es decir, , necesitamos resolver la ecuación para esta variable.

Page 98: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 98

Geometría analítica I Programa desarrollado

Por las definiciones dadas, sabemos que

La solución nos da como resultado las ordenadas de los puntos y .

De donde podemos deducir que la longitud de la cuerda focal es igual a .

Este hecho se cumplirá sin importar la posición relativa de la elipse.

Sugerencias para trazar una elipse a partir de su ecuación

Localiza el centro.

A partir del análisis de la ecuación canónica de la elipse, determina los valores de los semiejes mayor y menor, y ,

respectivamente. Por medio de la relación , determina el valor de , que corresponde a la distancia del

centro a los focos.

Determina la orientación de la elipse (horizontal o vertical) comparando los valores que dividen a y en la ecuación

canónica.

A partir del centro, traza los semiejes mayores y menores.

Con la información que tienes en este momento, es posible localizar en el plano los vértices, los focos y los extremos del

eje menor.

Localiza los extremos de los lados rectos. Recuerda que el lado recto tiene una longitud de .

Une los 6 puntos que has localizado en el plano, y los cuales pertenecen a la elipse, esboza la gráfica.

Page 99: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 99

Geometría analítica I Programa desarrollado

Ejemplo

Halla los puntos de intersección de la elipse cuyo semieje menor es igual a 2 y los focos y y la recta

.

Solución

Como los focos tienen la misma ordenada, el eje mayor es paralelo al eje y su ecuación es .

La distancia entre los focos es , de manera que .

El semieje menor nos permite definir .

De allí es sencillo deducir el valor de

Con estos datos podemos completar la siguiente tabla

Focos Centro Vértices

Extremos del

semieje

menor

Eje

mayor

Eje

menor Extremos del lado recto

Page 100: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 100

Geometría analítica I Programa desarrollado

Sugerencia. Busca una forma de ir organizando la información, como la tabla que te proponemos, de manera que

identifiques lo que conoces y, conforme encuentras nuevos elementos, puedas ir completando lo que hace falta.

La gráfica de la elipse es:

Si graficamos la recta, podemos ver que las coordenadas de los puntos y son la solución de este problema:

Los puntos de intersección son comunes a la hipérbola y la recta, por lo que son la solución del sistema de ecuaciones

siguiente:

Despejando de la ecuación (1) y sustituyendo en (2) se obtiene

Page 101: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 101

Geometría analítica I Programa desarrollado

Simplificando la ecuación (3)

Resolviendo la ecuación para

Sustituyendo estos valores en la ecuación de la recta,

Las coordenadas de los puntos de intersección son

y

3.4.3. Ecuación general de la elipse

Como te has dado cuenta, el procedimiento para encontrar la ecuación general de una cónica, es transformar su ecuación

canónica a una nueva ecuación que cumpla con estar igualada a cero.

Encontremos la ecuación general de la elipse horizontal.

Page 102: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 102

Geometría analítica I Programa desarrollado

Desarrollando y simplificando:

A los coeficientes de cada uno de los términos los nombraremos , , y , siendo el término independiente.

Por lo tanto, la ecuación general de la elipse horizontal es:

Veamos qué sucede con la elipse vertical:

Siguiendo la misma convención que en el caso de la elipse horizontal, vemos que también obtenemos una ecuación de la

forma

Solamente se debe tener cuidado porque en este caso:

y

Page 103: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 103

Geometría analítica I Programa desarrollado

Ecuación general de la elipse

Cabe mencionar que en la ecuación general de la elipse, los coeficientes y son del mismo signo, , además

cumplen con la condición de ser distintos de cero.

Ejemplo

¿Cuántos puntos serán necesarios para definir una elipse si se conoce que su eje mayor es paralelo a uno de los ejes

cartesianos?

Solución

En la ecuación general de la elipse se observa que se necesitan determinar los 5 coeficientes, pero ¿qué sucedería si toda

la ecuación se divide entre ?

La cual tiene la forma:

Para facilitar las cosas, simplemente escribiremos la ecuación de la elipse de la forma:

Como se tienen cuatro coeficientes que determinar, entonces serían necesarios cuatro puntos para poder formar un

sistema de 4 ecuaciones con 4 incógnitas y encontrar una solución única, tal y como sucedió en los ejemplos analizados

de la circunferencia y la parábola.

Nota. Como te puedes dar cuenta, será indispensable que tengas total dominio en la resolución de sistemas de

ecuaciones lineales porque de otra manera se te dificultará resolver los problemas propios de la geometría analítica, que

tienen que ver con analizar los lugares geométricos. En general, el álgebra será una herramienta que te hará más sencillo

su estudio (si no la dominas, quizá tenga el efecto contrario y, por supuesto, no deseado de complicarlo todo).

Investiga si tu calculadora tiene alguna función especial para resolver sistemas de ecuaciones lineales.

Page 104: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 104

Geometría analítica I Programa desarrollado

3.5. Hipérbola

La creatividad de Oscar Niemeyer, arquitecto brasileño, se aprecia en la catedral

Metropolitana Nossa Senhora Aparecida, más conocida como Catedral de Brasilia,

Brasil. El diseño de la estructura se basa en un hiperboloide, que es el sólido de

revolución que se obtiene al girar una hipérbola alrededor de uno de sus ejes de

simetría.

A continuación veremos la definición de la hipérbola como lugar geométrico y sus elementos.

3.5.1. Definición

Una hipérbola es el conjunto de todos los puntos de un plano que satisfacen la condición de

que al restar las distancias de cada uno de ellos, a dos puntos fijos sobre el plano, llamados focos,

la diferencia permanece constante.22

Cabe mencionar que esa constante debe ser menor que la distancia entre los focos y diferente de cero.

A diferencia de las cónicas anteriores, la hipérbola se compone de dos partes, llamadas ramas de la hipérbola.

A partir de la definición de la hipérbola, podemos establecer algunas consideraciones:

22

Efimov, N. (1969). Curso breve de Geometría Analítica. URSS (Moscu): Editorial MIR. p. 87.

Page 105: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 105

Geometría analítica I Programa desarrollado

El lugar geométrico de los puntos cuya diferencia de distancia a dos puntos fijos, focos, es una cantidad constante, igual a

la distancia entre los focos, representa las dos continuaciones de los segmentos

El lugar geométrico de aquellos puntos en que la diferencia de sus distancias a dos puntos fijos focos es una cantidad

constante, igual a cero, representa una recta perpendicular al segmento en su punto medio.

3.5.2. Ecuación canónica de la hipérbola

Consideremos un punto de la hipérbola, en este caso al vértice, y la definición de la hipérbola como lugar geométrico.

La distancia de a debe ser igual a la distancia de a y de a

La distancia de a es

De manera que por la definición de la hipérbola

Podemos establecer que la distancia de los focos a uno de los vértices es igual a ; siguiendo un razonamiento similar se

encuentra la distancia de los focos al otro vértice, que es igual a .

En general, por la definición de la hipérbola, esto deberá cumplirse para cualquier punto que pertenezca a ella, por lo

tanto

Page 106: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 106

Geometría analítica I Programa desarrollado

Como el punto puede estar en cualquiera de las dos ramas de la hipérbola se necesita utilizar el valor absoluto para

conocer el valor de la distancia como magnitud.

También se cumple que:

En donde el signo dependerá del valor obtenido en la diferencia del lado izquierdo de la igualdad.

La última ecuación es importante porque a partir de ella es posible deducir la ecuación de la hipérbola, utilizando, como

en el caso de la elipse, la fórmula de la distancia entre dos puntos y desarrollando las expresiones algebraicas.

Una forma de evaluar si comprendiste la deducción anterior sería que intentaras deducir la ecuación de la hipérbola con

centro en el origen y la transformaras en su forma canónica, que al igual que en la elipse debe ser igual a 1.

A continuación te mostramos las ecuaciones canónicas de las hipérbolas, horizontal y vertical, con centro fuera del origen,

sus elementos geométricos y sus gráficas correspondientes.

Ecuación canónica de la hipérbola horizontal con centro

fuera del origen

Ecuación canónica de la hipérbola vertical con centro

fuera del origen

Page 107: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 107

Geometría analítica I Programa desarrollado

Estudiemos el comportamiento de la ecuación. Para ello analizaremos la ecuación de la hipérbola horizontal con centro

en el origen.

Resolvamos la ecuación para con el propósito de ver la forma en la que se relacionan las dos variables, especialmente

cuando toma valores muy grandes.

Como nos interesa la relación entre las variables, proponemos factorizar el término del radical.

1.

2.

Para valores grandes de , la expresión tiende a cero, lo cual significa que la expresión dentro del radical tiende a uno,

por lo tanto lo que prevalece es la expresión ubicada fuera de éste.

¿Y esta ecuación qué significa?

Lo que nos indica es que para valores muy grandes de , la hipérbola se aproxima cada vez más a las rectas

Page 108: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 108

Geometría analítica I Programa desarrollado

Estas rectas se denominan asíntotas de la hipérbola. Observa que su pendiente queda determinada por el cociente de la

longitud del semieje menor y la longitud del semieje mayor, además de pasar por el centro de la hipérbola.

Las ecuaciones de las asíntotas de la hipérbola vertical se deducen de manera similar y son las siguientes:

A continuación se muestran las ecuaciones de las asíntotas:

Hipérbola horizontal

con centro en el origen

Hipérbola horizontal con centro

fuera del origen

Hipérbola vertical con

centro en el origen

Hipérbola vertical con centro

fuera del origen

Sugerencias para trazar una hipérbola a partir de su ecuación

A partir del análisis de la ecuación canónica de la hipérbola, identifica si es vertical u horizontal; determina también los

valores de los semiejes mayor y menor, y . Ten presente que esto es solamente un nombre porque, en el caso de la

hipérbola, la longitud del semieje mayor puede ser menor que la del otro semieje.

