146
B MATEMATICA Guía de estudio Educación Adultos 2000 0800-999-33822 www.buenosaires.gov.ar/educacion/comunidad/adultos2000 Material de distribución gratuita SECRETARÍA DE EDUCACIÓN gobBsAs

Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

B

MATE

MATI

CA

Guí

a de

est

udio

Educación Adultos 20000800-999-33822www.buenosaires.gov.ar/educacion/comunidad/adultos2000

Material de distribución gratuita

SSEECCRREETTAARRÍÍAA DDEE EEDDUUCCAACCIIÓÓNN

gobBsAs

Page 2: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Programa Educación Adultos 2000

Coordinador pedagógico:Lic. Roberto Marengo

Equipo técnico-pedagógico:Lic. Valeria CohenLic. Daniel López

Lic. Norma MerinoLic. Noemí ScaletzkyLic. Alicia Zamudio

Matemática BCoordinadores:Prof. Dora GuilProf. Ernesto Maqueda

Equipo docente:Prof. Carlos BattilanaProf. Matías BruzzoniProf. Silvia García BonelliProf. Nora Di LascioProf. Gerardo FeresProf. Claudio MayayoProf. Claudia MazzeoProf. Susana MuñozProf. Gabriela Otero

Asesores de alumnos:María AlemFernando Piquero

Guía de estudios Matemática B

Coordinación de la producción y edición:Lic. Norma MerinoLic. Noemí Scaletzky

Especialistas en contenidos:Prof. Dora GuilProf. Ernesto Maqueda

Procesamiento didáctico:Lic. Betina AkselradLic. Alejandra Amantea

Supervisión legal:Dra. Fabiana Leonardo

Diseño gráfico y diagramación:Juan Carlos Badino

Page 3: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

B

MATE

MATI

CA

Guí

a de

est

udio

Educación Adultos 20000800-999-33822www.buenosaires.gov.ar/educacion/comunidad/adultos2000

Material de distribución gratuita

SSEECCRREETTAARRÍÍAA DDEE EEDDUUCCAACCIIÓÓNN

gobBsAs

Page 4: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática2

Nuestro sincero recuerdo y agradecimiento a Beatriz Marelli, con quien tuvimos el placer de compartir tantos años de trabajo y aprendizajes.

Agradecemos también los aportes realizados por el equipo docente y nuestros alumnos.

Page 5: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

MATEMATICA

Matemática B • PRESENTACIÓN 1

ÍNDICE

PRESENTACIÓN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Presentación de la materia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5¿Cómo estudiar? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6¿Qué es necesario saber para trabajar con los contenidos de Matemática B? . . . . . . . . . 7Actividades de anticipación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Orientaciones sobre las actividades de anticipación . . . . . . . . . . . . . . . . . . . . . . . . . . 11Programa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Bibliografía . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

UNIDAD 1 :

FUNCIÓN LINEAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Propósitos de la unidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Actividad N° 1: “Control de la temperatura de una sustancia" . . . . . . . . . . . . . . . . . 16

En términos Matemáticos: Ceros, Intervalos de Positividad y

de Negatividad de una Función . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Actividad N° 2: “Trabajando con el libro". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Actividad N° 3: “La temperatura en la ciudad de Mar del Plata” . . . . . . . . . . . . . . . 26

Actividad N° 4: “Mantenimiento de Piletas de Natación" . . . . . . . . . . . . . . . . . . . . . 27

En términos Matemáticos: “Ecuación de una recta Función lineal” . . . . . . . . . 32

Actividad Nº 5: “Trabajando con el libro" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

UNIDAD 2 :

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS. . . . . . . . . . . . . . . . 35Propósitos de la unidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Actividad N° 1: “Nuevas instrucciones para construir diseños de estampados" . . . . . 35

En términos Matemáticos: Sistemas de Ecuaciones Lineales con dos Incógnitas. . 38

En términos Matemáticos: Clasificación de sistemas de Ecuaciones Lineales. . . 43

Actividad N° 2: “Trabajando con el Libro" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

UNIDAD 3 :

PROPORCIONALIDAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Propósitos de la unidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Actividad N° 1: “Los precios en los puestos de la Feria" . . . . . . . . . . . . . . . . . . . . . 45

En términos Matemáticos: Proporcionalidad directa. Constante de

proporcionalidad. Función de proporcionalidad directa . . . . . . . . . . . . . . . . . . 49

Actividad N° 2: “Llenado de tanques de combustible" . . . . . . . . . . . . . . . . . . . . . . . 50

Actividad N° 3: “Trabajando con el libro". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Actividad N° 4: “En la Fábrica de jarabes" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

En términos Matemáticos: Proporcionalidad inversa. Constante de proporcionali-

dad inversa. Función de proporcionalidad inversa" . . . . . . . . . . . . . . . . . . . . . 59

En términos Matemáticos: Función racional. Asíntotas . . . . . . . . . . . . . . . . . . 62

Page 6: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática2

UNIDAD 4 :

PROPORCIONALIDAD DE SEGMENTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Propósitos de la unidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Actividad N° 1: “Fichas para juegos infantiles" . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

En términos Matemáticos: Figuras semejantes. . . . . . . . . . . . . . . . . . . . . . . . . 70

Actividad N° 2: “El recorrido de Martín el cartero" . . . . . . . . . . . . . . . . . . . . . . . . . 71

En términos Matemáticos: Vectores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Actividad N° 3: “Trabajando con el Libro" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Actividad Nº 4: “La fábrica de juguetes: un recurso para diseñar los moldes" . . . . . . 74

En términos Matemáticos: Homotecia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

En términos Matemáticos: Homotecia y semejanza . . . . . . . . . . . . . . . . . . . . . 77

Actividad Nº 5: “Postes para construir un quincho" . . . . . . . . . . . . . . . . . . . . . . . . 78

En términos Matemáticos: Teorema de Thales . . . . . . . . . . . . . . . . . . . . . . . . . 81

Actividad Nº 6: “Postes para la TV por cable " . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

UNIDAD 5 :

FUNCIÓN CUADRÁTICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Propósitos de la unidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Actividad N° 1: “Presupuestos en un taller de artesanías" . . . . . . . . . . . . . . . . . . . . 85

En términos Matemáticos: Fórmula cuadrática . . . . . . . . . . . . . . . . . . . . . . . . 87

En términos Matemáticos: Cuadrado de un Binomio. Trinomio cuadrado

perfecto. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Actividad N° 2: “Análisis de la temperatura de una barra metálica" . . . . . . . . . . . . . 93

En términos Matemáticos: Función cuadrática. Parábola . . . . . . . . . . . . . . . . . 95

En términos Matemáticos: Vértice de una parábola . . . . . . . . . . . . . . . . . . . . 98

Actividad N° 3: “Trabajando con el Libro" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

En términos Matemáticos: Forma factorizada de una fórmula cuadrática . . . . 101

UNIDAD 6 :

FUNCIONES POLINÓMICAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Propósitos de la unidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Actividad N° 1: “Fabricación de dados" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

En términos Matemáticos: Polinomio de grado 3. Funciones Polinómicas

de grado 3. Monomios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

En términos Matemáticos: Funciones Polinómicas de grado n. Polinomios

de grado n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Actividad N° 2: “El taller de artesanías cambia sus precios". . . . . . . . . . . . . . . . . . 106

En términos matemáticos: Teorema del resto. . . . . . . . . . . . . . . . . . . . . . . . . 116

En términos matemáticos: Divisibilidad de polinomios. Factorización de

polinomios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Actividad N° 3: “Trabajando con el Libro" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Page 7: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • PRESENTACIÓN 3

UNIDAD 7:

ESTADÍSTICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121Propósitos de la unidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Actividad N° 1: “Estudio de mercado de la fábrica de chicles" . . . . . . . . . . . . . . . . 121

En términos matemáticos: Población. Muestra. Observación. Representación

gráfica de los datos. Distribución de frecuencias. Frecuencia absoluta.

Frecuencia relativa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

En términos matemáticos: Frecuencia acumulada . . . . . . . . . . . . . . . . . . . . . 128

En términos matemáticos: Medidas de centralización: media, mediana

y moda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

En términos matemáticos: Desviación. Medidas de dispersión: varianza

y desvío estándar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

En términos matemáticos: Intervalos de clase. Marca de clase. Histograma.

Polígono de frecuencias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Actividad N° 2: “Trabajando con el libro" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

En términos matemáticos: Distribuciones simétricas y asimétricas . . . . . . . . . 138

Actividad N° 3: “Pesos y medidas en el fútbol infantil" . . . . . . . . . . . . . . . . . . . . . 139

En términos matemáticos: Tipos de variables . . . . . . . . . . . . . . . . . . . . . . . . 141

Actividad N° 4: “Trabajando con el libro" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Page 8: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática4

Page 9: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

MATEMATICA

Matemática B • PRESENTACIÓN 5

Presentación de la materiaAl iniciar el trabajo con esta Guía usted ya ha transitado un camino de apren-dizaje de nociones matemáticas: ha concluido la escolaridad primaria y haaprobado Matemática A en Educación Adultos 2000 o su equivalente. Estosignifica que no se acerca ahora a la Matemática por primera vez. Sin embar-go sus experiencias al respecto pueden ser muy variadas.

Quienes diseñamos la propuesta de enseñanza de Matemática en Adultos 2000,partimos de algunas ideas generales a partir de las cuales construimos unmodo de trabajo que intenta favorecer el estudio de esta materia y consi-deramos fundamental compartirlas con nuestros alumnos desde el inicio.Por esto le presentamos aquí las ideas que orientan nuestro trabajo comodocentes de Matemática:

• Seguramente usted utiliza en su vida diaria una gran cantidad de nocionesmatemáticas sin darse cuenta; las usa eficientemente y de manera tal quele permiten resolver diferentes situaciones relativas a su vida cotidiana.

• Partiendo de esta "experiencia matemática" incorporada a su vida diaria esposible avanzar hacia la interpretación de los conceptos matemáticos queallí entran en juego y trasladarlos a situaciones más complejas.

• Cada nuevo concepto matemático que se aprende se apoya en otros yaadquiridos como si se tratara de hileras de ladrillos que se asientan unas enotras para que la pared que se construye sea sólida.

• Cada adquisición pasa por una serie de etapas que van desde lo más con-creto y ligado a nuestra experiencia cotidiana, hacia niveles de complejidady abstracción cada vez mayores.

• En tanto la Matemática se expresa a través de un sistema de símbolos yrepresentaciones gráficas que le es propio, es necesario hacer comprensibleeste lenguaje desde su significado matemático y su relación con situacio-nes concretas.

• Si favorecemos que estas etapas se cumplan sin saltear ninguna, respetan-do los ritmos de avance de cada alumno, usted podrá aprender Matemáticaaún cuando sus experiencias anteriores con esta materia no le hayan ofre-cido esta sensación.

En resumen, le proponemos aprender Matemática de una manera semejante ala que el hombre ha seguido en la creación de las ideas matemáticas: descu-briendo los conceptos a partir de situaciones que podrían presentarse en la rea-lidad o de problemas pertenecientes a otras ciencias que utilizan conceptosmatemáticos para resolverlos.

Conociendo cuáles son nuestros puntos de partida, le será más sencillo com-prender el modo de trabajo que le proponemos desarrollar.

Page 10: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

MATEMATICA

EDUCACIÓN ADULTOS 2000 • Matemática6

¿Cómo estudiar?A partir de estas ideas hemos pensado este material de enseñanza como unrecurso a través del cual usted pueda aprender conceptos matemáticos y el len-guaje que los expresa.

En cada Unidad usted encontrará:

• Una presentación en la que se describen las principales nociones y conteni-dos que se abordarán y los Propósitos a alcanzar en relación con esas nocio-nes y contenidos.

• Actividades que presentan situaciones de trabajo y problemas concretospara resolver y analizar. Cada una de ellas representa un camino hacia losconceptos matemáticos y al lenguaje que los expresa. Muchas de estas acti-vidades tienen distintas Partes. Algunas de estas Actividades o Partes seránindicaciones para leer los textos recomendados. Estas le señalarán quépáginas de los textos deberá consultar y qué actividades propuestas en loslibros deberá resolver.

• Comentarios bajo el título Orientaciones, que lo invitan a reflexionar sobresu trabajo y a verificar su camino de resolución de las diferentes partes de lasactividades.

• Indicaciones para retomar conceptos, en aquellos casos en los que la resolu-ción de la actividad requiera que recuerde algunos conceptos matemáticosaprendidos en una etapa anterior.

• Apartados especiales denominados En términos matemáticos, destinados aformalizar los conceptos que usted vaya construyendo a partir de su trabajo enlas distintas partes de cada Actividad. En estos apartados presentaremos tam-bién el lenguaje que utiliza la Matemática para expresar dichos conceptos.

• Ejercicios de integración, que deben resolverse al finalizar cada unidad.Permiten sintetizar los temas trabajados, aplicar los conceptos y la simbo-logía estudiados a la resolución de nuevas situaciones, vincular entre sí losconceptos trabajados en la unidad y estudiar algún otro aspecto de los mis-mos que aún no fue trabajado. La resolución de estos ejercicios le dará laoportunidad de decidir si está en condiciones de continuar avanzando conel estudio de la unidad siguiente o todavía necesita detenerse un tiempo másen la unidad que está estudiando, retomando aquellas cuestiones que nohaya podido resolver. No deje de realizarlos. Se encuentran en el anexo deejercicios que se le entregó junto con la Guía.

• Actividades de Autoevaluación, que se presentarán al concluir el desarro-llo de las siete unidades y le permitirán evaluar su propio recorrido de apren-dizaje de los conceptos y la adquisición del lenguaje matemático correspon-diente. Estas actividades también se encuentran en el anexo que se le entregójunto con la Guía.

Page 11: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • PRESENTACIÓN 7

La Guía de estudio constituye la herramienta fundamental para el aprendiza-je de los contenidos. Por lo tanto, un uso adecuado de la misma favorecerá suproceso de aprendizaje. Para ello tenga en cuenta las siguientes recomendacio-nes:

• Respete el orden de presentación de los temas y las actividades.

• Resuelva cada una de las actividades a medida que se van presentando.

• No se anticipe leyendo las Orientaciones o los apartados En términosmatemáticos. Estos sólo tendrán sentido para usted si previamente realizóla actividad propuesta.

• Recurra al trabajo con los textos cada vez que la Guía lo señala.

• No dude en asistir a las consultorías si lo necesita. Tenga en cuenta queéstas le ofrecen un espacio de consulta y orientación al tiempo que le per-miten intercambiar y compartir el trabajo con otros alumnos.

• Si no puede asistir a consultorías presenciales, puede acercarnos sus dudasa través del correo electrónico, el buzón de actividades o las consultoríastelefónicas.

• Utilice un cuaderno o carpeta para resolver por escrito las actividades pro-puestas en la Guía, escribir sus dudas y realizar anotaciones vinculadas conla lectura de los textos recomendados. Tenga en cuenta que las activida-des propuestas deben ser resueltas por usted mismo y este trabajo le iráindicando qué ha comprendido y cuáles son sus dificultades. Tener regis-tro de esto facilitará su tarea y le resultará un material fundamental paratrabajar en las consultorías.

• Vaya registrando de algún modo que a usted le resulte útil, toda la simbo-logía matemática que la Guía vaya presentando, de modo que pueda tener-la presente siempre que sea necesario.

¿QUÉ ES NECESARIO SABER PARA TRABAJAR CON LOS CON-

TENIDOS DE MATEMÁTICA B?

Al presentar la materia sosteníamos que:

• Cada nuevo concepto matemático que se aprende se apoya en otros yaadquiridos como si se tratara de hileras de ladrillos que se asientan unas enotras para que la pared que se construye sea sólida.

• Al iniciar el trabajo con esta Guía usted ya ha transitado un camino deaprendizaje de nociones matemáticas.

Page 12: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática8

En Matemática B usted aprenderá una serie de conceptos que se apoyan enotros que deberían formar parte de sus adquisiciones previas. Por esto esimportante asegurarse el manejo de algunas nociones que resultan necesariaspara la "construcción" de los nuevos conceptos que aprenderá.

Las nociones previas fundamentales para comenzar con el estudio deMatemática B son Ecuaciones, Relaciones y Funciones. Pero no se preocu-pe si considera que "recuerda poco" de lo que aprendió en una etapa anterior,o que nunca trabajó con estos temas. Lo acompañaremos y orientaremos paraque pueda hacerlo ahora.

Le proponemos empezar el trabajo tratando de realizar las "Actividades deanticipación". Este primer trabajo le servirá como un ensayo para "entrar entema". Su realización es fundamental para poder empezar a abordar los con-tenidos de esta materia. Por eso, no las pase por alto.

Es importante que para realizarlas tenga en cuenta las siguientes sugerencias:

• Trate de resolverlas con los elementos que recuerda, o bien con sus propiasintuiciones matemáticas.

• No intente ir primero a buscar información en un libro de niveles anteriores.Si lo hace no podrá evaluar qué actividades está en condiciones de resolver consus propios recursos y qué necesitará revisar para avanzar con el trabajo.

• No se preocupe por las cuestiones que no pueda resolver. Justamente el sen-tido de este trabajo es que usted pueda detectar aquello que es necesario revi-sar. A través de la Guía de Estudio, lo orientaremos en el camino a seguir,teniendo en cuenta las dificultades que se le puedan presentar.

• El hecho de tener que revisar algunos conceptos previos no significa queusted se "atrase". Por el contrario, afianzar algunas nociones que son básicaspara transitar el programa le permitirá asegurarse la posibilidad de acceder anociones nuevas. Como en el ejemplo que utilizamos en la presentación, siel albañil pone de manera desordenada los ladrillos de la primera hilera delmuro porque trabaja rápido sólo conseguirá al final de la obra una pared tor-cida que a la larga le requerirá mucho más tiempo y el doble de trabajo:deberá, en definitiva, hacerla nuevamente.

Ponga atención a las consignas de las siguientes Actividades de anticipacióny después de responderlas siga las orientaciones que se le presentan en relacióncon cada resolución.

Page 13: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

ACTIVIDADES DE ANTICIPACIÓN

Actividad Nº 1

1. En una fábrica de galletitas se elaboraron 1230 galletitas en un día. Con ellas se arma-

ron paquetes de 20 galletitas y sobraron 10. ¿Qué cantidad de paquetes de galletitas

se armaron en ese día en la fábrica? Escriba todos los cálculos que realice para res-

ponder.

Para resolver la actividad anterior usted puede haber usado diferentes

caminos. Uno de ellos es plantear la ecuación que traduce el enunciado

dado, y hallar la cantidad de paquetes que se armaron a través de la reso-

lución de dicha ecuación. No se preocupe si usted respondió de otra

forma. En situaciones sencillas como ésta, es posible resolver el problema

sin utilizar una ecuación. Ambos caminos son igualmente válidos. Pero

cuando la situación se hace más compleja, resulta conveniente recurrir al

planteo y resolución de una ecuación para poder dar respuesta al pro-

blema. Incluso hay situaciones que son imposibles de resolver sin el plan-

teo y resolución de una ecuación. Por esta razón es importante que usted

sepa plantear y resolver ecuaciones.

2. Si no lo hizo antes, plantee la ecuación que traduce al enunciado de la actividad. Si

no puede hacerlo no se preocupe. Al finalizar las actividades de anticipación le dare-

mos indicaciones para que pueda trabajar este tema con la Guía de Matemática A

antes de comenzar con el estudio de Matemática B.

3. Resuelva la ecuación que planteó en el ítem 2. y compare su respuesta con la que

obtuvo al responder el ítem 1.. Si no puede resolverla no se preocupe. También le

indicaremos dónde trabajar el tema para que pueda aprender a resolver ecuaciones

antes de comenzar el estudio del Matemática B.

Actividad N° 2

Se desea saber la cantidad x de entradas que se ponen a la venta en un estadio de fút-

bol. Para averiguarlo se cuenta con la siguiente información:

Para presenciar un partido se venden todas las localidades (entre plateas y entradas

generales) disponibles en un estadio. Las 3/7 partes de las entradas vendidas correspon-

den a plateas y 23700 son entradas generales.

1. Sólo una de las ecuaciones que se dan a continuación traduce la situación anterior.

Seleccione la ecuación correcta.

9Matemática B • PRESENTACIÓN

Page 14: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática10

x + x = 23700 x + 23700 = x

x : + 23700 = x x : + x = 23700

2. Resuelva la ecuación que seleccionó en el ítem anterior. Si no puede resolverla encon-

trará, al finalizar las actividades de anticipación, las indicaciones necesarias para estu-

diar la forma de resolución de este tipo de ecuaciones.

Actividad Nº 3

El siguiente gráfico representa la temperatura y de una sustancia en cada instante x (en

horas), mientras se realizaba un experimento, entre la hora cero y la hora 3.

Parte A

1. ¿Qué temperatura tiene la sustancia en la hora x = 1?

2. ¿En qué hora x la sustancia tiene 2,5 ° C?

3. El par (3 ; 1,5), ¿pertenece al gráfico?

4. ¿Qué significa de acuerdo con la situación concreta planteada que el par (0 ; 1) per-

tenezca al gráfico?

Parte B

Si interpretamos el gráfico dado anteriormente como una relación

f: [0 ; 3] � R:

1. La relación f, ¿es función?

2. ¿Cuál es el dominio de f?

3. ¿Cuál es el conjunto imagen de f?

4. Encuentre f(1) y f -1(2,5)

��

Page 15: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • PRESENTACIÓN 11

Una vez que haya intentado resolver las consignas planteadas, recurra a

las orientaciones que le presentamos a continuación.

¡No se haga trampas! Intente primero su propio camino y luego controle

sus respuestas. Según cual sea la dificultad que se le haya presentado en

cada resolución siga las indicaciones que le proponemos.

ORIENTACIONES SOBRE LAS ACTIVIDADES DE ANTICIPACIÓN

Las actividades que acaba de realizar se centran en el manejo de ecuaciones yfunciones. A continuación le damos las respuestas a dichas actividades.Controle sus respuestas con las que le presentamos.

Actividad Nº 1

La ecuación que traduce el enunciado dado es 20 x + 10 = 1230

La solución de esta ecuación es x = 61 . Es decir que ese día se armaron 61 paquetes de

galletitas.

Actividad Nº 2

La ecuación correcta es

La solución de la ecuación es x = 41475. Es decir, se venden 41475 entradas.

Actividad Nº 3

Parte A

1. La temperatura de la sustancia en la hora x = 1 es de 2º C.

2. La sustancia tiene 2,5º C de temperatura en la hora 2.

3. No, el par (3 ; 1,5) no pertenece al gráfico.

4. De acuerdo con la situación concreta que expresa el gráfico, si el par (0 ; 1) pertene-

ce al gráfico, significa que en la hora cero la sustancia tenía 1º C de temperatura.

Parte B

1. La relación f es función porque, teniendo en cuenta la situación concreta planteada,

en cada instante la sustancia tiene una temperatura y ésta es única. También se nota

en el gráfico que cada punto del dominio tiene una y sólo una imagen.

2. Dom f = [0 ; 3].

3. Im f = [1; 2,5].

4. f(1) = 2 y f -1 (2,5) = 2

�x + 23700 = x

Page 16: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática12

• Si resolvió sin mayores dificultades los ejercicios propuestos y comprobó quesus respuestas son correctas, puede iniciar el trabajo con la guía deMatemática B. Comience a trabajar con la Unidad 1.

• Si en cambio no logró resolver satisfactoriamente todos los ejercicios anterio-res, es conveniente que revise los temas correspondientes en Matemática A.Utilice para ello las indicaciones que le damos a continuación:

• Si no pudo plantear y/o resolver las ecuaciones de lasActividades Nº 1y Nº 2, comience el estudio de la materiatrabajando con la Unidad 3 de Matemática A. Puede solicitaren los Centros de Recursos Multimediales de las sedes la Guíay la Bibliografía recomendada para su estudio.

• Si no pudo resolver la Actividad Nº 3 correspondiente a rela-ciones y funciones, comience el estudio de la materia traba-jando con la Unidad 4 de Matemática A. Puede solicitar en losCentros de Recursos Multimediales de las sedes la Guía y laBibliografía recomendada para su estudio.

Page 17: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

MATEMATICA

Matemática B • PRESENTACIÓN 13

ProgramaLe presentamos el Programa correspondiente a Matemática B. El conjunto decontenidos está distribuido en siete Unidades con la siguiente secuencia:

UNIDAD 1:

FUNCIÓN LINEALRelaciones y funciones.Ceros, positividad, negatividad, crecimiento, decrecimiento, máximos ymínimos de funciones.Funciones lineales.

UNIDAD 2:

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITASClasificación de sistemas de ecuaciones lineales.Métodos analíticos de resolución: Igualación y sustitución.Interpretación gráfica.

UNIDAD 3:

PROPORCIONALIDADNoción de proporcionalidad.Proporcionalidad directa e inversa.Función de proporcionalidad directa e inversa.Porcentaje.Interés.Función racional.Asíntotas.

UNIDAD 4:

PROPORCIONALIDAD DE SEGMENTOS Semejanza de figuras geométricas.Concepto de vector.Operaciones con vectores.Componentes cartesianas de un vector.Aplicaciones: Homotecias.Teorema de Thales.

Page 18: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática14

UNIDAD 5:

FUNCIÓN CUADRÁTICA Fórmula cuadrática.Forma general de una función cuadrática.Representación gráfica de una función cuadrática.Ceros, vértice, eje de simetría de una parábola.Distintas formas de expresar la fórmula de una función cuadrática.

UNIDAD 6:

FUNCIONES POLINÓMICASFunciones polinómicas.Operaciones con expresiones polinómicas. Teorema del resto.Factorización de expresiones polinómicas.

UNIDAD 7:

ESTADÍSTICAPoblación y muestra.Tablas y gráficos estadísticos.Medidas de centralización.Medidas de variabilidad o dispersión.

BibliografíaComo ya lo hemos señalado al explicar la organización de la Guía, en algunasocasiones usted deberá abordar los temas del Programa trabajando con los tex-tos recomendados a los que tendrá que recurrir cada vez que se lo indiquemosen la Guía. Con estos textos usted estudiará los temas que no son tratados porla Guía de Estudio.

Los textos que hemos seleccionado para trabajar con esta Guía son: • Camuyrano, Beatriz y otros: Matemática 1 (Polimodal), Editorial Estrada.• López A. y Pellet M.: Matemática en Red 8 EGB, A-Z editora.

Este último texto es el mismo que utilizamos para el estudio de los conteni-dos de Matemática A. En Matemática B, lo utilizaremos para el estudio de laUnidad 3.

Un buen manejo de la relación entre la Guía de Estudio y el texto es funda-mental para el aprendizaje de los contenidos del Programa. Por eso le reco-mendamos estar atento a las indicaciones que le presentaremos al respecto.

Page 19: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 1 15

UNIDAD 1

UN

IDA

D 1

Función lineal

En esta unidad retomaremos las ideas de relación y función que ya abordamosen Matemática A. Nos interesa ahora profundizar esas nociones e incorporarconceptos nuevos vinculados a ellas como ceros, positividad y negatividad,crecimiento y decrecimiento, máximos y mínimos de funciones.

A lo largo de toda la Guía iremos presentando distintos tipos de funciones quela Matemática utiliza para modelar situaciones de la realidad. En esta unidadpresentaremos a las funciones lineales, que tienen una importancia especialpor estar estrechamente vinculadas a diferentes procesos de la vida cotidiana,de la Economía, de la Física, etc.

Propósitos de la unidadEn relación con los contenidos de esta Unidad le proponemos que:

• Distinga relaciones funcionales expresadas a través de gráficos, tablas o fór-mulas.

• Reconozca, interprete y utilice la simbología matemática asociada a lasrelaciones funcionales.

• Reconozca, en una función dada en forma gráfica, ceros, intervalos depositividad y negatividad, intervalos de crecimiento y decrecimiento,máximos y mínimos.

• Reconozca los procesos que pueden modelarse a través de una funciónlineal.

• Reconozca la ecuación de una recta, su pendiente y ordenada al origen.

• Represente gráficamente una recta conocida su fórmula.

• Escriba la ecuación de una recta conocida su representación gráfica.

• Describa situaciones concretas utilizando funciones lineales.

• Reconozca los ceros e intervalos de positividad y negatividad de una fun-ción lineal a partir de su representación gráfica y de su fórmula.

ACTIVIDAD n° 1:

Page 20: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática16

ACTIVIDAD Nº 1: “CONTROL DE LA TEMPERATURA DE UNA SUSTANCIA”

En un laboratorio se controla la evolución de la temperatura de una sustancia mientras

es sometida a un proceso. Daremos el nombre de “hora cero” a la hora de inicio del

proceso.

Los datos registrados se volcaron en una tabla o planilla.

En el transcurso del proceso, el encargado de medir las temperaturas se distrajo un poco,

y, como consecuencia de ello, obtuvo los siguientes datos:

Parte A

Lea la planilla de registros de temperatura como si leyera una revista o un diario y, a

partir de ella, responda las preguntas que siguen. Tenga en cuenta que no necesita usar

lenguaje matemático para responder.

1. ¿En qué horas se ha previsto realizar los registros de temperatura?

2. ¿En qué horas se concretó el registro?

3. ¿Cuáles fueron las temperaturas registradas?

4. ¿Para qué hora/s de la tabla no se obtuvo registro?

5. ¿Qué temperatura tenía la sustancia al iniciarse el proceso?

