38
INDICE Objetivos………………………………….………………………………………………………...……pag.2 compendio teórico………………………..…………………………………………………..….…pag.3 procedimiento….…………………….…. ……………………………………....................................pag.6 resultados obtenidos……………………….…………………………………………………………...pag.7 Cuestionario……………………………………………………………………………………………pag.23 observaciones………………………………………………………………………………………….pag.29 -conclusiones……………………………………………………………………………………………pag.30 -referencias………………………………………………………………………………………………pag.31

Lab.fisica 2 _pendulo Compuesto

Embed Size (px)

DESCRIPTION

laboratorio de fisica

Citation preview

Page 1: Lab.fisica 2 _pendulo Compuesto

INDICE

Objetivos………………………………….………………………………………………………...……pag.2compendio teórico………………………..…………………………………………………..….…pag.3procedimiento….…………………….….……………………………………....................................pag.6resultados obtenidos……………………….…………………………………………………………...pag.7Cuestionario……………………………………………………………………………………………pag.23observaciones………………………………………………………………………………………….pag.29-conclusiones……………………………………………………………………………………………pag.30-referencias………………………………………………………………………………………………pag.31

Page 2: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO

OBJETIVOS

Determinar el centro de masa del nuevo sistema que conforma el péndulo (barra y disco). Confirmar que el péndulo compuesto es adaptable a un péndulo simple para su mejor estudio. Calcular la gravedad a partir del dato experimental obtenido (periodo) para calcular el margen de error. Comparar el margen de error obtenido con el margen de error tomado a partir del cálculo teórico del periodo. Comprobar la variación del periodo respecto a la variación de la ubicación del centro de masa.

LABORATORIO DE FISICA 2 Página 2

Page 3: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO

COMPENDIO TEORICO

El péndulo compuesto es cualquier cuerpo rígido que puede oscilar libremente en el campo gravitatorio alrededor de un eje horizontal, con la condición de que dicho eje no pase por su centro de masa.Para su mejor estudio es necesario ajustar su modelo matemático al modelo del péndulo simple debido a que tenemos conceptos previos.Deducción del periodo

Figura 1. Péndulo físico.El péndulo físico es un sistema con un sólo grado de libertad; el correspondiente a la rotación alrededor del eje fijo ZZ′ (Figura 1). La posición del péndulo físico queda determinada, en cualquier instante, por el ángulo θ que forma el plano determinado por el eje de rotación (ZZ′) y el centro de gravedad (G) del péndulo con el plano vertical que pasa por el eje de rotación.Llamaremos a la distancia del centro de gravedad (G) del péndulo al eje de rotación ZZ′. Cuando el péndulo está desviado de su posición de equilibrio LABORATORIO DE FISICA 2 Página 3

Page 4: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO(estable) un ángulo θ, actúan sobre él dos fuerzas (mg y N) cuyo momento resultante con respecto al eje ZZ′ es un vector dirigido a lo largo del eje de rotación ZZ′, en el sentido negativo del mismo; i.e.,

Si es el momento de inercia del péndulo respecto al eje de suspensión ZZ′ y llamamos a la aceleración angular del mismo, el teorema del momento angular nos permite escribir la ecuación diferencial del movimiento de rotación del péndulo:

que podemos escribir en la forma:

que es una ecuación diferencial de segundo orden, del mismo tipo que la que encontramos para el péndulo simple.En el caso de que la amplitud angular de las oscilaciones sea pequeña, podemos poner sen θ ≈ θ y la ecuación [3] adopta la forma

que corresponde a un movimiento armónico simple.El periodo de las oscilaciones es:

Siempre es posible encontrar un péndulo simple cuyo periodo sea igual al de un péndulo físico dado; tal péndulo simple recibe el nombre de péndulo simple equivalente y su longitud λ recibe el nombre de longitud reducida del péndulo físico. Utilizando la expresión del periodo del péndulo simple de longitud λ, podemos escribir:

LABORATORIO DE FISICA 2 Página 4

Page 5: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTOy, por lo tanto, tenemos que:

