25
El presente artículo es una interpretación personal del autor y no representa la posición oficial de ninguna normativa o de la ciencia de la protección contra incendios, como tal ésta no podrá ser usada para defender una posición ante la autoridad competente. El lector es libre de estar de acuerdo con todo o parte de lo que aquí se menciona. Diseño, Suministro e Instalación de Sistemas Contra Incendio Elaborado Por: Jussef Liban Abi-Roud Estudiante en California Polytechnic State University Master in Fire Protection Engineering Science GRUPO 3 S Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba contra incendios parece ser una tarea fácil, una vez determinados los riesgos más demandantes de un sistema de agua contra incendios y luego de haber realizado los cálculos hidráulicos respectivos que determinen los parámetros más exigentes, pareciera ser que simplemente se trata de seleccionar los dos parámetros que determinan el riesgo más demandante (Caudal y Presión) e igualarlos con el rendimiento de la bomba contra incendios a recomendarse. Sin embargo seleccionar la bomba más apropiada para un sistema, en términos de costos, consumo de energía, impacto en el proyecto, presión de trabajo, etc. no es una tarea fácil. En este artículo demostraremos que existen muchas formas de optimizar el sistema de bombeo contra incendios que no se toman en cuenta al momento de diseñar y seleccionar la bomba más apropiada; posteriormente en la mayoría de ocasiones la decisión final de compra queda en manos de gente inexperta, léase “los compradores”, perdiéndose la riqueza del análisis y la ingeniería detrás de todo este proceso. Requerimientos hidráulicos de las bombas contra Incendios De acuerdo a la norma NFPA 20 (2019) numerales 6.2.1. y 6.2.2., las bombas contra incendios deberán proporcionar no menos del 150% de su caudal nominal a no menos del 65% de su presión nominal y además en condiciones de caudal cero no deberán exceder del 140% de su presión nominal. Estos requerimientos se resumen muy claramente en la figura A.6.2. para una bomba con un caudal nominal del 100% que requiere una presión nominal del 100%, siendo estos porcentajes meramente índices de un caudal y presión determinados. Los requerimientos detrás de estas exigencias son los siguientes: Que la bomba contra incendios tenga la capacidad de poder desarrollar un caudal mayor en 50% al caudal nominal de la misma. Que su capacidad para desarrollar presión no decaiga significativamente cuando su caudal se incrementa. Idealmente lo que se espera es que mientras la curva sea más horizontal, la bomba será más apropiada, ya que tendrá la capacidad de mantener una presión relativamente estable a través de un amplio rango de caudales. Que cuando la bomba se encuentre a caudal cero no incremente significativamente su presión. Que sean lo más eficientes y económicas posibles. Efectivamente cuanto más pronunciada es la curva de una bomba contra incendios, mayor es el impacto en la presión a caudal cero y la potencia del motor que ésta debe tener (lo que afecta el costo).

Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Las complejidades en la selección de una bomba contra incendios

Seleccionar el rendimiento requerido de una bomba contra incendios parece ser una tarea fácil, una vez

determinados los riesgos más demandantes de un sistema de agua contra incendios y luego de haber

realizado los cálculos hidráulicos respectivos que determinen los parámetros más exigentes, pareciera ser

que simplemente se trata de seleccionar los dos parámetros que determinan el riesgo más demandante

(Caudal y Presión) e igualarlos con el rendimiento de la bomba contra incendios a recomendarse. Sin

embargo seleccionar la bomba más apropiada para un sistema, en términos de costos, consumo de

energía, impacto en el proyecto, presión de trabajo, etc. no es una tarea fácil. En este artículo

demostraremos que existen muchas formas de optimizar el sistema de bombeo contra incendios que no

se toman en cuenta al momento de diseñar y seleccionar la bomba más apropiada; posteriormente en la

mayoría de ocasiones la decisión final de compra queda en manos de gente inexperta, léase “los

compradores”, perdiéndose la riqueza del análisis y la ingeniería detrás de todo este proceso.

Requerimientos hidráulicos de las bombas contra Incendios

De acuerdo a la norma NFPA 20 (2019)

numerales 6.2.1. y 6.2.2., las bombas

contra incendios deberán proporcionar no

menos del 150% de su caudal nominal a no

menos del 65% de su presión nominal y

además en condiciones de caudal cero no

deberán exceder del 140% de su presión

nominal. Estos requerimientos se resumen

muy claramente en la figura A.6.2. para una

bomba con un caudal nominal del 100%

que requiere una presión nominal del

100%, siendo estos porcentajes

meramente índices de un caudal y presión

determinados.

Los requerimientos detrás de estas exigencias son los siguientes:

Que la bomba contra incendios tenga la capacidad de poder desarrollar un caudal mayor en 50%

al caudal nominal de la misma.

Que su capacidad para desarrollar presión no decaiga significativamente cuando su caudal se

incrementa. Idealmente lo que se espera es que mientras la curva sea más horizontal, la bomba

será más apropiada, ya que tendrá la capacidad de mantener una presión relativamente estable

a través de un amplio rango de caudales.