6. ¿Qué temperatura tenía la sustancia en la hora 4?

7. ¿Para qué hora la temperatura era de 0º C?

Para responder las preguntas anteriores, no necesitó utilizar términos

matemáticos ni simbología especial. Trate ahora de responder las preguntas

que siguen en la Parte B de la actividad. Si tiene dificultades para hacerlo o

la simbología utilizada no le resulta familiar, no se preocupe, siga leyendo y

encontrará al finalizar la Parte B las indicaciones que lo orientarán para revi-

sarlas y retomarlas en la Guía correspondiente a Matemática A.

Planilla de registros de la temperatura de la sustancia

Tiempo en horas 0 1 2 3 4

-2 -1 0 2Temperatura de la

sustancia en º C

Page 21: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 1 17

PARTE B

Llamaremos h a la relación establecida a partir de la planilla de registros de la tempera-

tura de la sustancia. Es decir, h es la relación que vincula al conjunto de las horas t que es

{0; 1; 2; 3; 4} con el conjunto de las temperaturas y de la sustancia, o sea {-2 ; -1 ; 0 ; 2} .

Simbólicamente escribimos:

h : {0 ; 1 ; 2 ; 3 ; 4} � {-2 ; -1 ; 0 ; 2}

Para la relación h, responda:

1. ¿Cuál es el conjunto de partida?

2. ¿Cuál es el dominio?

3. ¿Cuál es el conjunto imagen?

4. ¿Existe h(3)? En caso afirmativo, indique a qué es igual.

5. ¿A qué es igual h(0)?

6. ¿Existe h(4)? Si existe, indique su valor.

7. ¿Existe h-1(0)? En caso afirmativo, indique su valor.

8. ¿Cuáles son los pares ordenados que definen a esta la relación? Escríbalos.

9. ¿Cuál es la representación gráfica que describe a esta relación? Represéntela en

un sistema coordenado cartesiano.

10. Elija, entre las siguientes fórmulas, aquella que describe a esta relación. Es decir,

la fórmula que expresa la temperatura y que tiene la sustancia en cada hora t:

• y = 2. t – 2 • y = -2. t + 1 • y = t – 2

11. La relación h ¿es función?

Si no ha podido responder las preguntas de la Parte B, ha tenido dificultades para hacerlo o la sim-

bología utilizada no le resulta familiar, le sugerimos que retome estos contenidos y las activida-

des propuestas en la Unidad N° 4 de Matemática A. No deje de hacerlo ya que es necesario para

la comprensión de los contenidos de esta materia que usted tenga un buen manejo de los con-

ceptos de relación y función así como del lenguaje asociado a ellos. Estos conceptos constituyen

la “columna vertebral” del programa de esta materia.

ORIENTACIONES

Si comparamos las respuestas a las preguntas 1. a 7. de la Parte A con las delas preguntas 1. a 7. de la Parte B, veremos que están estrechamente vincu-ladas. Por ejemplo:

• La respuesta a la pregunta 1. de la Parte A es: Las horas en que se ha pre-visto realizar los registros de temperatura, de acuerdo con la planilla con-feccionada, son las horas 0, 1, 2, 3 y 4.

• La respuesta a la pregunta 1. de la Parte B es: El conjunto de partida dela relación h es {0; 1; 2; 3; 4}.

Page 22: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática18

Observe que en el primer caso se pregunta y se responde en términos de

la situación planteada, mientras que en el segundo se pregunta y se res-

ponde usando términos y simbología matemática. A usted seguramente

le resulta más familiar expresarse en términos de la situación, pero es

necesario además que pueda entender y expresarse en el lenguaje que

utiliza la Matemática. Quizá piense que este lenguaje es demasiado com-

plejo para aprenderlo pero, asociándolo a situaciones ya conocidas es pro-

bable que le resulte más sencillo hacerlo.

Para poder incorporar el lenguaje matemático, del mismo modo que

cuando usted se dispone a aprender cualquier otro lenguaje, deberá usar-

lo. A partir de ello, puede reflexionar sobre cómo y para qué lo usa, qué

palabras y símbolos nuevos va aprendiendo, puede asociarlos a situacio-

nes concretas que le resulten familiares, darle nombre a los conceptos y

escribirlos con su expresión simbólica. Este trabajo le permitirá familiari-

zarse progresivamente con los conceptos y el lenguaje asociado a ellos.

A continuación le presentamos un cuadro para que compare lo que usted res-pondió en las Partes A y B, y para ejemplificar lo que acabamos de decir res-pecto del lenguaje simbólico.

Cuadro comparativo de las Partes A y B en términos de la situaciónconcreta y en términos matemáticos

ítem

2

4

En la Parte A. “En términos de la situación concreta”

En la Parte B.“En términos matemáticos”

Se concretó el registro en las horas 0, 1,

2 y 4

El dominio de h, es decir, el conjunto

formado por los elementos del conjun-

to de partida que tienen imagen, es:

Dom h = {0; 1; 2; 4}

3Las temperaturas registradas en grados

centígrados fueron -2, -1, 0, 2

El conjunto imagen de la relación h, es

decir, el formado por los elementos del

conjunto de llegada que son imágenes,

es:

Im h = { -2; -1; 0; 2}

No se obtuvo registro para la hora 3

La imagen de 3 no existe.

Simbólicamente:

h(3) no existe

Page 23: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 1 19

Podemos expresar la forma en que se establece la relación entre los elementosdel conjunto de partida y los elementos del conjunto de llegada de diferentesformas: a través del conjunto de sus pares ordenados, a través de una tabla, através de un gráfico, a través de una fórmula.

• El conjunto de los pares ordenados de la relación h es:

{ (0 ; -2) ; (1 ; -1) ; (2 ; 0) ; (4 ; 2) }

• El gráfico que describe a la relación h es:

• La fórmula que describe a la relación h es: y = t – 2

Porque si reemplazamos en ella a t por todas las horas en las que se realizóel registro de temperatura, obtenemos todos los valores de temperaturasindicados en la tabla:

Para t = 0 y = 0 – 2 = -2Para t = 1 y = 1 – 2 = -1Para t = 2 y = 2 – 2 = 0Para t = 4 y = 4 – 2 = 2

6A la hora 4 la sustancia tenía una tempe-

ratura de 2° CExiste h(4) y h(4) = 2

7 La sustancia tenía 0º C a la hora 2

La preimagen de 0 a través de hexiste y es 2. Simbólicamente:

h-1 (0) = 2

y (ºC)

t (horas)

5Al iniciarse el proceso, en la hora cero, la

sustancia tenía –2° C de

temperatura

La imagen de cero a través de

h es –2. Simbólicamente:

h(0) = -2

Page 24: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática20

Si elegimos, por ejemplo, describir a la relación h a través de su fórmula, nosqueda:

h: {0; 1; 2; 3; 4} �{-2 ; -1 ; 0 ; 2} / h ( t ) = t – 2

Es decir, la relación h tiene al conjunto {0 ; 1 ; 2 ; 3 ; 4} como conjunto departida; al conjunto {-2 ; -1 ; 0 ; 2} como conjunto de llegada y el vínculoentre ambos se establece a través de la fórmula h ( t ) = t – 2.

PARTE C

Después de muchas observaciones y cálculos, en el laboratorio pudieron comprobar que

en la hora t = 3, en la que el encargado de los registros se distrajo, la temperatura evolu-

cionó del mismo modo que en las otras horas. Por lo tanto, la temperatura y para cada

hora t (incluyendo la hora 3) puede expresarse con la fórmula y = t – 2.

Puede entonces describirse la situación con la siguiente relación:

p : {0 ; 1 ; 2 ; 3 ; 4} � {-2 ; -1 ; 0 ; 1 ; 2} / p ( t ) = t – 2

Responda las siguientes consignas:

1. Escriba los pares ordenados de la relación p.

2. Escriba el conjunto de partida y el dominio de la relación p.

3. Represente gráficamente la relación p.

4. ¿La relación p es función?

5. Observe los pares ordenados de las relaciones h y p. A partir de ello, ¿diría que

estas relaciones son iguales entre sí? ¿Por qué?

6. ¿En qué se parecen y en qué se diferencian las relaciones h y p? Para responder tenga

en cuenta los pares que observó en la pregunta anterior, los conjuntos de partida y

de llegada de cada una de las relaciones, y la forma de expresar a cada una de ellas.

ORIENTACIONES

Las relaciones que hay que comparar son:

• h: {0 ; 1 ; 2 ; 3 ; 4} � {-2 ; -1 ; 0 ; 2}, dada originalmente por la tabla,cuyos pares ordenados son: (0 ; -2); (1 ; -1); (2 ; 0); (4 ; 2)

• p: {0 ; 1 ; 2 ; 3 ; 4} � {-2 ; -1 ; 0 ; 1 ; 2} de fórmula p ( t ) = t – 2 cuyospares ordenados son: (0 ; -2); (1 ; -1); (2 ; 0); ( 3 ; 1); (4 ; 2)

Las relaciones son diferentes ya que no tienen los mismos pares ordenados. Sibien algunos de ellos son comunes a ambas relaciones debido a que coinciden los

Page 25: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 1 21

conjuntos de partida y que la fórmula que las describe es la misma, la diferenciaen el conjunto de llegada determinó que los pares no fuesen los mismos.

Además la relación h no es función y la relación p sí lo es.

La relación h no es función ya que el 3 del conjunto de partida no tiene ima-gen en el conjunto de llegada. En términos de la situación: porque no huboregistro de temperatura a la hora 3.

La relación p es función ya que cada elemento del conjunto de partida tiene ima-gen en el conjunto de llegada y esta imagen es única. En esta relación coincidenel conjunto de partida y el dominio, debido a que cada elemento del conjuntode partida tiene imagen en el conjunto de llegada y el dominio es el conjunto for-mado por todos aquellos elementos del conjunto de partida que tienen imagen.Esta afirmación es válida para cualquier relación que resulte ser función.

PARTE D

Responda las siguientes consignas:

1. Escriba los pares de la función:

r : {0 ; 1 ; 2 ; 3 ; 4} � {-5 ; -4 ; -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ; 4 ; 5} / y = t – 2

2. Esta función r y la función p que hemos venido analizando, ¿son iguales?

3. La función r, ¿puede describir la situación de la temperatura de la sustancia some-

tida al proceso industrial que describe la función p?

4. ¿Cómo resultarían entre sí las representaciones gráficas de las funciones r y p?

ORIENTACIONES

Si bien las funciones p y r son expresadas por el mismo conjunto de paresordenados y el mismo gráfico, se trata de funciones diferentes por tener dis-tintos conjuntos de llegada. De todos modos, las dos pueden describir lasituación de la temperatura de la sustancia en función del tiempo dada ante-riormente. Para que dos funciones sean iguales deben coincidir su conjuntode partida, su conjunto de llegada y la forma en que se vinculan los elemen-tos de uno con otro conjunto.

Observe además, como ocurre en la función r, que en una función, el con-junto de llegada puede tener más elementos que el conjunto imagen.

Page 26: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática22

PARTE E

En el laboratorio, siguieron estudiando el comportamiento de la temperatura de la sus-

tancia. Pudieron comprobar que en cualquier instante t del intervalo de tiempo entre la

hora 0 y la hora 4, durante el cual se analiza el proceso, puede calcularse la temperatu-

ra de la sustancia con la fórmula o cuenta:

y = t – 2

Responda las siguientes consignas a partir de la información anterior:

1. Escriba simbólicamente una función s que describa la situación para cualquier ins-

tante t del intervalo de tiempo en el que es analizado el proceso.

2. Observe el conjunto de partida de la función s que escribió en el ítem anterior.

Dicho conjunto, ¿permite calcular la temperatura de la sustancia en cualquier ins-

tante t del intervalo de tiempo entre la hora 0 y la hora 4? Por ejemplo, ¿permite

calcular la temperatura de la sustancia en t = 0,5 ó en t = 3,7?

3. Si su respuesta es negativa, describa el conjunto de partida de modo que la fun-

ción s permita calcular la temperatura en cualquier instante t del intervalo entre

la hora 0 y la hora 4.

4. Represente gráficamente la función s.

ORIENTACIONES

Para que la función s describa el proceso analizado en cualquier instante t delintervalo de tiempo entre la hora 0 y la hora 4, el conjunto de partida debeincluir a cualquier número real entre 0 y 4. Este conjunto se representa de lasiguiente forma: [0 ; 4].

Si no reconoce esta notación, le recordamos que [0 ; 4] es un intervalo cerrado, es

decir, es el conjunto de los números reales (R) entre 0 y 4. En símbolos:

[0 ; 4] = {x R / 0 x 4}

Este tema fue trabajado en los Ejercicios de integración de la Unidad N° 2 de

Matemática A. Si le resulta necesario vaya a ver lo dicho allí al respecto.

De este modo, una función posible s capaz de describir la situación planteada es:

s : [0 ; 4] � R / s ( t ) = t – 2.Decimos que es una función posible porque podríamos cambiar el conjunto dellegada por cualquier otro con tal de que contenga al conjunto imagen. En estecaso elegimos el más grande posible, porque pusimos al conjunto R de losnúmeros reales.

Recuerde que este conjunto está integrado por todos los números que puedenser expresados como fracciones y por los números irracionales.

Page 27: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 1 23

La representación gráfica de s es:

Tenga en cuenta que como la función s describe lo que ocurre con la tempe-ratura de la sustancia en cualquier instante t entre 0 y 4, su representacióngráfica no es un conjunto de puntos aislados como en el caso de las funcionesp y h, sino que resulta una línea continua.

PARTE F

Responda las siguientes preguntas teniendo en cuenta la representación gráfica de la

función s. Si le hace falta, vuelva a observar la tabla de registros de la temperatura de

la sustancia realizada en el laboratorio.

1. ¿A qué hora la temperatura de la sustancia fue de 0° C?

2. ¿En qué período de tiempo la temperatura de la sustancia se mantuvo por deba-

jo de los 0° C?

3. ¿En qué período de tiempo la temperatura de la sustancia fue superior a los 0° C?

EN TÉRMINOS MATEMÁTICOS: CEROS, INTERVALOS DE POSITIVIDAD Y DE NEGATIVIDAD DE UNA FUNCIÓN

• La temperatura de la sustancia fue de 0° C en t = 2. A este valor de t lollamamos cero de la función s. Gráficamente, es el valor de t en el que larepresentación gráfica de la función s corta al eje x.

En general, un cero de una función f es el valor de x en el que el valor de yes cero.

Para buscar los ceros de una función f utilizando su fórmula, debemosresolver la ecuación f(x) = 0.

y (ºC)

t (horas)

Page 28: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática24

Para buscar los ceros utilizando la gráfica de la función tenemos que deter-minar las abscisas de los puntos en los que el gráfico de f corta al eje x.

Al conjunto formado por todos los ceros de la función lo simbolizamos C0.

En el caso de la función s, C0 = { 2 }.

• A partir de la segunda hora y hasta la cuarta hora la temperatura de la sus-tancia fue superior a 0° C. A este período de tiempo en el que la tempera-tura de la sustancia es superior a 0° C lo llamamos conjunto de positividadde la función s.

En general, llamamos conjunto de positividad de una función f, al con-junto de valores de x pertenecientes al dominio de la función cuyas imáge-nes son positivas.

Para buscar el conjunto de positividad de una función f utilizando su fór-mula debemos resolver la inecuación f(x) > 0.

Para buscar el conjunto de positividad utilizando la gráfica de la funcióntenemos que determinar las abscisas de los puntos en los que el gráfico estápor encima del eje x.

Al conjunto de positividad de una función lo simbolizamos: C +.

En la función s, C + = (2; 4].

• Durante las dos primeras horas la temperatura de la sustancia se mantuvopor debajo de los 0° C, es decir, fue negativa. Al período de tiempo en el quela temperatura de la sustancia se mantuvo por debajo de los 0° C lo llama-mos conjunto de negatividad de la función s.

En general, llamamos conjunto de negatividad de una función f, al con-junto de valores de x pertenecientes al dominio de la función cuyas imáge-nes son negativas. Para buscar el conjunto de negatividad de una función futilizando su fórmula, debemos resolver la inecuación f(x) < 0.

Para buscar el conjunto de negatividad de una función utilizando su gráficatenemos que determinar las abscisas de los puntos en los que el gráfico estápor debajo del eje x.

Al conjunto de negatividad de una función lo simbolizamos: C –.

En la función s, C – = [0; 2).

Los conjuntos (2 ; 4] y [0 ; 2) son intervalos de números reales que se denominan

intervalos semiabiertos o semicerrados.

El primero está formado por todos los números reales mayores que 2 y menores o

iguales que 4. El segundo está formado por todos los números reales mayores o

iguales que cero y menores que 2.

Si necesita revisar este tema hágalo utilizando los Ejercicios de integración corres-

pondientes a la Unidad 2 de Matemática A.

Page 29: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 1 25

En la próxima actividad le propondremos que trabaje con el libro. Antes de

que comience a realizar este trabajo queremos hacerle algunas sugerencias

que consideramos lo ayudarán en esta tarea:

• No es conveniente que se extienda en la lectura más allá de lo indicado.

• Resuelva sólo aquellas actividades que le indiquemos. Si intenta traba-

jar con actividades no indicadas podría encontrarse con situaciones que

todavía no está en condiciones de resolver o con dificultades mayores que

las requeridas.

• Señale, de algún modo que a usted le resulte cómodo, aquello que le

indicamos para leer y resolver de modo que pueda restringir su trabajo en

forma anticipada.

Tenga en cuenta estas sugerencias cada vez que le propongamos que tra-

baje con el libro.

ACTIVIDAD N° 2: “TRABAJANDO CON EL LIBRO"

En esta actividad lo orientaremos para que trabaje algunos contenidos de la unidad

utilizando el libro Matemática 1 de Camuyrano, B. y otros, editorial Estrada.

El abordaje de estos temas se realizará únicamente en base a la lectura y a la resolu-

ción de las actividades que le indicaremos en los siguientes párrafos.

¿Listo para comenzar su trabajo con el libro? Le indicaremos paso a paso el camino que

debe seguir con él.

En el Capítulo 1 - Las funciones:

1. Lea, en las páginas 23 a 25, "Crecimiento y decrecimiento de funciones". Resuelva, a

medida que va leyendo, la Ejercitación que le propone el libro en estas páginas.

2. Lea, en las páginas 29 y 30, "Intervalos de crecimiento y decrecimiento".

3. Lea, en las páginas 30 y 31, "Máximos y mínimos locales" y "Máximos y mínimos

absolutos".

4. Resuelva los ejercicios N° 1 y 2 de la Ejercitación propuesta en la página 34.

Page 30: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

ACTIVIDAD N° 3: “LA TEMPERATURA EN LA CIUDAD DE MARDEL PLATA"

La función f graficada a continuación representa las temperaturas registradas en la ciu-

dad de Mar del Plata durante las 24 hs de un día del mes de Mayo:

Responda las siguientes consignas a partir de la observación del gráfico y teniendo en

cuenta todo lo realizado en las actividades anteriores:

1. ¿Cuál es el dominio de la función f?

2. Indique el conjunto imagen de la función.

3. ¿Qué temperatura se registró en la ciudad a las 7 hs?

4. ¿A qué hora se registró una temperatura de 15° C?

5. ¿En algún momento del día la temperatura fue de 0° C? Si su respuesta es afirmati-

va indique dicho/s instante/s.

6. Exprese lo pedido en los ítems 3., 4. y 5. en lenguaje simbólico.

7. Determine los intervalos de positividad y negatividad de la función f. Escriba su res-

puesta en lenguaje simbólico.

8. Exprese lo pedido en el ítem 7. en términos de la situación que representa la función f?

9. ¿Cuáles fueron las temperaturas máxima y mínima de la ciudad en ese día? ¿A qué

hora se registró cada una de ellas?

10.¿En qué intervalos de tiempo la temperatura estuvo bajando?

11.¿En qué intervalos de tiempo la temperatura estuvo subiendo?

12.Escriba las preguntas de los ítems 9., 10. y 11. utilizando lenguaje matemático.

EDUCACIÓN ADULTOS 2000 • Matemática26

Page 31: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Pileta nº 1f: [0; 5] � R/y = f(t)

y=f(t)

t (horas)

(EN

MIL

ES

DE

HL)

y=g(t)

t (horas)

(EN

MIL

ES

DE

HL)

Pileta nº 2g: [0; 5] � R/y = g(t)

y=h(t)

t (horas)

(EN

MIL

ES

DE

HL)

Pileta nº 3h: [0; 5] � R/y = h(t)

y=j(t)

t (horas)

(EN

MIL

ES

DE

HL)

Pileta nº 4j: [0; 5] � R/y = j(t)

y=k(t)

t (horas)

(EN

MIL

ES

DE

HL)

Pileta nº 5k: [0; 5] � R/y = k(t)

y=m(t)

t (horas)

(EN

MIL

ES

DE

HL)

Pileta nº 6m: [0; 5] � R/y = m(t)

Matemática B • UNIDAD 1 27

ACTIVIDAD N° 4: “MANTENIMIENTO DE PILETAS DE NATACIÓN”

La empresa “Celeste S.A” brinda un servicio de mantenimiento de piletas de natación

en un barrio del conurbano. Este año, al iniciar la temporada, el gerente decidió reali-

zar un registro del trabajo realizado por la empresa para algunos de sus clientes, con el

objetivo de poder hacer ciertas previsiones al inicio de la próxima temporada. A partir

de los registros realizados por sus empleados, construyó las representaciones gráficas de

las funciones que expresan la cantidad de hectolitros de agua que tuvo cada pileta, ins-

tante a instante, durante un período de 5 horas de trabajo. Llamó “hora cero” a la hora

en que la empresa comenzó su trabajo en las piletas. Las representaciones realizadas por

el gerente son:

Page 32: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática28

PARTE A

Le pedimos que observe las dos primeras representaciones gráficas y que a partir de ellas

responda:

1. Las piletas que representan estos gráficos, ¿se estuvieron llenando o vaciando?

2. ¿Qué cantidad de hectolitros tenía cada una de ellas al iniciar el trabajo?

3. ¿Qué cantidad de hectolitros tuvo cada una de ellas al finalizar la primera hora de

trabajo? ¿Y al finalizar la segunda hora? ¿Y al finalizar la tercera hora?

4. Complete la siguiente tabla:

5. A partir de la tabla anterior indique: ¿qué cantidad de hectolitros ingresó en cada

una de las piletas durante la primera hora de trabajo? ¿Y durante la segunda hora?

¿Y durante la tercera hora?

6. ¿Qué diferencia observa en la forma en que se llenó la pileta Nº 1 respecto de la

forma en que se llenó la pileta Nº 2? Describa esa diferencia con sus palabras.

y=n(t)

t (horas)

(EN

MIL

ES

DE

HL)

Pileta nº 7n: [0; 5] � R/y = n(t)

y=p(t)

t (horas)

(EN

MIL

ES

DE

HL)

Pileta nº 8p: [0; 5] � R/y = p(t)

y=q(t)

t (horas)

(EN

MIL

ES

DE

HL)

Pileta nº 9q: [0; 5] � R/y = q(t)

Tiempo t , en horas

Cantidad y de hectolitrosde agua en la pileta nº 1

Cantidad y de hectolitrosde agua en la pileta nº 2

0 1 2 3 4 5

Page 33: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

ORIENTACIONES

En la primera pileta ingresó la misma cantidad de hectolitros por hora, es decir,el contenido de la pileta aumentó un valor constante por unidad de tiempo oaumentó a una velocidad constante de 2 hl/h (dos hectolitros por hora).

PARTE B

1. Considere los gráficos correspondientes a las piletas que se estuvieron llenando

durante todo el período de trabajo y responda:

a) ¿Cuáles de los gráficos muestran que el contenido de la pileta aumentó un valor

constante por unidad de tiempo? ¿Qué característica tienen estos gráficos?

b) ¿Qué característica observa en los gráficos que corresponden a piletas cuyo conte-

nido no aumentó a velocidad constante?

2. Identifique ahora los gráficos de las piletas que se están vaciando durante todo el

período de trabajo y observe:

a) ¿En cuáles sale del tanque la misma cantidad de hectolitros por hora durante el

período analizado? Es decir, ¿cuáles tienen velocidad de disminución constante?

¿Qué características tienen estos gráficos?

b) ¿Qué característica observa en los gráficos que corresponden a piletas cuyo conte-

nido no disminuyó a velocidad constante?

PARTE C

En principio, el gerente decide analizar sólo los gráficos correspondientes a piletas que

variaron su contenido a velocidad constante durante todo el período de control. A par-

tir de estos gráficos responda las siguientes preguntas:

1. ¿Cuál de ellos muestra que el contenido de la pileta aumentó a razón de 0,5 hecto-

litros por hora? O, dicho de otra forma, ¿en qué caso la velocidad con que varía el

contenido de la pileta es de 0,5 hl/h?

2. ¿En cuál de las piletas el contenido disminuyó a razón de 2 hl/h?

3. Encuentre otra pileta que se haya llenado a velocidad constante y determine el

número que indica dicha velocidad.

4. Encuentre otra pileta que se haya vaciado a velocidad constante y determine el

número que expresa dicha velocidad.

5. Trate de formular, lo más precisamente que pueda, lo que se debe observar y/o cal-

cular para poder determinar, en los gráficos que estamos analizando, cuál es el

número que indica la velocidad a la que está ocurriendo el proceso.

Matemática B • UNIDAD 1 29

Page 34: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

ORIENTACIONES

En las piletas n° 1, n° 4, n° 6, y n° 9 el contenido se modificó en un valorconstante por unidad de tiempo es decir, todas ellas variaron su contenidoa velocidad constante.

La representación gráfica de la cantidad de hectolitros que contiene cada unaen cada instante del tiempo de trabajo es un segmento de recta.

Podemos observar a través de sus representaciones gráficas que en la pileta n°9 el contenido aumentó a razón de 0,5 hl/h y que en la pileta n° 6 el conte-nido del tanque disminuyó a razón de 2 hl/h. Para señalar que la cantidad dehectolitros que contiene la pileta nº 6 está disminuyendo diremos que su velo-cidad es de –2 hl/h.

En la pileta nº 7, el contenido del tanque se mantuvo constante. Podemosdecir que el contenido no se modificó, la velocidad es de 0hl/h

PARTE D

1. Vuelva a mirar el gráfico correspondiente a la pileta n° 9 y complete la tabla que le

damos a continuación, formulándose previamente las siguientes preguntas:

• ¿Cuál es la velocidad con que varía su contenido?

• ¿Qué cantidad de hectolitros tenía la pileta al iniciar el control?

• ¿Qué puede decirse de su contenido una hora después de iniciado el control? ¿Y

dos horas después?

2. De acuerdo con los datos que le proporcionan sus respuestas a las preguntas ante-

riores y teniendo en cuenta la tabla que acaba de completar, escriba una cuenta o

fórmula que permita calcular la cantidad y de hectolitros de agua que contiene la

pileta n° 9 en cada instante t. Complete la siguiente igualdad:

y = …........................

3. Repita lo que analizó para la pileta n° 9 en el ítem anterior, para las piletas n° 1, 4 y

6. Es decir, encuentre en cada caso una fórmula que le dé la cantidad y de hectolitros

de agua que tiene cada pileta en cada instante t del período de trabajo.

EDUCACIÓN ADULTOS 2000 • Matemática30

Tiempo t , en horas

Cantidad y de hectolitrosde agua en la pileta nº 9

0 1 2 3 4 5

Page 35: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 1 31

PARTE E

Para sistematizar la información recibida, el gerente de la empresa, confeccionó una

tabla con las fórmulas que él obtuvo.

1. Controle las fórmulas que usted escribió al resolver la Parte D comparándolas con las

del gerente.

2. En cada una de las fórmulas que usted y el gerente determinaron:

• ¿Dónde aparece expresado el valor de la velocidad de variación del contenido de

la pileta? Señálelo en cada una de las fórmulas.

• ¿Dónde aparece expresada la cantidad de hectolitros que tiene la pileta en el

momento de iniciar el trabajo? Señálelo en cada una de las fórmulas.

3. Si la fórmula que da la cantidad de hectolitros y que contiene “una pileta cualquie-

ra” cuyo contenido varía a velocidad constante en cada instante t es y = m t + b,

• ¿Qué indica m?

• ¿Qué indica b?

ORIENTACIONES

La fórmula o ecuación que da la cantidad y de hectolitros de agua para cadainstante t, por ejemplo en la pileta n° 6, es y = - 2 t + 10.

En esta fórmula aparece expresado el valor de la velocidad de variación delcontenido de la pileta en el número –2, ya que esta pileta se estuvo vaciandoa razón de 2 hl por hora.

El número 10 expresa la cantidad de hectolitros de agua que contiene la pile-ta en el momento inicial, es decir en t = 0.

PILETA nº

Fórmula que da la cantidad y de hl de agua

para cada instante t

1

� � ��

4

� � �� � �

6

� � ��� ���

9

� � �� � �

Page 36: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática32

EN TÉRMINOS MATEMÁTICOS: ECUACIÓN DE UNA RECTA.FUNCIÓN LINEAL

Cualquiera de las fórmulas anteriores es de la forma y = m t + b. Cada una deellas indica la cantidad y de hectolitros de agua en cada instante t, cuando elcontenido de cada pileta está variando en forma constante o a velocidad cons-tante m.

Fuera de la situación concreta, una función definida por una ecuación de laforma y = m . t + b, admite a cualquier número real en su dominio. En esecaso la función definida es de la forma:

f: R � R / y = f(t) = m t + b

y se la llama función lineal. La representación gráfica de una función lineales una recta.