Así, en lo que concierne al periodo de las oscilaciones de un péndulo físico, la masa del péndulo puede imaginarse concentrada en un punto (O′) cuya distancia al eje de suspensión es λ. Tal punto recibe el nombre de centro de oscilación. Todos los péndulos físicos que tengan la misma longitud reducida λ (respecto al eje de suspensión) oscilarán con la misma frecuencia; i.e., la frecuencia del péndulo simple equivalente, de longitud

PARTE EXPERIMENTAL

EQUIPOS Y MATERIALES:- Soporte universal

- Una balanza

- Un cronometro- Una wincha

LABORATORIO DE FISICA 2 Página 5

Page 6: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO

- Una barra metálica- Un disco

PROCEDIMIENTO

Prepare el péndulo de barra (compuesto) tal y como se muestra en la figura. El péndulo compuesto dispuesto en el laboratorio esta constituido por una barra rígida de sección rectangular y de longitud Lb y una masa (disco D) deslizante sobre la misma, apoyándose la barra mediante una cuchilla acero, que esta dirigida hacia abajo, constituye el eje de giro del péndulo. Una vez conseguida la verticalidad de la barra, que es su posición de equilibrio, se separa de dicha posición oscilando con amplitudes pequeñas (θ << 10º) en un plano que debe ser perfil de la mesa del laboratorio, evitando cualquier movimiento lateral de la barra.

LABORATORIO DE FISICA 2 Página 6

Page 7: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO Deslizando la masa a través de la barra se obtienen diferentes longitudes “

La” del péndulo. Las longitudes Lb y La se miden con la wincha. Con un cronometro manual se mide el periodo de oscilación.

RESULTADOS OBTENIDOS

LABORATORIO DE FISICA 2 Página 7

Page 8: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO

Figura 2. pendulo compuestoFormulas de aplicacion

T=2π √ ¿g

¿= IM .R

I=13. M b. Lb

2+M a . La2

R=M a . La+

12. M

b

. Lb

M a+M b

Determinando las masas del sistema:LABORATORIO DE FISICA 2 Página 8

Page 9: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO

Ma=1073,7 g+0,05 g

Mb=104,6 g+0,05 g

Determinando las longitudes del sistemaLb=100 cm+0,05 cm

La1=98cm+0,05 cm

La2=92cm+0,05cm

La3=83 cm+0,05cm

La4=75cm+0,05cm

La5=67 cm+0,05cm

La6=59cm+0,05cm

La7=51cm+0,05cm

TABLA Nº 1:Datos experimentales para 5 oscilaciones

T= tiempo5oscilaciones

L(cm) t(s) T(s)98cm+0,05cm 9.59s 1.91892cm+0,05cm 9.28s 1.85683cm+0,05cm 8.78s 1.75675cm+0,05cm 8.15s 1.6367cm+0,05cm 8.01s 1.60259cm+0,05cm 7.68s 1.53651cm+0,05cm 6.47s 1.294

LABORATORIO DE FISICA 2 Página 9

Page 10: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO

Calculando Le (longitud equivalente)Para Le 1 :I=13. M b. Lb

2+M a . La2

I=13.0,1046 .12+1,073.0.982

I=1,065Kg .m2

R=M a . La+

12. M

b

. Lb

M a+M b

R=1,073.0,98+ 1

2.0,1046 .1

1,073+0,1046

R=0,937m

M=M a+M b=1,1776 kgLe 1=

IM .R

Le 1=1,065

1,1776.0,937

Le 1=0,9651m

LABORATORIO DE FISICA 2 Página 10

Page 11: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO

Para Le 2 :Le 2=

IM .R

I=13. M b. Lb

2+M a . La2

I=13.0,1046 .12+1,073.0.922

I=0.943Kg .m2

R=M a . La+

12. M

b

. Lb

M a+M b

R=1,073.0,92+ 1

2.0,1046 .1

1,073+0,1046

R=0.882m

M=M a+M b=1,1776 kgLe 2=

IM .R

Le 2=0.943

1,1776.0.882

Le 2=0,907m

LABORATORIO DE FISICA 2 Página 11

Page 12: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO

Para Le 3 :Le 3=

IM .R

I=13. M b. Lb

2+M a . La2

I=13.0,1046 .12+1,073.0.832

I=0,774Kg .m2

R=M a . La+

12. M

b

. Lb

M a+M b

R=1,073.0,83+ 1

2.0,1046 .1

1,073+0,1046

R=0,800m

M=M a+M b=1,1776 kgLe 3=

IM .R

LABORATORIO DE FISICA 2 Página 12

Page 13: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTOLe 3=

0,7741,1776.0,800

Le 3=0,821m

Para Le 4 :Le 4=

IM .R

I=13. M b. Lb

2+M a . La2

I=13.0,1046 .12+1,073.0.752

I=0,638Kg .m2

R=M a . La+

12. M

b

. Lb

M a+M b

R=1,073.0,75+ 1

2.0,1046 .1

1,073+0,1046

LABORATORIO DE FISICA 2 Página 13

Page 14: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTOR=0,727m

M=M a+M b=1,1776 kgLe 4=

IM .R

Le 4=0,638

1,1776 .0,727

Le 4=0,745m

Para Le 5 :Le 5=

IM .R

I=13. M b. Lb

2+M a . La2

I=13.0,1046 .12+1,073.0.672

I=0.516Kg .m2

LABORATORIO DE FISICA 2 Página 14

Page 15: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO

R=M a . La+

12. M

b

. Lb

M a+M b

R=1,073.0,67+ 1

2.0,1046 .1

1,073+0,1046

R=0,654m

M=M a+M b=1,1776 kgLe 5=

IM .R

Le 5=0.516

1,1776 .0,654

Le 5=0,669m

Para Le 6 :Le 6=

IM . R

I=13. M b. Lb

2+M a . La2

LABORATORIO DE FISICA 2 Página 15

Page 16: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTOI=13.0,1046 .12+1,073.0.592

I=0,408Kg .m2

R=M a . La+

12. M

b

. Lb

M a+M b

R=1,073.0,59+ 1

2.0,1046 .1

1,073+0,1046

R=0,582m

M=M a+M b=1,1776 kgLe 6=

IM . R

Le 6=0,408

1,1776 .0,582

Le 6=0,595m

Para Le 7 :

LABORATORIO DE FISICA 2 Página 16

Page 17: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTOLe 7=

IM . R

I=13. M b. Lb

2+M a . La2

I=13.0,1046 .12+1,073.0.512

I=0,313Kg .m2

R=M a . La+

12. M

b

. Lb

M a+M b

R=1,073.0,51+ 1

2.0,1046 .1

1,073+0,1046

R=0,509m

M=M a+M b=1,1776 kgLe 7=

IM . R

Le 7=0,313

1,1776 .0,509

Le 7=0,522m

LABORATORIO DE FISICA 2 Página 17

Page 18: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO

Graficando (T 2 vs L)Se sabe que la grafica es una recta:

T=2π √ ¿g

T 2=4. π2 . ¿g

Dándole a (T = Y) y (Le = X) entonces se obtendría:²

Y= 4.π2

g. X

Donde :m=4. π

2

gy baproximadamente=0

Para que:Y = m.X +b

Se conoce por estadística que:

m : pendiente m=n .∑ X .Y−∑ X .∑Y

n .∑ X2– (∑ X )2

LABORATORIO DE FISICA 2 Página 18

Page 19: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO b : intercepto b=∑ Y .∑ X2–∑ X .∑ X .Y

n .∑ X2 – (∑ X )2

Por el método de mínimos cuadrados:Le=X T T^2=Y X^2 X.Y1 0,9651 1,918 3,678724 0,93141801 3,550336532 0,907 1,856 3,444736 0,822649 3,124375553 0,821 1,756 3,083536 0,674041 2,531583064 0,745 1,63 2,6569 0,555025 1,97939055 0,669 1,602 2,566404 0,447561 1,716924286 0,545 1,536 2,359296 0,297025 1,285816327 0,522 1,294 1,674436 0,272484 0,87405559

∑ ¿ . 5,1741 11,592 19,464032 4,00020301 15,0624818Calculando la pendiente (m):

m=n .∑ X .Y−∑ X .∑Y

n .∑ X2– (∑ X )2

m=7. (15,0624818 )−5,1741 .(19,464032)