Que cuando la bomba se encuentre a caudal cero no incremente significativamente su presión.

Que sean lo más eficientes y económicas posibles. Efectivamente cuanto más pronunciada es la

curva de una bomba contra incendios, mayor es el impacto en la presión a caudal cero y la

potencia del motor que ésta debe tener (lo que afecta el costo).

Page 2: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Sin embargo también es conocido que los fabricantes de bombas contra incendio e incluso de bombas de

agua para uso común, superan ampliamente estos requerimientos. De hecho uno de los argumentos de

los fabricantes de bombas de agua para uso común es que sus bombas cumplen con la norma NFPA 20 y

ese argumento lo usan como fundamento para ofrecerlas para uso como bombas contra incendio.

En general podríamos decir que las bombas contra incendio Listadas UL cumplen en la mayoría de los

casos con requerimientos que bordean el 80% a 90 % de la presión nominal al 150% del caudal nominal y

la presión a caudal cero bordea el 110% al 120% de la presión nominal.

En los gráficos se muestran las curvas de un fabricante de bombas listadas con rendimientos nominales

de 500 gpm @ 200 psi y 500 gpm @ 120 psi, observándose como estas curvas superan ampliamente el

requerimiento de la norma NFPA 20.

Curva de una Bomba de 500 gpm @ 200 psi (Fuente SPP Pumps)

.

Curva de una Bomba de 500 gpm @ 120 psi (Fuente SPP Pumps)

Page 3: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Basados en estos hechos concretos, al momento de trabajar los requerimientos hidráulicos de un sistema

de bombeo contra incendios, un proyectista debe tomar en cuenta que en la realidad las curvas de las

bombas contra incendio se comportan mejor de lo que exige la norma NFPA 20, por lo tanto este mejor

comportamiento debe ser incorporado en el análisis. De hecho una buena práctica que aconsejo, es

solicitar las curvas y demás información técnica de los fabricantes disponibles en el mercado donde se

diseña, y proyectar el sistema de bombeo contra incendios basados en el peor caso encontrado entre los

proveedores de bombas contra incendio disponibles en el mercado local, de manera tal que al momento

que el cliente cotice el sistema de bombeo contra incendios, se encuentre en la posibilidad de poder

escoger a cualquiera de ellos. El argumento detrás de este análisis es que no siempre la bomba con la

curva más eficiente, tiene la característica constructiva que necesitamos para nuestro proyecto, es la más

barata, tiene el mejor tiempo de entrega, cuenta con la misma calidad de servicio técnico, atención pre-

venta y post-venta, facilidades de pago, disponibilidad de repuestos y otros argumentos técnico-

comerciales que hacen que una bomba no sea simplemente escogida por la calidad de su curva. Sin

embargo y como veremos más adelante, este argumento debe sopesarse con el contrario, es decir una

práctica más sana es seleccionar desde el diseño las marcas más apropiadas para el mismo, de manera tal

que las ventajas técnicas del producto se puedan incorporar al diseño, esta situación la demostraremos

también en este artículo.

Análisis de las características de la curva de bombeo

Supongamos que no tenemos acceso a la información de los fabricantes o no contamos con el tiempo

apropiado para hacer un análisis de todas las marcas disponibles en el mercado, algo que definitivamente

desaliento pero que asumiremos únicamente para no complejizar el análisis realizado en el presente

artículo. En efecto debido a que cada fabricante tiene sus propios criterios de selección y

comportamientos hidráulicos bastante diferentes, el análisis a realizar resulta bastante complejo y difícil

de exponer en el presente artículo, sin embargo un análisis más detallado de todas las marcas disponibles

en un mercado en particular nos puede hacer tendientes a escoger una marca específica para un proyecto,

en función de las conveniencias técnicas que esa marca nos brinda. Obviando el análisis técnico comercial

bajo un escenario meramente teórico, es posible construir la característica de la curva de bombeo usando

parámetros teóricos.

Para continuar con el análisis que a continuación desarrollaremos, supongamos que el peor caso de una

bomba listada es una que al 150% de su capacidad nominal desarrolla una presión del 80% de la presión

nominal y que la presión a caudal cero es el 120% de su presión nominal.

En este caso tenemos dos opciones, introducir estos puntos en un programa de cálculo hidráulico o

hacerlo manualmente mediante el procedimiento indicado en la norma NFPA 13 (2019) numeral 27.4.4.

donde se representa la hoja de características de la curva de bombeo en escala logarítmica.

Los valores de comportamiento previstos para la curva de bombeo que en este caso los tenemos

representados por 3 puntos ya definidos, son los siguientes:

A caudal cero la bomba desarrolla 120% de su presión nominal

A caudal 100% del caudal nominal la bomba desarrolla 100% de presión nominal

A caudal 150% del caudal nominal la bomba desarrolla 80% de presión nominal

Page 4: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Estos valores se deben trasladar a la hoja de gráfica hidráulica con escala logarítmica como se muestra

a continuación, una hoja con escala logarítmica nos permite ver las curvas de comportamiento

hidráulico en forma rectilínea cuando no lo son, de esta forma se facilita el traslado de información y

un análisis más didáctico de la información. Aquí también tenemos dos opciones, o usamos

simplemente la hoja de escala logarítmica o hacemos el cálculo usando las fórmulas que se

encuentran detrás de esta hoja.