Al número m lo llamaremos pendiente de la recta y al número b, ordenadaal origen.

Las representaciones gráficas de las funciones que expresan la cantidad de hec-tolitros que contiene cada pileta en el período de trabajo resultan ser segmen-tos de recta porque el dominio de cada una de ellas, en el contexto de la situa-ción concreta presentada, es el intervalo [0;5].

ACTIVIDAD N° 5: “TRABAJANDO CON EL LIBRO”

En esta actividad nuevamente lo orientaremos para que trabaje algunos contenidos utilizando el

libro Matemática 1 de Camuyrano B. y otros, editorial Estrada. No se olvide de las sugerencias que

le hicimos en la Actividad N° 2 respecto del manejo del libro y de la información que él puede brin-

darle.

y=mt+b

y

t

b

Page 37: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 1 33

En el Capítulo 2 – Funciones lineales:

1. Lea, en las páginas 43 a 48, “Pendiente y ordenada al origen”. Resuelva, a medida

que va leyendo, la Ejercitación que le propone el libro en estas páginas.

2. Lea, en las páginas 48 y 49, “Gráficos de rectas según m y b”. Resuelva la Ejercitación

propuesta en la página 49.

3. Lea, en las páginas 50 a 52, los ítems a) y b) bajo el título “Formas de la ecuación de

una recta”.

4. Resuelva los ejercicios 1 y 2 de la Ejercitación propuesta en la página 53.

5. Lea, en las páginas 53 a 57, “Rectas paralelas y perpendiculares”. Resuelva, a medi-

da que va leyendo, la Ejercitación que le propone el libro en estas páginas.

En la Ejercitación propuesta en la página 57, hay un error en el ejercicio 3:

Donde dice: tenga ordenada al origen y0 = (5 ; 1); debe decir: tenga ordenada al ori-

gen y0 = 5

6. Resuelva, en las páginas 64 y 65, las actividades N° 1, 2, 3, 5, 6 y 7 de las Actividades

de síntesis del capítulo. Puede controlar sus respuestas con las que le presenta el libro

en la página 371.

Antes de comenzar a estudiar la próxima unidad, usted debe realizar los ejer-

cicios de integración correspondientes a la Unidad 1. Su realización es impres-

cindible. Al resolverlos trabajará aspectos de los contenidos de la unidad que

no fueron trabajados en las actividades que resolvió hasta este momento.

También podrá integrar los distintos contenidos de la unidad y autoevaluar si

ya se encuentra en condiciones de pasar a estudiar la próxima unidad. No deje

de realizarlos. Sus enunciados se encuentran en el anexo que se le entregó

junto con la guía de estudio.

Page 38: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática34

Page 39: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 2 35

UNIDAD 2

UN

IDA

D 2

Sistemas de ecuaciones lineales con dos incógnitas

Antes de comenzar recordemos que podemos utilizar funciones lineales comomodelos para describir el comportamiento de muchas situaciones de la reali-dad. En esta unidad seguiremos trabajando con funciones cuya fórmula es laecuación de una recta. Nos interesa ahora poder determinar el (o los) puntosde intersección entre dos rectas en forma gráfica y analítica; e interpretar susignificado en diversas situaciones concretas.

Propósitos de la UnidadEn relación con los contenidos de esta Unidad, le proponemos que:

• Reconozca las características de los sistemas de ecuaciones lineales con dosincógnitas.

• Clasifique estos sistemas de acuerdo con el tipo de solución.

• Adquiera habilidad para utilizar los métodos de igualación y de sustituciónpara resolver sistemas de ecuaciones lineales.

• Reconozca qué situaciones problemáticas pueden resolverse a través dedichos sistemas.

• Escriba correctamente el conjunto solución de un sistema de ecuaciones.

• Interprete el conjunto solución de un sistema de ecuaciones lineales desdeel punto de vista gráfico.

Para trabajar los contenidos de esta unidad es indispensable haber comprendido los

conceptos trabajados en la Unidad 1. Si le ha quedado alguna duda, o no recuerda

algún tema, es conveniente que los revise antes de comenzar el estudio de la pre-

sente Unidad.

ACTIVIDAD Nº 1: “NUEVAS INSTRUCCIONES PARA CONSTRUIRDISEÑOS DE ESTAMPADOS”

¿Recuerda la Actividad Nº 3 de la Unidad 4 de Matematica A: “Diseños de estampados

con ayuda de una computadora”?

Retomaremos dicha actividad recordando la información de cómo se usa la computado-

ra que leyó Juan en el manual. Dicha información es la siguiente:

Page 40: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática36

• Se inicia el trabajo pintando algunos puntos que servirán de guía para el trazado del

dibujo.

• Las figuras o dibujos se hacen por partes.

• En una pantalla se visualiza lo que se va creando y lo que resultará luego en la tela.

• Para ubicar los puntos a pintar, la computadora utiliza un sistema de referencia que

ocupa toda la pantalla. El sistema es como el que sigue:

Le proponemos analizar el trabajo de uno de los diseñadores de esta empresa.

Horacio trabaja como diseñador de figuras para estampar sobre telas y utiliza para ello

el sistema computarizado que utilizaba Juan. Inicia el trabajo dando las siguientes órde-

nes a la computadora:

• Pintar de color amarillo todos los puntos dados por la siguiente instrucción:

• Pintar de color azul todos los puntos dados por la instrucción:

En respuesta a estas instrucciones la pantalla muestra lo siguiente:

Page 41: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 2 37

Como interesa observar especialmente lo que ocurre en un cuadrado de 6 unidades de

lado, el diseñador se lo indica a la computadora, y ésta lo destaca con líneas punteadas,

de la siguiente forma:

PARTE A

1. Imagine por un momento que no puede observar la pantalla y necesita saber si algu-

nos puntos fueron pintados o no. El dato de que dispone es la instrucción que

Horacio dio a la computadora, esto es:

• Pintar de color amarillo todos los puntos dados por la siguiente instrucción:

• Pintar de color azul todos los puntos dados por la instrucción:

Utilizando las instrucciones que Horacio dio a la computadora:

Responda las siguientes consignas:

a. El punto de coordenadas (6 ; 5):

¿fue pintado de amarillo, de azul, o no fue pintado de acuerdo con las instruccio-

nes dadas? ¿Por qué?

Escriba todas las cuentas que necesita para justificar su respuesta. (Tenga en cuen-

ta que el primer valor del par representa un valor de x, y el segundo un valor de y,

en este caso x = 6 e y = 5).

b. Los puntos de coordenadas (0 ; 6), (4 ; 3) y (3 ; 4):

¿fueron pintados de amarillo, de azul, o no fueron pintados de acuerdo con las ins-

trucciones dadas? Como lo hizo en el ítem anterior, escriba todas las cuentas que

necesita para justificar su respuesta.

2. Mirando la pantalla y teniendo en cuenta sólo el cuadrado de observación que deter-

minó el diseñador, responda:

a. ¿Hay algún punto de los indicados arriba que esté pintado de los dos colores? Si la

respuesta es afirmativa, indique sus coordenadas.

Page 42: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática38

b. ¿Cuántos puntos estarán pintados de los dos colores, teniendo en cuenta las ins-

trucciones dadas? ¿Por qué?

3. ¿Qué puede observarse en las instrucciones dadas a la computadora al reemplazar

en ambas por las coordenadas del punto que está pintado de los dos colores?

ORIENTACIONES

El punto de coordenadas (6 ; 5) está pintado de azul porque responde a la ins-

trucción , dado que 6 .

El punto de coordenadas (0 ; 6) está pintado de amarillo porque responde a

la instrucción ya que .

El punto de coordenadas (4 ; 3) no está pintado porque no verifica ninguna

de las dos instrucciones dadas.

El punto de coordenadas (3 ; 4) quedó pintado de verde porque fue alcanza-do por la pintura azul y la amarilla. Pues (3 ; 4) verifica las dos instrucciones:

EN TÉRMINOS MATEMÁTICOS:

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS

En la situación que estamos trabajando, (x ; y) = (3 ; 4) es el único par quesatisface a las dos ecuaciones.

Si tenemos en cuenta las representaciones gráficas de las instrucciones dadas ala computadora, (3 ; 4) son las coordenadas del único punto que queda pin-tado de verde.

En la situación que estamos trabajando, (x ; y) = (3 ; 4) es el único par quesatisface a las dos ecuaciones.

Para indicar que necesitamos encontrar cuáles son los valores de x y de y que

satisfacen a las dos ecuaciones lo indicaremos así:

y lo llamaremos sistema de ecuaciones.

4 = – . 3 + 6 = – 2 + 6 y 4 = . 3 + 3 = 1 + 32

3

1

3

y = x + 31

3

y = – x + 62

36 = – . 0 + 6

2

3

5 = . 6 + 31

3

Page 43: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Diremos que el conjunto S = {(3 ; 4)} es el conjunto solución del sistema deecuaciones dado.

En general, diremos que: es un sistema de ecuaciones.

En particular, como estas ecuaciones son lineales y tienen las incógnitas x e y, dire-mos que es un sistema de dos ecuaciones lineales con dos incógnitas.

La resolución de un sistema de ecuaciones de este tipo consiste en encontrar todoslos pares (x ; y) cuyas coordenadas verifiquen las dos ecuaciones simultáneamente.

Al conjunto formado por los pares (x ; y) que verifiquen las dos ecuaciones lo lla-maremos conjunto solución de dicho sistema y lo escribiremos simbólicamente:

S = {(x ; y)}

Si tenemos en cuenta que la representación gráfica de cada ecuación lineal esuna recta, el conjunto solución de un sistema de ecuaciones lineales está for-mado por todos los puntos que tienen en común ambas rectas.

PARTE B

Represente, como en la pantalla de la computadora, las siguientes instrucciones (como

siempre dé valores a x y encuentre los valores de y correspondientes):

• 3y + 2x = 18

ORIENTACIONES

Habrá observado que en la pantalla quedó representada una única recta. Esto

es porque la ecuación y la ecuación 3y + 2x = 18 expresan

los mismos puntos del plano, o de la tela. Para probarlo podemos despejar y

de la segunda ecuación.

Así:

Si aún no está en condiciones de resolver una ecuación como la anterior debe revi-

sar este tema en la Unidad 3 de Matemática A antes de seguir avanzando con el desa-

rrollo de esta unidad.

Matemática B • UNIDAD 2 39

y = – — x + 623

3y + 2x = 18

3y = -2x + 18

y =

y = – + = – x + 6

– 2x + 183

2x3

23

183

Page 44: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática40

PARTE C

En tres oportunidades distintas, el diseñador usó fórmulas lineales como instrucciones

para la máquina diseñadora.

En cada una de estas oportunidades, el diseñador introdujo dos instrucciones, con la

indicación de que los puntos obtenidos con una de ellas se pinten de color amarillo y los

puntos obtenidos con la otra se pinten de color azul.

Como en cada oportunidad se introdujeron instrucciones distintas, se observaron dife-

rentes diseños en la pantalla:

• En la primera oportunidad no hubo puntos verdes.

• En la segunda oportunidad hubo infinitos puntos verdes.

• Y, en la tercera hubo un único punto verde.

Responda las siguientes consignas:

1. Teniendo en cuenta que cada instrucción es una fórmula lineal, ¿qué tipo de repre-

sentación gráfica resultará con cada instrucción?

2. Cada par de instrucciones dadas a la computadora determinó diferencias en la canti-

dad de puntos verdes obtenidos en cada oportunidad. Construya los gráficos que

representarían cada una de las situaciones descriptas, tal como usted los imagina.

3. De acuerdo con el tipo de instrucciones que da el diseñador a la máquina, ¿existe

algún otro par de instrucciones posible que dé como resultado una cantidad de pun-

tos verdes diferente a las señaladas en las tres oportunidades anteriores? Si su res-

puesta es afirmativa, construya un gráfico que represente a la situación tal como

usted la imagina. Si su respuesta es negativa, trate de explicar con sus palabras el por

qué de su decisión.

PARTE D

Las instrucciones dadas por el diseñador en cada una de las tres oportunidades anterio-

res fueron:

Responda las siguientes consignas:

1. Para cada uno de los pares de instrucciones dados represente el diseño que resulta

en pantalla y determine:

• Si hay un único punto verde.

1

2

• 2y - x = 6 • y - x = 1 • 3y - x = 6

• y – x = 31

3• y – x = 12• y + x = 5

Page 45: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 2 41

• Si hay infinitos puntos verdes.

• Si no hay puntos verdes.

2. Describa qué ocurre con las representaciones gráficas de cada par de ecuaciones para

que haya:

• un único punto verde.

• infinitos puntos verdes.

• ningún punto verde.

3. Para cada uno de los sistemas de ecuaciones dados a continuación indique:

a. ¿Cuántos elementos tiene el conjunto solución?

b. ¿Cuál es el conjunto solución?

ORIENTACIONES

• Al representar gráficamente las dos ecuaciones del sistema

observamos que resultan rectas que coinciden en todos sus puntos. Esdecir, que cada par (x ; y) que verifica una ecuación, también verifica laotra. Por ejemplo el par (-4 ; 1) verifica ambas ecuaciones porque

2 • 1 - (-4) = 6 y 1 - –– • (-4) = 3

Lo mismo ocurre con el par (1 ; — ) y con infinitos pares más. Por eso hay

infinitos puntos verdes y decimos que el sistema de ecuaciones tiene infi-

nitas soluciones.

En este caso, el conjunto solución es: S = {(x ; y) R2 / y – x = 3}

siendo R2 el conjunto de todos los pares de números reales. O también

S = {(x ; y) R2 / 2y – x = 6}.

Es decir, que el conjunto solución está formado por todos aquellos puntos del

plano que pertenecen a la recta cuya ecuación es y – x = 3 ó 2y – x = 6.

12

12

12

52

Page 46: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática42

Este sistema de ecuaciones interpretado gráficamente es:

• Cuando representamos gráficamente las dos ecuaciones del sistema

, observamos que se cortan en un único punto que resulta pin-

tado de verde.

Las dos rectas coinciden en el punto de coordenadas (2 ; 3). Este es el único

par cuyas coordenadas verifican ambas ecuaciones. Por eso decimos

que el sistema de ecuaciones tiene una única solución, su

conjunto solución es S = {(2 ; 3)}.

La interpretación gráfica es:

• El sistema de ecuaciones no tiene solución.

y

x

y

x

Page 47: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 2 43

Las representaciones gráficas de sus ecuaciones no tienen puntos en común,o sea que no hay puntos verdes. Es decir que no hay puntos cuyas coorde-nadas verifiquen ambas ecuaciones.

Por lo tanto, el conjunto solución es el conjunto vacío, en símbolos: S =

Se trata de rectas paralelas. Su interpretación gráfica es:

EN TÉRMINOS MATEMÁTICOS: CLASIFICACIÓN DE SISTEMASDE ECUACIONES LINEALES

A los sistemas de ecuaciones que tienen:

• una única solución los llamaremos compatibles determinados.

• infinitas soluciones los llamaremos compatibles indeterminados.

• como solución al conjunto vacío los llamaremos incompatibles.

PARTE E

Responda las siguientes consignas:

1. Represente gráficamente las ecuaciones del siguiente sistema:

2. De acuerdo con el tipo de solución, ¿cómo clasificaría a este sistema?

3. Escriba el conjunto solución del sistema.

Page 48: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática44

ORIENTACIONES

El sistema de ecuaciones dado anteriormente es compatible determinado: elsistema tiene una única solución pues se trata de la intersección de dos rectasque no son ni paralelas ni coincidentes.¿Pudo escribir el conjunto solución? Cualquiera sea su respuesta tenga en cuenta que con sólo mirar el gráfico esimposible leer con precisión las coordenadas del punto de intersección de lasrectas que forman el sistema. Por eso, la Matemática, sólo usa el recurso grá-fico para visualizar o para verificar un resultado, pero no para obtenerlo enforma precisa o exacta.

ACTIVIDAD Nº 2: “TRABAJANDO CON EL LIBRO”

PARTE A

En esta parte de la actividad lo orientaremos para que trabaje,, dos de los recursos o métodos no grá-

ficos que tiene la Matemática para obtener la solución de un sistema de dos ecuaciones lineales con

dos incógnitas. El abordaje de estos contenidos sólo se realizará utilizando el libro Matemática 1 de

Camuyrano B. y otros, editorial Estrada

No se olvide de las sugerencias que le hicimos en la Unidad 1 respecto del

manejo del libro y de la información que él puede brindarle.

En el Capítulo 2 – Funciones lineales:

1. Lea, en las páginas 61 a 63, “Sistemas de ecuaciones lineales”.

2. Resuelva el Ejercicio 1 de la Ejercitación propuesta en la página 63.

3. Resuelva los ejercicios 10, 12, 13 y 14 de los Ejercicios de síntesis de la página 65.

Verifique sus respuestas en la página 371.

PARTE B

Resuelva el sistema de ecuaciones dado en la Parte E de la Actividad Nº 1 usando los dos

métodos analíticos (o no gráficos) que estudió del libro.

Antes de comenzar a estudiar la próxima unidad, usted debe realizar los ejer-

cicios de integración correspondientes a la Unidad 2. Su realización es impres-

cindible. Al resolverlos trabajará aspectos de los contenidos de la unidad que

no fueron trabajados en las actividades que resolvió hasta este momento.

También podrá integrar los distintos contenidos de la unidad y autoevaluar si

ya se encuentra en condiciones de pasar a estudiar la próxima unidad. No deje

de realizarlos.

Page 49: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 3 45

UNIDAD 3

UN

IDA

D 3

ProporcionalidadEn la vida cotidiana y en la economía diaria con mucha frecuencia utilizamosen forma intuitiva algunas funciones. Nos referimos a las funciones de pro-porcionalidad directa e inversa. En esta unidad analizaremos sus característi-cas y las formas en que se denominan en su uso cotidiano.

A partir de las funciones de proporcionalidad inversa, presentaremos, a lasfunciones racionales y estudiaremos sus características especiales.

Propósitos de la UnidadEn relación con los contenidos de esta Unidad le proponemos que:

• Reconozca la función de proporcionalidad directa y la función de propor-cionalidad inversa en fórmulas, tablas y gráficos cartesianos.

• Reconozca, frente a un problema que describa una situación concreta, sidicha situación puede expresarse o no como una función de proporciona-lidad directa o una función de proporcionalidad inversa.

• Resuelva problemas que pueden traducirse con una función de proporcio-nalidad directa.

• Resuelva problemas que pueden interpretarse con funciones de propor-cionalidad inversa.

• Reconozca los problemas de interés, porcentaje, descuentos, recargos,bonificaciones, etc., como situaciones cotidianas que pueden interpretar-se o traducirse con una función de proporcionalidad directa.

• Represente funciones racionales y reconozca sus asíntotas a partir de surepresentación gráfica.

En esta Unidad seguiremos trabajando con conceptos, términos y simbología rela-

cionados con funciones y funciones lineales trabajados en la Unidad 1.

ACTIVIDAD Nº 1: “LOS PRECIOS EN LOS PUESTOS DE LAFERIA”

En la feria del barrio hay varios puestos que venden frutas. En algunos de esos puestos

se hacen ofertas por compras de grandes cantidades. Cada puestero, Don Manuel, Don

José y Doña Perla van registrando las compras que hacen sus clientes. Anotan la canti-

dad de mercadería que venden en cada oportunidad y el dinero que cobran. Las siguien-

tes tablas muestran lo que registró cada uno:

Page 50: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática46

Parte A

Usando la información anterior, responda las siguientes preguntas:

1. a. Cualquiera sea la cantidad de manzanas vendida en el puesto de Don Manuel: ¿se

venden al mismo precio por kilogramo?

b. Cualquiera sea la cantidad de kilogramos de peras vendida en el puesto de Don

José, ¿se cobra el mismo precio por kilo?

c. Cada kilogramo de duraznos vendido en el puesto de Doña Perla, ¿vale lo mismo?

2. Teniendo en cuenta lo respondido en el ítem 1., ¿en cuál o cuáles de los puestos se

hacen ofertas por la venta de grandes cantidades de frutas?

3. a. ¿Es posible calcular el precio de venta del kilogramo de fruta para cualquier venta

en cada puesto?

b. ¿En qué puesto o puestos es posible calcular el precio de venta del kilogramo de

fruta para cualquier venta? ¿En cuál o cuáles no es posible?

c. Fundamente las respuestas que dio en el ítem b..

4. a. Represente en un sistema de ejes coordenados los puntos que expresan el precio y

a pagar en función de la cantidad x de kg de manzanas que se compren en el

puesto de Don Manuel.

b. Represente en un sistema de ejes coordenados los puntos que expresan el precio y

a pagar en función de la cantidad x de kg de peras que se compren en el puesto

de Don José.

Puesto de Don Manuel

x (kg de manzanas) 0,5 1 1,5 2,5 3 4 5 10 15

y ($) 1 2 3 5 6 8 10 20 30

Puesto de Don José

x (kg de peras) 0,5 1 2 4 8 10

y ($) 0,75 1,5 3 5 10 12

Puesto de Doña Perla

x (kg de duraznos) 1 2 4 10 20

y ($) 2,5 4,5 8 18 35

Page 51: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 3 47

c. Represente en un sistema de ejes coordenados los puntos que expresan el precio y

a pagar en función de la cantidad x de kg de duraznos que se compren en el pues-

to de Doña Perla.

Haga las representaciones con lápiz y con cuidado porque a partir de ellas

deberá sacar algunas conclusiones. Si aún tiene dificultades para repre-

sentar funciones retome este tema en la Unidad 4 de Matemática A y en

la Unidad 1 de esta Guía.

5. Responda las siguientes consignas a partir de los gráficos realizados en el ítem 4.:

a. ¿Que diferencia observa entre ellos?

b. ¿En qué caso o casos la fórmula que representa a los puntos del gráfico es lineal?

c. En aquellos casos en que la fórmula sea lineal, escriba dicha fórmula.

d. ¿Cómo interpreta la fórmula lineal obtenida en el punto c. relacionándola con la

situación de las ventas de los puesteros de la feria?

6. ¿Cuánto vale el kilogramo de manzanas en el puesto de Don Manuel?

7. a. Realice las divisiones entre el precio de la compra y la cantidad de kilogramos com-

prados, es decir, las divisiones y : x, para todos los ejemplos dados de los puestos de

Don Manuel, Don José y Doña Perla.

b. ¿En qué caso o casos todas las divisiones dan el mismo resultado?

c. ¿Cuál es ese resultado para los casos en que las divisiones dan siempre lo mismo?

d. ¿Qué significado tiene ese resultado en términos de las ventas de los puesteros en

la feria?

ORIENTACIONES

En el puesto de Don Manuel, cualquiera sea la compra que se haga, el clien-te debe pagar $ 2 por cada kilogramo de manzanas.

En los otros dos puestos, se hacen ofertas por compras de grandes cantidades.Es decir que, si un cliente compra mucha fruta, paga menos por cada kilo-gramo.

Cuando representamos en R2 las posibles compras en el puesto de DonManuel, observamos que los puntos quedan alineados entre sí. En cambio, lospuntos que representan las posibles compras en los otros dos puestos no que-dan alineados entre sí.

Page 52: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática48

Cuando realizamos las divisiones y : x para las posibles compras en el puesto deDon Manuel, los resultados dan todos 2 (que es el precio de 1 kg de manzanas).

En cambio, al hacer lo mismo con las posibles compras en los otros puestos,de Don José y de Doña Perla, los cocientes dan distintos valores ya que el pre-cio de 1 kg de fruta no es siempre el mismo. Si se compran grandes cantida-des, cada kilogramo vale menos.

La fórmula que permite calcular el precio y a pagar por la compra de x kg defrutas, resulta una fórmula lineal sólo en el caso del puesto de Don Manuel.La fórmula es y = 2 . x.

En los casos de los otros dos puestos, no hay una fórmula sencilla que permi-ta calcular el precio y a pagar por x kg de frutas.

Parte B

Las siguientes tablas muestran posibles compras de frutas en otros puestos:

Puesto de Doña Rosa

x (kg de naranjas) 2 3 4 5 6

y ($) 2,5 3,75 5 6,25 7,5

Puesto de Don Carlos

x (kg de pomelos) 2 3 4 5 6

y ($) 3,5 5,25 6,75 8 9

Page 53: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 3 49

Usando la información de estas tablas, responda las siguientes preguntas:

1. ¿En cuál de estos dos puestos se cobra siempre lo mismo por cada kilogramo de frutas?

2. Represente en R2 los puntos que expresan el precio a pagar en función de las canti-

dades de kg de frutas vendidas en estos dos puestos.

3. Para el puesto en que se cobra siempre lo mismo por cada kilogramo de frutas:

a. ¿Cuánto vale cada cociente y : x?

b. Desde el punto de vista de la situación planteada de estos dos puestos, ¿con qué

valor coincide dicho cociente?

c. Escriba la fórmula que le permite calcular el precio y que se debe pagar por com-

prar x kg de fruta en ese puesto.

Parte C

1. Defina una función f que permita describir las ventas registradas en el puesto de Don

Manuel.

2. Defina una función g que permita describir las ventas registradas en el puesto de

Doña Rosa.

EN TÉRMINOS MATEMÁTICOS: PROPORCIONALIDAD DIRECTA.CONSTANTE DE PROPORCIONALIDAD. FUNCIÓN DE PROPOR-CIONALIDAD DIRECTA.

En los puestos de Don Manuel y Doña Rosa, el precio de cada kilogramo de frutaes el mismo cualquiera sea la cantidad que se compre. En estos casos, decimos queel precio y a pagar es directamente proporcional al peso x de la fruta comprada.

O también podemos decir que hay proporcionalidad directa entre el precioy el peso.

Como observamos, en estos dos casos, al realizar los cocientes y : x, estos resul-tan constantes. Al valor obtenido en cada caso, que coincide con el precio de1 kg de fruta, lo llamamos constante de proporcionalidad.

Por ejemplo, en el puesto de Don Manuel la constante de proporcionalidad es2 y en el puesto de Doña Rosa es 1,25. En general, si identificamos con k a laconstante de proporcionalidad, resulta y : x = k.

En estos dos casos, las fórmulas que permiten calcular el precio y a partir delpeso x de fruta comprada son lineales. Son fórmulas del tipo y = k . x, dondek es la constante de proporcionalidad. Por lo tanto, en la representación grá-fica en R2, los puntos que expresan posibles compras, quedan alineados entresí y con el origen de coordenadas.

Page 54: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática50

La función f : {0,5; 1; 1,5; 2,5; 3; 4; 5; 10; 15} � R / y = 2x modelamatemáticamente las ventas de manzanas registradas en el puesto de DonManuel. La función g : {2; 3; 4; 5; 6} � R / y = 1,25x expresa las ventas denaranjas registradas en el puesto de Doña Rosa. Ambas son ejemplos de fun-ciones de proporcionalidad directa. Las representaciones gráficas de estasfunciones son:

En general, llamos función de proporcionalidad directa a una función deltipo f : A � R / y = k . x . En ella, el dominio A es un subconjunto de núme-ros reales adecuado a cada situación y k es la constante de proporcionalidad yes un número real distinto de cero.

ACTIVIDAD Nº 2: “LLENADO DE TANQUES DE COMBUSTIBLE"

En una empresa llenan semanalmente dos tanques con combustible para el uso de sus

maquinarias.

Cada tanque tiene una capacidad de 9 hectolitros (hl).

Para llenar uno de los tanques se usa una bomba denominada HTK y el otro se llena con

la bomba FPD.

Quieren controlar el funcionamiento de ambas bombas.

A José le encargaron tomar la información de la bomba HTK y a Pedro de la bomba FPD.

Entre José y Pedro acordaron en llenar simultáneamente los dos tanques, llamar t = 0

horas al instante inicial y registrar la cantidad de combustible que contenía el tanque

cada media hora.

Al terminar, cada uno presentó un informe. Los informes son los siguientes:

Page 55: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 3 51

Parte A

1. Teniendo en cuenta lo que puede observar en cada tabla y su respectivo gráfico,

¿usted diría que los tanques se llenaron de la misma "forma"? ¿Por qué? Explíquelo

con sus palabras.

2. El jefe de José y Pedro les hizo algunas preguntas respecto de la forma en que se lle-

naron los tanques, o de la forma en que actuaron las bombas para llenarlos.

a. Para cada pregunta responda lo que diría José respecto del llenado del tanque con

la bomba HTK y lo que diría Pedro respecto de cómo se llenó el tanque con la

bomba FPD.

• ¿Qué cantidad de hectolitros de combustible entró en el tanque durante la pri-

mera media hora de funcionamiento de la bomba?

• ¿Y durante la segunda media hora?

• ¿Y durante la tercera media hora?

Usted ya hizo este tipo de trabajo en la Unidad 1. Si lo necesita, revea cómo trabajó

allí.