7. (4,00020301)−(5,1741)2

m=3,8439

Calculando el intercepto (b):

LABORATORIO DE FISICA 2 Página 19

Page 20: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTOb=∑ Y .∑ X2–∑ X .∑ X .Y

n .∑ X2 – (∑ X )2

b=19,464032 (4,00020301)−5,1741(15,0624818)

7(4,00020301)−(5,1741)2

b=−0,063

Entonces resulta nos resulta la recta:Y =3,8439.X −0,063

Hallando la gravedadComo:

m=3,8439 F …. (α)Y además:

m=4. π2

g….(β )

Reemplazando (α) en (β):3,8439=4.π

2

g

g= 4. π2

3,8439

g=10,27 ms2

Porcentaje de error:

LABORATORIO DE FISICA 2 Página 20

Page 21: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO

Eabsoluto=I gteorica−gexperimental I

Eabsoluto=I 9,78−10.27 I

Eabsoluto=0.49m

s2

Erelativo=Eabsoluto

gteorica

.100%

Erelativo=0.499,78

.100%

Erelativo=5.01

Graficando (T vs L)Se sabe que la grafica es una raíz cuadrada:

T=2π √ ¿g

Dándole a (T = Y) y (Le = X) entonces se obtendría:

Y=2π√g

. X12

Donde:A=2 π

√gy B aproximadamente=1

2

Para que:Y=A .X B

LABORATORIO DE FISICA 2 Página 21

Page 22: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTOTomándole logaritmo a ambos miembros se obtiene la siguiente forma:

logY=logA+B .logX

Si se remplaza:y = logY , b = B , x = logX , y a = logA

Entonces se obtendría la siguiente ecuación de recta:y = a + b.x

Donde:b : pendiente b=

n .∑ (logX . l ogY ) –∑ logX .∑ logY

n .∑ (logX )2 – (∑ logX )2

a : intercepto a=∑ logY .∑ (logX )2 –∑ logX .∑ logX .logY

n .∑( logX )2– (∑ logX )2

Por el método de mínimos cuadrados:X=Le Y=T logX logY (logX)^2 logX.logY1 0,9651 1,918 -0,0154 0,2828 0,0002 -0,00442 0,907 1,856 -0,0424 0,2686 0,0018 -0,01143 0,821 1,756 -0,0857 0,2445 0,0073 -0,02094 0,745 1,63 -0,1278 0,2122 0,0163 -0,02715 0,669 1,602 -0,1746 0,2047 0,0305 -0,03576 0,545 1,536 -0,2636 0,1864 0,0695 -0,04917 0,522 1,294 -0,2823 0,1119 0,0797 -0,0316sumatoria 5,1741 11,5920 -0,9918 1,5111 0,2054 -0,1803

Calculando la pendiente (b):

LABORATORIO DE FISICA 2 Página 22

Page 23: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTOb=

n .∑ (logX . logY )–∑ logX .∑ logY

n .∑ (logX )2– (∑ logX )2

b=7. (−0,1803 )– (−0,9918 ) .(1,5111)

7.(0,2054)−(−0,9918)2

b=0,521

Calculando el intercepto (a):

a=∑ logY .∑ (logX )2 –∑ logX .∑ logX .logY

n .∑( logX )2– (∑ logX )2

a=(1,5111) . (0,2054 )– (−0,9918 ) .(−0,1803)

7.(0,2054) – (−0,9918)2

a=0,2896

Entonces resulta nos resulta la recta:

y =0,521.x + 0,2896Pero se sabe que:

b = B

LABORATORIO DE FISICA 2 Página 23

Page 24: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTOB = 0,521

Y además:a=logA

0,2896¿ logA

A=100,2896

A = 1,948Por lo tanto nuestra función potencial seria:

Y=1,928 X0,521

Hallando la gravedadComo:

A=1,9280 …. (α)Y además:

A=2 π√g

….(β )

LABORATORIO DE FISICA 2 Página 24

Page 25: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTOReemplazando (α) en (β):

1,9280=2 π√g

g= 4.π2

¿¿

g=10,6205 ms2

Porcentaje de error:Eabsoluto=I gteorica−gexperimental I

Eabsoluto=I 9,78−10,62 I

Eabsoluto=0,84m

s2

Erelativo=Eabsoluto

gteorica

.100%

Erelativo=0,849,78

.100%

Erelativo=8,58%

CUESTIONARIO

1. Investiga sobre los péndulos físicos acoplados. Que ecuaciones gobiernan a estos péndulos a estos péndulos, como implementar usted un experimento para este péndulo? Explica.

