Intercambiadores de Liquido a Liquido

Embed Size (px)

Citation preview

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    1/24

    INTERCAMBIADORES DE LIQUIDO A LIQUIDO.

    1.1.DISEO MECANICO.

    Se presentah aqu los principales aspectos a tener en cuenta para el

    diseo mecnico y estructural de los intercambiadores de tubo y

    coraza.

    1.1.1. Esfuerzos en tubos.

    En este apartado se realiza un anlisis de los principales esfuerzos que pueden

    presentarse en intercambiadores de calor. Se ha tomado como ejemplo un

    intercambiador de tubo y coraza.

    Para el diseo y clculo de los tubos y la coraza se utilizan bsicamente los

    cdigos E!" y "S!E seccin #$$$ di%isin &.

    1.1.2. Esfuerzos en coraza.

    1.1.3. Esfuerzos en cabezales.

    'os esfuerzos en los cabezales corresponden principalmente a los

    esfuerzos longitudinales descritos en el prrafo anterior. Se presentan

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    2/24

    las principales clases de tapas cabezales utilizados en este tipo de

    equipos. (tomado de ).

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    3/24

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    4/24

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    5/24

    Sujecin tapas planas.

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    6/24

    Figura . clases de uniones entre las tapas y la coraza.

    Discontinuidad en esfuerzos tapas semiesfricas.

    Figura refuerzo de penetraciones en la lmina.

    !enetracin en la lmina.

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    7/24

    Figura "todos para soportar recipientes a presin. #fraas $.

    "an%oles. Soportes recipientes.

    Figura &ipos de uniones con brida.

    'niones con flanges o bridas.

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    8/24

    Figura "anifold.

    "anifold

    Esfuerzos trmicos. tubos bifurcados.

    Figura Esfuerzos trmicos.

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    9/24

    Figura !andeo de tubos debido a diferente e(pansin entre las lminas del

    cabezal.

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    10/24

    Figura

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    11/24

    Figura "(imo esfuerzo de corte en la camisa en funcin de la posicin a(ial.

    1.1.). Esfuerzos en espejos. !*&+,- ES!E, #/E*DE+ S/EE&$.

    *igura Patrn de distribucin de los tubos en los espejos.

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    12/24

    *igura Ensamble de los tubos en el espejo.

    *igura Espejos.

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    13/24

    +eat E,changers - esign Speci/cations

    EXPERT ENGINEERS AND DRAFTSMEN WITH ON-SITE MANUFACTURING.

    Shell & Tube Heat Exchangers are the most common type of heat exchanger usedin the chemical process industry. As its name implies, this type of heat exchanger

    consists of a shell filled with a bundle of tubes and sealed at each end by a

    tubesheet isolating the tubes and the shell.

    A fluid or gas flows through the tubes while another fluid or gas flows through

    the shell causing heat to transfer through the tube walls. The set of tubes is

    called a tube bundle and may be composed of various tube configurations plain,

    longitudinally finned, etc.

    Shell & Tube Heat Exchangers are used in applications where the demands from

    high temperatures and pressures are significant.

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    14/24

    !endel designs and fabricates all three types of Shell & Tube Heat Exchangers

    "ixed Tubesheet, #$tube and "loating Tubesheet.

    "igura intercambiador con espe%os flotantes.

    The Fixed Tubesheetdesign consists of two stationary tubesheets attached to

    the shell. The bundle of straight tubes are connected between the tubesheets

    and contain baffles to direct the flow around the tubes in order to generate thereuired heat transfer. A head assembly is attached to each tubesheet.

    The U-tubedesign consists of straight length tubes bent into a #$shape with

    both ends terminating at the tubesheet. The tube bundle is fitted with supports

    or flow baffles. The tubesheet'tube bundle is placed in the shell and bolted

    between the head flange and body flange. A head assembly is reuired to direct

    the fluid into and out of the tube bundle. This configuration allows for the entire

    tube bundle to be removable.

    A Floating Tubesheetdesign is similar to the "ixed Tubesheet design except

    one tubesheet is allowed to move axially within the shell while the other

    tubesheet is

    fixed. This configuration also allows for the tube bundle to be removable.

    !endel is here to serve you and provide the highest uality custom built Shell &

    Tube Heat Exchangers to meet your application reuirements. (e welcome the

    opportunity topro%ide you a quote.

    )lease see ourcontact pageto submit your reuest.

    http://www.bendelcorp.com/contact_quoterequest.htmlhttp://www.bendelcorp.com/contact_main.htmlhttp://www.bendelcorp.com/contact_main.htmlhttp://www.bendelcorp.com/contact_quoterequest.html
  • 7/24/2019 Intercambiadores de Liquido a Liquido

    15/24

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    16/24

    Figura Dimensiones caractersticas en un espejo.

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    17/24

    Figura

    Figura

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    18/24

    *igura . +erramienta para e,pansin de tubos.

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    19/24

    1.1.0. Esfuerzos en deflectores.1.1.. ouillas.1.1.4. "an%oles y %and%oles.1.1.5. Soportes.

    1.2. Soft6are para dise7o de intercambiadores de tubo y coraza.

    E,istehn numerosos programas que se pueden utilizar para el clculo y

    diseo de este tipo de intercambiadores. $ncluso una solucin simple es

    desarrollar su propa hoja de clculo para realizar los principales clculos.

    "lgunos programas incluyen el diselo t0rmico e hidrulico1 asi como el

    diseo mecnico de acuerdo con los estandarees utilizados ("S!E1 E!"1

    "P$).

    Entre los programas mencionamos los siguientes2

    8amfle(. 9&S s%ell and tube %eat e(c%anger design.