Marco teórico de la hoja de escala logarítmica

Sin ánimos de ser muy académicos en el presente artículo, es necesario explicar cómo se desarrolla la hoja

de escala logarítmica de la NFPA 13, el marco teórico es muy sencillo y se puede introducir a una hoja de

Excel con un poco de esfuerzo y conocimiento de Excel.

La fórmula usada para predecir el caudal a una presión residual deseada, es la siguiente:

Page 5: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Donde:

QR es el Caudal a Predecir a una Presión Residual Deseada (gpm)

QF es el Caudal desarrollado por la bomba (gpm)

hr = (Ps-Pa) es la Caída de Presión a la Presión Residual Deseada (psi)

Ps es la Presión Estática de la bomba a caudal cero (psi)

Pa es la Presión Residual de la bomba al Caudal Deseado (psi)

hf = (Ps-Pr) es la Caída de Presión (psi)

Pr es la Presión Residual de la bomba (psi)

De esta fórmula se puede derivar una alternativa que nos sirva para calcular la Presión Residual a un

caudal deseado, cuyo valor no lo tenemos:

Pa=Ps-(Ps-Pr)*(QR/QF)^1.85

Selección de bombas contra incendios para un riesgo individual

Para seleccionar la bomba más apropiada para un único riesgo es necesario tomar en cuenta que no se

trata simplemente de escoger el punto de operación de caudal/presión que exige el riesgo más

demandante a atender, se trata más bien de tomar las ventajas de la curva de caudal/presión de la bomba.

Pongamos el siguiente ejemplo, imaginemos que después de realizar los cálculos hidráulicos necesitamos

un caudal de 1100 gpm @ 90 psi, el punto lo hemos marcado en el Gráfico 1. Lo que la mayoría de

proyectistas hacen es especificar la siguiente bomba listada que cubre esta demanda de caudal y presión,

es decir una bomba de 1250 gpm @ 90 psi, que como hemos supuesto anteriormente desarrollaría 108

psi a caudal cero y alrededor de 70 psi a 1875 gpm, la potencia de esta bomba sería de aproximadamente

100 hp con motor eléctrico y de 110 hp con motor diésel y estaría desarrollando aproximadamente 1100

gpm @ 95 psi.

Considero que ésta sería una forma poco proactiva de seleccionar la bomba, pues estaríamos dándole

demasiado margen de seguridad al sistema, que no sólo se trata de los 150 gpm adicionales de caudal o

los 5 psi adicionales de presión que estamos considerando, sino que en condiciones usuales la máxima

demanda del sistema (1100 gpm @ 100 psi) es la peor condición posible establecida por los parámetros

de cálculo que hemos previsto, en función de todos los márgenes de seguridad que las normas NFPA ya

tienen establecidos.

Page 6: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Gráfico 1: Bomba de Qn=1250gpm@90psi / Q0=108psi / Qmax=1875gpm@70psi

Pero qué pasa si partimos del hecho que 1100 gpm es la máxima demanda del sistema en la peor condición

establecida por la norma NFPA que hemos usado para diseñar (de hecho así funcionan las máximas

demandas previstas por las normas NFPA), lo que en otras palabras significa que más allá de los márgenes

de seguridad establecidos por las normas NFPA, ya no sería necesario incrementar márgenes adicionales

de caudal.

Entonces partiendo del hecho que la norma NFPA 20 nos permite incrementar el caudal nominal de una

bomba hasta el 150% de su caudal nominal, lo que deberíamos hacer es calcular la máxima demanda del

sistema como el 150% del caudal nominal de la bomba. En este caso el caudal nominal se calcula

dividiendo el caudal requerido del sistema entre el 150% (1.5), y redondearlo al siguiente caudal nominal

estandarizado, es decir: 1100 gpm / 1.5 = 733.33 ≈ 750 gpm

Para seleccionar la presión nominal, comenzamos definiendo que al caudal calculado para este sistema

(1100 gpm), la presión que debe proporcionar la bomba es 90 psi, luego debemos determinar la presión

que le correspondería a esta bomba cuando el caudal nominal es 750 gpm.

Siguiendo la hoja de escala logarítmica o las formulas detrás de esta hoja, podemos determinar que la

presión de esta bomba es 115 psi. Es decir una bomba de 750 @ 115 psi, desarrollará 1100 gpm @ 90 psi,

según se muestra en el Gráfico 2. La potencia de esta bomba sería de aproximadamente 75 hp con motor

eléctrico y de 80 hp con motor diésel y estaría desarrollando 1100 gpm @ 90 psi pero con una mayor

presión a caudal cero (138 psi).

Page 7: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Gráfico 2: Bomba de Qn=750gpm@115psi / Q0=138psi / Qmax=1125gpm@90psi

Como vemos la máxima presión de la bomba de la segunda opción es mayor que en la primera opción,

pero a cambio de eso el máximo caudal del sistema de la segunda opción es menor que en la primera

opción. Para contrastar los efectos técnico-económicos de estas dos opciones podemos pedir

presupuestos a los proveedores de estas bombas en diversas marcas, y entregar a nuestros clientes los

resultados de este análisis.

Límite máximo recomendable para establecer el criterio de aprovechamiento de la curva de bombeo

En los dos ejercicios anteriores vemos que las presiones a caudal cero son menores a 175 psi, que es la

presión máxima en la que un sistema debe trabajar saludablemente, sabemos bien que cuando las

presiones superan los 175 psi, el sistema de bombeo debe ser equipado con una válvula de alivio y los

sistemas en general deben ser equipados con válvulas reductoras de presión en aquellos puntos en donde

la presión supere los 175 psi y hayan rociadores automáticos instalados. Más aun en el caso de las bombas

diésel, hay que prever que estas bombas se pueden disparar por sobre velocidad y el Gobernador de

Velocidad del motor Diésel está configurado para limitar la velocidad del motor al 110% de su velocidad

nominal, lo que implicaría que la presión de la bomba puede incrementarse al 121% de su presión a caudal

cero. Esto quiere decir que la máxima presión prevista para el sistema del grafico 1 es de 131 psi (108 psi

x 1.21 = 130.68 psi) y para el gráfico 2 es de 167 psi (138 psi x 1.21 = 166.98 psi), con lo cual ninguno de

estos sistemas debe contar con válvula de alivio, ni válvulas reductoras de presión.

Sin embargo éste no sería el caso para un sistema que requiere mayor presión, pues a partir de 175 psi

los sistemas de bombeo contra incendio implementados con rociadores automáticos deben ser equipados

con válvulas de alivio que “roban caudal” al sistema, es decir cuando éstas válvulas se abren liberan el

exceso de presión y lo eliminan al desagüe o lo devuelven a la cisterna, ocasionando una ineficiencia que

también debe ser contemplada en el análisis. Asimismo las válvulas reductoras de presión que tienen que

Page 8: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

ser equipadas, incrementan los costos, pero por sobre todo incrementan la vulnerabilidad, la confiabilidad

y los requerimientos de mantenimiento del sistema.

En el siguiente ejemplo, imaginemos que después de realizar los cálculos hidráulicos necesitamos un

caudal de 1100 gpm @ 130 psi, el punto lo hemos marcado en el Gráfico 3. Lo que la mayoría de

proyectistas hacen es especificar la siguiente bomba listada que cubre esta demanda de caudal y presión,

es decir una bomba de 1250 gpm @ 130 psi, que como hemos supuesto anteriormente desarrollaría 156

psi a caudal cero y alrededor de 100 psi a 1875 gpm, la potencia de esta bomba sería de aproximadamente

150 hp con motor eléctrico y de 165 hp con motor diésel y estaría desarrollando aproximadamente 1100

gpm @ 135 psi. Si la bomba fuera equipada con motor eléctrico la máxima presión del sistema no podría

superar los 156 psi, sin embargo si la bomba fuera diésel el tema sería distinto, lo que sucedería en ese

caso es que para una máxima presión de la bomba de 156 psi, la presión podría incrementarse en 121%

es decir el cuadrado del 10% de mayor velocidad que puede desarrollar el motor (1.1^2=1.21), esto

provocaría que la presión en el sistema se podría incrementar a 189 psi (156 psi x 1.21= 188.76 psi), con

lo cual tendríamos que equipar al sistema con una válvula de alivio que resta eficiencia al sistema por

robar caudal al mismo.

Gráfico 3: Bomba de Qn=1250gpm@130psi / Q0=156psi / Qmax=1875gpm@100psi

Para bajar los requerimientos hidráulicos del sistema, potencia de la bomba contra incendios y costos,

siguiendo el mismo procedimiento anterior, escogemos una bomba de 750 gpm que desarrolle 130 psi a

1100 gpm. Siguiendo la hoja de escala logarítmica o las formulas detrás de esta hoja, podemos determinar

que la presión de esta bomba es 165 psi. Es decir una bomba de 750 @ 165 psi, desarrollará 1100 gpm @

130 psi, según se muestra en el gráfico 4. La potencia de esta bomba sería de aproximadamente 125 hp

con motor eléctrico y de 140 hp con motor diésel y estaría desarrollando 1100 gpm @ 130 psi pero con

una mayor presión a caudal cero (198 psi).

Page 9: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Evidentemente esta bomba tendría un riesgo de sobrepresión por sobre velocidad de 240 psi (198 psi x

1.21= 239.58 psi) y habría que sobre pesar los menores costos de la bomba con la introducción de

mecanismos de prevención de sobre presiones que otorgan mayores costos al sistema, pero sobre todo

mayor vulnerabilidad y confiabilidad.

Gráfico 4: Bomba de Qn=750gpm@165psi / Q0=198psi / Qmax=1125gpm@130psi

Metodología de cálculo evitando presiones superiores a 175 psi

Es aquí en donde presentamos una aproximación distinta al problema, asumamos primero que la bomba

contra incendios está equipada con motor eléctrico en cuyo caso la máxima presión de la bomba para que

no supere los 175 psi a caudal cero, sería una bomba que a caudal nominal no supere los 145 psi (145 psi

x 1.2 = 174 psi), ¿Podrá desarrollar esta bomba 1100 gpm @ 130 psi?, evidentemente si escogemos una

bomba de 750 gpm @ 165 psi que desarrolla 1100 gpm @ 130 psi, la presión superará los 175 psi a caudal

cero, según se muestra en el grafico 4. Pero si escogemos una bomba de 1000 gpm @ 140 psi, esta bomba

sí podrá desarrollar 1100 gpm @ 130 psi como se muestra en el gráfico 5. La potencia eléctrica de una

bomba de 1000 gpm @ 140 psi es aproximadamente 125 HP y evidentemente cuesta menos que una

bomba de 1250 gpm @ 130 psi cuyo motor como hemos visto es aproximadamente 150 HP, pero además

este sistema de bombeo no requerirá de válvulas de alivio o reductoras de presión en el sistema ya que

su presión máxima a caudal cero es 168 psi. En cambio si la bomba está equipada con motor Diésel, la

máxima presión de la bomba para que no supere los 175 psi considerando la sobre velocidad probable

del motor, sería una bomba que a caudal nominal no supere los 120 psi (120 psi x 1.2 x 1.21 = 174.24 psi),

en este caso es imposible cubrir el requerimiento solicitado por el sistema de 1100 gpm @ 130 psi con

una bomba de 1000 gpm @ 120 psi con lo cual la opción inevitable sería una bomba de 1250 gpm, pero

con una presión ligeramente menor a 130 psi, que según los cálculos que se muestran en el gráfico 6 es

una bomba de 1250 gpm @ 125 psi que desarrolla precisamente los 1100 gpm @ 130 psi que necesitamos

para el mayor riesgo del sistema. En este caso sería inevitable equipar al sistema de bombeo contra

Page 10: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

incendios con una válvula de alivio que se abrirá en las primeras etapas del desarrollo del incendio cuando

el caudal es bajo y que se cerrará cuando se vaya incrementando la demanda del sistema. Aquí también

es necesario precisar, que las válvulas de alivio son consistentes en cuanto a su apertura de acuerdo al

ajuste de presión, pero no necesariamente se cierran a la misma presión en que se abrieron, por lo tanto

siempre terminan robándole caudal al sistema, ya sea porque se elimina al desagüe o porque regresa al

tanque de almacenamiento, causando inevitablemente una ineficiencia en el sistema de bombeo.

Gráfico 5: Bomba de Qn=1000gpm@140psi / Q0=168psi / Qmax=1500gpm@108psi

.

Gráfico 5: Bomba de Qn=1250gpm@125psi / Q0=150psi / Qmax=1875gpm@100psi

Page 11: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Como vemos un análisis proactivo de las presiones, caudales, potencias y precios de las bombas contra

incendio y el análisis de introducir o evitar la incorporación de dispositivos de alivio o regulación de

presión, resultan siendo vitales para un adecuado análisis y optimización de un sistema de bombeo contra

incendios, queda claro que ecualizar la demanda del sistema a la capacidad de bombeo requerida, no es

siempre una buena práctica. Con fines didácticos a continuación se muestra una tabla comparativa con

todos los análisis realizados:

Llevando el análisis a la realidad: Los fabricantes de bombas contra incendio

Como dijimos al principio hacer un análisis de todas las marcas disponibles en el mercado es la mejor

forma de optimizar el sistema, de hecho este análisis nos puede llevar a determinar que una o dos marcas

en específico pueden ser la más apropiadas para nuestro sistema. Considero que si el análisis se sustenta

con la debida información técnica de cada fabricante, ningún proyectista tendría que tener temor de

recomendar una marca o conjunto de marcas específicas, porque puede darse el caso por ejemplo que

en una marca la potencia es mayor que en otra o la presión a caudal cero puede requerir que volvamos a

introducir en el análisis aspectos como la incorporación de una válvula de alivio en la bomba contra

incendios o válvulas reguladoras de presión en el sistema, o que un modelo en específico de bomba tiene

mejores prestaciones que otro, entre muchos otros factores que deben tomarse en cuenta, y que muchas

veces quedan en manos de inexpertos, léase “los compradores”.

Que el proyectista no participe del proceso de selección de la bomba durante la procura es algo que puede

alterar todo el diseño, puede hacer perder la optimización que hemos previsto para el mismo o en su

defecto que tengamos que diseñar para el peor caso posible, o por decirlo de otra manera para la bomba

que peor se comporte, tal cual indiqué al comienzo de este artículo.