LABORATORIO DE FISICA 2 Página 25

Page 26: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTOUna experiencia con osciladores acoplados que se realiza en el aula suele sorprender a los estudiantes. Consiste en una cuerda que se sujeta por sus extremos situados a la misma altura. Se atan dos péndulos iguales, a dos puntos simétricos de la cuerda, tal como se indica en la figura. Se desplaza uno de los péndulos, por ejemplo el de color rojo, de su posición de equilibrio y se suelta.

El péndulo empieza a oscilar pero su amplitud disminuye con el tiempo, el otro péndulo de color azul que estaba inicialmente en reposo, empieza a oscilar con una amplitud que aumenta.Al cabo de un cierto tiempo, el péndulo rojo se para momentáneamente, y el péndulo azul oscila con la máxima amplitud. Luego, se cambian los papeles, el péndulo azul disminuye su amplitud con el tiempo, y el péndulo rojo va aumentando su amplitud.Se suele pedir a los estudiantes que midan con un cronómetro el tiempo que transcurre desde que uno de los péndulos se para, hasta que vuelve a pararse momentáneamente de nuevo, y que cuenten el número de oscilaciones que realiza el péndulo en dicho intervalo de tiempo.Se analiza la situación desde el punto de vista energético, cómo la energía fluye de un péndulo al otro a través del acoplamiento. Si el acoplamiento es débil, como es éste el caso, la suma total de las energías de los dos péndulos debe ser constante. Ecuaciones del movimiento:Para estudiar un sistema formado por dos osciladores acoplados, vamos a tomar como modelo el sistema formado por dos partículas iguales m situadas en los LABORATORIO DE FISICA 2 Página 26

Page 27: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTOextremos de dos muelles de idéntica constante elástica k. El acoplamiento se efectúa uniendo las dos partículas mediante un muelle de constante kc, tal como se puede ver en la figura

Llamemos x1 y x2 a los desplazamientos de cada una de las partículas a partir de su posición de equilibrio, medidos como positivos cuando están a la derecha. El muelle de la izquierda se ha estirado x1, el de la derecha se ha comprimido x2 y el central se ha deformado x2-x1. Las fuerzas sobre cada una de las partículas se indican en la figura. Sobre la partícula de la izquierda, se ejerce una fuerza hacia la izquierda –kx1, y una fuerza hacia la derecha debido a la deformación del muelle central kc(x2-x1), suponemos que x2 es mayor que x1. Sobre la partícula derecha, se ejerce una fuerza hacia la izquierda –kx2 y otra fuerza hacia la izquierda debido a la deformación del muelle central –kc(x2-x1).

El muelle central ejerce fuerzas iguales y de sentido contrario sobre cada una de las partículas.Aplicamos la segunda ley de Newton a cada una de las partículas y escribimos las ecuaciones del movimiento en forma de ecuaciones diferenciales de segundo orden

Sumando y restando las dos ecuaciones diferenciales tenemos, la ecuación diferencial de las oscilaciones libres

LABORATORIO DE FISICA 2 Página 27

Page 28: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO

Son las ecuaciones diferenciales de dos movimientos armónicos simples de frecuencias

Las soluciones de estas dos ecuaciones, son respectivamente a=x1+x2= 0a sen( at+ a) b=x1-x2= 0b sen( bt+ b)

Donde las amplitudes  0a y  0b y las fases iniciales  a y  b están determinadas por las condiciones iniciales: posición inicial y velocidad inicial de cada una de las partículas.Despejando x1 y x2 de las dos ecuaciones anteriores tenemos

El movimiento general de dos osciladores acoplados puede considerarse como la superposición de dos modos normales de oscilación de frecuencias angulares  a y b.2. Investigue sobre el péndulo de muelle. Que ecuaciones gobiernan a estos péndulos?. Como implementaría usted un experimento para este péndulo? Explique

El péndulo de muelle I, en el que se utiliza un resorte en remplazo de un hilo, El péndulo de resorte está compuesto por un cuerpo de masa m que cuelga de un resorte sujeto a un punto fijo, de longitud L y de constante k.LABORATORIO DE FISICA 2 Página 28

Page 29: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTOEste sistema es la combinación de dos modos de oscilación, el péndulo simple y el muelle elástico, estos están acoplados de forma no lineal y tienen su frecuencia característica. Si el péndulo se desplaza un ángulo q de la vertical o se cambia su longitud de equilibrio o se hace cualquiera de estas dos combinaciones, la dinámica del objeto está dada por la fuerza del resorte, la fuerza gravitatoria y su propia masa. En primera instancia, el sistema comienza a oscilar de arriba abajo, pero el acoplamiento provoca que la masa m se desvíe de un lado a otro.En el caso que el péndulo se aparta de la vertical un ángulo theta, la fuerza neta sobre la masa m está dada por:

F = -k(r -r0) + mgen donde las letras en negrita indican vectores y r es el vector de posición de la masa m y r0 es el vector de posición del péndulo con la misma desviación de la vertical que antes, pero con la longitud original del resorte L.Las componentes escalares de la fuerza están dada por:

Fx = -k(x -L senq )Fy = -k(y-y0 +L cosq ) - mgDonde:

De esta forma, las componentes de la aceleración quedan determinadas, por:

LABORATORIO DE FISICA 2 Página 29

Page 30: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO3. Investigue, sobre los figuras de lissojuos que ecuaciones gobiernan a estas figuras?, como generaría usted estas figuras a partir de péndulos estirados?, explique.

Curva de Lissajous en matemáticas, la curva de Lissajous, también conocida como figura de Lissajous o curva de Bowditch, es la gráfica del sistema de ecuaciones paramétricas correspondiente a la superposición de dos movimientos armónicos simples en direcciones perpendiculares:las curvas de Lissajous, descritas por el matemático francés Jules Antoine Lissajous, a partir de los trabajos de Nathaniel Bowditch. Básicamente, éstas se producen al representar de forma simultánea en un osciloscopio dos ondas senoidales cuyas frecuencias se encuentren en fase, dando lugar a imágenes bastante atractivas. Las ecuaciones que describen a ambas señales serían:x(t) = a sin(?t + d)y(t) = b sin(t)

Y según la proporción que guarden entre sí las variables a y b, y la frecuencia angular ? en que ambas se encuentren, iremos obteniendo distintas figuras o curvas. Aquí tienes dos ejemplos que te pueden ayudar a entender a lo que me refiero:A partir de ahí, y variando los parámetros de las dos ecuaciones paramétricas que antes he descrito, pueden obtenerse infinidad de curvas, a cual más hipnotizante de contemplar en la pantalla de un osciloscopio.

LABORATORIO DE FISICA 2 Página 30

Page 31: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO

4. Es el péndulo de Foucault es un péndulo simple? , explique sus característicaUn  péndulo de Foucault es un péndulo simple, es decir, una masa colgada de un hilo largo y puesta a oscilar.El científico francés J. B. Leon Foucault, en el año 1850, comprobó que el plano de oscilación del péndulo -el plano en donde se encuentra la trayectoria del péndulo- giraba lentamente en el sentido de las agujas del reloj. Esto le llamó la atención porque, en todo caso, debería girar en el sentido que lo hace la tierra que es el antihorario - mirando la tierra desde el hemisferio norte, que es en el que se encontraba nuestro científico.La explicación del fenómeno ya se podía dar, entonces, con ayuda de la mecánica newtoniana: el Principio de la Inercia lo explica. Ocurre que, aunque parece que la trayectoria del péndulo cambia, es el suelo, que tiene debajo, el que se mueve - y nosotros con él. Porque si sobre el péndulo sólo actúan la fuerza del peso y la tensión de la cuerda atada y ambas se encuentran en el mismo plano de la trayectoria, el péndulo tiene que seguir siempre en ese plano -al no haber fuerza alguna que lo saque de él.      