    :odecalc # dise7o mecnico$

    &%is pac;age contains 2 different soft6areas;eted !late /eat E(c%anger Design #!%e($ soft6are Demo

    ?ersion

    2= ?isualasic!o6er!ac;sSetup from "icrosoft 6ebsite

    &%e !%ysical properties soft6are is a separate soft6are and can be

    do6nloaded separately form

    6ebbusterz.com or 6ebbusterz.net

    -ormally t%e p%ysical properties are generated separately and sa@ed toa file. &%e soft6are

    t%en lin;s to t%e p%ysical properties soft6are and %as a feature to import

    t%e p%ysical properties file.

    A-S&+':&A,-S B

    A-S&*CC &/E S,F&9*+E A- &/E ,+DE+ SE& *,?E

    &o install please clic; on t%e setup.e(e file under t%e soft6are folder. &%e

    installer 6ill attempt to

    @erify if you %a@e t%e correct system files to run t%is soft6are. At 6ill also

    attempt to install any missing

    system files or frame6or; before installing t%e soft6are.

    Af t%e installation fails t%en ma;e sure t%at "icrosoft .-et frame6or; 3.0

    are installed on your computer

    before re=installation. "ost ne6 computers 6ill %a@e t%is reuirements.

    Af you dont %a@e t%is reuirement< t%ere is t6o 6ays of installing

    "icrosoft .-et frame6or; 3.0

    a$ +un 6indo6s update

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    20/24

    ,+

    b$ Do6nload t%is files from "icrosoft 6ebsite #"icrosoft .-et frame6or;

    3.0 AS F+EE you dont need to pay for it$

    %ttpGHH666.microsoft.comHdo6nloadHenHdetails.asp(IidJ21

    /E*&=C?=ye%=)K)

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    21/24

    1.2.1. 8amfle(.

    Esta desarrollado sobre una hoja de clculo de e,cell.Es de licencia libre

    pero tiene un n3mero limitado de corridas.

    1.2.2. 9&S.1.2.3. :odecalc.

    1.3.Ejemplo integral de clculo.

    " contiunuacin se presenta un ejercicio tomado de t0sis diseo de

    intercambiadores1 en el cual s erealiza un diseo completo del

    intercambiador1 aplicando los conceptos estudiados a lo largo de este

    captulo.

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    22/24

    How to Design a Shell-and-Tube Heat Exchanger

    R. Shankar Subramanian

    A lot has been written about designing heat exchangers, and specifically, shell-and-tubeheat exchangers. For example, the book by Kern (1 published in 1!"# details basic designprocedures for a $ariety of heat exchangers. %ince the publication of that book, with the

    ad$ent of computers, design procedures ha$e become sophisticated e$en though the basicgoals of design remain the same. &ecause it is possible to specify an infinite number ofdifferent heat exchangers that would perform the gi$en ser$ice (heat load, we ha$e toidentify the specific heat exchanger that would do it sub'ect to certain constraints. heseconstraints can be based on allowable pressure drop considerations either on the shell-sideor on the tube-side or both, and usually include that of minimi)ing the o$erall cost. Anarticle in 1!*! by aborek (+ outlines how heat exchanger design techniues e$ol$ed o$erthe years since the appearance of the book by Kern. ore recent de$elopments arediscussed in numerous articles in the maga)ine /hemical 0ngineering.2ere is a step-by-step approach to specifying a new shell-and-tube heat exchanger. 3e shallfocus on sensible heat transfer, and make extensi$e use of /hapter 11 in 4erry5s 2andbook(6. From hereon, references to page numbers, table numbers, and euation numbers arefrom 4erry5s 2andbook.7sually, the flow rates and the physical properties of the two streams in$ol$ed arespecified, and the temperatures at which the fluids are a$ailable are known. 8f the outgoingtemperature of one of the streams is not specified, usually a constraint (e.g. the temperatureof the cooling water cannot exceed !! is gi$en. hen, by an energy balance, the outgoingtemperature of the second stream can be calculated along with the heat duty. C4LSize

    1. he heat duty Q is usually fixed by the reuired ser$ice. he selected heat exchanger hasto meet or exceed this reuirement.+. ake an approximate estimate of the si)e of the heat exchanger by using a reasonableguess for the o$erall heat transfer coefficient. For typical shell-and-tube heat exchangers ina chemical process or a refinery, ables 11-6 and 11-9 can be used as a starting point for theestimate. 7sing this estimate, calculate the heat transfer area . his will gi$e you an idea ofthe approximate si)e of the heat exchanger, and therefore its cost. &ased on the cost, adetermination is made on how much time is worth in$esting in a detailed design.A6. %elect the stream that should be placed on the tube side. he tube side is used for thefluid that is more likely to foul the walls, more toxic or more corrosi$e, or for the fluid withthe higher pressure. /leaning of the inside of the tubes is easier than cleaning the outside.3hen a gas or $apor is used as a heat exchange fluid, it is typically introduced on the shellside. Also, high1

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    23/24

    $iscosity liuids, for which the pressure drop for flow through the tubes might beprohibiti$ely large, can be introduced on the shell side.9. he next step is to determine the approximate number of tubes needed to do the 'ob.&ecause we ha$e an idea of the approximate heat transfer area, we can write tN(toANDL:;

    where is the , 1#, 1+, 1?, or +# feet. @ikewise, the

  • 7/24/2019 Intercambiadores de Liquido a Liquido

    24/24

    ?. Dou need to estimate the number of baffles to be used and the spacing among them. Doucan read about baffles from pages 11-9+ and 11-96. Gormally, baffles are eually spaced.he minimum baffle spacing is one-fifth of the shell diameter, but not less than + inches,and the maximum is determined by considerations in$ol$ing supporting the tube bundle. Asimple formula from 4erry for estimating the maximum is inches, where is the .