Bomba HTK

En la siguiente tabla se describe la cantidad y de hl de

combustible que tenía en el tanque, en los instantes t

(en horas) en que se observó:

t 0 0,5 1 1,5 2 2,5 3

y 0 0,25 1 2,25 4 6,25 9

A partir de la tabla, se representó gráficamente lo que

ocurrió en el transcurso de las tres horas en que se llenó

el tanque. El gráfico es el dado a la derecha:

Bomba FPD

En la siguiente tabla se describe la cantidad y de hl de

combustible que tenía en el tanque, en los instantes t

(en horas) en que se observó:

t 0 0,5 1 1,5 2 2,5 3

y 0 1,5 3 4,5 6 7,5 9

A partir de la tabla, se representó gráficamente lo que

ocurrió en el transcurso de las tres horas en que se llenó

el tanque. El gráfico es el dado a la derecha:

Page 56: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática52

b. ¿Podría usted decir que en cada tanque entró la misma cantidad de hectolitros de

combustible por cada media hora que iba transcurriendo?

c. Para responder la siguiente pregunta observe cada tabla y cada gráfico: ¿Podría

decir que entró la misma cantidad de hectolitros de combustible en cada tanque

por cada hora transcurrida? Por ejemplo, entre las 0,5 horas y las 1,5 horas, ¿entró

la misma cantidad que entre las 2 horas y las 3 horas? Indique qué cantidad fue la

que entró a cada tanque en cada una de esas horas. Para responder esta pregun-

ta complete la siguiente tabla:

3. A continuación, en el cuadro, hacemos ciertas afirmaciones que usted deberá com-

probar si pueden ser aplicadas o no a cada una de las bombas.

Para responder debe basarse sólo en lo que pueda deducir de la situación planteada.

Si alguna expresión le resulta muy desconocida, trate de encontrarle sentido de

acuerdo con el contexto de la situación. Para contestar, complete el cuadro.

Tanque llenado por labomba FPD

Entre las 0,5 horas y las 1,5 horas

Entre las 2 horas y las 3 horas

Tanque llenado por labomba HTK

Frase¿Puede ser aplicada a la

bomba FPD?

La bomba llenó el tanque, es decir que a medida

que pasaba el tiempo también aumentaba la

cantidad de combustible que había en el tanque.

La bomba llenó el tanque en tres horas

bomba HTK?

La bomba llenó el tanque de tal forma que: la

relación entre el tiempo t y la cantidad y de hl

que hay en el tanque puede expresarse median-

te una función.

La bomba llenó el tanque a velocidad constante.

La bomba llenó el tanque a razón de 3 hl por

hora.

Page 57: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 3 53

ORIENTACIONES

En el tanque llenado por la bomba FPD, la cantidad de hectolitros de com-bustible aumenta a velocidad constante. Es decir, en dicho tanque entra lamisma cantidad de combustible en una hora y esto ocurre en cualquier horaque se considere.

En los gráficos en R2 de las dos funciones que describen el llenado de los tan-ques, observamos que para el tanque llenado con la bomba FPD resultan pun-tos alineados con el origen de coordenadas. En cambio, en el gráfico corres-pondiente al llenado del tanque con la bomba HTK, los puntos no quedanalineados.

Frase¿Puede ser aplicada a la

bomba FPD?

La bomba llenó el tanque en forma proporcio-

nal al tiempo. Es decir, por ejemplo: si en 1 hora

llenó 3 hl, en 2 horas llenó 6 hl. Porque 3 es a 1

como 6 es a 2. (Esto se escribe así: )

bomba HTK?

La bomba llenó el tanque en forma proporcio-

nal al tiempo porque, por ejemplo, para cual-

quier tiempo t, si la cantidad de tiempo t se cua-

druplica, también se cuadruplica la cantidad y

de hectolitros que hay en el tanque

La bomba llenó el tanque de manera que, cual-

quiera sea la cantidad y de hectolitros dividida

por el tiempo t correspondiente, en la función

que describe el llenado, se mantiene constante,

es decir: (para t distinto de cero)

La función que vincula a la cantidad de hectolitros

en el tanque con el tiempo es una función de pro-

porcionalidad directa.

La bomba llenó el tanque de manera que la can-

tidad y de hectolitros se puede obtener a partir

del tiempo t con la fórmula y = 3.t

Page 58: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática54

También se puede observar que, en el tanque llenado con la bomba FPD, resul-ta que al calcular las divisiones y : t los cocientes resultan todos iguales a 3. Es decir, resulta y : t = 3. Esta constante expresa la cantidad de hectolitros decombustible que entran al tanque por hora. Además la fórmula que permiteobtener la cantidad y de hectolitros en cada instante t es y = 3 . t.

Por lo tanto, podemos decir que en el llenado del tanque FPD, la cantidad dehectolitros es directamente proporcional al tiempo.

En cambio, en el tanque HTK, la cantidad de hectolitros no es directamenteproporcional al tiempo.

ACTIVIDAD Nº 3: “TRABAJANDO CON EL LIBRO

En esta actividad lo orientamos para que trabaje algunos contenidos utilizando el

libro Matemática en Red 8 EGB de López A. y Pellet M., editorial A-Z.

No se olvide de las sugerencias que le hicimos en las unidades anteriores

respecto del manejo del libro y de la información que él puede brindarle.

En el Capítulo 8 - Proporcionalidad:

1. Lea, en la página 194, “Proporcionalidad”.

2. Lea, en las páginas 195 y 196, “Proporción” y “Propiedades de las proporciones”. No

deje de leer los recuadros de las páginas 195 y 196.

3. Lea, en la página 197, “Magnitudes directamente proporcionales”.

4. Resuelva las Actividades 1), 2) y 3) de la página 197. Puede comparar sus respuestas

con las de la página 269 del libro.

5. Lea, en las páginas 198 y 199, “Funciones de proporcionalidad directa”.

6. Resuelva las Actividades 4), 5), 6) y 7) de la página 199. Puede comparar sus res-

puestas con las de la página 269 del libro.

7. Lea, en las páginas 200 y 201, “No todo es proporcionalidad”y “Proporcionalidad,

pero dentro de ciertos límites”.

8. Resuelva las Actividades 8), 9), 10), 11) y 12) de la página 201. Compare sus res-

puestas con las de la página 269.

9. Lea, en las páginas 202 y 203, “Porcentaje”.

10. Resuelva las actividades 13), 14), 15), 16) y 17) de la página 203. Puede comparar sus

respuestas con las de la página 269.

11. Lea, en las páginas 204 y 205, “Escalas”.

Page 59: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 3 55

12. Resuelva las Actividades 18), 19), 20), 21) y 23) de la página 205. Busque, en la pági-

na 270, las respuestas para compararlas con las suyas.

13. Lea, en la página 214, “Repartos proporcionales”.

14. Resuelva las actividades 36) y 38) de la página 215. Las respuestas están en la pági-

na 270.

ACTIVIDAD Nº 4: "EN LA FÁBRICA DE JARABES"

Martín es empleado en una fábrica de jarabes. En esa fábrica se producen 12 litros de

jarabe por hora. La producción de jarabe de cada hora se envasa en recipientes de dis-

tintos tamaños según el uso que se le vaya a dar.

Martín es el encargado de decidir cuántos recipientes se van a usar para el envasado.

Parte A

1. La producción de la primera hora de trabajo de un día debe envasarse en recipientes

de 2 litros cada uno. ¿Cuántos recipientes se necesitan?

2. La producción de la segunda hora se envasa en recipientes de 1 litro cada uno.

¿Cuántos recipientes se necesitan?

3. La producción de la tercera hora va en recipientes de ½ litro cada uno. ¿Cuántos reci-

pientes hacen falta?

4. Martín confeccionó la siguiente tabla para organizar la información de cuántos reci-

pientes necesita para envasar la producción de jarabe de una hora según la capaci-

dad de cada uno de ellos. Complétela.

5. Para poder prever la cantidad y de recipientes que debe disponer para envasar la

producción de una hora si la capacidad de cada uno es de x litros, Martín decidió bus-

car una fórmula que le permita calcular y a partir de conocer x.

Le pedimos que dé la fórmula hallada por Martín, teniendo en cuenta los cálculos

que hizo para completar la tabla anterior.

6. Teniendo en cuenta los pares de valores obtenidos en la tabla anterior, represente

en un sistema de ejes coordenados cartesianos los puntos que expresan la cantidad y

de recipientes necesaria para envasar x litros de jarabe.

x (capacidad de cada recipiente en litros)

y (cantidad de recipientes)

2

6

1

12 24

3 4 6 12

Page 60: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática56

7. El recipiente más chico tiene una capacidad de litro y el más grande de 12 litros.

Además, suponga, que es posible tener recipientes de cualquier capacidad entre las

dos anteriores. Teniendo en cuenta esta información, defina una función f que des-

criba la situación planteada.

8. Represente la función f que definió en el ítem anterior en un sistema de ejes coor-

denados cartesianos.

Parte B

Teniendo en cuenta la tabla que completó en el ítem 4. de la Parte A, indique cuáles de

las siguientes frases son verdaderas:

1. Al aumentar la capacidad de cada recipiente, disminuye la cantidad de recipientes

necesaria.

2. Si la capacidad de los recipientes se reduce a la mitad, la cantidad de recipientes

necesaria se duplica.

3. Al multiplicar la cantidad y de recipientes necesaria por la capacidad x de cada uno

de ellos, se obtiene siempre el mismo resultado.

4. Si se triplica la capacidad del recipiente, la cantidad de recipientes necesaria se redu-

ce a la tercera parte.

5. En cualquier caso se verifica que x . y = 12.

6. Para calcular la cantidad y de recipientes necesaria para envasar los 12 litros de jara-

be que se producen por hora, en recipientes de x litros se usa la fórmula y = .

ORIENTACIONES

Todas las frases anteriores son verdaderas. Decimos que la cantidad de reci-pientes es inversamente proporcional a la capacidad de cada uno.

Parte C

Por su trabajo, Martín cobra $ 600 por mes. En marzo, ha logrado organizarse de mane-

ra que, en los 6 primeros días después de cobrar, gasta $ 20 por día.

Teniendo en cuenta la información anterior, responda:

1. Complete la siguiente tabla:

1

10

12x

Page 61: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

2. Entre las siguientes fórmulas, elija la que permite calcular el dinero y que le queda a

Martín x días después de haber cobrado.

• y = 600 + 20x • y = • y = 600 - 20x

3. Defina una función g que describa lo que ocurre con el dinero de Martín en los 6 pri-

meros días después del cobro.

4. Represente la función g que definió en el ítem anterior en un sistema de ejes coor-

denados cartesianos.

Parte D

En el mes de abril, gastó el dinero de su sueldo de manera que la cantidad y que le

queda después de x días del cobro está indicada en la siguiente tabla:

1. Entre las siguientes fórmulas, elija la que permite calcular el dinero y que le queda a

Martín x días después de haber cobrado.

• y = 600 + 20x • y = • y = 600 - 20x

2. Defina una función h que describa lo que ocurre con el dinero de Martín en los 6 pri-

meros días después del cobro.

3. Represente la función h que definió en el ítem anterior en un sistema de ejes coor-

denados cartesianos.

Parte E

A continuación hacemos ciertas afirmaciones que usted deberá comprobar si pueden ser

aplicadas o no a la forma en que gastó su dinero Martín en marzo y en abril. Para res-

ponder debe basarse sólo en lo que pueda deducir de la situación planteada. Para con-

testar, complete el siguiente cuadro.

Matemática B • UNIDAD 3 57

x (días después del cobro) 1 2 3 4 5 6

y (dinero que le queda) 580 560

x (días después del cobro) 1 2 3 4 5 6

y (dinero que le queda) 600 300 200 150 120 100

600x

600x

Page 62: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática58

ORIENTACIONES

Para la forma en que Martín gastó su dinero en marzo, solo la primera frase esverdadera. En este caso, a pesar de que al aumentar los días, disminuye la canti-dad de dinero que le queda, no hay proporcionalidad inversa entre la cantidadde dinero que le queda y el tiempo transcurrido porque son falsas las otras frases.

En cambio, en abril hay proporcionalidad inversa entre la cantidad de dine-ro que le queda a Martín y la cantidad de días transcurridos desde su cobroporque todas las frases de la tabla anterior son verdaderas.

Frase

¿Puede ser aplicada a la forma enque Martín gastó su dinero en

abril?

Al pasar los días, disminuye la cantidad de dine-

ro de Martín.

marzo?

Si la cantidad de días transcurridos se duplica, el

dinero de Martín se reduce a la mitad.

Martín gastó su dinero en forma inversamente

proporcional al tiempo transcurrido desde su

cobro.

Al multiplicar la cantidad y de dinero de Martín

por la cantidad x de días transcurridos desde el

cobro, se obtiene siempre el mismo resultado.

Martín gastó su dinero de forma que cualquiera

sea la cantidad y de dinero que le queda y la can-

tidad x de días desde su cobro, se verifica que

x . y = 600.

Para calcular la cantidad y de dinero que tiene

Martín x días después de cobrar, se usa la fórmula

y = 600

x

Page 63: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 3 59

EN TÉRMINOS MATEMÁTICOS: PROPORCIONALIDAD INVERSA.CONSTANTE DE PROPORCIONALIDAD INVERSA. FUNCIÓN DEPROPORCIONALIDAD INVERSA.

En el caso del envasado de jarabes y en el del dinero que le queda a Martín enabril, las magnitudes que intervienen se relacionan de manera que al multi-plicar x . y el resultado es siempre el mismo, es decir, es constante. Cuandoesto ocurre, decimos que las magnitudes son inversamente proporcionalesentre sí. La constante obtenida se llama constante de proporcionalidad. Enel caso del envasado de jarabes, dicha constante es 12 y expresa la cantidad delitros de jarabe producidos por hora. En el caso de la cantidad de dinero quele queda a Martín en abril, la constante es 600 y expresa su sueldo mensual.

La función , que describe la situación del enva-

sado de jarabe, y la función que describe

lo que ocurre con el dinero de Martín en los 6 primeros días del mes, son fun-

ciones de proporcionalidad inversa.

En general, llamamos función de proporcionalidad inversa a aquella de la

forma (donde el conjunto A es un dominio adecuado

a cada situación, c es la constante de proporcionalidad y x es un número real

distinto de cero).

Si se representa una función de proporcionalidad inversa en R2, se obtienenpuntos que están sobre una curva llamada hipérbola. Por ejemplo, la repre-

sentación gráfica de la función es la siguiente:

Page 64: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática60

Parte F

En la Parte A, usted definió la función para describir lo obser-

vado en el envasado de jarabes. También representó esa función. Retomaremos, ahora,

esa actividad.

1. Vamos a imaginar que se pueden tener recipientes todo lo chicos que uno desee.

Teniendo en cuenta esto, responda las siguientes consignas:

a. Si el recipiente tiene una capacidad de 0,05 litros, ¿cuántos recipientes se necesi-

tan para envasar los 12 litros de jarabe?

b. Si en cada recipiente caben 0,01 litros, ¿cuántos recipientes se necesitan?

c. Complete la siguiente tabla en la que se tienen en cuenta recipientes de capaci-

dades cada vez más chicas.

d. Imagine qué pasaría con la cantidad de recipientes necesaria para envasar el jara-

be si se consiguieran recipientes aún más pequeños. Explique con sus palabras lo

que supone que ocurriría.

e. Vuelva al gráfico que hizo en el ítem 8. de la Parte A. Complételo, teniendo en

cuenta los pares de valores que calculó en la tabla del ítem c..

f. Describa, con sus palabras, lo que observa en el gráfico respecto de la curva y el eje y.

2. Vamos a suponer, ahora, que se pueden tener recipientes todo lo grande que uno

desee. Teniendo en cuenta esto, responda las siguientes consignas:

a. Si el recipiente tiene una capacidad de 24 litros, ¿qué fracción del recipiente se

ocupa con 12 litros de jarabe?

b. Si en cada recipiente caben 100 litros, ¿qué fracción del recipiente se ocupa?

c. Complete la siguiente tabla en la que se consideran recipientes de capacidades

cada vez mayores.

d. Si se consiguieran recipientes aún más grandes para envasar el jarabe, imagine qué

pasaría con la fracción del recipiente que se ocupa.

x (capacidad de cada recipiente en litros) 0,05 0,01 0,005 0,001 0,0005 0,0001

y (cantidad de recipientes)

x (capacidad de cada recipiente en litros) 24 100 1000 10000

y (fracción de recipiente)

Page 65: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

e. Vuelva al gráfico que comenzó a completar en el ítem 1. e. de esta Parte de la

Actividad. Complételo, teniendo en cuenta los pares de valores que calculó en la

tabla del ítem 2.c..

f. Describa, con sus palabras, lo que observa en el gráfico respecto de la curva y el eje x.

3. a. ¿Puede un recipiente tener 0 litros de capacidad?

b. ¿Qué pasa si hace la cuenta 12 : 0 en su calculadora?

4. a. Defina una función k que describa la nueva situación. Es decir, debe ser una fun-

ción que tenga en cuenta recipientes de cualquier capacidad.

b. Represente gráficamente la función k que definió en el ítem a..

5. Por más que fuerce su imaginación, no se puede hablar de recipientes con capacidad

negativa. Por ello, trabajaremos una función m que tiene la misma fórmula que la

función k del ítem 4., pero a la que no asociaremos a una situación concreta. Antes

de definir la función m le pedimos que responda las siguientes preguntas:

a. Teniendo en cuenta lo que contestó en el ítem 3., la cuenta expresada por la fór-

mula , ¿se puede hacer con cualquier valor de x?

b. Teniendo en cuenta su respuesta al ítem anterior, elija el dominio de la función m

entre las siguientes opciones:

• R (o conjunto de números reales)

• R > 0 (o conjunto de números reales positivos)

• R 0 = R - {0} (o conjunto de números reales excepto el cero)

Por lo tanto, definimos la función

c. Complete la siguiente tabla de la función m para obtener algunos pares de valo-

res con x negativos.

d. Teniendo en cuenta la gráfica de la función k que hizo en el ítem 4. y los pares de

valores (x ; y) que calculó en el ítem anterior, represente la función m en un siste-

ma de ejes coordenados cartesianos.

Matemática B • UNIDAD 3 61

X -4 -3 -2 -1 -6 -12 -0,5 -24 -100 -0,1

Page 66: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática62

ORIENTACIONES

La función con la que trabajó en el ítem 5. tiene como dominio al conjuntoformado por todos los números reales excepto el cero (o R - {0}). Su repre-sentación gráfica es la siguiente:

En la representación gráfica se puede observar que, a medida que se tomanvalores de x cada vez mayores, la curva se va acercando al eje x. Lo mismo ocu-rre si se consideran valores de x cada vez menores.

También se puede observar que cuando x toma valores cada vez más cercanosa cero (x = 0,01; x = 0,001; … ó x = -0,01; x = -0,001; …), la curva se acer-ca al eje y.

EN TÉRMINOS MATEMÁTICOS: FUNCIÓN RACIONAL. ASÍNTOTAS.

La función , con la que trabajó en el ítem 5., es

una función racional.

La representación gráfica de este tipo de funciones es una curva llamadahipérbola.

Como hemos observado, la hipérbola que representa a la función m se va acer-cando a una recta horizontal cuando x toma valores cada vez más grandes ocada vez más chicos. En este caso, esa recta horizontal es el eje x. Dicha rectase llama asíntota horizontal. La ecuación de esta asíntota, para el caso de lafunción m, es y = 0.

Page 67: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 3 63

Como también observamos, la hipérbola que representa a la función mademás se acerca a una recta vertical cuando x se acerca a un determinadovalor. En el caso de la función m, esa recta vertical es el eje y. Dicha recta sellama asíntota vertical. La ecuación de esta asíntota, para el caso de la fun-ción m, es x = 0.

Trabajaremos con funciones racionales del tipo ,

donde a, b y c son números reales y a no es cero (en símbolos a 0). El domi-nio A de estas funciones debe tener en cuenta que el divisor no puede ser cero.

Como dijimos, la representación gráfica en R2 de este tipo de funciones sonhipérbolas en las que ocurre lo que observamos para la gráfica de la función m.Es decir, estas hipérbolas se acercan a alguna recta horizontal cuando x tomavalores cada vez más grandes o cada vez más chicos. Es decir, todas estas hipér-bolas tienen una asíntota horizontal.

Además, estas hipérbolas se acercan a alguna recta vertical cuando x se acercaa algún valor determinado. Es decir, todas estas hipérbolas tienen una asínto-ta vertical.

Parte G

En esta parte de la actividad nuevamente lo orientaremos para que trabaje algunos contenidos uti-

lizando el libro Matemática en Red 8 EGB de López A. y Pellet M., editorial A-Z.

En el Capítulo 8 – Proporcionalidad

1. Lea, en las páginas 206 y 207, “Magnitudes inversamente proporcionales”:

2. Resuelva las Actividades 24), 25), y 26) de la página 207. Verifique sus respuestas en

la página 270.

Antes de comenzar a estudiar la próxima unidad, usted debe realizar los ejer-

cicios de integración correspondientes a la Unidad 3. Su realización es impres-

cindible. Al resolverlos trabajará aspectos de los contenidos de la unidad que

no fueron trabajados en las actividades que resolvió hasta este momento.

También podrá integrar los distintos contenidos de la unidad y autoevaluar si

ya se encuentra en condiciones de pasar a estudiar la próxima unidad. No deje

de realizarlos.

Page 68: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática64

Page 69: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 4 65

UNIDAD 4

UN

IDA

D 4

Proporcionalidad de segmentos

En esta unidad trabajaremos contenidos de geometría que están relacionadoscon la idea de proporcionalidad que hemos estudiado en la unidad anterior.Nos interesa que reconozca cuándo dos figuras son semejantes entre sí y queutilice el teorema de Thales en la resolución de situaciones concretas. Además,estudiaremos a los vectores que son un modelo matemático muy utilizado porla Física para representar a cierto tipo de magnitudes.

Propósitos de la UnidadEn relación con los contenidos de esta Unidad le proponemos que:

• Reconozca las características de dos figuras semejantes.

• Identifique situaciones que requieren ser representadas utilizando vectores.

• Realice operaciones con vectores utilizando sus coordenadas cartesianas yen forma gráfica.

• Aplique las operaciones con vectores para la resolución de problemas.

• Describa y aplique las condiciones que cumplen los triángulos semejantesentre sí.

• Reconozca la propiedad que enuncia el teorema de Thales y las que sededucen de ella para aplicarla en distintas situaciones.

ACTIVIDAD N° 1: “FICHAS PARA JUEGOS INFANTILES”

En una fábrica de juguetes infantiles se disponen a confeccionar las fichas de un

juego.

El juego tiene cinco fichas básicas, que se muestran a continuación en el siguiente

gráfico:

1

4

23

5

Page 70: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática66

El juego también tiene un conjunto de fichas de distintos colores, que se obtienen

variando el tamaño de las fichas básicas, pero sin que se deformen. Es decir, que son más

grandes o más pequeñas, pero mantienen la forma o las proporciones de las fichas

básicas.

La fábrica cuenta con moldes para confeccionar las fichas. Algunos de dichos moldes

son:

A B C

DE F

G H I J

KL

M

N

Q

P

O

Ñ

Page 71: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Parte A

Si usted trabajara en la fábrica de juguetes y participara en la confección de las fichas,

teniendo en cuenta que los moldes deben respetar las formas y proporciones de las

fichas básicas, ¿cuáles de los moldes mostrados anteriormente elegiría para confeccio-

nar las fichas de este juego?

Exprese brevemente, con sus palabras, qué tiene en cuenta para tomar la decisión.

Parte B

Tenga en cuenta las fichas básicas y los moldes correspondientes a cada ficha básica.

Observe el siguiente gráfico, detenga su atención en la ficha básica 2 y los moldes uti-

lizables correspondientes a ella:

Observe y compare los ángulos de la ficha básica 2 y de los respectivos moldes. Para ello,

puede calcar las figuras y superponer los ángulos. A partir de dicha observación respon-

da las siguientes preguntas:

1. ¿Cómo son entre sí las medidas de los ángulos A, A’ y A’’ de las figuras que repre-

sentan las fichas?

2. Compare el ángulo C con sus correspondientes C’ y C’’ en los respectivos moldes:

¿Cómo son entre sí las medidas de dichos ángulos?

3. Cuando se achica o se agranda la figura básica, sin perder la forma, ¿cómo resultan

entre sí las medidas de los ángulos correspondientes?

Matemática B • UNIDAD 4 67

A B

C D

E F

G

A’ B’

C’ D’

E’ F’

G’

A’’ B’’

C’’D’’

E’’ F’’

G’’

� � �

� � �

Page 72: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática68

ORIENTACIONES

A continuación representamos la ficha básica 2 y los moldes superpuestos:

Usted habrá podido observar al resolver la Parte B que las medidas de losángulos interiores correspondientes son iguales entre sí, pues al ser los ladosde las figuras respectivamente paralelos, si se superponen los ángulos entre sí,éstos resultan coincidentes. La igualdad de las medidas de los ángulos corres-pondientes se escribe simbólicamente así:

Parte C

A partir de lo observado para la ficha básica 2 y sus moldes, verifique que la igualdad

de los ángulos correspondientes también es válida para las demás fichas básicas y sus res-

pectivos moldes.

En cada caso, calque las figuras como le propusimos en la Parte B, y superponga los

ángulos correspondientes.

Parte D

En la fábrica deciden hacer más moldes a partir de la ficha básica 2. En el siguiente grá-

fico le presentamos dicha ficha básica y el diseño incompleto de uno de esos moldes.

AB

C D

FE

G

A’ B’

C’ D’

E’

Page 73: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 4 69

1. En la fábrica de juguetes le piden que:

a. Sobre el gráfico incompleto que presentamos, complete el diseño del molde,

teniendo en cuenta las características que deben tener las fichas de este juego. A

este molde que usted va a completar lo llamaremos Molde 1.

b. En la siguiente tabla, complete las medidas (en cm) del Molde 1 que usted diseñó

a partir de la ficha básica 2.

2. A un compañero suyo le pidieron diseñar el Molde 2 a partir de los datos que se

encuentran en la tabla. Le solicitan a usted, así como lo hizo para el Molde 1, que

complete en la siguiente tabla las medidas (en cm) del Molde 2 faltantes:

3. Le dicen que el Molde 3 es de mayor tamaño que la ficha básica, de tal manera que

cada lado se triplica, ¿puede usted determinar cuánto miden los lados C’D’ y G’A’ del

Molde 3?

En lo que acaba de realizar se está utilizando un concepto estudiado en la Unidad 3: el concepto

de proporcionalidad. Si no le resulta familiar, le recomendamos revisar o estudiar nuevamente

dicha unidad, porque lo necesitará para resolver las actividades que siguen.

4. Ahora le piden que diseñe el Molde 4 de tal manera que ¿De qué

medida deberá dibujar el lado D’E’ del Molde 4?

5. El Molde 5 es de menor tamaño que la ficha básica, de tal manera que cada lado se

reduce a la cuarta parte, es decir que la constante de proporcionalidad es igual a

0,25. ¿Cuánto miden los lados C’D’ y G’A’ del Molde 5?

Medidas, en cm,de la Ficha Básica

Medidas, en cm,del Molde 1

1 1,5 2 1,5 2 3 4

0,5 0,75

Medidas, en cm,de la Ficha Básica

Medidas, en cm,del Molde 2

1 1,5 2 1,5 2 3 4

2

A’B’

AB= = 4.

B’C’

BC

Page 74: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática70

ORIENTACIONES

En los cinco casos trabajados en la Parte D observamos que las medidas delos lados de cada uno de los moldes son proporcionales a las medidas de loslados correspondientes de la figura básica. Además, en la Parte B, habíamosobservado que las medidas de los ángulos de cada uno de los moldes son igua-les a las medidas de los ángulos correspondientes en cada ficha básica.

EN TÉRMINOS MATEMÁTICOS: FIGURAS SEMEJANTES

En casos como el anterior, decimos que cada ficha básica es semejante a cadauno de los moldes y recíprocamente.

En general, se dice que dos figuras son semejantes entre sí, si cumplen con lassiguientes condiciones:

• Las medidas de los ángulos correspondientes son iguales.

• Las medidas de los lados correspondientes son proporcionales.

Por ejemplo, las figuras geométricas ABCD y A’B’C’D’ representadas a con-tinuación:

son semejantes entre sí porque cumplen las dos condiciones enunciadas.Simbólicamente:

A

B C

DA’

B’ C’

D’

Page 75: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 4 71

ACTIVIDAD N° 2: "EL RECORRIDO DE MARTÍN EL CARTERO”

Esa mañana, Martín, el cartero, llegó al correo del pueblo para empezar con su trabajo

diario. Después de los saludos, su jefe le dijo: “Mire, Martín, hoy le toca ir hasta la esqui-

na donde se juntan las calles 1, 20, 30 y 200. De ahí, debe ir a seis casas. Una de ellas está

sobre la calle 1 a 150 metros al este de la esquina. Otra está a 50 metros por la calle 30.

Por la calle 200, yendo hacia el noreste, tiene que entregar correspondencia en dos

casas: una a 100 metros y otra a 300 metros. Otra casa está sobre la calle 1 a 250 metros

al oeste y la sexta casa está sobre la calle 20 a 150 metros de la esquina”.

Martín siguió la explicación de su jefe con mucha atención, pero pensó que se iba a olvi-

dar de tantas indicaciones. Buscó un plano del pueblo y representó lo siguiente:

Responda las siguientes preguntas teniendo en cuenta la conversación de Martín y su jefe:

1. La representación hecha por Martín, ¿expresa lo indicado por su jefe?

2. ¿Con qué letra se identifica cada casa descripta en las instrucciones del jefe?

3. Si consideramos que todas las flechas que dibujó Martín empiezan en el punto A:

a. ¿Qué observa sobre las flechas que unen A con B y A con C? ¿Con qué aspecto de

lo indicado por el jefe relaciona esta observación?

b. ¿Qué observa sobre las flechas que unen A con D y A con C? ¿Con qué aspecto de

lo indicado por el jefe relaciona esta observación?

Correo Calle 20

Calle 1

Calle

200C

alle

30

AD

B

C

EF

G

N

S

O E

Page 76: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática72

c. ¿Qué observa sobre las flechas que unen A con F y A con G? ¿Con qué aspecto de

lo indicado por el jefe relaciona esta observación?

d. Por la calle 200, una de las casas está a 100 metros de A y otra a 300 metros.

¿Cómo se manifiesta este aspecto en las flechas?

ORIENTACIONES

• Las flechas que representó Martín en el plano del pueblo le brindan lamisma información que le dio su jefe en forma oral o coloquial. Cada unade ellas le indica cuántos metros deberá desplazarse para llegar a cada casadesde la esquina representada con el punto A, sobre qué calle deberá des-plazarse y hacia qué lado deberá hacerlo.

• Las flechas que unen A con B y A con C tienen la misma medida ya queMartín debe desplazarse la misma cantidad de metros para ir desde la esqui-na representada con la letra A hasta las casas representadas con las letras B yC.

• Las flechas que unen A con D y A con C están incluidas en la misma recta.Tienen sentidos contrarios porque las casas representadas con las letras D yC se encuentran sobre la misma calle, pero una al oeste y la otra al este dela esquina representada con la letra A.

• Las flechas que unen A con F y A con G también están incluidas en lamisma recta. En este caso tienen el mismo sentido porque ambas casas seencuentran hacia el noroeste por la calle 200. Tienen distinta medida por-que deberá desplazarse distinta cantidad de metros para llegar a cada una delas casas en las que debe entregar correspondencia.

EN TÉRMINOS MATEMÁTICOS: “VECTORES”

En Matemática, a flechas como las dibujadas por Martín las llamamos vectores.Los vectores tienen:

• una longitud llamada módulo. En este caso, el módulo indica cuántosmetros debe desplazarse Martín.

• una dirección. En este caso indica sobre qué calle debe desplazarse.

• un sentido. En este caso, el sentido del vector le indica a Martín hacia quélado debe desplazarse en una calle.

Page 77: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 4 73

ACTIVIDAD Nº 3:"TRABAJANDO CON EL LIBRO”

En esta actividad nuevamente lo orientaremos para que trabaje algunos contenidos

utilizando el libro Matemática 1 de Camuyrano B. y otros, editorial Estrada.

El abordaje de estos contenidos sólo se realizará en base a la lectura y a la

resolución de las actividades que le indicamos en los siguientes párrafos.

No se olvide de las sugerencias que le hicimos en las unidades anteriores

respecto del manejo del libro y de la información que él puede brindarle.

En el Capítulo 9 - Vectores en el plano:

1. Lea, en las páginas 202 a 204, la Situación 1: por la ruta.

2. Lea, en las páginas 205 y 206, “Qué son las magnitudes vectoriales”.

3. Lea, en las páginas 208 a 210, “Los vectores y sus características: dirección, sentido y

módulo” y resuelva el Ejercicio 1 de la Ejercitación propuesta en la página 210.

4. Lea, en la página 211, la Situación 3: mosaicos.

5. Lea, en las páginas 211 y 212, “Vectores equipolentes”.

6. Resuelva el Ejercicio 2 de la Ejercitación propuesta en la página 213 y lea lo dicho en

el Ejercicio 3 de la misma Ejercitación.

7. Lea, en las páginas 213 y 214, la Situación 4: desplazamientos.

8. Lea, en las páginas 216 y 217, “Vectores en un sistema de coordenadas cartesianas.

Representante canónico”. Resuelva los Ejercicios 1, 2 y 3 de la Ejercitación propues-

ta en esas mismas páginas.

9. Lea, en las páginas 217 y 218, la Situación 5: en automóvil hasta el recuadro celeste

inclusive.

10. Lea bajo el título “Coordenadas cartesianas y polares de un vector”, en la página

220, el párrafo referido a coordenadas cartesianas de un vector, es decir: los dos pri-

meros renglones de la hoja, el primer recuadro celeste y los dos renglones siguien-

tes a éste.

En el Capítulo 10 - Operaciones con vectores: suma y producto por un número

1. Lea, en las páginas 224 y 225, “Suma de vectores” y la Situación 1: velocidades.

2. Lea, en las páginas 225 y 226, “Cómo sumar vectores gráficamente”.

3. Resuelva la Ejercitación propuesta en la página 227.

4. Lea, en la página 228, la Situación 2: en equilibrio y en la página 229, “La regla de

la poligonal”.

Page 78: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática74

5. Resuelva el Ejercicio 2 de la Ejercitación propuesta en las páginas 229 y 230.

6. Lea, en las páginas 230 a 232, la Situación 3: traslaciones.

7. Resuelva la Ejercitación propuesta en la página 233.

8. Lea, en la página 233, “Cómo sumar vectores en un sistema de coordenadas”.

9. Resuelva el Ejercicio 1 de la Ejercitación propuesta en la página 234.

10. Lea, en las páginas 234 a 236, “Producto de un vector por un número” y la Situación

4: peces y pájaros.

11. Lea, en las páginas 236 y 237, “Cómo realizar el producto de un vector por un núme-

ro” y resuelva la Ejercitación propuesta en la página 237.

12. Lea de la Situación 5: el tobogán y la red de paralelogramos, sólo los ítems b) y c) en

la página 239.

13. Lea, en la página 240, “Combinación lineal de vectores” hasta la frase que comien-

za diciendo: “En este caso ....”.

14. Resuelva las Actividades N° 2, 5, 6 y 8 de las Actividades de síntesis propuestas en las

páginas 242 y 243. Verifique sus respuestas en la página 376.

ACTIVIDAD Nº 4: “LA FABRICA DE JUGUETES: UN RECURSO PARA DISEÑARLOS MOLDES”

Retomaremos la Actividad Nº 1 “Fichas para juegos infantiles”. Uno de sus directivos

llegó un día con un recurso para diseñar los moldes de las fichas básicas y convocó a sus

empleados para contarles en qué consistía.

Preste atención a los pasos realizados a continuación por el directivo de la fábrica de

modo tal que usted pueda utilizar el recurso que va a describir.

Si por ejemplo la ficha básica es:

y se quiere diseñar un molde de mayor tamaño, que tenga razón 2 entre las medidas

de sus lados, se hace lo siguiente:

• Se determina un punto O cualquiera.

• Se elige un punto cualquiera de la figura, por ejemplo el punto B, y se grafica el vec-

tor OB .

A

B

C

Page 79: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

• A partir de él se obtiene el vector OB’ = 2.OB, es decir se determina el punto B’ como

lo indica el gráfico de abajo.

Para determinar cada punto del molde se repite lo hecho con el punto B.

Parte A

Teniendo en cuenta la descripción dada del recurso, responda las siguientes consignas:

1. Encuentre los puntos A’ y C’ a partir de A y C respectivamente, siguiendo el procedi-

miento dado para el punto B. Es decir determine: OA’ = 2.OA y OC’ = 2.OC.

Complete el gráfico dado anteriormente ubicando los puntos A’ y C’.

2. Complete el diseño del molde A’B’C’. Si le resulta necesario elija otros puntos de la

figura y repita el procedimiento anterior.

ORIENTACIONES

Compare lo que obtuvo con lo que le damos a continuación:

Para completar el diseño del molde tendría que aplicar este recurso a todos lospuntos de la figura. De todos modos es suficiente con aplicarlo a cada vérticede la ficha básica y trazar los lados A’B’, B’C’, y A’C’.

Matemática B • UNIDAD 4 75

A

B

CO

B’

O

B

B’

A

A’

C’C

Page 80: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática76

Observe en el gráfico realizado que se obtuvo para cada punto de la figura ABCuno y sólo un punto de la figura A’B’C’. Es decir que este recurso determinauna función definida de un conjunto de puntos del plano (figura ABC) en otroconjunto de puntos del plano (figura A’B’C’).

EN TÉRMINOS MATEMÁTICOS: HOMOTECIA

A la función que a cada elemento A de un conjunto de puntos del plano lehace corresponder un punto A’ del plano, de tal manera que OA’ = r.OA , sien-do r un número real distinto de cero, la llamaremos homotecia de centro Oy razón r.

Lo anotaremos así H (O ; r).

En la Parte A, a la función aplicada a la figura ABC para obtener A’B’C’, lallamaremos homotecia de centro O y razón 2. La simbolizamos: H(O; 2).

Dado que al punto A le corresponde el punto A’, a través de la homotecia,diremos que A’ es la imagen de A, o que A’ es el correspondiente de A, otambién que A’ es el homólogo de A.

Parte B

Le pedimos que resuelva las siguientes actividades para aplicar el recurso descripto a dis-

tintas figuras. Además aprovecharemos para usar el lenguaje matemático.

1. Aplique H(O ;1/2) a un cuadrado ABCD, siendo O un punto cualquiera exterior al cua-

drado.

2. Aplique H(O ; 3) a la figura ABCD dada a continuación:

C

B

A

O •

D

Page 81: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 4 77

3. Encuentre la figura imagen o correspondiente de un triángulo ABC a través de la

homotecia de centro en el vértice A y razón 2.

4. Encuentre el triángulo correspondiente al triángulo ABC a través de una homotecia

de centro O y razón r = -2, siendo O un punto cualquiera exterior al triángulo.

5. De acuerdo con lo que obtuvo en cada una de las homotecias aplicadas a distintas

figuras en los ítems anteriores, responda la siguiente pregunta. Utilice todos los

recursos que estén a su alcance para decidir su respuesta.

¿Cree que este recurso sirve para diseñar los moldes requeridos para el juego men-

cionado con anterioridad? O, dicho en términos matemáticos, ¿cree que las figuras

que se corresponden a través de una homotecia, son semejantes entre sí?

ORIENTACIONES

Es posible que a partir de resolver lo solicitado en la Parte B usted haya obser-vado que las figuras que se corresponden en una homotecia son semejantesentre sí.

Queremos destacar en este momento, como lo hicimos en Matemática A,

que la Matemática utiliza un recurso lógico, conocido como demostración,

para afirmar que las figuras que se corresponden en una homotecia son

semejantes entre sí. Y lo hace en general, no sobre casos particulares. Es

decir que no le alcanza con una simple observación sobre algunos casos

particulares para decidir la validez de una propiedad.

En este curso no haremos demostraciones matemáticas, pero sí nos inte-

resa que usted pueda verificar la validez de las propiedades, aunque sea

para algunos casos particulares.

EN TÉRMINOS MATEMÁTICOS: HOMOTECIA Y SEMEJANZA

Diremos que una homotecia de centro O y razón r, en símbolos H(O ; r),aplicada a una figura geométrica tiene por imagen otra figura geométrica detal forma que:

• Sus lados homólogos son paralelos.

• Sus ángulos homólogos son iguales.

• Sus lados homólogos son proporcionales y la constante de proporcionali-dad o razón es r.

Como consecuencia de lo dicho anteriormente: las figuras que se corres-ponden en una homotecia son semejantes entre sí.

Page 82: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática78

ACTIVIDAD Nº 5: “POSTES PARA CONSTRUIR UN QUINCHO”

Se deben colocar dos postes de 3 y 4,5 metros de altura para sostener el techo de un

quincho. El primero se coloca a 10 m de distancia de un punto de referencia que lla-

maremos O. El segundo poste debe colocarse de tal manera que los extremos superio-

res de ambos postes queden alineados con el punto O. Puede esquematizarse lo dicho

de la siguiente manera:

AB y A’B’ representan a cada uno de los postes.

Parte A

1. ¿Cómo son entre sí los triángulos OAB y OA’B’? ¿Por qué?

2. Calcule a qué distancia del punto de referencia O debe colocarse el segundo poste.

Justifique lo que utiliza para responder.

ORIENTACIONES

Los triángulos OAB y OA’B’ son semejantes entre sí por corresponderse en

una homotecia de centro O y razón .

Luego se verifica que = 1,5 pero OA es un dato y es igual a 10.

Por lo tanto =1,5.

Esta igualdad es una ecuación donde la incógnita es OA’ , por lo tanto pararesolverla se multiplica por 10 a ambos miembros de la igualdad y resulta que OA’ = 1,5 · 10 = 15.

Luego el segundo poste hay que ubicarlo a 15 m del punto de referencia O.

O A A’

3 m 4,5 m

TECHO

10 m

B

B’

4,53OA’

OAOA’10

Page 83: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 4 79

Para resolver situaciones como la anterior y otras en las que se usa la semejanza de

figuras geométricas deberá trabajar con proporciones y sus propiedades. Usted ya

trabajó con estos temas en la unidad anterior. Si lo necesita, retome esos temas.

Parte B

1. El siguiente gráfico representa los resultados de aplicar las homotecias H(A ; r) y H(A ; k)

al triángulo ABC.

• El triángulo AB’C’ se obtiene al aplicar H(A , r) al triángulo ABC.

• El triángulo AB’’C’’ se obtiene al aplicar H(A , k) al triángulo ABC.

Responda las siguientes consignas:

a. ¿Cómo son entre sí los triángulos ABC y AB’C’? ¿Por qué?

b. ¿Qué puede decir de los triángulos ABC y AB’’C’’ por corresponderse a través de

una homotecia?

c. ¿Cómo son entre sí las rectas que contienen los segmentos BC, B’C’ y B’’C’’?

2. En el cuadro que sigue se han escrito algunas proporciones posibles entre segmentos

del gráfico anterior. Estas proporciones se pueden basar o justificar con las homote-

cias aplicadas y la siguiente propiedad de las proporciones:

Si = es verdadera también lo es la siguiente proporción =

En el cuadro algunas de las proporciones están incompletas y faltan algunas justifi-

caciones. Complete todo lo que falta.

A C C’ C’’

B

B’

B’’

a

b

c

d

a - b

b

c - d

d

Page 84: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática80

ORIENTACIONES

Una de las proporciones del cuadro anterior es:

=

Esta se puede deducir a partir de la proporción:

= (justificada por la homotecia H(A ; r))

Si = entonces = (por la propiedad

de proporciones: si = entonces = )

Como AB’ - AB = BB’ y AC’ - AC = CC’ (observe estas diferencias de medi-das de los segmentos en la figura dada en la Parte B).

Queda la proporción = , que queríamos probar.

De manera similar, se puede justificar que = teniendo en cuenta

la homotecia H(A ; k) y la propiedad de proporciones mencionada.

=AC’’

AC

La proporción

=

=

Justificación de la veracidad de la proporción

Por la homotecia H(A ; r) aplicada al triángulo ABC

Por la homotecia H(A ; k) aplicada al triángulo ABC

Por la homotecia H(A ; r) aplicada al triángulo ABC y por

propiedad

..........................................................................................

AB’

AB

AC’

.......

.......

AB

=BB’’

AB

CC’’

AC

BB’

AB

CC’

AC

BB’AB

CC’AC

AB’AB

AC’AC

AB’AB

ab

cd

a-bb

c-dd

AC’AC

BB’AB

CC’AC

BB”AB

CC’’AC

AB’ - ABAB

AC’ - ACAC

Page 85: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 4 81

Observe en el gráfico cada uno de dichos segmentos. A partir de la observa-ción le resultará útil reconocer la validez de esta proporción.

Pero, además queremos que descubra otra proporción válida a partir de lasdadas arriba. Los números que intervienen en las razones representan medidasde segmentos, por lo tanto son todos números distintos de cero. Podemos, contranquilidad dividir miembro a miembro cada una de las igualdades dadasarriba y resulta:

= Efectuando la división queda: = .

Esta es una de las proporciones que nos servirá para interpretar una propiedadconocida como teorema de Thales que enunciaremos a continuación.

EN TÉRMINOS MATEMÁTICOS: “TEOREMA DE THALES"

Si dos rectas r y p son cortadas por tres o más paralelas, por ejemplo, comoindica el dibujo:

se cumple que las medidas de los segmentos determinados por B, B’ y B’’ enla recta r son proporcionales, respectivamente, a las medidas de los segmentosdeterminados por C, C’ y C’’ en la recta p.

Esta propiedad se conoce con el nombre de teorema de Thales. En símbolos,podemos expresar las siguientes proporciones:

BB’AB

CC’AC

BB’’AB

CC’’AC

BB’BB’’

CC’CC’’

p

C

C’

C’’

r

B

B’

B’’

BB’B’B’’

CC’C’C’’

BB’BB’’

= ; =CC’CC’’

;B’B’’BB’

C’C’’CC’

BB’’BB’

= y =CC’’CC’

Page 86: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática82

ACTIVIDAD Nº 6: “POSTES PARA LA TV POR CABLE”

En una ciudad, la empresa Telecable debe efectuar, a partir de su sede, el ten-dido de cables sobre dos avenidas, una de las cuales es diagonal. En cada ave-nida, debe ubicar los postes en forma equidistante uno del otro (es decir que,en cada avenida, debe haber la misma distancia entre dos postes cualquiera).A continuación se muestra:

• la ubicación de 7 de los postes en una de las avenidas (P1 , P2 , P3 ,

P4 , P5 , P6 , P7).

• la ubicación de la sede de la empresa.

• la ubicación del séptimo poste sobre la avenida diagonal (P’7).

Responda las siguientes consignas:

1. ¿Se verifica el objetivo de la empresa sobre la avenida?

2. Trace el segmento P7P´7.

3. Trace rectas paralelas a P7P’7, pasando por cada uno de los otros 6 puntos marcados

sobre la avenida y ubique así los postes sobre la diagonal.

4. Mida y compare las distancias que hay entre postes sobre la diagonal. ¿Se cumple con

el objetivo de la empresa?

5. Por ejemplo, ¿cuánto valen las razones y ?

ORIENTACIONES

La distancia entre postes sucesivos en la avenida es siempre la misma. Por

ejemplo, P3P4 = P4P5 , por lo tanto = 1 .

En la diagonal, los postes también equidistan entre sí. Por lo tanto, también

= 1 .

P1SEDE

DIAGONAL

AVENIDA

P2 P3 P4P5 P6 P7

P’7

P3P4

P4P5

P’3P’4P’4P’5

P3P4

P4P5

P’3P’4P’4P’5

Page 87: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 4 83

Teniendo en cuenta que las dos razones anteriores son iguales, podemos escribir

la siguiente proporción: = .

Si se tiene en cuenta que las rectas P3P’3, P4P’4 y P5P’5 son paralelas entre sí,la proporción anterior se justifica por el teorema de Thales.

En el gráfico dado los postes ubicados sobre la avenida están a igual distanciauno de otro, es decir, los segmentos determinados sobre la misma tienen lamisma medida. Al trazar las rectas paralelas al segmento P7P’7 , los segmentosdeterminados sobre la diagonal también tienen la misma medida. Por lo tanto,los postes ubicados sobre la diagonal también equidistan entre sí.

El recurso utilizado en esta Actividad, nos sirve para dividir un segmento enpartes iguales.

P3P4

P4P5

P’3P’4P’4P’5

Antes de comenzar a estudiar la próxima unidad, usted debe realizar los ejer-

cicios de integración correspondientes a la Unidad 4. Su realización es impres-

cindible. Al resolverlos trabajará aspectos de los contenidos de la unidad que

no fueron trabajados en las actividades que resolvió hasta este momento.

También podrá integrar los distintos contenidos de la unidad y autoevaluar si

ya se encuentra en condiciones de pasar a estudiar la próxima unidad. No deje

de realizarlos.

Page 88: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática84

Page 89: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 5 85

UNIDAD 5

UN

IDA

D 5

Función cuadrática

En esta Unidad trabajaremos con las funciones cuadráticas.

Estas funciones, del mismo modo que las funciones lineales, son utilizadascomo modelos matemáticos de situaciones vinculadas con la Física, la Biología,la Economía, etc.

Trabajaremos con las diferentes formas de expresar la fórmula de una funcióncuadrática y con la forma de representarla gráficamente, obteniendo de estemodo elementos que nos permitirán encontrar soluciones a los problemasmodelados por ellas.

Propósitos de la UnidadEn relación con los contenidos de esta Unidad le proponemos que:

• Reconozca una fórmula cuadrática y las diferentes formas de escribirla.

• Reconozca las características de una función cuadrática y de su represen-tación gráfica.

• Analice, a partir de su representación gráfica, los ceros, intervalos de posi-tividad y negatividad, intervalos de crecimiento y decrecimiento, máximoso mínimos de una función cuadrática.

• Calcule ceros y coordenadas del vértice de una función cuadrática a partirde su fórmula.

• Represente gráficamente una función cuadrática a partir de su fórmula.

• Analice situaciones concretas modeladas por funciones cuadráticas e inter-prete los ceros, las coordenadas del vértice, los intervalos de crecimiento ydecrecimiento, los intervalos de positividad y negatividad, los máximos omínimos de la función en términos de la situación.

ACTIVIDAD N° 1: “PRESUPUESTOS EN UN TALLER DE ARTESANÍAS”

Dada la difícil situación económica del momento, un taller de artesanías decide ofrecer sus

servicios a los comerciantes de la zona para incrementar las ventas.

Un primer cliente solicita la decoración de chapas cuadradas de diferentes dimensiones.

El trabajo consiste en pintar una cara de cada chapa de lado x (en cm) y colocarle un listón

de cobre como indica el siguiente dibujo:

Page 90: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática86

Para presupuestar el trabajo, el dueño del taller realiza una serie de cálculos y averi-

guaciones:

• El costo de pintar la chapa es de $ 3 el cm2.

• El listón de cobre vale $ 2 el cm.

• El costo de mano de obra es de $ 4 por cada chapa.

Como el precio a cobrar por el trabajo depende de la medida x del lado de la chapa,

necesita organizarse para realizar los cálculos. Para ello, decide confeccionar una tabla,

considerando los siguientes rubros:

• Medida del lado de la chapa.

• Área de la chapa.

• Gasto en pintura.

• Precio del listón.

• Costo de mano de obra.

• Tarifa total

Parte A

Le pedimos que ayude al dueño del taller a organizar su presupuesto respondiendo a las

consignas que siguen:

1. Complete en la tabla que sigue, los casilleros que el dueño del taller dejó en blanco:

Si la medida (encm) del lado de

la chapa es:

2

5

7

10

El área dela chapa

es:

22

El gasto enpintura es:

3.22

El listón vale:

2.5

El costo pormano deobra es:

El total a cobrar,o tarifa , por esta

chapa es:

3.22 + 2.2 + 4

3.72 + 2.7 + 4

Page 91: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 5 87

2. Escriba una fórmula que exprese la tarifa total y a cobrar por un trabajo realizado en

una chapa de lado x. Para hacerlo tenga presente las cuentas que realizó en la tabla

anterior al calcular la tarifa total a partir de las diferentes medidas de los lados de las

chapas.

ORIENTACIONES

Luego de completar la tabla le habrá resultado más sencillo escribir la fórmu-la que expresa la tarifa y en función de la medida del lado x de la chapa. Lafórmula es:

y = f(x) = 3 . x2 + 2 . x + 4

Observándola, podemos ver que el máximo exponente al que está elevada la varia-ble x es un cuadrado. Por esa razón decimos que es una fórmula cuadrática.

EN TÉRMINOS MATEMÁTICOS: FÓRMULA CUADRÁTICA

Llamamos fórmula cuadrática a cualquier fórmula del tipo:

y = a . x2 + b . x + c

con a, b y c números reales y a 0 (a distinto de 0). A los números a, b y clos llamamos coeficientes.

Por ejemplo, en la fórmula y = 3 . x2 + 2 . x + 4 hallada, los coeficientes son:

a = 3, b = 2, c = 4.

Parte B

Todas las fórmulas que siguen son fórmulas cuadráticas. Identifique, en cada una de

ellas, los valores de los coeficientes a, b y c:

y = 5 . x2 – 2 . x - 3 y = 3 . x2 - x + y = -2 . x2 + . x + 1

y = . x2 – 5 . x y = - x2 + 2 y = 3 . x – 5 + x2

y = x2 y = 1 – x2

1

2

2

3

3

4

Page 92: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática88

Parte C

Al taller de artesanías llega un nuevo trabajo. Éste se debe realizar con placas de diferen-

tes tamaños y materiales.

El trabajo se inicia a partir de placas cuadradas que pueden ser de distintas dimensiones.

Cada placa inicial es de cierto material que llamaremos A.

A la placa inicial se deben soldar otras placas de materiales diferentes de tal modo que se

obtenga una nueva placa cuadrada. Una vez armada la placa final se la debe barnizar.

A continuación se ha hecho un esquema, en el que se representa la placa inicial y las par-

tes soldadas. Con las letras A, R y D distinguimos el tipo de material de cada parte de la

placa final. Las medidas son en cm.

Nuevamente, el encargado del taller deberá organizar el cálculo del presupuesto para

cada trabajo que le sea solicitado a partir de la medida de lado x de la placa inicial. Esta

vez pide ayuda a Pedro, uno de sus colaboradores.

Para comenzar, calcula algunos valores que necesitará para poder armar su presupuesto.

Póngase ahora en el lugar del encargado, es decir, suponga que es usted el que tiene

que hacer el presupuesto. Para comenzar con esta tarea, responda las siguientes pre-

guntas basándose en la información que le proporciona el esquema:

1. De acuerdo con el dibujo, ¿cómo puede calcular la medida del lado de la placa final?

Escriba la expresión que permite calcular dicha medida para cualquier valor de x.

2. ¿Cómo puede calcular el área que deberá barnizar, teniendo en cuenta la medida del

lado de la placa final? Escriba la expresión que permite calcular el área a barnizar

para cualquier valor de x.

3. ¿Cómo puede calcular el área de la placa inicial de material A? Escriba la expresión

correspondiente.

4. ¿Cómo puede calcular el área de cada una de las placas de material R? Escriba la

expresión correspondiente.

5. ¿Cómo puede calcular el área de la placa de material D? Escriba su valor.

Page 93: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 5 89

Parte D

Al formularse las mismas preguntas que usted acaba de responder, se produjo una

pequeña discusión entre el encargado del taller y su colaborador.

El encargado dice:

“El área a barnizar es lado por lado, o sea:

(x + 3) . (x + 3) o, lo que es igual, (x + 3)2 ”

El colaborador dice:

“El área a barnizar es el área de material A, más el área de material R, más el área de material D. Es decir:

x2 + ( 3 . x + 3 . x) + 32 ”

1. Suponga que usted debe funcionar como árbitro en esta discusión. Para ello deberá

juntar algunas pruebas antes de tomar su decisión. Le proponemos realizar algunos

cálculos con ese fin. Si por ejemplo, las dimensiones de la placa inicial fueran 4 cm x

4 cm, es decir x = 4:

a. ¿qué área se barnizaría según el cálculo del encargado?

b. ¿qué área se barnizaría según el cálculo de Pedro?

2. Compare los resultados que obtendría utilizando la cuenta del encargado y la de

Pedro para calcular el área a barnizar para los siguientes valores de x:

3 ¿Qué diría de los resultados obtenidos utilizando la fórmula del encargado respecto

de los obtenidos con la fórmula de Pedro?

4. ¿Qué opina que sucedería si damos a x otros valores diferentes a los de la tabla?

5. A partir de las pruebas que ha obtenido, ¿cómo cree que terminará la discusión entre

el encargado y su colaborador?

x

1

(x+3) . (x+3) x2 + (3.x+3.x) + 32

2

3

5

8

Page 94: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática90

ORIENTACIONES

A partir de las pruebas realizadas en la tabla anterior para varios valores de x,podemos observar que los cálculos del área a barnizar realizados utilizando lafórmula del encargado coinciden con los realizados con la fórmula de Pedro.Cada uno de ellos utilizó distintos caminos para calcularla, y ambos soncorrectos.

En general, del mismo modo que con los cálculos realizados por el encar-

gado del taller y su colaborador, se pueden encontrar diferentes caminos

de resolución de un problema que conduzcan todos a resultados igual-

mente correctos. Es importante entonces que, ante cada actividad, usted

elabore su propio camino de resolución confiando en que el mismo puede

ser correcto independientemente de que coincida con el camino seguido

por otra persona. Además, su propio camino, será el que mayor sentido

tenga para usted.

Podríamos decir, entonces, que:

(x + 3)2 = x2 + (3.x + 3.x) + 32

Si agrupamos los términos en el segundo miembro de la igualdad, nos queda:

(x + 3)2 = x2 + 2.3x + 32 = x2 + 6 . x + 9

La igualdad es válida para cualquier valor de x.

Nosotros hemos verificado que la igualdad anterior es válida para algunos

valores de x. Para la Matemática esto no es suficiente. Para poder afirmar

que la igualdad es válida para cualquier valor de x no le alcanza con com-

probar que se verifica para algunos valores de x. Para poder hacerlo, como

le resulta imposible repetir este procedimiento para los infinitos números

reales, debe utilizar propiedades, ya demostradas previamente, que le

permiten comprobar en forma general la validez de la igualdad. Estas

tareas son propias del quehacer matemático.

Parte E

Por suerte, llega al taller un tercer trabajo.

A partir de chapas cuadradas de distintas dimensiones, se deben pintar algunas zonas de

rojo (indicadas en el esquema con una R) y otra de dorado (indicada en el esquema con

una D). Sobre la zona que queda sin pintar se hace un grabado especial.

El siguiente gráfico describe el trabajo. Las medidas son en cm.

Page 95: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 5 91

A partir de la información anterior, responda las siguientes preguntas:

1. Teniendo en cuenta lo que pasó con el trabajo anterior, ¿cómo cree que calcularía el

encargado del taller el área a grabar en función de la medida x?

2. El colaborador planteó las siguientes cuentas para calcular el área a grabar:

x2 – [3.(x – 3) + 3.(x – 3) + 32 ]

Indique qué parte de la chapa representa cada una de las cuentas indicadas en la

siguiente tabla. Le damos una respuesta a modo de ejemplo:

3. Si la medida del lado de la chapa fuera de 5 cm, es decir x = 5:

a. Calcule el área a grabar como lo haría el encargado del taller y como lo haría su

colaborador.

b. Compare los resultados obtenidos por el encargado y por su colaborador

para otros valores de x. Por ejemplo, para x = 4; x = 7 y x = 10.

c. ¿Qué podría decir respecto de las dos formas de calcular el área grabada?

4. Pedro, el colaborador del encargado, utilizó la propiedad distributiva en las cuentas

que planteó para calcular el área a grabar y escribió:

x2 - [3 . (x - 3) + 3 . (x - 3) + 32 ] = x2 - [3 . x – 3 . 3 + 3 . x – 3 . 3 + 32 ] =

x2 - [3 . x – 32 + 3 . x – 32 + 32 ] = x2 - [3 . x – 32 + 3 . x] =

x2 – 3 . x – 3 . x + 32 = x2 – 6 . x + 9

Verifique si los pasos realizados por Pedro en sus cuentas son correctos.

Si tiene dificultades para entender los pasos dados por Pedro en las cuentas anteriores, le con-

vendría leer en la Unidad 2 de Matemática A “Propiedad distributiva de la multiplicación respec-

to de la suma y de la resta” y “Cancelación”.

3.(x-3) 32 [3.(x-3) + 3.(x-3) + 32]

Area de cada una delas zonas a pintar en

rojo

x2 x2 - [3.(x-3) + 3.(x-3) + 32]

Page 96: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática92

ORIENTACIONES

Del mismo modo que en el trabajo anterior, los resultados obtenidos porPedro y el encargado para calcular el área a grabar coinciden.

Podríamos decir, entonces, que:

(x – 3)2 = x2 – 6.x + 9

Esta igualdad también es válida para cualquier valor de x.

EN TÉRMINOS MATEMÁTICOS: CUADRADO DE UN BINOMIO.

TRINOMIO CUADRADO PERFECTO.

A partir de lo visto en esta actividad, agregaremos a su vocabulario matemá-tico algunos nombres:

• A la expresión x + 3 por tener dos términos o sumandos, la llamaremosbinomio. Por eso diremos que (x + 3)2 es un binomio al cuadrado.

• A la expresión x2 + 6x + 32 por tener tres términos o sumandos, la llama-remos trinomio. Y por ser igual a (x + 3)2 se lo llama trinomio cuadradoperfecto.

Si escribimos en forma más general lo dicho y trabajado en las Partes C, D yE de esta actividad, diremos que:

El binomio al cuadrado (x + a)2 es igual al trinomio cua-drado perfecto x2 + 2ax + a2, o sea:

(x + a)2 = x2 + 2ax + a2

El binomio al cuadrado (x – a)2 es igual al trinomio cua-drado perfecto x2 – 2ax + a2, o sea:

(x – a)2 = x2 – 2ax + a2

Page 97: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 5 93

ACTIVIDAD N° 2: “ANÁLISIS DE LA TEMPERATURA DE UNABARRA METÁLICA”

En un laboratorio se somete una barra metálica a distintas condiciones físicas. En cada caso

se mide la temperatura de la barra durante los primeros 6 minutos de prueba.

Los gráficos que siguen representan funciones que expresan, para distintos casos, la tem-

peratura y (en °C) en función del tiempos (en minutos) durante los 6 minutos de prueba.

Las fórmulas de las funciones graficadas son cuadráticas y están indicadas debajo de cada

uno de los gráficos.

CASO I CASO II CASO III

y = f(t) = t2 – 6t + 5 y = f(t) = t2 – 6t + 9 y = f(t) = -t2 + 8t – 12

CASO IV CASO V CASO VI

y = f(t) = -t2 + 6t – 10 y = f(t) = t2 – 6t + 11 y = f(t) = - t2 + 4t

Page 98: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática94

Parte A

En el laboratorio se quiere confeccionar un informe sobre lo observado en cada uno de

los casos anteriores. Le pedimos a usted que colabore en la confección del informe com-

pletando la tabla que le presentamos a continuación. Para hacerlo, observe los gráficos

y sus fórmulas como si usted fuese el jefe del laboratorio e indique, para cada uno de

los casos, el o los valores correspondientes a lo solicitado en la columna de la izquierda.

Parte B

A partir de la información reunida en la tabla, el jefe del laboratorio obtiene algunas

conclusiones en relación con la temperatura de la barra en cada uno de los casos ante-

riores. Formula sus conclusiones a través de las afirmaciones que se dan a continuación.

Determine la verdad o falsedad de cada una de ellas.

Si le resulta difícil leer los símbolos y, por lo tanto, interpretar las frases que siguen, le recomen-

damos buscar estos temas y simbologías en la Unidad 1 de Matemática B.

CASOS

I

Temperatura inicial ó f(0)

Instantes t en los que la

temperatura es de 0ºC ó

valores de t para los que

Instantes t en los que la

temperatura es mayor que

0ºC ó valores de t para los

Instantes t en los que la

temperatura es menor que

0ºC ó valores de t para los

Instante t en el que la tem-

peratura alcanza un valor

máximo o mínimo

Valor máximo o mínimo de

temperatura

Instantes t en los que la

temperatura aumenta o

Instantes t en los que la

temperatura disminuye o

II III IV V VI

Page 99: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 5 95

• En el caso I, entre los minutos 1 y 5 la temperatura de la barra fue negativa.

• En el caso I, la temperatura de la barra fue de 0 °C en el minuto 1 y en el minuto 5.

• En el caso III, f(2) = 0, y también, f(6) = 0.

• En el caso III, si t pertenece al intervalo abierto (2 ; 6) entonces f(t) > 0. Es decir, entre

el minuto 2 y el minuto 6 la temperatura es mayor que 0.

• En el caso II, f(3) = 0.

• En el caso V, f(t) > 0 para todo el período observado.

• En el caso IV, f(t) < 0 para todo t perteneciente al intervalo (0 ; 6).

• En el caso III, la barra alcanzó la temperatura máxima, que fue de 4° C, en el instan-

te t = 4 min.

• En el caso VI, el conjunto (2 ; 6) es el conjunto de decrecimiento de la función f.

• En el caso II, la temperatura mínima de la barra se produjo en el instante t = 3 y fue

de 0° C.

• En el caso IV, la temperatura de la barra nunca fue de cero grados.

• En el caso I, el punto de coordenadas (3 ; - 4) indica que a los 3 minutos de iniciadas

las pruebas la barra alcanzó la temperatura mínima de – 4° C.

• En el caso I, el conjunto (0 ; 1) (5 ; 6) es el conjunto de positividad de la función f.

El símbolo se lee unión, y es la forma de simbolizar que se define un conjunto for-mado por los elementos de alguno de los dos conjuntos.

• En el caso VI, la temperatura de la barra estuvo subiendo durante los dos primeros

minutos de pruebas.

ORIENTACIONES

Una lectura adecuada de los gráficos le habrá permitido inferir que todas lasafirmaciones son verdaderas. A partir de ellas podrá verificar si completócorrectamente la tabla dada en la Parte A.

EN TÉRMINOS MATEMÁTICOS: FUNCIÓN CUADRÁTICA. PARÁBOLA.

En todos los casos anteriores, la función que modela cada situación es unafunción del tipo f: [0 ; 6] � R / f(t) = a t2 + b t + c con a, b y c númerosreales y a 0.

El conjunto de partida de todas ellas es el conjunto [0 ; 6] ya que las pruebassobre la barra se realizaron durante 6 minutos.

Saliéndonos de la situación concreta de referencia, con cada una de las fórmulasanteriores podemos definir una función con dominio en el conjunto de todos losnúmeros reales. En ese caso estaríamos definiendo una función de la forma:

Page 100: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática96

f: R R / f(x) = a x2 + b x + c con a 0 y a, b, c números reales.

Llamaremos a estas funciones, funciones cuadráticas. Sus representacionesgráficas son curvas llamadas parábolas. Las representaciones gráficas de laactividad anterior son trozos de parábolas debido a que las funciones repre-sentadas están definidas en un subconjunto de números reales. Si extendiéra-mos el dominio de cada una de ellas al conjunto R, la representación gráficade cada una de las funciones sería una parábola completa. Por ejemplo, larepresentación gráfica de la función correspondiente al caso III, considerandoal conjunto de los números reales como dominio, resulta:

Entre las representaciones gráficas anteriores puede observar parábolas con estaforma: y parábolas con esta forma: . A las primeras las llamaremos pará-bolas cóncavas hacia arriba y a las otras, parábolas cóncavas hacia abajo.

Las parábolas cóncavas hacia arriba alcanzan en algún valor x de su dominio,un valor f(x) que es el mínimo valor de la función. Análogamente, si la pará-bola es cóncava hacia abajo, alcanza en algún valor x de su dominio, un valorf(x) que es el máximo valor de la función. En cualquiera de los dos casos, elpunto de la parábola donde la misma alcanza su punto máximo o su puntomínimo se llama vértice. Sus coordenadas son (xv ; yv) , siendo f(xv) = yv.

Como la función f toma el mismo valor y para cada par de valores de x quese encuentran a igual distancia de la recta vertical que pasa por el vértice, lagráfica de f resulta ser simétrica respecto de esta recta. Dicha recta recibe elnombre de eje de simetría de la parábola y su ecuación es x = xv.

Page 101: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 5 97

Parte C

Responda las siguientes preguntas a partir de las representaciones gráficas correspon-

dientes a cada uno de los casos:

1. Observe las representaciones gráficas correspondientes a los casos I, II y V, y a partir

de ellas responda las siguientes preguntas:

a. ¿Son parábolas cóncavas hacia arriba o cóncavas hacia abajo?

b. ¿Cuál es el signo del coeficiente a en la fórmula correspondiente a cada una de

ellas?

2. Observe ahora las representaciones gráficas correspondientes a los casos III, IV y VI, y

a partir de ellas responda las siguientes preguntas:

a. ¿Son parábolas cóncavas hacia arriba o cóncavas hacia abajo?

b. ¿Cuál es el signo del coeficiente a en la fórmula correspondiente a cada una de

ellas?

3. A partir de sus respuestas a las preguntas anteriores, trate de contar con sus palabras

cómo reconocería a través de la fórmula de una función cuadrática, si la parábola que

la representa es cóncava hacia arriba o cóncava hacia abajo.

Parte D

1. Reproduzca en su cuaderno la representación gráfica de la función correspondiente

al caso I pero considerando al conjunto de los números reales como dominio.

2. Represente, en el sistema utilizado para representar la parábola correspondiente al

caso I, una parábola diferente a la anterior que tenga sus mismos ceros. Es decir, que

corte al eje x en x = 1 y x = 5.

3. Represente, también en el mismo sistema anterior, otras cuatro parábolas distintas

que tengan como ceros a x = 1 y x = 5.

4. ¿Cuántas parábolas podría representar que tengan los mismos ceros que las anteriores?

5. Señale el punto correspondiente al vértice en cada una de las parábolas dibujadas e

indique gráficamente sus coordenadas.

6. ¿Cuál es la distancia en cada una de las parábolas dibujadas desde el valor xv hasta

cada uno de los ceros de la parábola?

7. A partir de sus respuestas a las preguntas anteriores, ¿qué podría decir sobre la ubi-

cación de xv en relación con la ubicación de los ceros en cada una de las parábolas

dibujadas?

Page 102: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática98

ORIENTACIONES

Es posible representar infinitas parábolas que tengan a x = 1 y x = 5 comoceros. Todas ellas son simétricas respecto del mismo eje. Como el eje desimetría es la recta vertical que pasa por el vértice de la parábola, todas ellastambién tienen la misma abscisa del vértice ( xv ). Las representaciones gráfi-cas de algunas de las parábolas que verifican las condiciones anteriores son:

La distancia desde xv a cualquiera de los dos ceros de la parábola es la misma,es decir que la abscisa xv está ubicada en el punto medio entre los dos cerosde la parábola. Por esta razón xv se puede calcular como el promedio de losvalores de los ceros. O sea, en este caso:

xv = = 3

EN TÉRMINOS MATEMÁTICOS: VÉRTICE DE UNA PARÁBOLA

Como ya dijimos anteriormente, llamamos vértice de la parábola al puntodonde ésta alcanza su valor máximo o mínimo. Sus coordenadas son (xv ; yv).

Como consecuencia de la simetría de la parábola, la abscisa xv está ubicada enel punto medio entre los ceros. Si el conjunto de ceros de la función cuadrá-tica es C0 = { x1 ; x2 }, la abscisa del vértice puede calcularse como:

xv =

En el libro trabajará otra forma de calcular este valor que podrá utilizar aúncuando la parábola no tenga ceros.

1 + 52

x1 + x22

Page 103: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 5 99

La ordenada del vértice, yv, puede determinarse a partir del valor xv calculan-do f(xv), es decir, calculando la imagen de xv a través de la función f.

Parte E

1. Retome la representación gráfica que realizó en el ítem 1. de la Parte D, es decir, la

representación de la función correspondiente al caso I considerando al conjunto de

los números reales como dominio.

a. ¿La función alcanza un máximo o un mínimo? ¿Cuál es el máximo ó mínimo valor?

Márquelo también sobre el eje y.

b. Observe en ella cuáles son todos los valores de y que resultan ser imagen de algún

valor x del dominio de la función. Márquelos sobre el eje y.

c. A partir de lo observado en los ítems anteriores, escriba el conjunto imagen de la

función f: R R / y = f(t) = t2 – 6t + 5.

2. Extienda al conjunto de los números reales el dominio de las funciones graficadas

para los demás casos y determine, a partir de sus representaciones gráficas, el con-

junto imagen de cada una de las funciones f: R R / y = f(t). Para hacerlo tenga en

cuenta las indicaciones que le dimos en el ítem 1..

ORIENTACIONES

A partir de la representación gráfica de la función:

f: R R / y = f(t) = t2 – 6t + 5

podemos ver que, en el vértice la función alcanza su valor mínimo, que es –4.Todos los valores de y mayores o iguales que –4 resultan ser imagen de algúnvalor x del dominio de la función f. Por lo tanto el conjunto imagen de la fun-ción f es el intervalo [-4 ; + ). En símbolos:

Im f = [-4 ; + )

En la representación gráfica correspondiente al caso III, en el vértice la fun-ción alcanza su valor máximo. En este caso podemos observar en el gráficoque todas las imágenes alcanzadas por la función son menores o iguales que 4,que es el valor máximo. Por lo tanto, el conjunto imagen de la función es elintervalo (- ; 4]. En símbolos:

Im f = (- ; 4]

Como se puede observar en los dos ejemplos anteriores, el valor máximo omínimo del conjunto imagen de una función cuadrática es el valor yv.

Page 104: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática100

ACTIVIDAD N° 3: “TRABAJANDO CON EL LIBRO”

Parte A

En esta parte de la actividad lo orientaremos para que trabaje algunos contenidos utilizando el

libro Matemática 1 de Camuyrano B y otros, editorial Estrada.

No se olvide de las sugerencias que le hicimos en las unidades anteriores

respecto del manejo del libro y de la información que él puede brindarle.

En el Capítulo 3 - Funciones cuadráticas:

1. Lea, en las páginas 77 a 83, “La función cuadrática y su expresión cartesiana”. A

medida que avanza en la lectura resuelva la Ejercitación propuesta en la página 79

y el ejercicio N° 2 de la Ejercitación propuesta en la página 83.

En la página 78 de la edición 2000, hay un error en la fórmula para el cálculo de

los ceros de una función cuadrática. La misma debe ser:

Si usted tiene otra edición verifique que la fórmula dada para el cálculo de los

ceros sea la que le acabamos de indicar.

2. Lea, en las páginas 84 y 85, “Conjuntos de positividad y negatividad”.

3. Resuelva la Ejercitación propuesta en las páginas 85 y 86.

4. Lea, en las páginas 86 a 88, “Factorización de la función cuadrática”. Resuelva los

ejercicios 1, 2 y 3 de la Ejercitación propuesta al pie de la página 88.

5. Lea, en las páginas 89 a 91, “Intersección de una parábola y una recta”.

6. Resuelva, de las Actividades de síntesis propuestas en las páginas 92 y 93, los ejer-

cicios N° 11, 12, 15, 16 y 17. Puede verificar sus respuestas en la página 372.

Parte B

1. Vamos a retomar la Situación 6: “El rendimiento del cultivo de naranjas”, que leyó

en el libro, para trabajar algunos aspectos más en relación con el tema planteado en

la misma.

En ella se expresó la producción total de la plantación en función de la cantidad x de

naranjos agregados a través de la fórmula:

P(x) = -5 . (40 + x) . (x – 100)

a. Aplique, en la expresión anterior, la propiedad distributiva del producto respecto

de la suma y la resta.

b. La expresión obtenida, ¿qué tipo de fórmula es?

Page 105: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 5 101

2. Verifique las siguientes igualdades, aplicando la propiedad distributiva de la multi-

plicación respecto de la suma y la resta en la expresión del primer miembro de la

igualdad:

a. –3 . (x – 1) . (x – 2) = 3x2 – 9x + 6

b. –2 . (x + 1) . (x – 3) = -2x2 + 4x + 6

c. –3x . (x – 5) = -3x2 + 15x

3. ¿Cuáles son los ceros de las funciones definidas con cada una de las fórmulas anteriores?

EN TÉRMINOS MATEMÁTICOS: FORMA FACTORIZADA DE UNAFÓRMULA CUADRÁTICA

Aplicando la propiedad distributiva del producto respecto de la suma o de la resta,usted habrá podido verificar las tres igualdades anteriores. En cada igualdad, lasdos expresiones son formas distintas de escribir una misma fórmula cuadrática(como en el caso del encargado del taller y Pedro su colaborador, ¿lo recuerda?).

En general, la expresión a . (x – x1) . (x – x2) en la que x1 y x2 son los ceros dela función cuadrática y a es el coeficiente del término en el que la variable x tieneexponente 2, es la expresión factorizada de la expresión ax2 + bx + c. Es decir,

a . (x – x1) . (x – x2) = ax2 + bx + c

Por ejemplo: 3 . (x – 1) . (x – 2) es la expresión factorizada de 3x2 – 9x + 6.

Los ceros de la función cuadrática definida a través de la fórmula anterior son

x = 1 y x = 2.

En el problema de las naranjas, la fórmula P(x) = -5 . (40 + x) . (x – 100) esuna fórmula cuadrática escrita en forma factorizada. Fuera del contexto delproblema, las raíces de la ecuación son x1 = -40 y x2 = 100.

Buscar las raíces cuando la fórmula está escrita en forma factorizada es más sen-cillo que cuando la fórmula está escrita de la forma f(x) = a x2 + bx + c, ya quepara hacerlo es suficiente determinar el valor de x que anula a cada uno de losfactores.

Antes de comenzar a estudiar la próxima unidad, usted debe realizar los ejercicios

de integración correspondientes a la Unidad 5. Su realización es imprescindible.

Al resolverlos trabajará aspectos de los contenidos de la unidad que no fueron tra-

bajados en las actividades que resolvió hasta este momento. También podrá inte-

grar los distintos contenidos de la unidad y autoevaluar si ya se encuentra en con-

diciones de pasar a estudiar la próxima unidad. No deje de realizarlos.

Page 106: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática102

Page 107: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 6 103

UNIDAD 6

UN

IDA

D 6

Funciones polinómicas

En esta Unidad trabajaremos con funciones polinómicas, que también sonutilizadas como modelos matemáticos de situaciones vinculadas a la Física, laBiología, la Economía, etc.

Trabajaremos con las diferentes formas de expresar la fórmula de una funciónpolinómica y con los procedimientos que permiten pasar de una forma deexpresión a la otra. También veremos cómo se resuelven las operaciones bási-cas con polinomios (o expresiones polinómicas).

Propósitos de la Unidad:En relación con los contenidos de esta Unidad, le proponemos que:

• Reconozca las características de una función polinómica.

• Resuelva operaciones entre polinomios o expresiones polinómicas.

• Reconozca las diferentes formas en que puede expresarse la fórmula de unafunción polinómica.

• Factorice polinomios teniendo en cuenta sus raíces usando el teorema deGauss.

• Resuelva problemas en los que se utilice a las funciones polinómicas comomodelo e interprete sus respuestas en términos de la situación.

• Analice los ceros, intervalos de crecimiento y decrecimiento, máximos ymínimos a partir de la representación gráfica de una función polinómica.

• Calcule el resto de una división usando el teorema del resto.

• Decida si un polinomio es divisible por otro.

Para trabajar los contenidos de esta unidad es indispensable haber comprendido los

contenidos de las Unidades 1 y 5. Si le ha quedado alguna duda, o no recuerda algún

tema, es conveniente que revise los contenidos de esas unidades en los que aún

tiene dificultades antes de comenzar el estudio de la presente Unidad.

Page 108: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática104

ACTIVIDAD N° 1: “FABRICACIÓN DE DADOS”

La empresa “HASTEM” fabrica juegos de mesa para los que necesita dados cúbicos de distin-

tos tamaños.

El costo de construcción de un cubo para fabricar un dado es de $ 0,02 el cm3. Pintar las caras

de los dados vale $ 0,01 el cm2.

Cada punto marcado que se le debe agregar al dado en sus caras tiene un valor de $ 0,01.

Si con x se expresa la medida de la arista de un dado, la fórmula que permite calcular su costo

de fabricación c es cc((xx)) == 00,,0022 ·· xx33 ++ 00,,0066 ·· xx22 ++ 00,,2211

Para los juegos fabricados por esta empresa se necesitan dados cuyas aristas midan entre 0,5 cm

y 2 cm.

Dos caras de un dado (o cubo) se unen formando una arista. Es decir que una aristaes el segmento donde se unen dos caras del cubo. En un dado, todas las aristas midenlo mismo.

Parte A

1. Calcule, usando la fórmula c(x), el costo de fabricación de un dado de 1,7 cm de arista.

2. Calcule c(0,7). Interprete el valor calculado en términos de la situación de la fábrica

de juegos de mesa.

3. Defina una función c que permita describir los posibles costos de fabricación de

dados en la empresa “HASTEM”.

Parte B

Otra empresa, “YEBRO”, fabrica dados con un material que le cuesta $ 0,06 el cm3.

Usando este material no hace falta pintar las caras de los dados. Marcar cada punto en

las caras tiene un costo de $ 0,01. Esta empresa fabrica dados cuyas aristas miden entre

0,6 cm y 1,8 cm.

1. ¿Con cuál de las siguientes fórmulas puede calcular el costo p de fabricación de un

dado cuya arista mide x cm en la fábrica “YEBRO”?

p(x) = 0,06 · x3 + 0,01

p(x) = 0,01 · x3 + 0,06

p(x) = 0,06 · x3 + 0,21

2. Calcule p(1,7) y p(0,7) utilizando la fórmula que seleccionó en el ítem 1..

Page 109: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 6 105

3. Si usted tuviera que encargar la fabricación de dados a alguna de estas empresas, ¿a

cuál le pediría un dado cuya arista mida 1,4 cm? ¿Por qué? Indique las cuentas que

le permiten justificar su respuesta.

4. Defina una función p que permita describir los posibles costos de fabricación de

dados en la empresa “YEBRO”.

ORIENTACIONES

Las funciones que permiten calcular el costo de fabricación de dados en cadauna de las empresas mencionadas son:

c : [0,5 ; 2] R / c(x) = 0,02 · x3 + 0,06 · x2 + 0,21

p : [0,6 ; 1,8] R / p(x) = 0,06 · x3 + 0,21

EN TÉRMINOS MATEMÁTICOS: POLINOMIO DE GRADO 3. FUN-CIONES POLINÓMICAS DE GRADO 3. MONOMIOS.

En las fórmulas c(x) = 0,02 · x3 + 0,06 · x2 + 0,21 y p(x) = 0,06 · x3 + 0,21

de las funciones anteriores aparece la variable x elevada a distintos exponentes(que son números naturales). En ambos casos, el máximo exponente al que seeleva la variable x es 3

Fórmulas como las mencionadas se llaman fórmulas polinómicas o polino-mios de grado 3. Cada término de un polinomio se llama monomio.

Debido a las condiciones de fabricación de los dados, los dominios de las fun-ciones c y p son los intervalos [0,5 ; 2] y [0,6 ; 1,8] respectivamente. Si deja-mos de lado esas condiciones, con las fórmulas dadas podemos definir fun-ciones de R en R. Es decir:

• g : R R / g(x) = 0,02 · x3 + 0,06 · x2 + 0,21

•·h : R R / h(x) = 0,06 · x3 + 0,21

Dichas funciones son ejemplos de funciones polinómicas de grado 3.

En general, una función f : R R / f(x) = ax3 + bx2 + cx + d, se llama fun-ción polinómica de grado 3. Los números a, b, c y d se llaman coeficientesy son números reales. El coeficiente a se llama coeficiente principal y debe serdistinto de cero (en símbolos: a 0) para que el polinomio sea de grado 3.

Page 110: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática106

EN TÉRMINOS MATEMÁTICOS: FUNCIONES POLINÓMICAS DEGRADO n. POLINOMIOS DE GRADO n.

Además de las funciones polinómicas de grado 3 presentadas en la actividadanterior, usted ya ha trabajado en esta Guía con otras funciones polinómicas:

• Las funciones lineales que pueden ser funciones polinómicas de grado cero,o sea:

f : R R / f(x) = a (con a 0);

o funciones polinómicas de grado 1, o sea:

f : R R / f(x) = m . x + b (con m 0).

• Las funciones polinómicas de grado 2 (o funciones cuadráticas), o sea:

f : R R / f(x) = ax2 + bx + c (con a 0).

Como puede verse en las funciones polinómicas anteriores, el grado está dadopor el máximo exponente al que está elevada la variable x.

También podemos trabajar con funciones polinómicas de:

• grado 4, es decir que su fórmula es un polinomio en el que el mayor expo-nente al que aparece elevada la variable es 4. O sea:,

f : R R / f(x) = ax4 + bx3 + cx2 + dx + e (con a 0)

• grado 5 o superior

En general podemos definir funciones polinómicas de grado n. Son funciones

f : R R / f(x) = axn + bxn-1 + … + x2 + x +

(donde los coeficientes a, b, c, …, y son números reales, a 0 y losexponentes de la variable x son números naturales).

La fórmula de esta función es un polinomio de grado n ya que, como el coefi-ciente principal es distinto de cero, n es el máximo exponente al que se eleva x.

ACTIVIDAD N° 2: “EL TALLER DE ARTESANÍAS CAMBIA SUS PRECIOS”

En la Actividad Nº 1 de la Unidad 5: “Presupuestos en un taller de artesanías” hemos trabajado

con los pedidos a un taller de artesanías. ¿Se acuerda? Si no la recuerda, reléala en la Unidad 5.

El primer cliente volvió por el taller para solicitar un nuevo pedido de chapas con las mis-

mas características.

El encargado del taller le aclaró al cliente que los precios habían sido modificados, ya

que se habían producido aumentos en todos los rubros.

Y le detalló:

El costo de pintar la chapa aumentó a razón de $ 0,5 el cm2.

Page 111: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 6 107

La barra de cobre tuvo un aumento de $ 1 el cm.

La mano de obra aumentó $ 2 por cada chapa.

Teniendo en cuenta la experiencia anterior, el dueño del taller decide confeccionar una

nueva tabla que refleja los aumentos por rubro.

El encabezado de la tabla es el siguiente:

Parte A

1. Le solicitamos que colabore con el dueño y complete los espacios con la información

necesaria para el cálculo:

2. Teniendo en cuenta los cálculos que hizo para completar la tabla anterior, ¿con qué

fórmula puede expresarse el aumento de precio para cada chapa cuadrada de lado x?

Complete: p(x) = . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. En la Actividad Nº 1 de la Unidad 5, “Presupuestos en un taller de artesanías”, usted

determinó que la fórmula que da el precio a pagar inicialmente en función del lado

x de la chapa es:

f(x) = 3x2 + 2x + 4.

La fórmula que le pedimos en el ítem 2. de esta actividad para calcular el aumento

de precio en función del lado x de la chapa es:

p(x) = 0,5 x2 + 1 x + 2.

Si la medida(en cm) dellado de lachapa es:

El área de lachapa es:

El aumentodel gasto enpintura es:

El aumentode la barra es:

El aumentodel costo pormano de obra

es:

El total delaumento poresta chapa es:

Si la medida(en cm) dellado de lachapa es:

El área de lachapa es:

El aumentodel gasto enpintura es:

El aumentode la barra

es:

El aumentodel costo por

mano deobra es:

El total delaumento por esta

chapa es:

3 0,5 • 32 0,5 •32 + 1 • 9 + 2

6 1 • 6

9 0,5 • 92 + 1 • 3 + 2

11

Page 112: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática108

Utilice las dos fórmulas anteriores, o sea f(x) y p(x), para determinar la fórmula g(x) que

permite calcular el importe a pagar por cada chapa en función del lado x de la misma

después del aumento.

Parte B

Volvamos a la situación planteada en la Parte A de esta Actividad. Si las variaciones de

precios, en lugar de ser de aumento fueran descuentos en cada uno de los rubros.