   El extratrerestre verá que la trayectoria es una línea recta. Desde la Tierra, la trayectoria va girando. La velocidad de giro de ésta, en los polos, es la máxima dando una vuelta cada 24 horas. En el ecuador el péndulo no gira. Según la latitud en la que se encuentre la velocidad de giro vale wf = w·senß.Las trayectorias de las figuras anteriores corresponden a las de un péndulo que inicia su movimiento desde el centro de oscilación, en reposo, con un breve impulso. Si la oscilación del péndulo se inicia desde desde un extremo, en reposo respecto de la Tierra, las trayectorias vistas desde la Tierra y desde el espacio exterior serían respectivamente las de las figuras 3 y 4:

LABORATORIO DE FISICA 2 Página 31

Page 32: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO

Fig. 3 Fig. 4Es esta aceleración la responsable del giro del aire formando las borrascas y los anticiclones. En el hemisferio norte el aire de las borrascas se desvía hacia la derecha formando un remolino en sentido antihorario y en los anticiclones en sentido horario. En  el hemisferio Sur ocurre al contrario. Si Foucaul hubiera hecho su experiencia en una ciudad del hemisferio Sur -en vez de en París, en donde lo llevó a cabo- habría observado como su péndulo giraba en sentido antihorario.Mantener la oscilación de un péndulo durante horas es algo complicado. Por el rozamiento con el aire, las oscilaciones van teniendo menor amplitud hasta que llegan a pararse en unas cuantas horas, como mucho. Para mantenerlas se construyen péndulos con  una bola metálica de bastante  masa atada a un hilo muy largo. Además, se disponen campos magnéticos, en el suelo y alrededores, que compensan el rozamiento con el aire. Muchos Museos de la Ciencia y Universidades del mundo tienen montado un péndulo de Foucault.

OBSERVACIONES

En los diferentes casos las oscilaciones que se le dio al péndulo compuesto, el ángulo inicial con el que se soltó no es el mismo, tiene una ligera variación. El tiempo medido para cada caso de oscilación sufre variaciones debido a la precisión del cronometro. El momento de inercia obtenido respecto al eje de oscilación es erróneo debido a que no se consideran los agujeros que posee la barra.

LABORATORIO DE FISICA 2 Página 32

Page 33: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO Evitar todo tipo de flujo de aire para que el rozamiento sea menor y se pueda lograr mayor precisión en los cálculos Para calcular el periodo es necesario promediar más de 3 oscilaciones para mejorar el desfase generado por la primera oscilación que no es muy precisa.

CONCLUSIONES

En efecto es de gran ayuda utilizar como referencia el péndulo simple para lograr estudiar el péndulo compuesto ya que más sencillo estudiar una centro de masa que todo un cuerpo solido.

El margen de error de la gravedad es mayor que 5% debido a que hemos trabajado con ángulos distintos para cada oscilación e incluso algunos mayores a los 10º.LABORATORIO DE FISICA 2 Página 33

Page 34: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO

El periodo del movimiento, es independiente de la masa ya que en la formula dada: T=2π√I/mgd, remplazando del momento de inercia la masa del péndulo se cancela.

REFERENCIAS

Feynman, Leighton and Sands. Lectures on physics. Addison-Wesley. ISBN 0-8053-9045-6.

LABORATORIO DE FISICA 2 Página 34

Page 35: Lab.fisica 2 _pendulo Compuesto

PENDULO SIMPLE Y COMPUESTO Marion, Jerry B. (1996). Dinámica clásica de las partículas y sistemas. Barcelona: Ed. Reverté. ISBN 84-291-4094-8. Ortega, Manuel R. (1989-2006). Lecciones de Física (4 volúmenes). Monytex. ISBN 84-404-4290-4, ISBN 84-398-9218-7, ISBN 84-398-9219-5, ISBN 84-604-4445-7. Tipler, Paul A. (2000). Física para la ciencia y la tecnología (2 volúmenes). Barcelona: Ed. Reverté. ISBN 84-291-4382-3. Resnick,R. and Halliday, D. (1996). Physics. John Wiley & Sons. ISBN 0-471-83202-2.

LABORATORIO DE FISICA 2 Página 35