Deduce el valor de que corresponde a la distancia del centro a los focos.

Localiza el centro, los vértices, los focos y los extremos del semieje menor.

A partir del centro, traza los semiejes mayores y menores y forma el rectángulo característico.

Traza las asíntotas.

Grafica la hipérbola, de manera que la curva pase por los vértices y siga las asíntotas.

Es importante que, cuando traces la hipérbola, incluyas también las asíntotas.

Page 109: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 109

Geometría analítica I Programa desarrollado

Ejemplo

Encuentra la ecuación de la hipérbola con foco en y cuyas asíntotas son las rectas y

Solución

Primero graficamos la información que conocemos

Por la posición de las asíntotas y el foco, podemos deducir que se trata de una hipérbola vertical.

El punto de intersección de las asíntotas será el centro de la hipérbola; para conocerlo, debemos resolver el sistema de

ecuaciones

Al hacerlo, obtenemos que las coordenadas del centro son .

La distancia del centro al foco nos permitirá conocer el valor de

Por lo tanto, podemos definir las coordenadas del segundo foco

Ahora necesitamos conocer los valores de y , los cuales podemos deducir de las asíntotas, las ecuaciones de las rectas

debemos transformarlas a la forma

Page 110: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 110

Geometría analítica I Programa desarrollado

La pendiente de las asíntotas dadas en el problema es , por lo tanto

Consideremos la pendiente positiva

Sabemos también que , sustituyendo los valores que conocemos obtenemos

Por lo tanto

Con estos valores podemos definir la ecuación de la hipérbola buscada

Además, podemos completar los elementos geométricos que aún no conocemos

Focos Centro Vértices Extremos del semieje

menor

Eje

transversal

Eje

conjugado

Page 111: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 111

Geometría analítica I Programa desarrollado

Recuerda que para trazar la gráfica debes construir el rectángulo característico e incluir sus asíntotas.

Cuando los semiejes son iguales, , se tiene una clase particular de hipérbola, que se denomina hipérbola equilátera.

3.5.3. Ecuación general de la hipérbola

Para encontrar la ecuación general de la hipérbola, realizaremos un proceso similar al de la elipse. Iniciaremos con la

ecuación general de la hipérbola horizontal:

Desarrollando y simplificando

Page 112: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 112

Geometría analítica I Programa desarrollado

A los coeficientes de cada uno de los términos los nombraremos , , y , siendo el término independiente.

Por lo tanto, la ecuación general de la hipérbola horizontal es

Veamos qué sucede con la hipérbola vertical:

Siguiendo la misma convención que en el caso de la hipérbola horizontal, vemos que también obtenemos una ecuación

de la forma

Solamente se debe tener cuidado porque en este caso

y

Ecuación general de la hipérbola

Cabe mencionar que, en la ecuación general de la hipérbola, los coeficientes y son de diferente signo,

además cumplen con la condición de ser distintos de cero.

Page 113: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 113

Geometría analítica I Programa desarrollado

3.6. Ecuación general de segundo grado

Así como la ecuación general de la recta tiene la forma de un polinomio de primer grado:

La ecuación general de una cónica tiene la forma de un polinomio de segundo grado:

En la que los coeficientes y son números reales, de los cuales es distinto de cero.

Seguramente al explorar con diferentes valores para los coeficientes, te encontraste con casos interesantes, como

pueden ser que la ecuación no tiene gráfica, es un solo punto, o está constituida por líneas, por ejemplo:

La ecuación , o de otra forma, , no tiene solución, porque los valores de

y elevados al cuadrado siempre son positivos, de manera que la igualdad no se cumple.

En general, la ecuación de la forma no tiene solución cuando todos los coeficientes son

positivos.

La ecuación sólo tiene una solución y ; por lo tanto la gráfica corresponde al origen.

Observa que si o tomaran un valor distinto de cero, el lado izquierdo de la ecuación sería un número positivo,

por lo que la igualdad no se cumpliría.

La ecuación se puede resolver factorizando, esto es, , de manera que se tienen

dos soluciones y . Por lo tanto, la gráfica de la ecuación corresponde a dos líneas.

¿Cómo saber, a partir de la ecuación general, qué clase de cónica es?

Utilizaremos el discriminante para poder deducir, a partir de la ecuación general de segundo grado, la clase de cónica de

que se trata.

El discriminante se define como

Si , la cónica es una circunferencia o una elipse.

Si , la cónica es una parábola.

Si , la cónica es una hipérbola.

Page 114: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 114

Geometría analítica I Programa desarrollado

Habíamos mencionado que centraríamos nuestra atención en las cónicas no rotadas, es decir, en aquellas que son

horizontales o verticales, por lo que se tiene la ecuación general (de las cónicas horizontales o verticales).Por lo que es

más sencillo saber de qué cónica se trata, simplemente explorando los coeficientes.

Algunos aspectos importantes a resaltar son:

Si y , se obtiene una recta, que es una cónica degenerada.

Si uno de los coeficientes de los términos cuadráticos es igual a cero, o , la cónica es una parábola.

Si , se obtiene una circunferencia.

Si , la cónica es una elipse.

Si , se define una hipérbola.

Criterio según los valores de los coeficientes

Circunferencia

Los coeficientes de los términos cuadráticos son iguales.

Parábola

Uno de los coeficientes de los términos cuadráticos es igual a cero.

o

Se tienen dos casos:

Si , entonces la parábola es vertical.

Si , entonces la parábola es horizontal.

Elipse

Los coeficientes de los términos cuadráticos son distintos, pero del

mismo signo (ambos positivos o ambos negativos).

Hipérbola

Los coeficientes de los términos cuadráticos son distintos y de signo

contrario (uno de ellos es positivo y el otro es negativo).

Page 115: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 115

Geometría analítica I Programa desarrollado

De esta forma, con una simple inspección visual de los coeficientes de la ecuación de segundo grado para una cónica no

rotada, es posible decidir de qué clase es. Un problema distinto será encontrar los elementos geométricos de la cónica

definida por dicha ecuación.

Para ello será necesario transformar la ecuación general a la forma canónica. Las siguientes recomendaciones pueden ser

útiles:

Agrupa los términos con las mismas variables de un lado de la igualdad.

Escribe las constantes en el otro lado de la igualdad.

Divide entre el coeficiente del término cuadrático de una de las variables (por ejemplo, ), después completa el

trinomio cuadrado perfecto (TCP).

Repite el proceso con la variable restante (ahora para ).

Realiza las transformaciones necesarias para que la ecuación tenga la forma canónica.

Ejemplo

Determina qué tipo de cónica es y traza su gráfica con todos los elementos geométricos.

Solución

De la inspección visual de los coeficientes vemos que , por lo que se tratará de una hipérbola, pero…

¿horizontal o vertical? Vamos a determinarlo.

Primero agrupamos y factorizamos las variables, el término independiente lo escribimos en el segundo miembro de la

igualdad

Completamos el TCP

La ecuación anterior podemos reescribirla como

Page 116: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 116

Geometría analítica I Programa desarrollado

Y para que tenga la forma de la ecuación canónica multiplicamos toda la ecuación por -1

Por simple inspección podemos determinar que se trata de la ecuación de una hipérbola vertical.

A partir de la ecuación canónica de la hipérbola vertical podemos deducir sus elementos geométricos: las coordenadas

del centro y los valores de , y

Con estos valores, podemos determinar los elementos geométricos de la hipérbola

Focos Centro Vértices Extremos del

semieje menor Eje transversal Eje conjugado

Page 117: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 117

Geometría analítica I Programa desarrollado

Las ecuaciones de las asíntotas son

Su gráfica se muestra a continuación.

Page 118: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 118

Geometría analítica I Programa desarrollado

Conclusiones

En esta unidad estudiamos las ecuaciones de las cónicas en su forma canónica y general. La importancia de las ecuaciones

canónicas es que nos permiten conocer los elementos geométricos de cada una de ellas, porque es posible identificarlos a

través de los parámetros, por ejemplo, el centro, los vértices, la dirección, etcétera.

En cada caso vimos cómo transformar la ecuación canónica a la forma general, desarrollando los binomios que aparecen

en la primera, simplificando e igualando a cero.

Por último, establecimos que la ecuación general de la cónica tiene la forma de un polinomio de segundo grado, con las

variables y , explícitamente. A través del análisis de sus coeficientes conocimos cómo es posible determinar a qué

cónica pertenece, en caso de que exista.

Consideraciones específicas de la unidad

En esta unidad requerirás de un programa para realizar gráficas, en la red existen varios disponibles. Te sugerimos que

utilices alguno de los siguientes:

Página oficial de Geogebra http://www.geogebra.org/cms/

Página de descarga de winplot http://math.exeter.edu/rparris/winplot.html

Lee la sección de ayuda para aprender a utilizarlos.

Aunque utilices programas de computación para realizar las gráficas, será necesario que en las actividades formativas

incluyas además de la curva (circunferencia, parábola, elipse o hipérbola) sus elementos geométricos (tales como focos,

vértices, asíntotas, etcétera).

Por otra parte, para poder resolver los problemas, deberás conocer algunos conceptos básicos de álgebra, a saber,

resolución de sistemas de ecuaciones de variables con incógnitas, resolución de la ecuación de segundo grado,

completar el trinomio cuadrado perfecto, factorización, etcétra.

