12
“AÑO DE LA INTEGRACION NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD” UNIVERSIDAD PERUANA “LOS ANDES” FACULTAD DE CIENCIAS DE LA SALUD PSICOLOGIA TEMA: CATEDRA : CONOCIMIENTO CIENTIFICO DEL MUNDO FISICO CATEDRATICO : TORPOCO CASTRO, DAVID ALUMNA : MEZA MATAMOROS, CARMEN CICLO : I CICLO TURNO : MAÑANA INFORME SOBRE EL VIDEO OBSERVADO

La Tierra

Embed Size (px)

DESCRIPTION

tiera

Citation preview

Page 1: La Tierra

“AÑO DE LA INTEGRACION NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD”

UNIVERSIDAD PERUANA “LOS ANDES”

FACULTAD DE CIENCIAS DE LA SALUDPSICOLOGIA

TEMA:

CATEDRA : CONOCIMIENTO CIENTIFICO DEL MUNDO FISICO

CATEDRATICO : TORPOCO CASTRO, DAVID

ALUMNA : MEZA MATAMOROS, CARMEN

CICLO : I CICLO

TURNO : MAÑANA

HUANCAVELICA - PERU

2012

INFORME SOBRE EL VIDEO OBSERVADO

Page 2: La Tierra

LA TIERRA

La Tierra es el quinto mayor planeta del Sistema Solar y el tercero en orden de distancia al Sol. Es el mayor de los planetas telúricos o interiores y el único lugar del universo en el que se sabe que existe vida.

Aproximadamente el 70 por ciento de la superficie terrestre está cubierta por océanos de agua salada. El resto consiste en continentes e islas, situándose la gran mayoría de la tierra habitable en el hemisferio norte.

La tierra ha evolucionado mediante procesos geológicos y biológicos que han dejado vestigios de las condiciones originales. La superficie externa se halla fragmentada en varias placas tectónicas que se van desplazando muy lentamente a medida que avanza el tiempo geológico. El interior del planeta permanece activo, con una gruesa capa de materiales fundidos y un núcleo rico en hierro que genera un potente campo magnético. Las condiciones atmosféricas han variado significativamente de las condiciones originales por la presencia de formas de vida, que crean un equilibrio ecológico que estabiliza las condiciones de la superficie. A pesar de las grandes variaciones regionales del clima por la latitud y otros factores geográficos, el clima global medio a largo plazo está regulado con bastante precisión, y las variaciones de un grado o dos en la temperatura global media han tenido efectos muy importantes en el equilibrio ecológico y en la geografía de la Tierra.

Se cree que la Tierra se formó hace aproximadamente 4.550 millones de años a partir de la nebulosa protosolar, junto con el Sol y otros planetas. La Luna se formó relativamente poco después (aproximadamente 20 millones de años más tarde, hace 4.530 millones de años). Al principio fundida, la capa exterior del planeta se enfrió, dando lugar a la corteza sólida. Las emisiones de gases y la actividad volcánica formaron la atmósfera primordial. La condensación del vapor de agua, junto con el hielo de los cometas que en aquella época impactaban con la Tierra, crearon los océanos. Se cree que la química altamente energética produjo una molécula que se auto duplicó hace aproximadamente 4.000 millones de años.

Page 3: La Tierra

Los continentes se formaron, se separaron y se volvieron a unir durante cientos de millones de años, combinándose en ocasiones para formar un supe continente. Hace aproximadamente 750 millones de años, el primer supe continente conocido, Rodinia, comenzó a fracturarse. Más tarde, los continentes se volvieron a unir para formar Pannotia, que se dividió hace aproximadamente 540 millones de años. El último supe continente que conocemos es Pangea, que comenzó a romperse hace aproximadamente 180 millones de años.

Hay pruebas significativas, aún discutidas entre la comunidad científica, de que una severa era glacial durante el Neo proterozoico cubrió gran parte del planeta con una gruesa capa de hielo. Esta hipótesis se ha llamado la "Tierra bola de nieve", y es de especial interés, ya que precede a la explosión cámbrica en la cual comenzaron a proliferar las formas de vida pluricelulares, hace 530-540 millones de años.