De hecho en la realidad estas situaciones no son poco frecuentes, los que tenemos años trabajando en

diseño e instalación de sistemas contra incendios, sabemos que muchas veces es difícil teorizar estos

temas y prever la potencia o máxima presión para el sistema, pues luego los fabricantes introducen esta

información en el análisis, que usualmente cae en manos de personas que no analizan estas cosas sino

Caudal Requerido GPM

Presión Requerida PSI

Criterio de Selección ---

Escoger el punto

de Caudal y

Presión que

supere este

requerimiento

Aprovechar al

máximo la curva

de la bomba

contra incendios

Escoger el punto

de Caudal y

Presión que

supere este

requerimiento

Aprovechar al

máximo la curva

de la bomba

contra incendios

Aprovechar al

máximo la curva

de la bomba

contra incendios

y evitar el uso de

reductores de

presion

Caudal Seleccionado GPM 1250 750 1250 750 1000

Presión Seleccionada GPM 90 115 130 165 140

Máxima Presión Q=0 PSI 108 138 156 198 168

Máximo Caudal Q=150% GPM 1875 1125 1875 1125 1500

Mínima Presión Q=150% PSI 70 90 100 130 108

Potencia Eléctrica HP 100 75 150 125 125

Potencia Diésel HP 110 80 165 140 Solo Eléctica

1100

90

1100

130

Page 12: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

que miran al final del presupuesto el costo, tiempo de entrega y forma de pago de la bomba, es decir

resumen el análisis a una matriz que optimiza únicamente las variables comerciales, dejando las variables

técnicas y la ingeniería a un lado. Como consecuencia de ello, la bomba más barata, con mejor tiempo de

entrega o con formas de pago más atractivas puede terminar siendo la peor opción para nuestro proyecto,

y esto muchas veces se descubre cuando el usuario ya la tiene instalada.

Lamentablemente demostrar estos temas en un artículo técnico resultaría complicado. Como indicamos

las curvas con que hemos hecho este análisis son teóricas, si nos pusiéramos a realizar el análisis con cada

marca encontraríamos resultados distintos e incluso totalmente dispares entre ellos.

Presiones dispares en sistemas

Otro caso interesante es el que se presenta cuando en múltiples riesgos tenemos presiones dispares en

donde se tienen a la vez riesgos que demandan caudales altos a presiones bajas mezclados con riesgos

que demandan caudales bajos a presiones altas. Un caso típico puede ser un edificio en el que se tengan

parqueos en los sótanos mezclados con rociadores en las plantas superiores, en donde el parqueo es un

riesgo ordinario y las plantas altas un riesgo leve. Por ejemplo un edificio de vivienda con sótanos de

estacionamientos requiere de un caudal de 350 gpm @ 80 psi en la zona de parqueo y un caudal de 200

gpm @ 100 psi en el piso más alto de la vivienda. Lo que la mayoría de proyectistas hacen es especificar

la siguiente bomba listada que cubre la mayor demanda de caudal a la mayor demanda de presión, en

este caso muchos escogerían una bomba de 400 gpm @ 100 psi, que como hemos supuesto

anteriormente desarrollaría 120 psi a caudal cero y alrededor de 70 psi a 600 gpm. Sin embargo ambos

puntos se pueden encontrar en una curva que por su naturaleza es decreciente, por ejemplo una bomba

de 300 gpm @ 90 psi podría abastecer ambos riesgos y evidentemente costará mucho menos que una

bomba de 400 gpm @ 100 psi. En los gráficos 6 y 7 se puede observar como una misma bomba puede

abastecer ambos riesgos apelando a su característica hidráulica decreciente con respecto al caudal.

Gráfico 6: Bomba de 300 gpm@90 psi que abastece una demanda de

200gpm@100psi y una demanda de 350 gpm@80 psi

Las potencias eléctrica y diésel de la bomba de 400 gpm @ 100 psi es de aproximadamente 40 HP y 51 HP

respectivamente y las potencias eléctrica y diésel de la bomba de 300 gpm @ 90 psi es de

aproximadamente 30 HP y 35 HP respectivamente. Sin embargo también hay que tomar en cuenta que

en algunos fabricantes no hay disponibilidad de bombas con motores diésel pequeños, por lo que también

hay que introducir en el análisis la disponibilidad en el mercado de motores diésel de pequeña capacidad.

Page 13: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Análisis de múltiples riesgos

Todo el análisis anterior lo hemos hecho sobre la base de un único riesgo, o máximo dos, y como hemos

visto un análisis proactivo y tendiente a optimizar el sistema resulta siendo bastante complejo y tedioso,

sin embargo más complejo aún seria analizar el tema en proyectos donde se tienen muchos riesgos

involucrados.

Cuando se diseña un sistema de agua contra incendios el proyectista debe calcular las demandas de caudal

y presión de todos los riesgos involucrados en la instalación, estos puntos de operación de caudal/presión

son graficados en una gráfica hidráulica.

En edificaciones de muchas instalaciones que comparten un sistema de agua contra incendios común, se

comienza a generar la necesidad de analizar múltiples riesgos que tienen relaciones distintas entre

Caudal/Presión (Q/P), algunos riesgos pueden requerir altos caudales y bajas presiones, por ser riesgos

más altos que se encuentran hidráulicamente más cerca de la fuente de suministro de bombeo, mientras

que otros riesgos pueden requerir bajos caudales y altas presiones, por ser riesgos más bajos que se

encuentran hidráulicamente más alejados de la fuente de suministro de bombeo.

En la siguiente tabla mostramos el caso de un Complejo Comercial / Mercantil / Residencial, que cuenta

con 6 sótanos de estacionamientos, 2 pisos de Tiendas Comerciales (Piso 1 y 2), 2 Pisos de Uso Educativo

(Piso 3 y 4), 26 pisos de Uso Residencial (Piso 5 y 30) y 1 Piso para uso Recreativo equipado con un

restaurante (Piso 31). Nos centraremos en bombas impulsadas por motor diésel a fin de no extender

demasiado el análisis. Los caudales y presiones calculados son los siguientes:

Luego debemos introducir estos riesgos en una hoja de gráfica hidráulica con escala logarítmica. Si

simplemente usáramos los limites NFPA 20 antes indicados, la bomba que más se acomodaría a este

proyecto sería una de 500 gpm @ 180 psi, como se muestra en el gráfico 7. Los límites de la norma NFPA

20 para este caso son los siguientes:

Ubicación Area a Ser Protegida Clasificacion del Riesgo

Caudal Total

Requerido

(gpm)

Presion

Total

Requerida

(psi)

Sótano 6 Cuarto de Bombas Riesgo Alto Grupo 1 647.02 29.50

Sótano 2 Estacionamientos Riesgo Ordinario Gupo 1 492.06 58.80

Piso 2 Area Mercantil Riesgo Ordinario Gupo 2 647.66 88.12

Piso 4 Area Educativa Riesgo Leve 255.34 87.52

Piso 30 Apartamentos Residenciales Riesgo Leve 286.88 187.90

Piso 31 Area Recreativa Residencial Riesgo Ordinario Gupo 1 428.66 184.18

CAUDAL

(GPM)

PRESION

(PSI)

750.00 117.00

500.00 180.00

0.00 252.00

Page 14: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Gráfico 7: Selección de la Curva de la Bomba Acorde con NFPA 20

Todos los riesgos están cubiertos con la bomba seleccionada, sin embargo tenemos 2 problemas. Primero,

esta no es una situación realista, porque la mayoría de las bombas contra incendio se comportan más

estables a la presión que lo establecido en los límites de la NFPA. En segundo lugar, por la misma razón,

la presión de la bomba a caudal cero será demasiado alta y mucho más alta de lo que realmente se

comportan las bombas centrifugas, por lo tanto si consideráramos esta curva tendríamos que evaluar

cómo sería nuestro sistema con respecto a la presión máxima permitida por el sistema de rociadores (252

psi contra 175 psi). En otras palabras, si consideramos que la presión será 252 psi a caudal cero, tendremos

que diseñar un arreglo de reducción de presión más complejo para el sistema de rociadores que lo que se

requeriría en una situación real.

Aquí es donde tenemos que evaluar el método de solicitar asistencia técnica de los fabricantes, para lo

cual hemos contactado a 2 fabricantes de bombas contra incendios listadas UL / FM para seleccionar la

bomba contra incendios más adecuada.

La primera compañía es Peerless Fire Pumps. La bomba seleccionada podría ser una bomba contra

incendios de 500 gpm a 190 psi, como se muestra en las siguientes especificaciones técnicas.

Page 15: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Como podemos ver en el gráfico 8, todos los riesgos están cubiertos con la bomba seleccionada.

Page 16: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Gráfico 8: Bomba Peerless / 500 gpm @ 190 Psi

CAUDAL

(GPM)

PRESION DE LA

BOMBA (PSI)

PRESION REQUERIDA POR

EL SISTEMA (PSI)

MARGEN DE

SEGURIDAD EN

PRESION(PSI)

MARGEN DE

SEGURIDAD EN

PRESION (%)

647.66 188.40 88.12 100.28 113.79%

500.00 190.00 Presión Nominal

428.66 190.20 184.18 6.02 3.27%

286.88 190.30 187.90 2.40 1.28%

0.00 191.40 Presión Máxima

Otra bomba seleccionada podría ser una bomba contra incendios de 750 gpm a 190 psi, como se muestra

en las siguientes Especificaciones Técnicas.

Page 17: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Como podemos ver en el gráfico 9, todos los riesgos están cubiertos con la bomba seleccionada.