1. ¿Cuál es la fórmula que da el precio d a pagar en función de x con el descuento

incluido?

2. ¿Cómo obtiene esta fórmula d(x) usando las fórmulas f(x) y p(x)?

ORIENTACIONES

Si f(x) es la fórmula que permite calcular el precio inicial de cada chapa enfunción del lado x, y p(x) es la fórmula que da el aumento de precio por cadachapa en función del lado x, la fórmula que da el nuevo precio por cada chapa,con el aumento es g(x) = f(x) + p(x).

Observe que:

f(x) = 3x2 + 2x + 4+

p(x) = 0,5x2 + 1x + 2

g(x) = f(x) + p(x) = 3,5x2 + 3x + 6

La fórmula g(x), es un polinomio de grado 2 que es la suma de dos polino-mios de segundo grado: f(x) y p(x).

¿Cómo sumar las fórmulas f(x) con p(x)?

De acuerdo con la situación concreta, sumamos cada rubro entre sí. Es decirsumamos:

• El precio inicial por la pintura de la chapa y el correspondiente aumento dela pintura entre sí. Estos precios están en función de x2 porque dependen dela superficie de la chapa a pintar.

• El precio inicial del listón de cobre y el correspondiente aumento del listónentre sí. Estos precios están en función de x porque dependen de la longi-tud del lado de la chapa.

• El costo inicial de mano de obra y el aumento de la misma entre sí. Estosvalores no están en función de x porque son independientes de las dimen-siones de la chapa.

Page 113: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 6 109

Para restar las dos fórmulas, como lo hicimos con la suma, restamos cadarubro entre sí. Matemáticamente estamos restando entre sí los coeficientes delos términos que tienen el mismo exponente de la variable x. Así la fórmulapedida en la Parte B resulta d(x) = 2,5x2 + x + 2.

Parte C

En esta parte de la actividad lo orientaremos para que trabaje algunos contenidos utilizando el

libro Matemática 1 de Camuyrano B. y otros, editorial Estrada.

Lea, en el Capítulo 4: Funciones polinómicas, el tema “Operaciones con polinomios” en

la página 102 del texto.

Parte D

A partir de lo que trabajó con el libro, responda:

1.

a. Si p(x) = x y q(x) = x2 - 4x + 2, calcule m(x) = p(x) · q(x).

b. ¿Cuál es el grado de p(x)? ¿Y el de q(x)? ¿De qué grado resulta m(x)?

2.

a. Halle n(x) = h(x) · s(x), siendo h(x) = 2x + 3 y s(x) = x3 - 2.

b. ¿De qué grado es h(x)? ¿Y s(x)? ¿De qué grado resulta n(x)?

3.

a. Calcule t(x) = r(x) · g(x), usando r(x) = 4x2 + 1 y g(x) = x5 - 3x + 2.

b. ¿De qué grado resulta t(x)?

Para resolver las multiplicaciones anteriores debe tener en cuenta las propiedades de las poten-

cias de igual base. Si no las recuerda puede trabajarlas retomando la Unidad 2 de Matemática A.

4. Si el polinomio c(x) es de grado 4 y d(x) es un polinomio de grado 2, ¿cuál es el

grado del polinomio p(x) = c(x) · d(x)?

5. Sabiendo los grados de los polinomios que intervienen en una multiplicación, ¿puede

predecir de qué grado será el resultado? ¿Cómo? Explíquelo con sus palabras.

Page 114: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática110

ORIENTACIONES

El grado del producto entre dos polinomios es la suma de los grados de dichospolinomios.

Parte E

Responda las siguientes preguntas:

1. ¿Cuál es el monomio que multiplicado por el monomio x2 da x3? O lo que es lo

mismo, ¿cuánto vale x3 : x2?

2. ¿Por qué monomio se debe multiplicar a x3 para obtener 8x4?

O sea, ¿cuánto da 8x4 : x3?

3. ¿Qué resultado tiene la división x5 : x2?

4. Al dividir 5x6 : x4, ¿qué monomio resulta?

5. ¿Cuál es el grado de cada monomio obtenido?

Para resolver las divisiones anteriores debe tener en cuenta las propiedades de las potencias de

igual base. Si no las recuerda, puede trabajarlas retomando la Unidad 2 de Matemática A.

ORIENTACIONES

Las operaciones entre polinomios se pueden vincular con las operaciones entrenúmeros enteros. Este vínculo puede facilitarle el aprendizaje de las operacionesentre polinomios porque usted ya conoce cómo se resuelven las operaciones entrenúmeros enteros. Le proponemos retomar este vínculo para favorecer una correctainterpretación de los nombres utilizados en la división. Por ejemplo, en la división:

11 5

01 2

el 11 es el dividendo; el 5 es el divisor; el 2 es el cociente y el 1 es el resto.(Observe que el resto es menor que el divisor).

En una división entre polinomios:

D(x) d(x)

R(x) C(x)

se llama dividendo al polinomio D(x); divisor al polinomio d(x); cociente alpolinomio C(x) y resto al polinomio R(x).

Como puede observar, estamos usando los mismos nombres en la división depolinomios que los usados en la división de números enteros.

Page 115: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 6 111

En la Parte E, se obtienen los monomios x, 8x, x3 y 5x2, respectivamente. Enellos se puede ver que el grado del monomio cociente es la diferencia entre elgrado del monomio dividendo y el grado del monomio divisor.

También usaremos la división de números enteros para favorecer la interpre-tación del procedimiento de la división de polinomios. Recordemos que, porejemplo, para realizar la división 297 : 4, hacemos 29 : 4 = 7 para empezar acalcular el cociente. Después calculamos el primer resto y nos queda losiguiente:

297 4

1 7

¿Qué cuentas estamos haciendo para encontrar este resto, aunque no las escriba-mos? Multiplicamos 7 · 4 = 28 y lo restamos de 29. Si lo escribimos, queda así:

297 4

28 7

10

Tenga en cuenta estos pasos y operaciones para interpretar lo que haremos conla división de polinomios.

Si completa la división anterior resulta un cociente de 74 y un resto de 1 (quees menor que el divisor). Para verificar si la división está bien resuelta hace-mos: 4 · 74 + 1 = 297. Es decir, a la multiplicación entre cociente y divisor lesumamos el resto y debe obtenerse el dividendo.

En el caso de la división de polinomios se debe verificar la igualdad:

D(x) = d(x) · C(x) + R(x) y además el grado del polinomio R(x) debe sermenor que el grado del polinomio d(x).

En el caso particular que el resto sea igual a cero, el polinomio R(x) = 0, nosqueda D(x) = d(x) · C(x).

En este caso decimos que:

• La división del polinomio D(x) por el polinomio d(x) es exacta.

• El polinomio d(x) es divisor del polinomio D(x).

• El polinomio d(x) es factor del polinomio D(x).

• El polinomio D(x) es divisible por el polinomio d(x).

Page 116: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática112

Parte F

En esta parte de la actividad lo orientaremos para que trabaje algunos contenidos utilizando el

libro Matemática 1, de Camuyrano B. y otros, editorial Estrada.

Lea, en el Capítulo 4 “Funciones polinómicas”, el tema “Algoritmo de división de polino-

mios”, en las páginas 103 y 104 del texto.

Parte G

Se desea efectuar la división del polinomio D(x) = 5x3 - 2x2 + x4 + 1 por el polinomio

d(x) = 2x + 1 + x2.

1.

a. ¿Qué grado tiene el polinomio dividendo D(x)?

b. ¿Qué grado tiene el polinomio divisor d(x)?

2. Teniendo en cuenta lo dicho en las Orientaciones para la división de números ente-

ros y lo trabajado con el libro sobre división de polinomios, realice la división entre

los polinomios D(x) y d(x) dados anteriormente:

x4 + 5x3 - 2x2 + 0x + 1 x2 + 2x + 1

Observe que para poder realizar el cálculo, colocamos dividendo y divisor en forma

ordenada y completamos los términos que faltan en el dividendo.

3.

a. ¿Qué grado tiene el polinomio cociente?

b. ¿Qué grado tiene el resto?

4. Verifique que los polinomios C(x) = x2 + 3x - 9 y r(x) = 15x + 10 son los polinomios

cociente y resto, respectivamente, de la división anterior.

ORIENTACIONES

La división pedida se puede resolver teniendo en cuenta los pasos que se indi-can a continuación:

x4 + 5x3 - 2x2 + 0x + 1 x2 + 2x + 1

x2

x4 + 5x3 - 2x2 + 0x + 1 x2 + 2x + 1

x4 + 2x3 + x2 x2

0 + 3x3 - 3x2

Obtenemos el primer mono-mio del cociente dividiendo x4

con x2

Multiplicamos x2 por el poli-nomio divisor y restamos elresultado al dividendo

Page 117: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 6 113

x4 + 5x3 - 2x2 + 0x + 1 x2 + 2x + 1

x4 + 2x3 + x2 x2 + 3x

0 + 3x3 - 3x2 + 0x

x4 + 5x3 - 2x2 + 0x + 1 x2 + 2x + 1

x4 + 2x3 + x2 x2 + 3x

0+ 3x3 - 3x2 + 0x

+ 3x3 + 6x2 + 3x

0 - 9x2 - 3x + 1

x4 + 5x3 - 2x2 + 0x + 1 x2 + 2x + 1

x4 + 2x3 + x2 x2 + 3x - 9

0 + 3x3 - 3x2 + 0x

+ 3x3 + 6x2 + 3x

0 - 9x2 - 3x + 1

- 9x2 - 18x - 9

0 + 15x + 10

Para verificar lo solicitado en el ítem 4., debe comprobarse la igualdad

D(x) = C(x) . d(x) + r(x), o sea:

D(x) = (x2 + 2x + 1) · (x2 + 3x - 9) + (15x + 10)

Para efectuar la multiplicación (x2 + 2x + 1) · (x2 + 3x - 9) aplicamos la pro-piedad distributiva de la multiplicación respecto de la adición, y, por como-didad, lo disponemos de la siguiente manera:

x2 + 2x + 1

x x2 + 3x - 9

x4 + 2x3 + x2

+ 3x3 + 6x2 + 3x

- 9x2 - 18x - 9

x4 + 5x3 - 2x2 - 15x - 9

Para continuar la divi-sión agregamos el mono-mio siguiente del divi-dendo y obtenemos elsegundo monomio delcociente dividiendo 3x3

con x2

Repetimos los pasos ante-riores: multiplicamos 3xpor el divisor y restamos.Bajamos el monomiosiguiente para continuardividiendo.

La división termina por-que el grado del resto esmenor que el grado delpolinomio divisorCOCIENTE

RESTO

x2• (x2 + 2x + 1)

3x • (x2 +2x +1)

-9 • (x2 +2x +1)

Page 118: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática114

Entonces D(x) = x4 + 5x3 - 2x2 - 15x - 9 + (15x + 10) = x4 + 5x3 - 2x2 + 1 quees lo que queremos verificar.

Parte H

En esta parte de la actividad lo orientaremos para que trabaje algunos contenidos utilizando el

libro Matemática 1 de Camuyrano B. y otros, editorial Estrada.

En el Capítulo 4 - “Funciones polinómicas”:

1. Lea, en las páginas 104 y 105 del texto, “Regla de Ruffini”.

2. Resuelva la Ejercitación propuesta en la página 105.

Parte I

A partir de lo que leyó en el libro, responda:

1. ¿Cuál de las siguientes divisiones podría resolverse utilizando la regla de Ruffini?

a. (5x - 2x2 + x4 +2) : (x - 4)

b. (6x5 - 2x4 + x3 - x2 + 7x - 1) : (x2 - 1)

c. (7x5 - 3x + 5) : (2x3 + 4)

2. ¿Qué condición debe cumplir el divisor para que una división de polinomios pueda

ser resuelta utilizando la regla de Ruffini?

3. ¿De qué grado es el resto de una división que se puede resolver utilizando la regla

de Ruffini?

ORIENTACIONES

Solo la primera división planteada en la Parte I se puede resolver utilizandola regla de Ruffini, ya que es la única en la que el divisor es un binomio de pri-mer grado con coeficiente principal igual a 1.

Parte J

1. Un compañero le dice que hizo la división (x3 + x + 1) : (x - 3) y obtuvo un cociente

C(x) = x2 + 3x + 10 y un resto R(x) = 31. Verifique, sin efectuar la división, que el resul-

tado obtenido por su compañero es correcto.

2. a. Complete el siguiente cuadro, referido al dividendo, el divisor, el cociente y el resto

de la división que verificó en el ítem 1.. Le damos una fila completa a modo de ejemplo.

Page 119: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 6 115

b. ¿Qué ocurre cuando x = 3? Describa lo que observa, en ese caso, con:

• el divisor,

• el dividendo y el resto.

3. Otro compañero le dice que se verifica la igualdad

x2 + 2x + 3 = C(x) · (x - 2) + 11,

que resulta al realizar la comprobación de una división entre polinomios.

a. ¿Cuál es el polinomio dividendo?

b. ¿Cuál es el polinomio divisor?

c. ¿Cuál es el resto?

d. ¿Cuánto vale C(x) · (x - 2) cuando x = 2?

e. ¿Cuál es la raíz del divisor d(x) = x - 2?

f. ¿Cuánto vale el dividendo cuando x = 2?

g. ¿Para qué valor de x resulta que el valor del dividendo es igual al valor del resto?

4. Un tercer compañero le dice que comprobó una división de polinomios haciendo:

x4 - 2x + 3 = C(x) · (x + 2) + 23

a. ¿Cuál es el polinomio dividendo D(x)?

b. ¿Cuál es el polinomio divisor d(x)?

c. ¿Cuál es el resto R(x)?

d. ¿Cuál es la raíz del divisor?

e. Teniendo en cuenta lo que trabajó en los ítems 2. y 3., ¿para qué valor de x resul-

ta que el valor del dividendo es igual al valor del resto?

5. Usted tiene que explicarles a sus compañeros cómo hacer para calcular el resto de la

división (x4 - 2x + 3) : (x + 1) sin efectuar la división.

Si x es igualEl dividendo es:

x3+x+1

El cociente es:

x2+3x+10

El divisor es:x-3

El resto es:31

1 13+1+1=3 12+3 • 1+10=14 1-3=-2 31

2

3

4

Page 120: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática116

a. ¿Qué les diría?

b. Calcule dicho resto sin efectuar la división.

Si no pudo responder el ítem 5., no se preocupe, siga leyendo la orienta-

ción que le damos a continuación.

ORIENTACIONES

En todas las divisiones anteriores, el divisor es un binomio de primer gradocon coeficiente principal igual a 1.

Podemos decir que en estas divisiones el resto es igual al valor que toma eldividendo D(x) en el valor de x que es cero del divisor d(x).

EN TÉRMINOS MATEMÁTICOS: TEOREMA DEL RESTO

Como observamos, al dividir un polinomio D(x) por otro de la forma (x - a), severifica que el resto de la división es igual al valor del polinomio D(x) en x = asiendo x = a la raíz del divisor. En símbolos:

D(a) = R

donde R es el valor del resto.

Esta propiedad se conoce con el nombre de “teorema del resto”.

Parte K

En esta parte de la actividad lo orientaremos para que trabaje algunos contenidos utilizando el

libro Matemática 1 de Camuyrano B. y otros, editorial Estrada.

Lea, en el capítulo 4 - “Funciones polinómicas”, la demostración del teorema del resto,

en la página 104 del texto.

Parte L

1. Calcule, sin efectuar la división, el resto de la división:

D(x) = x3 + 4x2 + 5x + 8 por d(x) = x + 2. Justifique.

2. Decida, sin efectuar la división, si la división:

D(x) = x2 - 2x + 1 por d(x) = x - 1 es exacta. Justifique.

3. a. ¿El polinomio D(x) = x3 + 2x2 - 1 es divisible por d(x) = x + 1? ¿Por qué? ¿Cómo lo

justifica sin resolver la división?

b. ¿A qué es igual D(-1)? ¿Por qué?

Page 121: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 6 117

c. ¿Qué es x = -1 del polinomio D(x)? ¿Por qué?

4. Si D(3) = 0 ó x = 3 es una raíz de D(x):

a. ¿Cuál es el resto de la división D(x) por x - 3? ¿Por qué?

b. ¿D(x) es divisible por x - 3? ¿Por qué?

c. ¿Es exacta la división D(x) : (x - 3)? ¿Por qué?

EN TÉRMINOS MATEMÁTICOS: DIVISIBILIDAD DE POLINOMIOS.FACTORIZACIÓN DE POLINOMIOS.

Si en la división de un polinomio D(x) por d(x) = x - a, ocurre que D(a) = 0, sepuede observar lo siguiente:

Por ser D(a) = 0, x = a es una raíz del polinomio D(x).

Por ser D(a) = 0 y teniendo en cuenta que, por el teorema del resto, D(a) = R,resulta que el resto es R = 0.

Por ser el resto igual a cero decimos que D(x) es divisible por x - a.

Por lo tanto podemos afirmar que:

“Si x = a es una raíz de un polinomio D(x), entonces D(x) es divisiblepor x - a”.

Observe que al ser D(x) divisible por x - a, se puede escribir:

D(x) = C(x)·( x - a) + 0 = C(x)·( x - a).

Vemos que D(x) queda escrito como la multiplicación del cociente por el divi-sor. En este caso decimos que el polinomio está factorizado.

Esta conclusión es muy importante porque nos va a permitir “factorizar” poli-nomios de distintos grados.

Parte M

Para el polinomio P(x) = 2x3 - 6x2 - 8x + 24

1. Verifique que x = 3 es raíz del polinomio.

2. Verifique que P(x) es divisible por x - 3, sin realizar la división.

3. Halle el polinomio cociente C(x) para P(x) : (x - 3). ¿Cuál es el grado de dicho

cociente?

4. Escriba la expresión factorizada P(x) = C(x) · (x - 3).

5. El polinomio P(x) no está completamente factorizado porque el polinomio C(x) tiene

raíces. Encuentre las raíces de C(x). (Para ello, tenga en cuenta el grado de C(x))

6. Utilizando las raíces halladas, factorice el polinomio C(x).

Page 122: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática118

7. Escriba la expresión completamente factorizada de P(x).

Para resolver los ítems 5. y 6. anteriores, debe tener en cuenta la factorización de fórmulas cuadrá-

ticas. Si no tiene claro ese tema, vuelva a trabajarlo en la Unidad 5.

ORIENTACIONES

A continuación mostramos una forma de factorizar completamente al polinomio

P(x) = 2x3 - 6x2 - 8x + 24. Podemos pensar en los pasos a seguir para hacerlo:

• Hallar una de sus raíces. En este caso se verifica que

x = 3 es raíz de P(x), ya que P(3) = 2·33 - 6·32 - 8·3 + 24 = 54 - 54 - 24 + 24 = 0.

• Dividir a P(x) por x - 3, obteniendo el cociente C(x) = 2x2 - 8.

Se puede escribir P(x) = (x - 3) · (2x2 - 8).

Acá, P(x) no está factorizado completamente porque 2x2 - 8 puede seguirfactorizándose ya que tiene raíces.

Se dice que 2x2 - 8 no es irreducible.

• Factorizar el polinomio de segundo grado (o cuadrático) C(x) = 2x2 - 8como vimos en la Unidad 5.

Se obtiene C(x) = 2 · (x - 2) · (x + 2).

Teniendo en cuenta que P(x) = (x - 3) · (2x2 - 8), escribimos la factorizacióncompleta de P(x):

P(x) = 2 · (x - 3) · (x - 2) · (x + 2)

Esta es la factorización completa del polinomio P(x), ya que los factores x - 2,x + 2 y x - 3 son polinomios que tienen coeficiente principal igual a 1 y notienen más de una raíz.

ACTIVIDAD Nº 3: “TRABAJANDO CON EL LIBRO”

En esta actividad nuevamente lo orientaremos para que trabaje algunos contenidos

utilizando el libro Matemática 1 de Camuyrano B. y otros, editorial Estrada.

En el capítulo 4 - “Funciones polinómicas”:

1. Lea, en las páginas 106 y 107, “Cálculo de raíces de una función polinómica”, “Raíces

racionales de polinomios con coeficientes enteros” y “Teorema de Gauss”.

2. Resuelva la Ejercitación propuesta en la página 107.

Page 123: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 6 119

Antes de comenzar a estudiar la próxima unidad, usted debe realizar los ejer-

cicios de integración correspondientes a la Unidad 6. Su realización es impres-

cindible. Al resolverlos trabajará aspectos de los contenidos de la unidad que

no fueron trabajados en las actividades que resolvió hasta este momento.

También podrá integrar los distintos contenidos de la unidad y autoevaluar si

ya se encuentra en condiciones de pasar a estudiar la próxima unidad. No deje

de realizarlos.

Page 124: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática120

Page 125: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 7 121

UNIDAD 7

UN

IDA

D 7

Estadística

En los medios de comunicación es muy común encontrar datos que reflejanalgún hecho de la realidad, representados en gráficos o tablas.

La Estadística es la rama de la Matemática que se ocupa de la recolección yorganización de esos datos para luego realizar predicciones a partir de ellos.

En esta unidad trabajaremos con algunas de las formas de recolección y orga-nización de datos que utiliza la Estadística, y con las medidas en las que resu-me un conjunto extenso de ellos: las medidas de centralización y variabilidado dispersión.

Propósitos de la UnidadEn relación con los contenidos de esta Unidad le proponemos que:

• Reconozca y utilice el lenguaje específico de la Estadística.

• Ordene en gráficos y tablas datos recogidos de una muestra o de unapoblación.

• Extraiga datos sobre la población a partir de la lectura de gráficos y tablasconstruidos a partir de una muestra.

• Determine medidas de centralización de un conjunto de observaciones.

• Determine medidas de variabilidad o dispersión de un conjunto de obser-vaciones.

• Analice datos estadísticamente.

ACTIVIDAD N° 1: “ESTUDIO DE MERCADO DE LA FÁBRICA DE CHICLES”

El departamento de marketing de la fábrica de chicles “Superglobo” decidió realizar un

estudio acerca de sus productos en el mercado.

Contrató una consultora que se ocupó del relevamiento de la información y de la elabo-

ración de conclusiones a partir de los datos recogidos.

La fábrica estima que existen aproximadamente 15000 consumidores de chicles marca

Superglobo en la ciudad de Buenos Aires. La consultora realizó una encuesta a consumi-

dores del producto de diferentes edades. Entre otras cuestiones, preguntó sobre las pre-

ferencias de los consumidores en relación con los gustos que se fabrican: menta, mentol,

frutilla, naranja y uva. Los datos obtenidos a través de la encuesta se volcaron en la

siguiente tabla:

Page 126: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática122

Parte A

A partir de la información anterior, responda las siguientes preguntas:

1. La encuesta de la consultora, ¿se realizó a todos los consumidores de chicles de marca

Superglobo de la ciudad de Buenos Aires?

2. Si su respuesta a la pregunta anterior es negativa, indique cuál es la cantidad de con-

sumidores que fue encuestada.

3. ¿Podría usted estimar qué cantidad de consumidores de chicles de marca Superglobo

de la ciudad de Buenos Aires prefieren chicles de uva? En caso de que su respuesta

sea afirmativa indique de qué modo lo haría y cuál es la cantidad de consumidores

obtenida. Si considera que no es posible estimar dicha cantidad indique la/s razón/es

por la/s cual/es no puede hacerlo.

4. ¿Cuál es el sabor más elegido por los consumidores?

Parte B

Responda las siguientes consignas:

1. Exprese cada uno de los valores de la tabla como fracción de la cantidad total de

encuestados.

2. Agregue una columna a la tabla anterior y vuelque en ella cada uno de los valores

determinados en el ítem 1..

3. ¿Cuánto vale la suma de todos los valores de esta columna? ¿Por qué?

4. Escriba el porcentaje de consumidores que prefiere cada uno de los sabores que ela-

bora la fábrica.

Si no puede calcular los porcentajes solicitados, revise este tema en la Unidad 7 de

Matemática A y en la Unidad 3 de Matemática B.

SaborCCaannttiiddaadd ddee ccoonnssuummiiddoorreess

qquuee lloo pprreeffiieerreenn**

Frutilla 224

Naranja 25

Mentol 140

Menta 441

Uva 170

*Cada una de las personas encuestadas debía seleccionar sólo una de la opciones.

Page 127: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 7 123

5. A partir de las respuestas a los ítems anteriores responda las siguientes preguntas:

a. ¿Cuál es la cantidad esperable de consumidores de chicles de menta de marca

Superglobo en la ciudad de Buenos Aires?

b. ¿Es posible que en la ciudad de Buenos Aires haya 800 consumidores de chicles de

menta de marca Superglobo? Escriba las razones que le permiten decidir su res-

puesta.

c. ¿Es posible que haya 5000 consumidores de esos chicles? Escriba las razones que le

permiten decidir su respuesta.

ORIENTACIONES

La encuesta realizada a un grupo de consumidores de chicles de marcaSuperglobo en la ciudad de Buenos Aires puede darnos información sobre elresto de los consumidores de la ciudad. Pero debemos ser cuidadosos con elmanejo de esa información. Es importante tener en cuenta que cualquier esti-mación que hagamos sobre el total de consumidores de chicles de la ciudad,basándonos en los resultados de la encuesta, puede coincidir o no con los valo-res reales de este grupo.

La encuesta que estamos analizando se realizó a 1000 consumidores del pro-ducto en la ciudad de Buenos Aires. De ellos, el 44,1 % respondió que pre-fiere chicles sabor menta. A partir de este valor sería esperable que, de los15000 consumidores que supone tener esta fábrica en la ciudad de BuenosAires, 6615 prefieran chicles de sabor menta. De todos modos, más allá de loesperable a partir de los resultados obtenidos con la encuesta, puede ocurrirque el grupo de consumidores no encuestados tenga los mismos hábitos deconsumo que el grupo encuestado o no; o que un sinnúmero de razones influ-ya en el nivel de consumo del resto de los consumidores. Así, la cantidad de6615 consumidores de chicles de menta, estimada a partir de la encuesta,podría coincidir con la realidad o no. La cantidad real de consumidores dechicles de menta podría ser totalmente distinta que la cantidad esperada. Porlo tanto, es posible que haya 800 ó 5000 ó una cantidad cualquiera diferen-te de consumidores de chicles de menta en la ciudad de Buenos Aires.

La Estadística provee otros recursos que permiten estimar con mayor seguri-dad los resultados posibles en el conjunto que se está analizando a partir delestudio de un subconjunto del mismo.

Expresar los datos obtenidos en la encuesta como porcentajes o como fraccióndel total de encuestados nos puede permitir obtener conclusiones adicionalesa las que brinda la tabla. Nos permite establecer comparaciones con encuestasrealizadas a un número diferente de encuestados, o en otras ciudades, o reali-zar algunas estimaciones para el total de consumidores de chicles de la ciudad

Page 128: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática124

de Buenos Aires. Lo importante es tener en cuenta que cuando obtenemosconclusiones sobre el total de consumidores a partir de los resultados obteni-dos en el grupo encuestado, se trata sólo de estimaciones y que la realidadpuede comportarse de un modo diferente.

Parte C

1. Elija cuál o cuáles de las siguientes representaciones gráficas expresa la información

que proporciona la tabla de los sabores de chicles preferidos por los consumidores:

2. Escriba los argumentos a partir de los cuales realizó la selección de los gráficos en el

ítem anterior.

Page 129: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 7 125

EN TÉRMINOS MATEMÁTICOS: POBLACIÓN. MUESTRA. OBSERVACIÓN.REPRESENTACIÓN GRÁFICA DE LOS DATOS. DISTRIBUCIÓN DEFRECUENCIAS. FRECUENCIA ABSOLUTA. FRECUENCIA RELATIVA.

En la situación que estamos analizando, llamamos población al conjunto detodos los consumidores de chicles de marca Superglobo en la ciudad deBuenos Aires.

En general, llamamos población al conjunto formado por todos los elemen-tos cuyo estudio nos interesa.

Con frecuencia es imposible, o demasiado costoso, recopilar los datos corres-pondientes a una población completa. Por eso, para analizar las características dela población, se trabaja sólo con un subconjunto de la misma. En nuestro ejem-plo, este subconjunto está formado por los consumidores de chicles Supergloboque fueron encuestados. A este subconjunto lo llamamos muestra.

Llamamos observación a cada dato obtenido sobre cada elemento de la muestra.

Los datos obtenidos a través de encuestas, censos u otros medios, son gruposde valores en principio desorganizados. Para poder obtener, a partir de ellos,conclusiones sobre la población que se está investigando, deben previamenteordenarse y organizarse. Una forma de hacerlo es construir tablas y gráficosque los representen.

A una tabla como la presentada en la situación que estamos analizando, las lla-mamos tabla de frecuencia o distribución de frecuencias. En ella, la primeracolumna representa a los valores que toma la variable, y la segunda representa ala cantidad de observaciones registradas para cada uno de esos valores.

Llamamos frecuencia absoluta a cada una de las cantidades de esta segundacolumna. Por lo general nombramos a esta columna directamente como fre-cuencia absoluta. En símbolos: f.

Para poder extender los datos proporcionados por una muestra a la poblacióncompleta, o establecer comparaciones con resultados obtenidos en otras mues-tras de la misma población, es conveniente expresar el resultado de las obser-vaciones como fracción del total. A cada uno de estos valores lo llamamos fre-cuencia relativa, y la columna de la tabla en la que registramos a cada uno deellos, la identificamos también con ese nombre. En símbolos fr.

También es útil expresar las cantidades observadas como porcentajes del totalde encuestados.

Para representar gráficamente la información relevada podemos usar gráficosde barras y gráficos circulares, entre otros tipos de gráficos.

Page 130: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática126

Los gráficos de barras se construyen en un sistema de coordenadas cartesianas.Si el gráfico es de barras verticales, en el eje horizontal se registran los valoresde la variable y en el eje vertical se registran las frecuencias correspondientes acada uno de los valores de la variable.

Si el gráfico es de barras horizontales, se registran los valores de la variable enel eje vertical y las frecuencias en el eje horizontal.

El gráfico de barras que representa a las preferencias de los consumidores dechicles marca Superglobo encuestados es:

Para construir un gráfico circular debemos dividir la superficie del círculo entantos sectores como valores tenga la variable en estudio. El área de cada sec-tor debe ser directamente proporcional a la frecuencia absoluta registrada paracada uno de esos valores. Para ello debemos calcular el ángulo central corres-pondiente a cada sector teniendo en cuenta la siguiente proporción:

En ella consideramos que al total de observaciones de la muestra, correspon-de el área completa del círculo y un ángulo central de 360°. A cada sector arepresentar le corresponde la cantidad de observaciones indicada por su fre-cuencia absoluta y un ángulo central que denominamos .

Si tiene dificultades para entender la proporción anterior o para calcular la medida

del ángulo , retome lo trabajado en la Unidad 3 de esta Guía.

Page 131: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 7 127

El gráfico circular que representa a las preferencias de los consumidores de chi-cles marca Superglobo encuestados es:

Parte D

En la encuesta realizada por la consultora, se preguntó a los consumidores por las can-

tidades de paquetes de chicles que cada unos de ellos compra semanalmente.

En la siguiente tabla se indican las cantidades señaladas por los consumidores de chicles

de menta:

1. ¿De qué manera nombra la Estadística a la segunda columna de la tabla?

2. Represente la información proporcionada por la tabla en un gráfico de barras.

3. Represente la información proporcionada por la tabla en un gráfico circular.

4. Agregue a la tabla una nueva columna y vuelque en ella los valores correspondien-

tes a las frecuencias relativas.

5. Calcule el porcentaje de consumidores de chicles de menta que compra cada una de

las cantidades de paquetes de chicles indicadas en la tabla.

Paquetes de chicles compradossemanalmente

CCaannttiiddaadd ddee ccoommpprraaddoorreess

1 8

2 32

3 78

4 142

5 120

6 56

7 5

Page 132: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática128

6. ¿Cuántos de los consumidores encuestados compran semanalmente menos de 4

paquetes de chicles?

7. ¿Cuántos de los consumidores encuestados compran semanalmente hasta 4 paquetes

de chicles?

ORIENTACIONES

Para responder las dos últimas preguntas de la Parte D, resulta útil agregar ala distribución de frecuencias una columna en la que se registren en formaacumulada la cantidad de observaciones registradas hasta cada valor de lavariable.

En la columna agregada es más sencillo leer la información necesaria para res-ponder. Allí vemos que son 118 los consumidores encuestados que compranmenos de 4 paquetes de chicles semanales y que son 260 los que compranhasta 4 paquetes semanalmente.

EN TÉRMINOS MATEMÁTICOS: FRECUENCIA ACUMULADA

A la columna agregada a la distribución anterior la llamamos frecuencia acu-mulada y la simbolizaremos Fa o Fac.

Parte E

1. ¿Cuál es la cantidad de paquetes de chicles de menta que los consumidores compran

más frecuentemente?

2. ¿Cuántos paquetes de chicles de menta compran en total los consumidores encues-

tados por semana? Escriba las cuentas que realiza para calcular este valor.

Paquetes de chicles comprados

semanalmente

CCaannttiiddaadd aaccuummuullaaddaa

ddee ccoommpprraaddoorreess

1 8

2 8+32=40

3 40+78=118

4 118+142=260

5 260+120=380

6 380+56=436

7 436+5=441

CCaannttiiddaadd ddee ccoommpprraaddoorreess

8

32

78

142

120

56

5

Page 133: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 7 129

3. ¿Cuál es la cantidad de consumidores que compran semanalmente la cantidad de

paquetes de chicles que calculó en el ítem 2.?

4. ¿Qué cantidad promedio de paquetes de chicles de menta compra semanalmente

cada consumidor encuestado?

Si no recuerda cómo calcular promedios, puede revisar este tema en la Unidad 7 de Matemática A.

5. Si usted fuera el dueño de la fábrica Superglobo, ¿qué cantidad de paquetes de chi-

cles de menta debería fabricar semanalmente para cubrir la demanda en la ciudad de

Buenos Aires? Para responder tenga en cuenta la estimación que hizo en la Parte B

sobre la cantidad de consumidores de chicles de menta de la ciudad de Buenos Aires.

6. ¿Podría ocurrir que la cantidad calculada en el ítem 5. fuera excesiva o insuficiente?

¿Por qué?

7. Determine el valor de la variable correspondiente a la observación central, es decir a

la observación que divide al total de observaciones en dos conjuntos de igual canti-

dad de elementos.

EN TÉRMINOS MATEMÁTICOS: MEDIDAS DE CENTRALIZACIÓN:MEDIA, MEDIANA Y MODA.

• En la Parte A observamos que el sabor menta es el más elegido por losconsumidores. A este valor lo llamamos moda.

En general, llamamos modo o moda al valor de la variable que se observamayor cantidad de veces.

En la distribución de la cantidad de paquetes de chicles de menta quecompran los consumidores semanalmente, la moda es 4 paquetes. Loescribimos simbólicamente: Mo = 4.

• En la Parte E, para la distribución de la cantidad de paquetes de chicles dementa que compran los consumidores semanalmente, observamos el valorde la variable correspondiente a la observación central.

¿Cómo determinamos este valor?

Para hacerlo tenemos en cuenta la cantidad total de observaciones. En elcaso que estamos analizando son 441 observaciones, porque son 441 losconsumidores que prefieren chicles de menta. Al tratarse de una cantidadimpar, el valor central se ubica en la observación número 221, que deja220 observaciones antes y 220 después. El valor de la variable correspon-diente a la observación número 221 es 4 paquetes. A este valor lo llama-mos mediana.

Page 134: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática130

En general, llamamos mediana al valor central de un conjunto de valoresordenados. Simbólicamente: Me = 4.

Si la cantidad de observaciones hubiera sido par, no habría un valor quedivida al total de observaciones de la muestra en la mitad. En este casotomamos a las dos observaciones centrales, es decir al par de observacionesque divide a la muestra en dos conjuntos de igual cantidad de observacio-nes. La mediana es el promedio de este par de observaciones.

La columna de frecuencias acumuladas resulta útil para calcular el valor de lamediana, porque en ella podemos ver rápidamente cuál es la fila de la tabla enla que se encuentra la observación que divide a la muestra en la mitad.

• Otro de los valores calculados en la Parte E de la actividad es la cantidadpromedio de paquetes de chicles de menta comprados semanalmente por losconsumidores de chicles encuestados. A este valor lo llamaremos mediaaritmética, o simplemente media o promedio.

Seguramente usted ha calculado promedios en muchas ocasiones en su

vida cotidiana. No pierda de vista todas esas cuestiones que usted mane-

ja eficientemente todos los días.

Para calcular la media de esta muestra deberíamos sumar la cantidad depaquetes de chicles que compraron los 441 consumidores encuestados y luegodividir al resultado de esa suma por 441.

Como multiplicar es equivalente a sumar repetidamente, y cada uno de losvalores de la muestra se observa varias veces, en lugar de sumar 8 veces 1, 32veces 2 y así con el resto de los valores de la tabla, podemos sumar los pro-ductos 1.8, 2.32, etc. Es decir:

En términos de la situación que estamos trabajando, la cantidad media depaquetes de chicles comprada semanalmente por los consumidores encuesta-dos sería de 4 paquetes ya que no tiene sentido pensar en una cantidad noentera de paquetes de chicles. De todos modos, para cálculos estadísticos vin-culados a la media de la distribución usaremos el valor 4,1837 calculado.

En general, la media de una población o muestra es el promedio de todas lasobservaciones realizadas.

En el caso de la media de una muestra la simbolizamos x y la calculamos así:

Page 135: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 7 131

En ella:

x1, x2, ....., xn son los valores de la variable.

f1, f2, ......, fn son las frecuencias absolutas correspondientes a cada uno delos valores anteriores de la variable.

N es el número total de observaciones.

Uso de calculadora: usted puede calcular la media de una distribución utilizando su

calculadora científica. Para hacerlo debe poner la máquina en modo estadístico: SD y

luego cargar cada uno de los valores de la variable con su respectiva frecuencia. Si lo

desea, investigue en el manual de su calculadora cómo hacerlo.

En general, para poder hacer consideraciones respecto de una muestra, o com-pararla con otras, es necesario resumir los aspectos relevantes de la distribu-ción en números que puedan representarla. A algunos de estos números losllamamos medidas de posición central o de centralización de los datos. Lastres medidas que hemos presentado en este apartado: media, mediana y moda,son medidas de posición central.

Si bien en este caso los tres valores casi coinciden, esto no ocurre en todos loscasos.

Si los datos de una distribución se encuentran poco agrupados en torno a lamedia, las medidas de posición central toman valores diferentes. En esos casos,la media puede no ser un valor representativo de la distribución, porque suresultado se ve afectado por valores extremos. La mediana y el modo son valo-res menos sensibles a la variabilidad de los datos de una distribución, y enaquellos casos en que las observaciones se encuentran más dispersas suelen servalores más representativos de la muestra que la media. La media es un valorcentral confiable sólo en los casos en que los datos tienen una variabilidadpequeña. Por esta razón, no es suficiente analizar los valores de posición cen-tral de un conjunto de datos sino que además es necesario investigar la varia-bilidad de los mismos.

Parte F

1. Para cada cantidad de paquetes de chicles de menta comprada semanalmente por los

consumidores, calcule su diferencia respecto de la media. Es decir, si llamamos x a

cada una de las cantidades de chicles, calcule x - x para cada valor x de la tabla.

2. ¿Qué representa cada valor x - x ? Expréselo con sus palabras.

3. ¿Qué interpretación le da al signo de los resultados obtenidos?

4. Copie en hoja aparte la tabla presentada en la Parte D, agréguele una columna, e

indique en ella los valores calculados en el ítem 1..

Page 136: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática132

5. Agregue otra columna a la tabla indicando allí el producto entre cada valor x - x y la

frecuencia f correspondiente a cada valor de x.

6. Calcule el promedio de los valores de esta última columna.

7. Explique con sus palabras porqué razón el promedio calculado en el ítem anterior es

casi cero.

ORIENTACIONES

La tabla nos queda:

Cada uno de los resultados de la tercera columna, representa el aleja-miento, desde cada valor x al valor promedio de la muestra. El signo positivoo negativo de cada uno de ellos, está vinculado con la posición de cada valorx en relación con el valor promedio. Por ejemplo, el signo negativo de losresultados -3,1837, -2,1837, -1,1837 y -0,1837 nos indica que cada uno delos correspondientes valores de x son inferiores al valor de la media. Los resul-tados positivos nos indican que los valores de x correspondientes son superio-res a la media.

Al multiplicar a cada uno de los valores de esta columna por la frecuenciaobservada para cada valor x, estamos considerando todos los datos de la mues-tra. Dado que son diferencias respecto del valor promedio, la suma de todasellas debe ser cero. En este caso el resultado nos da cercano a cero, no exacta-mente cero, debido a que redondeamos el valor de la media y de este modoperdemos exactitud.

El promedio de los valores de la última columna de la tabla es casi cero dadoque estamos promediando 441 valores cuya suma es casi cero.

x - x

(x - x) . fx - xfx

-25,4696-3,183781

-69,8784-2,1837322

-92,3286-1,1837783

-26,0854-0,18371424

97,9560,81631205

101,71281,8163566

14,08152,816357

Page 137: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 7 133

EN TÉRMINOS MATEMÁTICOS: DESVIACIÓN. MEDIDAS DE DISPERSIÓN:VARIANZA Y DESVÍO ESTÁNDAR

A cada uno de los resultados de la tercera columna, lo llamamos des-viación. Cada desviación nos indica el alejamiento de cada valor x respecto dela media.

Como es el valor promedio de la muestra, la suma de las desviaciones detodos los valores de la misma respecto de la media, es cero. En consecuencia,el promedio de todas las desviaciones también es cero, independientementeque los valores de la muestra se encuentren agrupados cerca o lejos del valorpromedio. Por esa razón el cálculo anterior no nos resulta útil para medir lavariabilidad o dispersión de los datos en relación a la media. Podemos resolveresta dificultad elevando al cuadrado cada una de las desviaciones y calculandoel promedio de los cuadrados de las desviaciones de cada valor de la muestra.El promedio calculado de esta forma ya no es igual a cero y resulta útil paramedir la dispersión de los datos.

Si el resultado encontrado es pequeño nos indicará que los valores de la muestrase encuentran poco dispersos, o más agrupados en relación al valor promedio.

Por el contrario, si el valor es grande, significará que los valores de la muestrase encuentran muy dispersos o menos agrupados en relación al valor prome-dio. En ese caso la media no resultaría una medida descriptiva representativade la muestra.

En nuestro ejemplo, agregando a la tabla la columna de los cuadrados de losdesvíos y la del producto de los cuadrados de los desvíos por la frecuenciaobservada para cada valor de x, nos queda:

El promedio de los valores de la última columna de la tabla es 1,4787 y reci-be el nombre de varianza.

x

x - xfx

-25,4696-3,183781

-69,8784-2,1837322

-92,3286-1,1837783

-26,0854-0,18371424

97,9560,81631205

101,71281,8163566

14,08152,816357

10,1359

4,7685

1,4011

0,0337

0,6663

3,2989

7,9315

81,0876

152,592

109,2858

4,7854

79,956

184,7384

39,6575

x - x

Page 138: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática134

En general, la varianza de una población o muestra es el promedio de los pro-ductos de las desviaciones al cuadrado por sus frecuencias absolutas.

En el caso de la varianza de una muestra la simbolizamos s2 y la calculamos:

En ella:

x1, x2, ....., xn son los valores de la variable.

f1, f2, ......, fn son las frecuencias absolutas correspondientes a cada unode los valores anteriores.

N es el número total de observaciones.

La varianza es buen indicador de la medida de variabilidad o dispersión de losdatos, pero tiene la dificultad de que sus unidades son los cuadrados de lasunidades en las que están expresados los valores de la muestra.

Por esta razón, para medir la variabilidad de los datos, en general se utiliza otramedida llamada desviación estándar, que se obtiene calculando la raíz cua-drada de la varianza. La desviación estándar resulta más conveniente paramedir la variabilidad o dispersión de un conjunto de datos debido a que estáexpresada en las mismas unidades que estos. Para simbolizar a la desviaciónestándar de una muestra usamos la letra s y la calculamos:

La desviación estándar de los valores de la muestra que estamos analizando es:

Parte G

La consultora también indagó sobre las edades de los consumidores de chicles de marca

Superglobo. En este caso, los resultados obtenidos fueron muy diversos: las edades regis-

tradas tomaban valores que iban desde 1 hasta 73 años. Por esta razón la consultora

organizó los resultados de la encuesta del siguiente modo:

Cantidad deconsumidores

Edad

138[1;9]

287(9;17]

276(17;25]

Page 139: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

1. A partir de la distribución organizada de este modo, ¿puede determinar cuántos con-

sumidores de chicles de marca Superglobo tienen 15 años? ¿Por qué?

2. Nombre una ventaja y una desventaja de agrupar los datos de este modo.

3. Un consumidor de 17 años, ¿en cuál de las filas de la tabla estaría registrado?

4. Determine el punto medio de cada uno de los intervalos de la tabla.

ORIENTACIONES

En el caso de las edades de los consumidores resulta poco adecuado organizarlos datos en distribuciones de frecuencias como las utilizadas para los saboresde chicles preferidos por los consumidores, o para las cantidades de paquetesde chicles compradas semanalmente por los consumidores.

La variable considerada, que en este caso representa a las edades de los consu-midores, toma demasiados valores diferentes como para considerarlos enforma individual. Resulta más cómodo tabular la información observadaagrupando los valores de la variable en intervalos, e indicando como frecuen-cia de cada uno de ellos la suma de todas las observaciones registradas en elintervalo.

Si bien esta forma de agrupación permite organizar la información cuando lavariable toma valores muy diversos tiene la desventaja de no permitir la visua-lización en forma individual de cada una de las observaciones. Por ejemplo,no nos permite saber cuál es la cantidad de consumidores de 15 años que con-sumen chicles Superglobo.

Un consumidor de 17 años está registrado en el segundo intervalo considera-do ya que el intervalo (9 ; 17] es un intervalo abierto en 9 y cerrado en 17,es decir que no contiene al 9 y sí contiene al 17.

Matemática B • UNIDAD 7 135

Cantidad de

consumidoresEdad

146(25;33]

71(33;41]

36(41;49]

25(49,57]

19(57;65]

2(65;73]

Page 140: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática136

EN TÉRMINOS MATEMÁTICOS: INTERVALOS DE CLASE. MARCADE CLASE. HISTOGRAMA. POLÍGONO DE FRECUENCIAS.

A cada uno de los intervalos utilizados para organizar la tabla anterior lo lla-mamos intervalo de clase o simplemente, clase.

La cantidad de intervalos más adecuada para cada distribución puede calcu-larse utilizando una regla basada en la cantidad de observaciones de la mues-tra. De todos modos se trata de una cantidad arbitraria, que no conviene quesea inferior a 5, ni superior a 20 intervalos.

Una vez decidida la cantidad de clases en la que se piensa dividir a las observa-ciones de la muestra, se determina el ancho de cada una de ellas teniendo encuenta la observación más chica y la más grande. En el caso presentado en laParte G estos valores son 1 y 73. Calculamos el ancho de cada intervalo divi-diendo a la diferencia entre la observación más grande y la más chica, por elnúmero de intervalos de clase en los que pensamos dividir a las observaciones dela muestra:

Ancho = (73 - 1) : 9 = 72 : 9 = 8.

Para organizar las observaciones de una muestra en intervalos de clase es con-veniente elegir intervalos del mismo ancho porque así los cálculos resultanmás sencillos. De todos modos, esto no siempre es posible. En los casos de dis-tribuciones muy desequilibradas, es decir aquellas en las que los datos no seencuentran distribuidos en forma similar en todos los intervalos, resulta difí-cil organizar los datos en intervalos del mismo tamaño.

Para calcular las medidas de posición central o de dispersión de una distribu-ción agrupada en intervalos de clase, se elige un valor de cada clase comorepresentante de la misma. El valor comúnmente usado es el punto medio decada intervalo, al que llamamos marca de clase. Para determinar su valorsumamos los extremos del intervalo y al resultado lo dividimos por 2.

Para representar en un sistema de ejes cartesianos una distribución de fre-cuencias cuyos datos están agrupados en intervalos de la misma amplitud, serepresenta sobre el eje horizontal a cada uno de los intervalos y se construyepara cada uno de ellos un rectángulo cuya base es el intervalo de clase y sualtura es directamente proporcional a la frecuencia registrada en el intervalo.A este tipo de representaciones las llamamos histogramas.

En el caso de las edades de los consumidores de chicles que estamos analizan-do, el histograma correspondiente es:

Page 141: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 7 137

Se suele agregar al histograma un polígono de frecuencias, que se construyeuniendo con segmentos de recta los puntos medios de las bases superiores delos rectángulos. Para cerrar el polígono se debe considerar un intervalo previoy otro posterior a los considerados en la tabla con frecuencia cero.

El polígono de frecuencias correspondiente al histograma de las edades de losconsumidores de chicles marca Superglobo es:

ACTIVIDAD N° 2: “TRABAJANDO CON EL LIBRO”

Parte A

En esta parte de la actividad lo orientaremos para que trabaje algunos contenidos utilizando el

libro Matemática 1 de Camuyrano B. y otros, editorial Estrada.

En el Capítulo 13 - Estadística.

1. Lea, en las páginas 303 a 307, la Situación 3: investigación de mercado.

2. Lea, en las páginas 307 y 308, “Cálculo de las medidas de tendencia central”.

En las tablas que aparecen en las páginas que debe leer se simboliza con Fi a la fre-

cuencia absoluta, fi a la frecuencia relativa y Fac a la frecuencia acumulada.

3. Resuelva la Ejercitación propuesta en la página 309.

Page 142: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática138

4. Lea, en las páginas 310 a 313, “Medidas de variabilidad” y “Cálculo de las medidas

de variabilidad”.

5. Resuelva la Ejercitación propuesta en las páginas 313 y 314.

Parte B

A partir de lo trabajado en el libro, calcule todas las medidas de posición central y de

variabilidad o dispersión de la distribución de las edades de los consumidores de chicles

Superglobo, presentada en la Parte G de la Actividad N° 1.

ORIENTACIONES

Las medidas de posición central que le pedimos que calcule en la Parte B son:

x = 21,182; Mo = 13 y Me = 19,39.

Por tratarse de una distribución en la que la variable es la edad de los consu-midores de chicles, podemos redondear estos valores a números enteros.Resulta así que la edad promedio de los compradores de chicles es 21 años, laedad más frecuente es 13 años y la edad correspondiente a la observación cen-tral de la distribución es 19.

En este caso, las tres medidas de posición central no coinciden.

EN TÉRMINOS MATEMÁTICOS: DISTRIBUCIONES SIMÉTRICASY ASIMÉTRICAS

La distribución correspondiente a las cantidades de paquetes que compransemanalmente los consumidores de chicles Superglobo es una distribuciónsimétrica ya que tiene la misma forma a ambos lados de su mediana.

En todas las distribuciones simétricas, la mediana coincide con la media, y si,como en este caso, la moda es única, entonces los tres valores coinciden.

La distribución correspondiente a las edades de los consumidores de chicles demarca Superglobo no es simétrica, ya que no tiene la misma forma a amboslados de la mediana. A estas distribuciones las llamaremos asimétricas.

En ellas, la mayor parte de los valores están ubicados a la derecha o a laizquierda de la moda. En el caso que estamos analizando, la mediana y lamedia están ubicadas a la derecha de la moda.

Page 143: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

ACTIVIDAD N° 3: “PESOS Y MEDIDAS EN EL FÚTBOL INFANTIL”

En un club barrial se registraron los pesos y las alturas de todos los niños de 6 a 9 años que

participan en categorías de fútbol infantil, con el objetivo de evaluar sus pesos y alturas

para establecer comparaciones con otros clubes competidores.

Los pesos y alturas registrados fueron los siguientes:

Utilizando la información anterior, responda los siguientes ítems:

1. El conjunto de niños a quienes se midió y se pesó para obtener los datos anteriores,

¿constituyen la población en estudio o una muestra de la misma?

2. Para organizar los datos de las listas de pesos y alturas de los chicos del club en dis-

tribuciones de frecuencia:

a. ¿De qué forma le conviene organizar la información? ¿Por qué?

b. Si organiza los valores de las listas de pesos y alturas distribuyéndolos en 6 inter-

valos, ¿de qué ancho resulta cada uno de ellos en cada una de las distribuciones?

3. Construya la distribución de frecuencias de los pesos y la de las alturas de los chicos

del club.

4. Represente gráficamente usando histogramas cada una de las distribuciones.

Represente también el polígono de frecuencias correspondiente a cada una de ellas.

5. Calcule la altura y el peso medio de los jugadores de fútbol infantil del club:

a. En la distribución agrupada en intervalos de clase.

b. Sin agrupar los datos en intervalos de clase.

Matemática B • UNIDAD 7 139

Alturas (en metros)

1,56 1,30 1,02 1,12 1,39 1,05

1,10 1,12 1,15 1,40 1,18 1,42

1,12 1,04 1,24 1,26 1,30 1,39

1,43 1,23 1,29 1,28 1,27 1,50

1,15 1,20 1,42 1,45 1,46 1,09

20 29,5 29,8 41,5 29,2 43

44 36,2 26,4 31,8 30,5 32,5

40,3 38 37,6 38 43,9 20,5

43,6 25,3 29,9 36,9 33 41,2

29 28,5 25 31,8 39,8 28

Pesos (en kg)

Page 144: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática140

6. Compare la media calculada en la distribución agrupada en intervalos de clase con la

media calculada con los datos sin agrupar.

7. Calcule el peso y la altura más frecuente de los jugadores de fútbol infantil del club:

a. En la distribución agrupada en intervalos de clase.

b. Sin agrupar los datos en intervalos de clase.

8. Compare la moda calculada en la distribución agrupada en intervalos de clase con la

moda calculada con los datos sin agrupar.

9. Calcule la mediana de los pesos y de las alturas de los jugadores de fútbol infantil del club:

a. En la distribución agrupada en intervalos de clase.

b. Sin agrupar los datos en intervalos de clase.

10.Compare la mediana calculada en la distribución agrupada en intervalos de clase con

la mediana calculada con los datos sin agrupar.

11.¿Cómo resultan ser entre sí las medidas de posición central de cada una de las distri-

buciones?

12.¿En cuál de las dos distribuciones los datos resultan menos dispersos?

ORIENTACIONES

En los ítems 5. a 10. de la Actividad N° 3 le pedimos que calcule las medi-das de posición central de las distribuciones de los pesos y las alturas de losjugadores de fútbol infantil del club de dos formas distintas: en la distribuciónagrupada en intervalos de clase y sin agrupar los datos en intervalos. El obje-tivo es comparar los resultados obtenidos a través de uno u otro cálculo yobtener algunas conclusiones.

En el caso de las alturas de los jugadores, las medidas de posición central cal-culadas en la distribución agrupada en intervalos de clase son

= 1,266 m; Me = 1,245 m; y la moda es 1,425 m.

Estas medidas calculadas en la distribución sin agrupar son:

= 1,264 m; Me = 1,265 m y la moda es 1,12 m.

Si compara los primeros valores con estos últimos, verá que los mismos difie-ren. Los primeros son más inexactos ya que fueron calculados utilizando, enlas cuentas, la marca de clase y no cada uno de los valores observados. Detodos modos la diferencia, especialmente en el caso de la media, es muypequeña, de modo que las medidas de posición central calculadas en una dis-tribución agrupada en intervalos de clase siguen siendo representativas de lamuestra.

x

x

Page 145: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

Matemática B • UNIDAD 7 141

En este caso, por tratarse de una población pequeña, fue posible calcular losvalores de las dos formas, pero en casos en que las muestras o las poblacionesde estudio sean muy grandes, resulta muy incómodo trabajar con la distribu-ción sin agrupar. Los cálculos realizados en esta actividad nos permiten obser-var que, aunque las medidas de posición central calculadas en una distribu-ción agrupada por intervalos pierdan exactitud, resultan valores confiables.

EN TÉRMINOS MATEMÁTICOS: TIPOS DE VARIABLES

Desde el comienzo de esta unidad, usted trabajó con diferentes tipos de variables.Los valores que toma la variable en el caso de los sabores de chicles preferidos porlos consumidores, son los diferentes sabores de chicles que se fabrican. En estecaso, la variable se refiere a características no medibles en términos numéricos.

A este tipo de variable la llamamos variable cualitativa.

En el resto de las situaciones trabajadas, la variable interviniente se refiere acaracterísticas medibles en términos numéricos, por ejemplo, las cantidades dechicles compradas por los consumidores, las edades de los compradores, lospesos y las alturas de los jugadores de fútbol infantil. A este tipo de variable lallamamos variable cuantitativa.

Distinguimos dos tipos de variable cuantitativa: variable cuantitativa discre-ta (por ejemplo las cantidades compradas por los consumidores; la edad de losconsumidores) y variable cuantitativa continua (por ejemplo la estatura y elpeso de los jugadores de fútbol infantil).

ACTIVIDAD N° 4: “TRABAJANDO CON EL LIBRO”

En esta actividad lo orientaremos para que trabaje algunos contenidos utilizando el libro

Matemática 1 de Camuyrano B. y otros, editorial Estrada.

En el Capítulo 13 - Estadística.

1. Lea, en las páginas 314 a 317, la Situación 5: el colesterol y la salud.

2. Lea, en las páginas 317 y 318, Amplitud o rango; Cuartiles y Porcentiles.

3. Resuelva la Ejercitación propuesta en las páginas 318 y 319.

4. Resuelva las actividades 4 a 9 de las Actividades de síntesis propuestas en las páginas

320 y 321.

Page 146: Guía de estudio MATEMATICAestatico.buenosaires.gov.ar/areas/educacion/adultos2000/...Programa Educación Adultos 2000 Coordinador pedagógico: Lic. Roberto Marengo Equipo técnico-pedagógico:

EDUCACIÓN ADULTOS 2000 • Matemática142

Para terminar el estudio de esta unidad, usted debe realizar los ejercicios de

integración correspondientes a la Unidad 7. Su realización es imprescindible.

Al resolverlos trabajará aspectos vinculados con los contenidos de la unidad

que no fueron trabajados en las actividades que resolvió hasta este momento.

También podrá integrar los distintos contenidos de la unidad. No deje de rea-

lizarlos.

Una vez que haya finalizado con la resolución de los ejercicios de integración,

resuelva también la Autoevaluación integradora. Su resolución le permitirá

retomar todos los contenidos del programa de la materia y autoevaluar si ya

se encuentra en condiciones de presentarse a rendir examen. Tampoco deje de

realizar esta actividad.