Desde la explosión cámbrica se han registrado cinco grandes extinciones en masa. La última extinción masiva tuvo lugar hace aproximadamente 65 millones de años, cuando probablemente el choque de un meteorito causó la extinción de los dinosaurios y otros grandes reptiles, pero no la de los animales pequeños como los mamíferos, que por aquel entonces se asemejaban a las musarañas. A lo largo de los 65 millones de años siguientes, los mamíferos se diversificaron.

TIEMPO ADMOSFERICO Y CLIMA

La atmósfera terrestre es un factor clave que sustenta el ecosistema planetario. Esta fina capa de gases que envuelve la Tierra se mantiene en su sitio gracias a la gravedad del planeta. Está compuesta por un 97´5% de nitrógeno, un 21% de oxígeno y trazas de otros gases. La presión atmosférica disminuye con la altitud. La capa de ozono de la Tierra desempeña un papel esencial en la reducción de la cantidad de radiación ultravioleta que llega a la superficie. Ya que el ADN puede verse fácilmente dañado por esta radiación, la capa de ozono actúa de escudo que protege la vida en la superficie. La atmósfera también retiene calor durante la noche, reduciendo por tanto las temperaturas extremas diarias.

Page 4: La Tierra

Las variaciones del tiempo atmosférico tienen lugar casi exclusivamente en la parte baja de la atmósfera, y actúa de sistema convectivo para redistribuir el calor. Las corrientes oceánicas son otro factor importante para determinar el clima, especialmente la circulación termohalina submarina, que distribuye la energía calorífica de los océanos ecuatoriales a las regiones polares. Estas corrientes ayudan a moderar las diferencias de temperatura entre el invierno y el verano en las zonas templadas. Es más, sin las redistribuciones de energía calorífica que realizan las corrientes oceánicas y atmosféricas, los trópicos serían mucho más cálidos y las regiones polares mucho más frías.

BIOSFERA

La biosfera es la parte de la capa más externa de la Tierra que comprende el aire, la tierra, las rocas superficiales y el agua dentro de la cual tiene lugar la vida, y en donde, a su vez, se alteran o se transforman los procesos bióticos. Desde el punto de vista geofísico, la biosfera es el sistema ecológico global que integra a todos los seres vivos y sus relaciones, incluyendo su interacción con los elementos de la litosfera (rocas), la hidrosfera (agua), y la atmósfera (aire). Actualmente, se estima que la Tierra contiene cerca de 75.000 millones de toneladas de biomasa (la masa de la vida), que vive en diversos entornos dentro de la biosfera. Cerca de nueve décimas partes de la biomasa total de la Tierra es vida vegetal, de la que depende estrechamente la vida animal. Hasta la fecha, se han identificado más de 2 millones de especies de plantas y animales, La cantidad de especies individuales oscila constantemente: aparecen especies nuevas y otras dejan de existir, en una base continua. En la actualidad, la cantidad total de especies está experimentando un rápido descenso.

La diferencia entre la vida animal y la vegetal no es tan tajante como pueda parecer, ya que hay algunos seres vivos que reúnen características de ambas. Giuliana dividió a todos los seres vivos en plantas, que por lo general no se mueven, y animales. En el sistema de Carlos Linneo, éstos se convirtieron en los reinos Vegetabilia (más tarde Plantae) y Animalia. Desde ese momento se vio que el reino Plantae, como estaba definido originalmente, incluía varios grupos sin relación alguna, por lo que se eliminó a los hongos y a varios grupos de algas para moverlos a reinos nuevos, si bien a menudo se siguen considerando plantas en algunos contextos. En la flora, está comprendida a veces la vida bacteriana 26 tanto es así que ciertas clasificaciones utilizan los términos flora bacteriana y flora vegetal de manera separada.

Page 5: La Tierra

ECOSISTEMAS

El ecosistema es un sistema dinámico relativamente autónomo, formado por una comunidad natural y su ambiente físico. El concepto, que empezó a desarrollarse entre 1920 y 1930, tiene en cuenta las complejas interacciones entre los organismos (plantas, animales, bacterias, algas, protozoos y hongos, entre otros) que forman la comunidad y los flujos de energía y materiales que la atraviesan.