Page 18: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

CAUDAL

(GPM)

PRESION DE LA

BOMBA (PSI)

PRESION REQUERIDA POR

EL SISTEMA (PSI)

MARGEN DE

SEGURIDAD EN

PRESION(PSI)

MARGEN DE

SEGURIDAD EN

PRESION (%)

750.00 190.00 Presión Nominal

647.66 191.50 88.12 103.38 117.31%

428.66 194.10 184.18 9.92 5.39%

286.88 194.60 187.90 6.70 3.56%

0.00 196.00 Presión Máxima

Gráfico 9: Bomba Peerless / 750 gpm @ 190 Psi

Además, como podemos ver en la información del fabricante de Peerless, ambas bombas contra incendios

usa el mismo modelo de bomba como el mismo motor diésel, entonces el precio será el mismo. En tal

caso, recomendamos una bomba de 750 gpm a 190 psi porque tiene una capacidad adicional de extinción

de incendios con el mismo costo.

Es importante notar que de la Tabla 4.27 de NFPA 20, podemos deducir que el costo de instalación para

una bomba contra incendios de 500 gpm es el mismo que para una bomba de 750 gpm. Dado que el

diámetro de 5 ”solicitado para 500 gpm no es comercial, entonces generalmente los contratistas tienen

que usar un diámetro de 6”, que es el mismo requerido para una instalación de bomba de 750 gpm. Luego,

Page 19: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

el costo de instalación de la sala de bombas será el mismo para una bomba contra incendios de 500 gpm

y de 750 gpm.

La segunda empresa contactada es SPP Fire Pumps. La bomba seleccionada podría ser una bomba contra

incendios de 500 gpm a 190 psi, como se muestra en las siguientes Especificaciones Técnicas.

Page 20: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Page 21: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Como podemos ver en el gráfico 10, todos los riesgos están cubiertos con la bomba seleccionada.

CAUDAL

(GPM)

PRESION DE

LA BOMBA

(PSI)

PRESION REQUERIDA POR

EL SISTEMA (PSI)

MARGEN DE

SEGURIDAD EN

PRESION(PSI)

MARGEN DE

SEGURIDAD EN

PRESION (%)

647.66 181.00 88.12 92.88 105.39%

500.00 190.00 Presión Nominal

428.66 192.00 184.18 7.82 4.25%

286.88 200.00 187.90 12.10 6.44%

0.00 208.60 Presión Máxima

Page 22: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Gráfico 10: Bomba SPP / 500 gpm @ 190 Psi

Otra bomba seleccionada podría ser una bomba contra incendios de 750 gpm a 190 psi, como se muestra

en las siguientes Especificaciones Técnicas.

Page 23: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Page 24: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Como podemos ver en el gráfico 11, todos los riesgos están cubiertos con la bomba seleccionada.

CAUDAL

(GPM)

PRESION DE

LA BOMBA

(PSI)

PRESION REQUERIDA POR

EL SISTEMA (PSI)

MARGEN DE

SEGURIDAD EN

PRESION(PSI)

MARGEN DE

SEGURIDAD EN

PRESION (%)

750.00 190.00 Presión Nominal

647.66 198.00 88.12 109.88 124.68%

428.66 208.00 184.18 23.82 12.93%

286.88 212.00 187.90 24.10 12.82%

0.00 217.50 Presión Máxima

Page 25: Las complejidades en la selección de una bomba contra ...€¦ · Las complejidades en la selección de una bomba contra incendios Seleccionar el rendimiento requerido de una bomba

El presente artículo es una interpretación personal del autor y no representa

la posición oficial de ninguna normativa o de la ciencia de la protección contra

incendios, como tal ésta no podrá ser usada para defender una posición ante

la autoridad competente. El lector es libre de estar de acuerdo con todo o

parte de lo que aquí se menciona.

Diseño, Suministro e Instalación de Sistemas Contra Incendio

Elaborado Por: Jussef Liban Abi-Roud

Estudiante en California Polytechnic State University

Master in Fire Protection Engineering Science

GRUPO 3S

Gráfico 11: Bomba SPP / 750 gpm @ 190 Psi

De la misma manera que hicimos con Peerless, podemos ver en la información del fabricante de SPP, que

ambas bombas contra incendios usan el mismo modelo de bomba y el mismo motor diésel, entonces el

precio será el mismo. En tal caso, recomendamos una bomba de 750 gpm a 190 psi por tener capacidad

adicional de extinción de incendios con el mismo costo.

Conclusiones

Nuestra conclusión es que desde el punto de vista comercial, este proyecto se pudo especificar con una

bomba contra incendio de motor diésel de 500 gpm a 190 psi o de 750 gpm a 190 psi. Sin embargo en los

dos proveedores contactados, el modelo de motor, bomba y costo de instalación es el mismo, entonces

obviamente la bomba que nos da el mayor caudal al mismo precio debería ser la que deberíamos escoger.

Desde el punto de vista técnico y netamente teórico sólo hubiera bastado especificar una bomba de 500

gpm a 190 psi, sin embargo luego de hacer el análisis técnico comercial, sobran los comentarios de la

importancia que tiene el comprador o el ingeniero proyectista al momento de tomar decisiones de

compra de equipos de bombeo contra incendios.