Page 119: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 119

Geometría analítica I Programa desarrollado

Fuentes de consulta

http://www.naya.org.ar/congreso2002/ponencias/img/jose_alonso04.gif

http://buscon.rae.es/draeI/SrvltGUIBusUsual?TIPO_HTML=2&TIPO_BUS=3&LEMA=c%C3%ADrculo

http://buscon.rae.es/draeI/SrvltObtenerHtml?LEMA=circunferencia&SUPIND=0&CAREXT=10000&NEDIC=No

Lehman, p. 97.

Page 120: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 120

Geometría analítica I Programa desarrollado

Unidad 4. Problemas clásicos de geometría analítica

Propósitos de la unidad

Esta unidad te permitirá:

Identificar similitudes y diferencias entre las diferentes definiciones de las cónicas, ya sea como secciones de un cono,

como lugar geométrico (definición bifocal) o a partir de su excentricidad.

Reconocer las propiedades de las cónicas y sus aplicaciones en otras ciencias, como la física o la economía.

Utilizar y relacionar las propiedades de los objetos geométricos (punto, recta, cónicas) para la modelación y solución de

problemas.

Usar lenguajes de distintos tipos: verbal, gráfico, algebraico, simbólico y saber realizar el tránsito de uno a otro.

Desarrollar la capacidad para plantear y resolver problemas y plantear, considerando diversas alternativas, creando un

plan de trabajo, interpretando y comprobando tus resultados.

Competencia específica

Utilizarás la geometría analítica para modelar fenómenos físicos y sociales aplicando las propiedades, ecuaciones o

gráficas de los lugares geométricos.

Presentación de la unidad

“Al igual que nuestro sistema de numeración indo-arábico, la geometría

analítica y sus retoños son algo aparentemente tan natural, y por ello, tan

aceptado de antemano, que hay que hacer un auténtico esfuerzo para

recordar que son inventos humanos y no aspectos innatos de nuestra

naturaleza conceptual o biológica”.

Page 121: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 121

Geometría analítica I Programa desarrollado

John Allen Paulos23

La recta y las cónicas no son meramente objetos geométricos, sino que sirven para modelar y explicar diferentes

fenómenos. Por ejemplo, todo fenómeno de proporcionalidad directa se modela por medio de una recta, en cambio, los

de proporcionalidad inversa se modelan con una hipérbola. Las cónicas, a lo largo de la historia, han permitido describir

diferentes fenómenos físicos y sirven de sustento a muchas aplicaciones tecnológicas, seguramente las más conocidas son

las antenas parabólicas. Sin embargo, el camino para lograr este conocimiento ha tomado mucho tiempo.

Arquímedes (siglo III a. C.) –quien además de ser un gran matemático fue un sobresaliente ingeniero–, escribió diversos

tratados sobre las cónicas, entre ellos, “sobre la medida del círculo”, o “sobre la cuadratura de la parábola”, donde

determina el área de un segmento parabólico. Existe una leyenda –porque este hecho histórico no ha sido plenamente

comprobado– que cuenta que, para defender su ciudad, Siracusa, diseñó un espejo parabólico capaz de concentrar los

rayos solares sobre las naves romanas hasta el punto de incendiarlas.

Otros científicos también lograron grandes avances en su época al demostrar la relación de las cónicas con el mundo

físico, citemos por ejemplo a Galileo y a Kepler, quienes con sus experimentos y análisis dieron nacimiento a una nueva

disciplina: la mecánica, el estudio matemático de cuerpos en movimiento.

Galileo Galilei, en el siglo XVI, reconoció y demostró que las trayectorias de los proyectiles son parabólicas.

Kepler, en el siglo XVII, resolvió el enigma del movimiento de los planetas al estudiar la órbita descrita por Marte,

alrededor del Sol, y establecer que era de forma elíptica con el Sol situado en uno de sus focos. Posteriormente,

Isaac Newton enunció la Ley de la gravitación universal, basándose en el descubrimiento de Kepler.

Como puedes darte cuenta, el estudio de las cónicas no se agota con el conocimiento de su ecuación (canónica o general),

sino que es mucho más amplio. En esta unidad deseamos brindarte una perspectiva de diferentes aplicaciones de las

cónicas, tanto en la propia matemática como en otras disciplinas científicas.

4.1. Definiciones alternativas de las secciones cónicas

Habíamos definido las secciones cónicas como las curvas que se obtenían al cortar un plano un cono doble.

Las secciones cónicas se forman por la intersección del cono circular recto* con un plano, al que llamaremos .

Dependiendo del ángulo que forman el plano y el eje del cono, se obtendrán las distintas cónicas.

23

Paulos, A. (2003) Más allá de los números. España: Tusquets Editores, S. A. p. 129.

Page 122: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 122

Geometría analítica I Programa desarrollado

Nombre Vista en tres dimensiones Corte frontal

Circunferencia

El plano forma un

ángulo de 90° con el

eje del cono.

Parábola

El ángulo entre el

plano y el eje del

cono es igual al

ángulo que forman

el eje y la generatriz.

Page 123: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 123

Geometría analítica I Programa desarrollado

Elipse

El ángulo que forma

el plano con el eje

del cono, es mayor

que el ángulo que

forma el eje con la

generatriz.

Hipérbola

a) El ángulo que

forma el plano con el

eje del cono es

menor que el ángulo

que forma el eje con

la generatriz.

o

b) El plano es

paralelo al eje del

cono.

En ambos casos el

plano corta las dos

ramas del cono y es

lo que hace que la

hipérbola se

considere una sola

curva con dos ramas.

Page 124: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 124

Geometría analítica I Programa desarrollado

La parábola, elipse e hipérbola son secciones cónicas no degeneradas. La circunferencia es también considerada un caso

particular de la elipse, en donde los dos focos coinciden en un solo punto, que corresponde al centro de la circunferencia.

Las otras secciones que se forman con casos particulares del corte del plano con el cono se denominan cónicas

degeneradas y son las siguientes.

Las siguientes cónicas degeneradas se obtienen cuando el plano pasa exactamente por el vértice del cono.

Nombre Vista en tres dimensiones Corte frontal

Punto

El ángulo que forma

el plano con el eje

del cono es mayor

que el ángulo que

forma el eje con la

generatriz.

La intersección que

se obtiene es un

único punto (el

vértice).

En este ejemplo de corte que es

perpendicular al eje del cono.

Trazadoss tridimensionales de las cónicas no degeneradas (circunferencia, elipse, hipérbola y parábola)

Page 125: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 125

Geometría analítica I Programa desarrollado

Recta

El ángulo entre el

plano y el eje del

cono es igual al

ángulo que forman

el eje y la generatriz.

Lo que nos indica

que el plano es

tangente al cono,

por lo que contiene a

una de las

generatrices.

Page 126: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 126

Geometría analítica I Programa desarrollado

Dos rectas

El ángulo que forma

el plano con el eje

del cono es menor

que el ángulo que

forma el eje con la

generatriz.

El ángulo formado

por las rectas irá

aumentando a

medida que

disminuye, hasta

alcanzar el máximo,

es decir, el ángulo

entre las dos rectas

será igual a

cuando el plano

contenga al eje del

cono .

Cuando el plano contiene al eje del

cono y, por lo tanto, pasa

exactamente por el vértice, se

forman dos líneas rectas, como las

que se muestran a continuación

( .

Conforme el ángulo se aproxima

a las dos líneas se acercan entre

sí.

Page 127: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 127

Geometría analítica I Programa desarrollado

4.1.1. Deducción de las cónicas usando las esferas de Dandelin

Este enfoque nos permite vislumbrar la belleza que esconden estas curvas al estudiar sus propiedades por métodos

puramente geométricos y deducir de esta forma su definición como lugar geométrico, de la manera en la que las hemos

presentado en la unidad anterior.

4.1.2. Definición de las cónicas por su excentricidad

La excentricidad como la razón entre la distancia del centro al foco y la distancia del centro al vértice

Una propiedad muy interesante que cumplen la elipse y la hipérbola es que la razón de la distancia del centro al foco y la

distancia del centro a la directriz es un valor constante, al que denominaremos excentricidad y se representa como:

Por la definición de la elipse:

De allí podemos deducir que:

La excentricidad de la elipse nos indica que tan “alargada” es, por lo que cuando el foco se acerca más al centro, es decir,

el valor de es cada vez más pequeño, por lo tanto el valor de la excentricidad se aproxima cada vez más a cero, y será

cada vez más parecida a una circunferencia.

De allí que la circunferencia sea la cónica que tiene excentricidad cero, lo que se puede interpretar considerando que los

dos focos de la elipse coinciden con el centro de la circunferencia, por lo que

Por otra parte, si la excentricidad está cercana a 1, la elipse es alargada y se asemeja cada vez más a un segmento de

recta (por lo que algunos autores consideran que éste es la cónica con excentricidad igual a 1).

Por la definición de la hipérbola:

Page 128: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 128

Geometría analítica I Programa desarrollado

De allí podemos deducir que:

Es decir,

La excentricidad de la hipérbola es una característica de la forma de su rectángulo principal y, por lo tanto, de la misma

hipérbola.

Si la excentricidad está cercana a 1, la hipérbola parece contraerse hacia el eje transversal, pero cuando la excentricidad

es grande la hipérbola se asemeja a dos líneas paralelas al eje conjugado.

Esto se debe a que cuanto menor sea la excentricidad de la hipérbola, más alargado será su rectángulo principal en la

dirección del eje que une los vértices, de igual forma, cuanto mayor sea la excentricidad, más angosto será su rectángulo

principal en esa misma dirección.

En la siguiente escena podrás explorar el efecto de variar el valor de la excentricidad, de acuerdo a esta definición, y la

cónica que se forma.

La excentricidad como la razón de la distancia de un punto al foco y la distancia de un punto a la directriz es constante.

Como vimos, cada esfera de Dandelin interseca el cono en una circunferencia, a la cual hemos llamado circunferencia de

tangencia. La intersección del plano que contiene a la circunferencia de tangencia y del plano que contiene a la sección

cónica será una línea, a la cual llamaremos directriz.

En el caso de la parábola, se mostró que se forma una sola directriz.

En la elipse y la hipérbola, se forman dos directrices, las cuales son paralelas entre sí.

De manera que también podemos definir las cónicas en términos de un foco y una directriz.

Sea una recta fija, llamada directriz, y un punto fijo, llamado foco, que no está sobre esa recta.

Page 129: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 129

Geometría analítica I Programa desarrollado

Se llama cónica al lugar geométrico de un punto que se mueve en el plano de y , tal que la razón de su

distancia al foco y a la directriz es siempre igual a una constante , denominada excentricidad.

Donde es un número positivo.

En otras palabras, las cónicas se pueden caracterizar como el conjunto de los puntos del plano cuya distancia al

foco es igual a veces su distancia a la directriz.

La de la cónica, de acuerdo con esta definición, nos permite determinar qué tipo de cónica es:

Si , es una parábola.

Si , es una

elipse.

Page 130: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 130

Geometría analítica I Programa desarrollado

Si , es una

hipérbola.

4.2. Rectas tangentes a cónicas

El problema de determinar la tangente a una curva, dado uno punto que pertenece a dicha curva, interesó a los

matemáticos griegos de la antigüedad, quienes, a partir de las observaciones realizadas en los círculos, concibieron a la

tangente como la recta que corta a una curva sin tocarla.

En los elementos de Euclides, Libro III, se establece24:

Definición 2. Una recta es tangente a una circunferencia cuando, tocando a la circunferencia y siendo

alargada, no corta a la circunferencia.

Definición 3. Dos circunferencias son tangentes cuando, tocándose el uno con el otro, no se cortan.

Apolonio, además de estudiar la generación de las cónicas, estudia sus propiedades, entre las que incluye las tangentes.

Cabe mencionar que en su libro IV se estudian los puntos de intersección de las cónicas, en donde destaca un método

para trazar dos tangentes a una cónica desde un punto.

24 http://www.euclides.org/menu/elements_esp/03/definicioneslibro3.htm

Page 131: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 131

Geometría analítica I Programa desarrollado

4.2.1. Tangentes a la circunferencia

Recta tangente a una circunferencia

Una recta es tangente a una circunferencia cuando la toca en un único punto . Esta recta

tiene dos propiedades:

a) La recta tangente es perpendicular al radio de la circunferencia que va de a .

b) La distancia del centro de la circunferencia a la recta tangente es igual al radio de dicha

circunferencia.

Una recta es normal a una circunferencia si es perpendicular a la recta tangente en el punto .

De manera que el radio de la circunferencia que une al centro con el punto de tangencia,

pertenece a la recta normal en dicho punto.

Recta tangente a un punto que pertenece a una circunferencia.

Para encontrar la recta tangente a un punto que pertenece a la circunferencia, primero se debe encontrar la

pendiente del radio . Por la propiedad de perpendicularidad de las rectas, se cumple que , de esta forma

es posible encontrar la pendiente de la recta buscada y con la ecuación punto-pendiente se resuelve el problema.

Ejemplo

Encontrar la ecuación de la recta tangente a la circunferencia que pasa por el punto

.

Lo primero es transformar la ecuación de su forma general a la forma canónica

El centro es

La pendiente entre el centro y el punto es

Page 132: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 132

Geometría analítica I Programa desarrollado

Por lo tanto, la pendiente de la recta tangente en es

Por lo que la ecuación de la recta tangente en es

Ecuación canónica de la recta tangente

Ecuación general de la recta tangente

Recta tangente a un punto exterior a una circunferencia

Ejemplo

Encuentra la recta tangente a la circunferencia que pasa por el punto .

Primero vamos a averiguar la ecuación de la familia de rectas (o haz de rectas) que pasa por el punto .

Suponemos que la pendiente de esta familia es .

Ecuación canónica de la familia de rectas

Ecuación general de la familia de rectas

Los coeficientes de la ecuación general son:

Page 133: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 133

Geometría analítica I Programa desarrollado

La segunda propiedad de las rectas tangentes nos indica que de esta familia de rectas es necesario encontrar la recta

cuya distancia al centro de la circunferencia es igual al radio, es decir

De la ecuación de la circunferencia podemos determinar las coordenadas del centro y del radio

Ahora aplicamos la fórmula de distancia del punto a una recta

Nota. Observa que la del lado izquierdo de la igualdad indica el centro de la circunferencia y la del lado derecho de la

igualdad indica el término independiente de la ecuación de la recta.

Resolviendo la ecuación para

Donde: , y

Page 134: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 134

Geometría analítica I Programa desarrollado

Se obtienen dos soluciones para el valor de la pendiente

Las soluciones nos indican que existen dos rectas que son tangentes a la circunferencia y pasan por el punto . A

continuación deducimos la ecuación de cada una de las rectas, sustituyendo en las ecuaciones de las rectas encontradas

anteriormente:

Ecuación canónica de la recta tangente 1

Ecuación general de la recta 1

Ecuación canónica de la recta tangente 2

Ecuación general de la recta 2

A partir de estas dos situaciones, se puede proponer una gran variedad de problemas, variando los datos conocidos,

como el que se muestra a continuación.

Page 135: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 135

Geometría analítica I Programa desarrollado

Ejemplo

Encuentra la ecuación de la circunferencia que es tangente a la recta en el punto y pasa por el

punto

Una buena estrategia es representar los datos del problema

De allí podemos deducir que el centro de la circunferencia pertenece a la recta que es perpendicular a la recta

dada y que además para por el punto .

La ecuación de la recta es

Ecuación canónica de la recta

Ecuación general de la recta

Las coordenadas del centro, como pertenecen a la recta , satisfacen la ecuación, es decir,

Por otra parte, la distancia de a debe ser igual que la distancia de a

Page 136: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 136

Geometría analítica I Programa desarrollado

Simplificando la ecuación anterior

Sustituyendo el valor obtenido de en (1) se puede encontrar el valor de la abscisa del centro

Una vez conocidas las coordenadas del centro , falta encontrar el valor del radio para poder definir la

ecuación de la circunferencia buscada

La ecuación de la circunferencia buscada es

O en su forma general

Page 137: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 137

Geometría analítica I Programa desarrollado

4.2.2. Tangentes a la parábola

Teorema

La recta tangente a una parábola en un punto es la bisectriz del ángulo formado por la recta

que une el foco con el punto y la recta que es perpendicular a la directriz y pasa por el punto

(recta

Observa que la recta tangente a una cónica en un punto es aquella que interseca a la cónica en un solo punto, de

manera que todos los demás puntos que pertenecen a esta recta se encuentran en una sola de las regiones determinadas

por la cónica.

A continuación deduciremos la ecuación de la recta tangente a la parábola utilizando para ello el cálculo diferencial.

Ecuación canónica de la parábola horizontal Ecuación canónica de la parábola vertical

Sea Sabemos que la pendiente de la recta tangente es igual a la derivada de con respecto a

Derivando implícitamente la ecuación canónica de la parábola con respecto a , obtenemos

Para dejar expresada la ecuación anterior en términos de las variables y , podemos despejar de la

ecuación canónica el valor de

Page 138: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 138

Geometría analítica I Programa desarrollado

Sustituyendo

De manera que en el punto de tangencia la pendiente de la recta tangente es

Por lo tanto, la ecuación de la recta tangente en el punto que pertenece a la circunferencia

es

Si la parábola tiene su vértice en el origen, la ecuación se simplifica

Ejemplo

¿Cuál es el punto de intersección de las rectas tangentes a la parábola que pasan por los

extremos del lado recto?

Solución

Lo primero es poder determinar los elementos geométricos de la parábola para poder definir los extremos del lado recto,

para ello transformamos la ecuación general de la parábola a su forma canónica

Page 139: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 139

Geometría analítica I Programa desarrollado

Por la forma de la ecuación podemos establecer que la parábola es horizontal y abre hacia la derecha. A partir de la

ecuación también podemos deducir sus elementos geométricos.

Vértice Longitud del lado

recto

Extremos del lado

recto

Sustituimos las coordenadas de y para poder encontrar la ecuación mostrada en este ejemplo

Ecuación de la recta tangente en el punto

Ecuación de la recta tangente en el punto

El punto de intersección de las dos rectas se obtiene resolviendo el sistema de ecuaciones

Las soluciones son

Page 140: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 140

Geometría analítica I Programa desarrollado

Por lo tanto, el punto de intersección es

Ejemplo

En el diseño de carreteras se utiliza el trazo de curvas verticales.

“Una curva vertical es un arco de parábola de eje vertical que une dos tangentes del alineamiento vertical; la curva

vertical puede ser en columpio o en cresta, la curva vertical en columpio es una curva vertical cuya concavidad queda

hacia arriba, y la curva vertical en cresta es aquella cuya concavidad queda hacia abajo.”25

De manera simplificada los elementos a considerar se muestran a continuación:

26

Donde:

PIV Punto de intersección de las tangentes

verticales

PCV Punto en donde comienza la curva

vertical

PTV Punto en donde termina la curva

vertical

PSV Punto cualquiera sobre la curva vertical

p1 Pendiente de la tangente de entrada, en

m/m

25 http://caminos.construaprende.com/entrada/Tesis1/cap3/cap3_8.php 26 Imagen adaptada de http://caminos.construaprende.com/entrada/Tesis1/cap3/cap3_8.php

Page 141: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 141

Geometría analítica I Programa desarrollado

p2 Pendiente de la tangente de salida, en

m/m

L Longitud de la curva vertical, en metros

E Externa, en metros

F Flecha, en metros

Zo Elevación del PCV, en metros

Un ingeniero desea construir un puente sobre un río de de ancho para unir dos carreteras. A un lado la carretera

tiene una pendiente ascendente del 5%, y al otro lado, una pendiente descendente de 4%. El ingeniero desea que el

puente describa una cuerva vertical en cresta y se una suavemente con los extremos de la carretera. Convéncelo de que

no es posible construir un puente de esa forma y propón otra curva que pueda permitirle realizar el puente.

Nombremos al punto donde comienza la curva vertical y al punto donde termina. Las ecuaciones de las rectas que

pasan por esos puntos con las inclinaciones de 5% y 4%, respectivamente, son:

Tangente en

Tangente en

La parábola que pasa por los puntos y se puede definir por medio de la siguiente expresión

donde y son las raíces de la parábola y es una constante de proporcionalidad.

Sabemos que la pendiente de la recta tangente en un punto es

Por lo que la pendiente de la recta tangente de esa parábola es

Page 142: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 142

Geometría analítica I Programa desarrollado

De aquí podemos ver que para la pendiente de la recta tangente en es

Sabemos que la abscisa del punto es , por lo que podemos sustituir los valores conocidos y resolver la ecuación

para

Repitiendo el procedimiento para el punto

Conocemos que

Observamos de este resultado que se obtienen dos valores distintos para la ecuación de la parábola, por lo que se definen

dos parábolas:

Parábola 1

Parábola 2

La primera es aquella en la que la recta tangente que pasa por el punto tiene una inclinación de 5%, la segunda en la

que la recta tangente que pasa por el punto tiene una inclinación de 4%. Por lo tanto, no se puede trazar una curva

vertical que permita unir ambos extremos de carretera con las condiciones propuestas.

Observa que en las áreas marcadas en los rectángulos rojos, las parábolas y su recta tangente en el punto y ,

respectivamente, tienen un comportamiento similar.

Page 143: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 143

Geometría analítica I Programa desarrollado

4.2.3. Tangentes a la elipse

Teorema

La recta tangente a la elipse en un punto dado es la bisectriz del ángulo formado por las

rectas que unen los focos con el punto de tangencia, es decir, las rectas y , con la

propiedad de que todos los puntos de la recta tangente están fuera de la elipse.

Si se trazan las rectas y y sus correspondientes bisectrices, una de ellas cumplirá con las propiedades del

Teorema y corresponde a la recta tangente, la otra será la recta normal, la cual es además perpendicular a la recta

tangente en el punto .

A continuación se muestran las ecuaciones de la recta tangente a la elipse en el punto

Recta tangente a la elipse horizontal

Recta tangente a la elipse vertical

Recta tangente a la elipse horizontal con

centro en el origen

Recta tangente a la elipse vertical con centro

en el origen

Page 144: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 144

Geometría analítica I Programa desarrollado

Ejemplo

Desde el punto se han trazado tangentes a la elipse

Calcula los puntos de tangencia y la distancia del punto a la cuerda de la elipse que une dichos puntos.

Solución

En la fórmula de la recta tangente a la elipse, el punto es un punto que pertenece a la recta y las coordenadas

son el punto de tangencia. Con estas consideraciones, sabemos que , por lo que las incógnitas

son . Los valores de los semiejes, y , podemos deducirlos de la forma de la ecuación canónica. Sustituimos lo

que conocemos en la ecuación de la recta tangente a la elipse horizontal.

¿Qué significa esta recta que hemos encontrado? Realicemos la gráfica para representar lo que hasta ahora conocemos.

Observamos que la ecuación de la recta recién encontrada interseca a la elipse en los puntos y , que son justamente

los puntos de tangencia, por lo que necesitamos encontrar las coordenadas de dichos puntos. Para ello, debemos resolver

el sistema de ecuaciones conformado por la ecuación de la elipse y la ecuación general de la recta (2)

Page 145: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 145

Geometría analítica I Programa desarrollado

Con el propósito de facilitar los cálculos, transformamos la ecuación canónica de la elipse a su forma general

Entonces, el sistema a resolver es el siguiente

Despejamos en la ecuación (3) y sustituimos en (4)

Desarrollamos y simplificamos

Resolviendo la ecuación de segundo grado obtenemos dos valores para

Sabemos que las abscisas de estos dos puntos pertenecen a la elipse y a la recta que contiene los puntos de tangencia,

por lo que para encontrar el valor de sus respectivas ordenadas podríamos sustituir en cualquiera de estas ecuaciones,

pero por ser más directo, las sustituiremos en la ecuación (1) de la recta.

Primer punto

Segundo punto

Page 146: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 146

Geometría analítica I Programa desarrollado

Los puntos y son los puntos de tangencia, los que determinan la cuerda buscada, pero además sabemos que esa

cuerda pertenece a la recta , definida por la ecuación (2), a la que llamaremos .

Por lo tanto, el problema se transforma en encontrar la distancia del punto a la recta, es decir,

En conclusión, la distancia del punto a la cuerda de la elipse que une los puntos de tangencia es

unidades.

4.2.4. Tangentes a la hipérbola

Teorema

La recta tangente a la hipérbola en un punto dado es la bisectriz del ángulo

formado por las rectas que unen los focos con el punto de tangencia, es decir, las

rectas y , con la propiedad de que todos los puntos de la recta tangente,

con excepción de , están fuera de las ramas de la hipérbola.

Al igual que en la elipse, si se trazan las rectas y y sus correspondientes bisectrices, una de ellas cumplirá con las

propiedades del Teorema y corresponde a la recta tangente; la otra será la recta normal, la cual es además perpendicular

a la recta tangente en el punto .

Page 147: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 147

Geometría analítica I Programa desarrollado

A continuación se muestran las ecuaciones de la recta tangente a la hipérbola en el punto

Recta tangente a la hipérbola horizontal

Recta tangente a la hipérbola vertical

Recta tangente a la hipérbola horizontal con

centro en el origen

Recta tangente a la hipérbola vertical con

centro en el origen

Ejemplo

Encuentra las ecuaciones de las tangentes de la hipérbola que son paralelas a la recta

Solución

Lo primero es conocer la pendiente de la recta dada para poder resolver el problema. Sabemos que

Las rectas buscadas, por la condición de paralelismo, deberán tener una pendiente

Ya que conocemos la pendiente, es posible determinar la ecuación de la recta tangente, pero primero debemos saber si la

hipérbola es vertical u horizontal, por ello transformamos la ecuación a su forma canónica.

Por la forma de la ecuación podemos determinar que es una parábola vertical, además y .

Page 148: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 148

Geometría analítica I Programa desarrollado

La ecuación de la recta tangente a la parábola vertical es

Donde el punto de tangencia tiene coordenadas y es cualquier punto perteneciente a la recta.

Transformamos la ecuación de la recta tangente a su forma canónica

De aquí obtenemos que la pendiente de las rectas tangentes buscadas es

Como y pertenecen a la hipérbola, podemos sustituir este valor en su ecuación

Page 149: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 149

Geometría analítica I Programa desarrollado

Resolviendo para se obtienen dos soluciones, que son las coordenadas de los puntos de tangencia, a los que

nombraremos y . Por lo tanto, y

y

Sustituimos en la ecuación (1)

Las coordenadas de los dos puntos de tangencia son

Con estos valores podemos fácilmente encontrar las ecuaciones de las rectas tangentes, sustituyéndolas en la ecuación de la forma punto-pendiente o en la ecuación de la recta tangente a la hipérbola.

Ecuación de la recta tangente a la hipérbola en

Ecuación de la recta tangente a la hipérbola en

Page 150: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 150

Geometría analítica I Programa desarrollado

4.3. Aplicaciones

Si observas a tu alrededor te darás cuenta de que las cónicas están presentes en diferentes objetos de tu vida diaria:

1. La circunferencia (como sección de una esfera, un cilindro o un cono) en las formas de las monedas, en todo tipo

de ruedas, en arquitectura para la construcción de bóvedas, arcos, rosetones, etcétera.

2. La parábola en los arcos de puentes y puentes colgantes, además de ser el principio de funcionamiento del radar

y las antenas parabólicas.

3. La elipse, en el diseño arquitectónico (arcos elípticos, ventanales).

4. La hipérbola, en la zona de audibilidad o en esculturas cinéticas.

Respecto a los fenómenos físicos, su valor radica en la capacidad de permitirnos comprender o prever ciertos fenómenos

del espacio físico mediante una representación geométrica o modelación, en un plano, y la obtención y análisis de la

ecuación que describe el lugar geométrico así representado. Sin embargo, debemos tener presente que estas curvas son

idealizaciones de objetos de la realidad material y que, para modelar, en ocasiones se hace necesario tener presente que

hay ciertas variables implícitas en el modelo.

Además, no sólo es en modelos físicos donde se ve su aplicación, también en la modelación de comportamiento de otros

campos, como la economía, en donde las ecuaciones y sus gráficas nos permiten analizar el comportamiento de ciertos

problemas, los cuales se transforman en el análisis de una recta, una parábola o incluso una hipérbola.

http://culturaclasicasagunt.wikispaces.com/file/view/Matematicas_Sagunto08.pdf

4.3.1. Propiedades de reflexión de las cónicas

La reflexión es el cambio en la dirección de un rayo de luz cuando éste no logra traspasar la interfaz entre dos medios.

Este fenómeno ocurre con: la luz visible, las ondas sonoras, las microondas, los rayos X, entre otros. 27

El principio de reflexión de la luz establece que, si un rayo choca contra una superficie plana, se refleja de tal manera que

el ángulo de incidencia es igual al ángulo de reflexión.

27

http://www.astrored.org/enciclopedia/glosario/reflexion-optica.html Imagen adaptada. p. 118.

Page 151: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 151

Geometría analítica I Programa desarrollado

El ángulo de incidencia sobre una superficie es aquel que se forma

por el rayo incidente y la normal.

El ángulo de reflexión es el que se forma por el rayo reflejado y la

normal.

El ángulo de incidencia es igual al ángulo reflejado.

El rayo incidente, el rayo reflejado y la normal a la superficie

pertenecen al mismo plano.

Propiedad de reflexión de la parábola 28

Sea la recta tangente a la parábola en un punto , es la recta paralela

al eje de la parábola que pasa por y es la recta que une al foco y el punto

. Entonces, el ángulo de incidencia es igual al ángulo de reflexión.29

La tangente es la bisectriz del ángulo entre las rectas y .

Lo anterior indica que, cuando una onda se mueve de forma paralela al eje de la parábola y choca con ésta, se refleja

hacia el foco y viceversa, si del foco emana una onda, cuando choca con la parábola, ésta se refleja paralelamente al eje.

Al girar una parábola sobre uno de sus ejes se forma una superficie llamada paraboloide. Esta superficie tiene muchas

aplicaciones, principalmente en óptica y electrónica. Por ejemplo, si se coloca una fuente luminosa en el foco y se tiene

una superficie reflejante con forma de paraboloide, la luz puntual se transmite en forma de rayos paralelos al eje del

paraboloide. Las antenas parabólicas utilizan la propiedad de reflexión de las ondas electromagnéticas para enviar o

recibir señales, utilizando el foco como emisor o receptor, respectivamente.

28

Ideas adaptadas de http://www.essl.edu.pt/Dep/Mat/ano%2011/funcoes/historia.pdf 29

Oteyza, E., et al. (2005). Geometría analítica. México: Pearson Educación. p. 238.

Page 152: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 152

Geometría analítica I Programa desarrollado

30

Propiedad de reflexión de la elipse

Sean un punto de una elipse, la recta tangente a la elipse en el punto , sean también y las rectas que unen a y

a los focos y de la elipse, respectivamente. Entonces, el ángulo de incidencia y el ángulo de reflexión formados

por y este par de rectas son iguales.31

32

La recta tangente a una elipse en un punto forma ángulos iguales con las rectas que pasan por los focos, es decir,

. Por lo tanto, la tangente es la bisectriz del ángulo entre y .

Si por el punto trazamos la recta normal a la recta tangente (es decir, una recta perpendicular a la recta tangente),

observamos que también formará ángulos iguales entre la recta normal y las rectas que pasan por los focos. Por lo tanto,

se cumple lo establecido en la definición de la propiedad de reflexión.

30

http://www.essl.edu.pt/Dep/Mat/ano%2011/funcoes/historia.pdf p. 119 (Imágenes). 31

Oteyza, E., et al (2005). Geometría analítica. México: Pearson Educación. p. 290. 32

Diagrama adaptado de http://www.essl.edu.pt/Dep/Mat/ano%2011/funcoes/historia.pdf p.118.

Figura que ejemplifica la definición geométrica de la propiedad de reflexión de la parábola

Page 153: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 153

Geometría analítica I Programa desarrollado

La recta normal, que pasa por el punto , es la bisectriz del ángulo .

Al girar la elipse sobre uno de sus ejes se forma una superficie llamada elipsoide. Consideremos que giramos la elipse

sobre su eje mayor y que esta superficie es un espejo. Si un rayo de luz parte de uno de los focos, al chocar contra el

espejo, debido a la propiedad de la tangente, se reflejará hacia el otro foco.

Esta propiedad tiene diversas aplicaciones, por ejemplo, para fabricar hornos en los que se desea concentrar el calor en

un punto determinado, de manera que se coloca la fuente de calor en uno de los focos, y en el otro, el objeto que se

desea calentar. Otro ámbito de aplicación es en la arquitectura, para el diseño de “galerías de los suspiros”, en donde si la

galería es un elipsoide y una fuente emite un sonido (débil) en uno de los focos, se escuchará claramente en el otro foco,

lo que permite que se dé un fenómeno singular: dos personas situadas cada una en los focos de una elipse pueden

mantener una conversación, hablando en voz baja y a pesar del ruido exterior.

Propiedad de reflexión de la hipérbola

Sean un punto de una elipse, la recta

tangente a la elipse en el punto y y las

rectas que unen a y a los focos y de la

hipérbola, respectivamente. Entonces, el

ángulo de incidencia y el ángulo de reflexión

formados por y este par de rectas, son

iguales.33

La recta tangente a una hipérbola en un punto

forma ángulos iguales con las rectas y

que pasan por los focos, es decir, . Por lo

tanto, la tangente es la bisectriz del ángulo

entre y .

33

Oteyza, E., et al (2005). Geometría analítica. México: Pearson Educación. p. 290.

Pe mayúscula

Teta

Page 154: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 154

Geometría analítica I Programa desarrollado

Esta propiedad de reflexión de la hipérbola se utiliza en los espejos o reflectores hiperbólicos, en los cuales los rayos

emitidos desde un foco de una hipérbola se reflejan en la rama más alejada de dicho foco y salen de la hipérbola como si

fuesen emitidos por el otro foco.34

Las propiedades de reflexión de las cónicas se utilizan para construir telescopios. A continuación se muestra el diseño de

dos telescopios.

Telescopio parabólico-hiperbólico, en el cual se

combinan dos espejos, uno hiperbólico y otro

parabólico, como se muestra en el siguiente diagrama.

Telescopio que incorpora las tres cónicas en

su diseño.

35

En ciertos diseños, el Foco tiene la propiedad de ser

el foco tanto de la parábola como de una de las ramas

de la hipérbola.

36

34

http://thales.cica.es/rd/Recursos/rd99/ed99-0122-04/conicas/hiperbola.html 35

http://arquimedes.matem.unam.mx/PUEMAC/PUEMAC_2008/conicas/imagenes/teles.gif 36

http://www.essl.edu.pt/Dep/Mat/ano%2011/funcoes/historia.pdf p. 118

Page 155: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 155

Geometría analítica I Programa desarrollado

4.3.2. Las cónicas y la astronomía

Una de las grandes aportaciones de Kepler son precisamente las leyes que llevan su nombre y que describen las leyes que

rigen el movimiento de los planetas.

En el estudio de la geometría analítica, cabe resaltar la primera ley:

“Los planetas se mueven en órbitas elípticas que tienen al Sol en uno de sus focos.”37

Además de los planetas, algunos cometas también siguen trayectorias elípticas, uno de los más conocidos es el cometa

Halley.

A continuación se incluye una tabla38 con la excentricidad de algunos cuerpos celestes y la distancia media de los planetas

al Sol.

La distancia media de un planeta al Sol es el semieje mayor de la órbita elíptica .

Tabla de cuerpos celestes

Cuerpo celeste Excentricidad Distancia media (U.A.)

Mercurio 0.206 0.387

Venus 0.007 0.723

Tierra 0.027 1

Marte 0.093 1.52

Júpiter 0.048 5.2

Saturno 0.056 9.54

Urano 0.047 19.18

Neptuno 0.009 30.06

Plutón (planetoide) 0.25 39.44

Cometa Halley 0.967 17.858

Nota. La unidad astronómica (U.A.) es la distancia media de la Tierra al Sol.

A continuación te presentamos unos ejemplos.

37 http://www.luventicus.org/articulos/03C002/index.html 38

Tabla adaptada de Oteyza, et al.

Page 156: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 156

Geometría analítica I Programa desarrollado

Ejemplo

Cuando un asteroide se aproxima a la Tierra más que Venus, se denomina “rozador de la Tierra”.

El 24 de abril de 1932, el astrónomo alemán Karl Reinmuth descubrió un asteroide rozador al que llamó Apolo. Es un

asteroide muy particular porque su perihelio se encuentra a sólo 95 millones de kilómetros del Sol y su afelio está a 353

millones de km del Sol, por lo que su excentricidad es grande.39

Perihelio: es el punto en el cual un objeto celeste que gira alrededor de una estrella, como el Sol, se encuentra a la

mínima distancia de ella.

Afelio: es el punto en el cual un objeto celeste que gira alrededor de una estrella, como el Sol, se encuentra a la máxima

distancia de ella.

Compara ambas órbitas de manera gráfica, para ello toma en cuenta las siguientes sugerencias:

Supón que la órbita de Apolo se encuentra en el mismo plano que la órbita de la Tierra.

Elige un sistema de referencia con las unidades adecuadas para comparar ambas órbitas.

Ubica el Sol en el origen (recuerda que es uno de los focos de la elipse)

Solución

a) Órbita de la Tierra

Por la información mostrada en la tabla de cuerpos celestes, conocemos que la excentricidad de la tierra es y

la distancia media es de 1 U.A.

De allí es sencillo deducir la distancia del centro a uno de los focos.

Y se puede obtener también el valor de

39

Datos obtenidos de http://www.astromia.com/astronomia/rozadores.htm

Page 157: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 157

Geometría analítica I Programa desarrollado

Con estos datos podemos obtener la ecuación de la órbita de la Tierra y graficarla

Centro Focos

Vértices

Extremos del semieje menor

b) Órbita de Apolo

De los datos del problema, podemos calcular el valor de , para poder comparar las órbitas en la misma gráfica, conviene

utilizar también la escala de unidades astronómicas.

Copérnico determinó que la distancia media de la Tierra al Sol era de 150 millones de kilómetros, utilizaremos este valor

como una aproximación para realizar los siguientes cálculos.

Afelio:

Perihelio

Para poder comparar las órbitas, consideraremos que el afelio y el perihelio se alinean al igual que los de la órbita de la

Tierra, por lo que uno de los vértices tiene coordenadas y el otro vértice tiene coordenadas .

Sabemos que el foco también se encuentra en el Sol, por lo que sus coordenadas son

Page 158: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 158

Geometría analítica I Programa desarrollado

De manera que esta parte del problema se transforma en “encontrar la ecuación de una elipse conocidos uno de sus

focos y sus vértices”.

Los vértices determinan el diámetro focal, por lo que el punto medio será el centro de la elipse

Con esta información podemos deducir el valor del centro a los vértices y del foco a uno de los vértices.

Sustituimos estos valores en

La excentricidad de la órbita es:

Page 159: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 159

Geometría analítica I Programa desarrollado

Con estos datos podemos obtener la ecuación de la órbita de la Tierra y graficarla

Centro Focos

Vértices

Extremos del semieje menor

En la imagen, las líneas punteadas indican el eje menor de las órbitas respectivas. Como puedes apreciar, en la órbita de

la Tierra (color azul) los focos son muy cercanos y, como la excentricidad es cercana a cero, la forma de la órbita tiende a

la de una circunferencia. En cambio, en la órbita de Apolo (color verde) los focos tienen mayor distancia, al ser la

excentricidad , la elipse es alargada. La excentricidad del asteroide Apolo se puede considerar muy grande, en

comparación con las de los planetas mencionados en la tabla de cuerpos celestes.

Cabe mencionar que la alineación de las órbitas fue una convención para poder compararlas, por ese motivo los ejes

mayores están alineados.

Page 160: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 160

Geometría analítica I Programa desarrollado

Ejemplo

Grafica la órbita del cometa Halley, considera al Sol en el origen del sistema de coordenadas y utiliza las unidades

astronómicas para expresar tus resultados.

Encuentra la distancia del afelio y del perihelio de la órbita del cometa Halley y compáralas.

40

Por los datos del problema y de la tabla de cuerpos celestes podemos determinar que el Sol corresponde a uno de los

focos y tiene coordenadas y la excentricidad es

De aquí que el valor de

Por la definición de excentricidad

Finalmente, el valor de

Para poder encontrar la ecuación de la elipse y graficarla, es necesario conocer las coordenadas del centro

Como conocemos el valor de , es posible deducir las coordenadas del centro; como la elipse es horizontal, se

cumple que

Por lo tanto, podemos deducir los valores de y , que son la abscisa y la ordenada del centro, respectivamente.

El centro se ubica en

40

http://www.astrosurf.com/astronosur/imagenes/planetas4.jpg

Page 161: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 161

Geometría analítica I Programa desarrollado

De allí podemos deducir los vértices de la elipse porque conocemos que

y

También podemos deducir las coordenadas del segundo foco y de los extremos del semieje menor

Con estos datos es posible encontrar la ecuación de la elipse y graficarla

Observa que en este caso, la excentricidad es cercana a uno, por lo que el valor de es muy próximo a .

Geométricamente esto se aprecia en que los focos tienden a acercarse a los vértices respectivos.

La distancia mínima (perihelio) del cometa al Sol es

El perihelio se encuentra a 0.589 U. A.

La distancia máxima (afelio) del cometa al Sol es

Page 162: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 162

Geometría analítica I Programa desarrollado

El afelio se encuentra a 35.127 U. A.

Para responder a la pregunta formulada al inicio, podemos comparar estas distancias por medio de:

a) La diferencia entre ellas

b) Un cociente

Reflexiona sobre el significado de cada uno de estos resultados: ¿Qué información se obtiene al comparar por medio de

un cociente? ¿Y utilizando una diferencia?

Por último, en la siguiente gráfica se muestra la órbita de la Tierra (en color azul) y la del cometa Halley (en color gris),

ambas curvas con el Sol en el mismo foco; en ellas se aprecia la influencia de la excentricidad en la forma que toma la

cónica.

El cometa Lulin (oficialmente C/2007 N3 Lulin) lo descubrió un joven chino de 19 años. A principios del año 2009 fue

perceptible a simple vista de la superficie terrestre. Este fue un fenómeno irrepetible porque este cometa se aleja cada

vez más. A diferencia del cometa Halley que tiene una trayectoria elíptica, el cometa Lulin, se conjetura, sigue una

trayectoria hiperbólica.41

41

Referencia: http://www.neoteo.com/mira-al-cometa-lulin-por-internet-14895.neo

Page 163: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 163

Geometría analítica I Programa desarrollado

Un cuerpo celeste que provenga del exterior del sistema solar y sea atraído por el sol, describirá una órbita hiperbólica,

teniendo como un foco al sol y saldrá nuevamente del sistema solar. En general un asteroide, de masa , cuando se

aproxima a un planeta de masa mayor que la suya, , con velocidad v0 en el infinito siguiendo una dirección (recta de

color rojo) que dista b unidades del centro del planeta, seguirá una trayectoria hiperbólica (curva de color azul): primero

acercándose al planeta siguiendo la guía de una de sus asíntotas, modificando su recorrido de manera tal que conforme el

asteroide se acerca al planeta, su velocidad cambia tanto en magnitud como en dirección, por lo que se puede decir que

“rodea al planeta” y después se aleja en una trayectoria que tenderá a la dirección determinada por la segunda asíntota

de la hipérbola, tal y como se muestra en la siguiente figura. 42

4.3.3. Problemas de movimiento

En el sistema de navegación LORAN (del inglés LOng RAnge Navigation, navegación de largo alcance) utiliza la propiedad

expresada en la definición de la parábola como principio de funcionamiento.

Ejemplo. Un gran salto43

Para predecir la distancia que un atleta saltará se puede realizar un análisis de movimiento y encontrar la ecuación de la

trayectoria que realiza en su salto. Una forma de hacerlo es analizar el centro de masa del cuerpo humano.

42

Referencia: http://www.sc.ehu.es/sbweb/fisica/celeste/hiperbola/hiper_1.gif 43

Actividad cuyas imágenes fueron tomadas del video Un gran salto. Videos desarrollados por BBC TV : Encyclopaedia Britannica, (1991) [London, England] Ficha disponible en: http://trove.nla.gov.au/work/22415440?c=music&selectedversion=NBD44436466 Video con doblaje al español en http://www.planetamatematico.com/index.php?option=com_seyret&task=videodirectlink&id=145

Page 164: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 164

Geometría analítica I Programa desarrollado

Este centro se analiza como si fuera el movimiento puntual sin importar ya lo que el resto del cuerpo haga.

Entonces se puede describir la trayectoria por medio de una parábola.

Existen diferentes factores que influyen en el salto de un atleta, por ejemplo: la máxima velocidad lograda al llegar a la

marca (desde donde inicia el salto), el ángulo óptimo de impulso alcanzado, la altura máxima alcanzada en el salto,

etcétera.

En este ejemplo analizaremos solamente la trayectoria, conviene por tanto situar el origen de los ejes de referencia en el

momento en el que inicia el salto.

Analizando el gráfico se puede leer el punto de inicio del salto (considerando el centro de masa), la altura máxima

alcanzada y el punto al que llega hasta el final del salto:

Con estos puntos se puede obtener la ecuación de la parábola; como se sabe que es vertical, la ecuación general de la

parábola es

Page 165: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 165

Geometría analítica I Programa desarrollado

Ten cuidado de no confundir los valores de los coeficientes con las coordenadas del punto que lleva el mismo nombre:

Dividiendo la ecuación de la parábola entre el coeficiente , se tiene:

Los cuales podemos renombrar como:

Sustituimos las coordenadas de los puntos , y , se obtienen las siguientes ecuaciones:

Simplificando y reorganizando los términos, obtenemos el siguiente sistema de ecuaciones:

Al resolver el sistema de ecuaciones, los valores de los coeficientes son:

Por lo tanto, la ecuación general de la parábola es

Transformando la ecuación a la forma ordinaria, podemos ver los elementos geométricos y graficarla:

Completando el TCP

Page 166: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 166

Geometría analítica I Programa desarrollado

¿Qué información nos brinda esta ecuación?

Por ejemplo, de la lectura de la ecuación (2), podemos determinar que el vértice se encuentra en

Por lo tanto, el punto más alto (del centro de masa) durante el salto, fue de 1.861 m. Un valor muy cercano al que

obtuvimos de la lectura en la gráfica.

Page 167: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 167

Geometría analítica I Programa desarrollado

Ahora, encontremos las raíces de la ecuación, utilicemos para ello la ecuación (1) para reducir los errores resultantes de

las aproximaciones que realizamos en los cálculos.

Resolviendo la ecuación

De acuerdo con el modelo, la máxima distancia alcanzada por el atleta es de 7 m.

En las ecuaciones (1) y (2), están implícitas diversas variables de física, como las que mencionamos anteriormente. En un

estudio más completo, estas variables deberían ser explícitas para poder manipularlas y observar los efectos en la

distancia del salto, producto de cada una de ellas.

Lo importante es reflexionar sobre el potencial que da la modelación de fenómenos de física para poder resolver

problemas en diversos ámbitos. Veamos un último ejemplo en donde reconocerás el papel que juega la tecnología, su

potencial y limitaciones.

Ejemplo

Lanzamiento de martillo. Primož Kozmus es un atleta de lanzamiento de martillo que en los Juegos Olímpicos de Pekín

2008 obtuvo el primer lugar con un lanzamiento de 82 metros.

Los lanzadores de martillo compiten lanzando una bola pesada adosada a un alambre metálico con un asidero en el

extremo. La bola, el alambre y el asa, juntos, pesan como mínimo 7.26 kg y como máximo 7.285 kg, en la categoría

masculina. La distancia desde el asa hasta la bola forma una unidad de una longitud máxima de 1.2 metros. Además, si el

martillo no cae en el terreno de un arco de 90°, el lanzamiento no se considera válido.44

Supongamos que el siguiente diagrama ilustra el lanzamiento de Primož Kozmus, la trayectoria que siguió el martillo se

muestra en color rojo y el punto al que llegó es .

44

http://elatletismo.galeon.com/enlaces1656466.html

Page 168: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 168

Geometría analítica I Programa desarrollado

Consideremos que el atleta está girando sobre sí mismo y ubicado en el origen del sistema de referencias propuesto,

como la longitud del alambre es de 1.2 m, entonces la bola del martillo describe una circunferencia que tiene la siguiente

ecuación

Al soltar al martillo este seguirá una trayectoria que corresponde a la recta tangente al punto en el que fue liberado.

Entonces el problema se transforma en encontrar la recta tangente a la circunferencia

que pasa por el punto .

Primero vamos a averiguar la ecuación de la familia de rectas (o haz de rectas) que pasa por el punto .

Suponemos que la pendiente de esta familia es .

Ecuación canónica de la familia de rectas

Ecuación general de la familia de rectas

La segunda propiedad de las rectas tangentes nos indica que de esta familia de rectas es necesario encontrar la recta

cuya distancia al centro de la circunferencia es igual al radio, es decir

Page 169: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 169

Geometría analítica I Programa desarrollado

Ahora aplicamos la fórmula de distancia del punto a una recta

Resolviendo la ecuación para

A continuación deducimos la ecuación de cada una de las rectas, sustituyendo en las ecuaciones de las rectas encontradas

anteriormente

Ecuación canónica de la recta tangente 1

Ecuación canónica de la recta tangente 2

y = 4.183x – 18(4.183) + 80

Page 170: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 170

Geometría analítica I Programa desarrollado

Como conocemos la pendiente de la recta tangente, podemos encontrar la ecuación que contiene al radio que pasa por el

punto de tangencia, sabemos que su pendiente es el recíproco negativo de la pendiente de la recta tangente. En otras

palabras, estamos buscando la recta normal que pasa por los correspondientes puntos de tangencia y que además, por

las condiciones del problema, sabemos que pasa por el origen, por lo que sus ecuaciones son:

Ecuación canónica de la recta normal 1

Ecuación canónica de la recta normal 2

Por lo tanto, el punto de tangencia es el punto de intersección de la recta normal con la recta tangente, por lo que

debemos resolver el sistema de ecuaciones

Punto de tangencia 1

Punto de tangencia 2

Igualamos el sistema de ecuaciones y resolvemos para

3

Page 171: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 171

Geometría analítica I Programa desarrollado

Sustituimos en una de las ecuaciones de la recta, en este caso en la recta tangente, para encontrar el valor de la ordenada

Los puntos de tangencia son

para la recta tangente 1

para la recta tangente 2

Hasta aquí los procedimientos son correctos; sin embargo, al sustituir en la ecuación de la circunferencia, obtenemos los

siguientes resultados:

( )

Page 172: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 172

Geometría analítica I Programa desarrollado

Esto sucede porque se van acumulando errores al utilizar aproximaciones durante los diferentes cálculos que se van

realizando. Es por este motivo que en el diseño se utilizan programas (software) especializados que permiten disminuir

los errores.

A continuación se muestran las coordenadas de los puntos de

tangencia y la ecuación de la recta tangente a la circunferencia

obtenidas por medio de un programa de

computación.

Para dar respuesta a nuestro problema utilizaremos estos resultados.

Si el atleta gira en el sentido de las manecillas del reloj, al soltar el martillo, seguirá la trayectoria que indica la recta en

color azul, es decir, irá de hacia , por lo que el punto en el que soltó el martillo, aproximando el resultado hasta

centímetros, es

¿Qué pasaría si hubiera soltado el martillo en el punto ? Este habría seguido la trayectoria indicada por la recta, pero en

dirección contraria, por lo que habría salido del área indicada por el arco de circunferencia y el lanzamiento no sería

válido.

4.3.4. Otros problemas que usan la geometría analítica

En este último tema veremos ejemplos de diferentes características, tanto del ámbito matemático como dentro del

contexto de ciencias afines, como la economía.

Page 173: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 173

Geometría analítica I Programa desarrollado

Ejemplo

Más sobre lugares geométricos. Encuentra el lugar geométrico de los centros de las circunferencias tangentes

externamente a las circunferencias y

Realizamos un diagrama para poder analizar la información que conocemos

representa el centro de las circunferencias buscadas, como son tangentes con las circunferencias propuestas, entonces

la distancia de a cada uno de los centros es igual a la suma de los radios, es decir,

Además, se debe cumplir que

De donde

Vemos que la diferencia entre los radios es igual a un valor constante, por lo que, por la definición de la hipérbola, el lugar

geométrico buscado es una hipérbola cuyos focos serán los centros de cada una de las circunferencias.

El centro de la hipérbola será el punto medio de los centros de las circunferencias dadas.

La distancia entre los centros de las circunferencias es igual a la distancia entre los focos

Page 174: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 174

Geometría analítica I Programa desarrollado

La distancia del centro a uno de los focos es

Sabemos que

Por lo tanto, la ecuación de la hipérbola es

Ejemplo

Las raíces de un sistema de ecuaciones

¿Cuáles son los valores de para los cuales el sistema de ecuaciones

tiene 0, 1, 2, 3, 4 o 5 soluciones?

Solución

Lo primero es hacer un diagrama general para dar sentido a la situación.

La ecuación es una cónica degenerada que representa dos líneas rectas.

La ecuación es una circunferencia cuyo se encuentra en algún lugar del eje de las abscisas y tiene

coordenadas , y su radio es .

Con esta información podemos realizar un diagrama para ir analizando en qué casos se tienen soluciones.

Se entiende por solución a los puntos que satisfacen ambas ecuaciones.

Cuando la circunferencia es tangente a las rectas, el sistema tendrá dos soluciones. Sabemos que las rectas son simétricas

respecto al eje y también respecto al eje .

Page 175: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 175

Geometría analítica I Programa desarrollado

El problema puede reformularse como encontrar el valor de para el cual la circunferencia es tangente a la recta .

La pendiente de la recta tangente es , por lo que la pendiente de la recta normal, que contiene el radio de la

circunferencia, será y pasa por el punto

Se obtiene el siguiente sistema de ecuaciones:

Sustituyendo (1) en (2)

Sustituyendo (1) en (4)

Page 176: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 176

Geometría analítica I Programa desarrollado

Sustituyendo (4) en (5) y resolviendo para

Observa que el valor positivo de indica la circunferencia que se encuentra del lado derecho, y el valor negativo, la

circunferencia que está del lado izquierdo, por lo que tenemos resuelta una primera parte del problema.

Cuando , el sistema originalmente propuesto tiene dos soluciones.

Observa que, cuando , el sistema originalmente propuesto no tiene solución, es decir, tiene 0 soluciones; lo

mismo sucede cuando .

Ahora analicemos para qué valores de el sistema tiene 3 soluciones, por lo que podemos reformular el problema para

encontrar el valor de en el que uno de los puntos de la circunferencia es el origen.

Sea

Por lo tanto, cuando el valor de o el sistema tiene exactamente 3 soluciones

Cuando , el sistema tendrá 4 soluciones, con dos excepciones: cuando o , porque

hemos dicho que para esos valores el sistema tiene 3 soluciones.

Page 177: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 177

Geometría analítica I Programa desarrollado

Organicemos los resultados en una tabla:

No. de soluciones Gráfica

El sistema no tiene solución

pertenece al intervalo

El sistema tiene 2 soluciones

Page 178: Geometría Analítica

Educación Superior Abierta y a Distancia • Ciencias Exactas, Ingenierías y Tecnología 178

Geometría analítica I Programa desarrollado

El sistema tiene 3 soluciones

El sistema tiene 4 soluciones

Vemos que no existen valores de para los cuales el sistema tenga 1 solución, 5 soluciones o más de 5 soluciones.

Consideraciones específicas de la unidad

En esta unidad se muestran diferentes ejemplos de aplicación de las cónicas para la modelación o resolución de

problemas. En algunos de ellos deberás interactuar con escenas desarrolladas con geometría dinámica para explorar la

solución propuesta.

Fuentes de consulta

http://www.naya.org.ar/congreso2002/ponencias/img/jose_alonso04.gif

http://buscon.rae.es/draeI/SrvltGUIBusUsual?TIPO_HTML=2&TIPO_BUS=3&LEMA=c%C3%ADrculo

http://buscon.rae.es/draeI/SrvltObtenerHtml?LEMA=circunferencia&SUPIND=0&CAREXT=10000&NEDIC=No

Lehman, p. 97.