Todas las formas de vida tienen la necesidad de relacionarse con el entorno en que viven, y también con otras formas de vida. En el siglo XX, esta premisa dio lugar al concepto de ecosistema, que se pueden definir como cualquier situación en la que hay una interacción entre organismos y su entorno. Los ecosistemas constan de factores bióticos y abióticos que funcionan de manera interrelacionada

Los ecosistemas son entidades dinámicas compuestas por una comunidad biológica y un entorno abiótico. La composición abiótica y biótica de un ecosistema y su estructura viene determinada por el estado de una cantidad de factores del medio relacionados entre sí. Cualquier cambio en alguno de estos factores (por ejemplo: disponibilidad de nutrientes, temperatura, intensidad de la luz, densidad de población de una especie...) resultará en cambios dinámicos en la naturaleza de estos sistemas. Por ejemplo, un incendio en un bosque caducifolio templado cambia completamente la estructura de ese sistema. Ya no hay árboles grandes, la mayor parte de los musgos, hierbas y arbustos que poblaban el suelo del bosque han desaparecido y los nutrientes almacenados en la biomasa se liberan rápidamente al suelo, a la atmósfera y al sistema hidrológico. Después de un corto periodo de recuperación, la comunidad que antes eran grandes árboles maduros, ahora se ha convertido en una comunidad de hierbas, especies herbáceas y plántulas.

Page 6: La Tierra

EL MOVIMIENTO

El movimiento se refiere al cambio de ubicación en el espacio a lo largo del tiempo, tal como es medido por un observador físico. Un poco más generalmente el cambio de ubicación puede verse influido por las propiedades internas de un cuerpo o sistema físico, o incluso el estudio del movimiento en toda su generalidad lleva a considerar el cambio de dicho estado físico.

Las descripción del movimiento de los cuerpos físicos se denomina cinemática. Esta disciplina pretende describir el modo en que un determinado cuerpo se mueve y qué propiedades tiene dicho movimiento.

Posteriormente el estudio de las causas que producen el movimiento y las relaciones cuantitativas entre los agentes que causan el movimiento y el movimiento observado llevó al desarrollo de la mecánica que es la rama de la física que estudia y analiza el movimiento y reposo de los cuerpos, y su evolución en el tiempo, bajo la acción de fuerzas y agentes que pueden alterar el estado de movimiento.

ESTUDIOS DEL MOVIMIENTO

El gran filósofo griego Aristóteles (384 a. C. – 322 a. C.) propuso explicaciones sobre lo que ocurría en la naturaleza, considerando las observaciones que hacía de las experiencias cotidianas y sus razonamiento, aunque no se preocupaba por comprobar sus afirmaciones. Aristóteles formuló su teoría sobre la caída de los cuerpos afirmando que los más pesados caían más rápido que los más ligeros, es decir entre más peso tengan los cuerpos más rápido caen.

MOVIMIENTO RECTILINEO

Un movimiento es rectilíneo cuando describe una trayectoria recta. En ese tipo de movimiento la aceleración y la velocidad son siempre paralelas. Usualmente se estudian dos casos particulares de movimiento rectilíneo:

El movimiento rectilíneo uniforme cuya trayectoria además de ser una línea recta se recorre a velocidad constante, es decir, con una aceleración nula. Esto implica que la velocidad media entre dos instantes cualesquiera siempre tendrá el mismo valor.

El Movimiento rectilíneo uniformemente acelerado es aquél en el que un cuerpo se desplaza sobre una recta con aceleración constante.

MOVIMIENTO CIRCULAR

El movimiento circular es el que se basa en un eje de giro y radio constante: la trayectoria será una circunferencia. Si, además, la velocidad de giro es constante, se produce el movimiento circular uniforme, que es un caso particular de movimiento circular, con radio fijo y velocidad angular constante.

Page 7: La Tierra

MOVIMIENTO ONDULATORIO

Se denomina movimiento ondulatorio al realizado por un objeto cuya trayectoria describe una ondulación. Se corresponde con la trayectoria ideal de un cuerpo que se mueve en un medio que no ofrece resistencia al avance y que está sujeto a un campo gravitatorio uniforme.

Un tipo de movimiento ondulatorio frecuente, el sonido que involucra la propagación en forma de ondas elásticas longitudinales (sean audibles o no), generalmente a través de un fluido (u otro medio elástico) que esté generando el movimiento vibratorio de un cuerpo.

MOVIMIENTO PARABOLICO

Se denomina movimiento parabólico al realizado por un objeto cuya trayectoria describe una parábola. Se corresponde con la trayectoria ideal de un cuerpo que se mueve en un medio, que no ofrece resistencia al avance y que está sujeto a un campo gravitatorio uniforme.

MOVIMIENTO PENDULAR

El movimiento pendular es una forma de desplazamiento que presentan sistemas físicos como aplicación práctica al movimiento armónico simple. Hay tres características del movimiento pendular que son: péndulo simple, péndulo de torsión y péndulo físico.

MOVIMIENTO ARMONICO SIMPLE

El movimiento armónico simple, también denominado movimiento vibratorio armónico simple, es un movimiento periódico que queda descrito en función del tiempo por una función armónica (seno o coseno).

MOVIMIENTO GIROSCOPICO

De acuerdo con la mecánica del sólido rígido, además de la rotación alrededor de su eje de simetría, un giróscopo presenta en general dos movimientos principales: la precesión y la nutación.

En un giroscopio debemos tener en cuenta que el cambio en el momento angular de la rueda debe darse en la dirección del momento de la fuerza que actúa sobre la rueda.

CARACTERISTICAS DEL MOVIMIENTO

La descripción del movimiento de partículas puntuales o corpúsculos (cuya estructura interna no se requiere para describir la posición general de la partícula) es similar en en mecánica clásica y mecánica relativista. En ambas el movimiento es una curva parametrizada por un parámetro escalar. En la descripción de la mecánica clásica el parámetro es el tiempo universal,

Page 8: La Tierra

mientras que en relatividad se usa el intervalo relativista ya que el tiempo propio percibido por la partícula y el tiempo medido por diferentes observadores no coincide.

Sin embargo, todas las teorías físicas del movimiento atribuyen al movimiento una serie de características o atributos físicos como:

Posición La cantidad de movimiento lineal

La cantidad de movimiento angular

La fuerza existente sobre la partícula

LEYES DE NEWTON

Las Leyes de Newton, también conocidas como Leyes del movimiento de Newton, son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la dinámica, en particular aquellos relativos al movimiento de los cuerpos. Revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el universo.

En tanto que constituyen los cimientos no sólo de la dinámica clásica sino también de la física clásica en general. Aunque incluyen ciertas definiciones y en cierto sentido pueden verse como axiomas, Newton afirmó que estaban basadas en observaciones y experimentos cuantitativos; ciertamente no pueden derivarse a partir de otras relaciones más básicas. La demostración de su validez radica en sus predicciones y la validez de esas predicciones fue verificada en todos y cada uno de los casos durante más de dos siglos.

Los estudios que el realizó se pueden definir con las siguientes tres leyes que postuló:

La primera ley del movimiento rebate la idea aristotélica de que un cuerpo sólo puede mantenerse en movimiento si se le aplica una fuerza. Newton expone que:

Todo cuerpo permanece en su estado inicial de reposo o movimiento uniforme rectilíneo a menos que sobre él se ejerza una fuerza exterior no equilibrada.

La segunda ley del movimiento de Newton afirma que:

El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.

Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo

Page 9: La Tierra

o dirección. En concreto, los cambios experimentados en la cantidad de movimiento de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los cuerpos. A diferencia de la primera ley de Newton que es descriptiva, la segunda ley también conocida como ley del movimiento permite calcular cuantitativamente las fuerzas, las masas y aceleraciones de los cuerpos.

Donde:

F, fuerza que se mide en Newton (N)

m, masa que se mide en kilogramos o gramos (Kg, g)

a, aceleración que se mide en metros sobre segundos al cuadrado (m/s2)

La Tercera ley de Newton afirma que:

Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y de dirección contraria.

La tercera ley es completamente original de Newton (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo. Expone que por cada fuerza que actúa sobre un cuerpo, este realiza una fuerza de igual intensidad, pero de dirección contraria sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y opuestas en dirección. Es importante observar que este principio de acción y reacción relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas.