144
UNIVERSIDAD SIMÓN BOLÍVAR COORDINACIÓN DE INGENIERÍA ELÉCTRICA MANUAL PARA EL DISEÑO DE INSTALACIONES ELÉCTRICAS INDUSTRIALES LIVIANAS POR EVA SOFÍA VILLARROEL ZAMBRANO PROYECTO DE GRADO PRESENTADO ANTE LA ILUSTRE UNIVERSIDAD SIMÓN BOLÍVAR COMO REQUISITO PARCIAL PARA OPTAR AL TÍTULO DE INGENIERO ELECTRICISTA Sartenejas, septiembre del 2008

Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

  • Upload
    phungtu

  • View
    219

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

UNIVERSIDAD SIMÓN BOLÍVAR COORDINACIÓN DE INGENIERÍA ELÉCTRICA

MANUAL PARA EL DISEÑO DE INSTALACIONES ELÉCTRICAS

INDUSTRIALES LIVIANAS

POR

EVA SOFÍA VILLARROEL ZAMBRANO

PROYECTO DE GRADO PRESENTADO ANTE LA ILUSTRE UNIVERSIDAD SIMÓN BOLÍVAR

COMO REQUISITO PARCIAL PARA OPTAR AL TÍTULO DE INGENIERO ELECTRICISTA

Sartenejas, septiembre del 2008

Page 2: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

UNIVERSIDAD SIMÓN BOLÍVAR COORDINACIÓN DE INGENIERÍA ELÉCTRICA

MANUAL PARA EL DISEÑO DE INSTALACIONES ELÉCTRICAS

INDUSTRIALES LIVIANAS

POR

EVA SOFÍA VILLARROEL ZAMBRANO

TUTOR ACADÉMICO: PROF. OSWALDO RAVELO

PROYECTO DE GRADO PRESENTADO ANTE LA ILUSTRE UNIVERSIDAD SIMÓN BOLÍVAR

COMO REQUISITO PARCIAL PARA OPTAR AL TÍTULO DE INGENIERO ELECTRICISTA

Sartenejas, septiembre del 2008

Page 3: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

iv

Page 4: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

v

MANUAL PARA EL DISEÑO DE INSTALACIONES ELÉCTRICAS INDUSTRIALES

LIVIANAS

POR:

EVA SOFÍA VILLARROEL ZAMBRANO

RESUMEN

Este proyecto recopila las bases conceptuales y de cálculo para el diseño de un sistema

eléctrico industrial, e ilustra con un caso ejemplo los pasos a seguir según los lineamientos

teóricos, basándose en los requerimientos básicos del Código Eléctrico Nacional y

complementado con las pautas establecidas en la literatura especializada para obtener una guía

práctica con el fin de orientar a proyectistas.

El resultado obtenido es un manual que sirve de herramienta y facilita el diseño de dichas

instalaciones, valiéndose de formularios que reúnen paso a paso los datos necesarios para

elaborar los cómputos que garanticen un sistema confiable y cumpla con los requisitos mínimos

de seguridad.

El caso estudio es una planta industrial farmacéutica en la que se considera

principalmente la evaluación de la carga conectada, selección de los alimentadores, capacidad y

dimensión tanto de los tableros, como del transformador de distribución. También se especifica la

selección de los circuitos ramales de iluminación, fuerza y tomacorrientes, canalizaciones,

protecciones y sistema de puesta a tierra, aplicando las pautas establecidas en el manual.

Page 5: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

vi

ÍNDICE GENERAL

ÍNDICE GENERAL..................................................................................................................... vi

ÍNDICE DE TABLAS ................................................................................................................. xii

ÍNDICE DE FIGURAS .............................................................................................................. xiv

LISTA DE SÍMBOLOS Y ABREVIATURAS ......................................................................... xv

CAPÍTULO 1: INTRODUCCIÓN .............................................................................................. 1

1.1 Antecedentes .......................................................................................................................... 1

1.2 Importancia ............................................................................................................................ 1

1.3 Alcance................................................................................................................................... 2

1.4 Objetivo general ..................................................................................................................... 3

CAPÍTULO 2: FUNDAMENTOS TEÓRICOS ......................................................................... 4

2.1 Iluminación ............................................................................................................................ 4

2.2 Alimentadores ........................................................................................................................ 7

2.3 Circuito ramal......................................................................................................................... 7

2.4 Conductores eléctricos ........................................................................................................... 8

2.4.1 Aislamiento de los conductores ....................................................................................... 9

2.4.2 Calibre de los conductores eléctricos............................................................................. 10

2.4.3 Selección del calibre del conductor ............................................................................... 11

2.4.4 Calibre mínimo y capacidad de los circuitos ramales.................................................... 12

2.4.5 Selección del conductor puesto a tierra ......................................................................... 12

2.5 Canalizaciones y Cajas de paso............................................................................................ 13

Page 6: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

vii

2.5.1 Tuberías ......................................................................................................................... 14

2.5.1.1 Tuberías tipo EMT .................................................................................................. 15

2.5.1.2 Tuberías tipo PVC ................................................................................................... 16

2.5.1.3 Tuberías tipo “Conduit” (IMC) ............................................................................... 16

2.5.2 Bandejas para cables ...................................................................................................... 17

2.5.3 Cajas de paso y cajetines................................................................................................ 17

2.6 Selección de protecciones .................................................................................................... 18

2.7 Tableros................................................................................................................................ 18

2.8 Centro de Control de Motores (CCM) ................................................................................. 20

2.9 Cuarto de medidores ............................................................................................................ 20

2.10 Principios básicos de distribución de media tensión.......................................................... 21

2.10.1 Acometida principal..................................................................................................... 21

2.10.2 Protección contra sobrecorriente.................................................................................. 22

2.10.3 Transformadores de Distribución ................................................................................ 22

2.11 Sistemas de emergencia ..................................................................................................... 24

2.11.1 Baterías ........................................................................................................................ 25

2.11.2 Grupo Generador ......................................................................................................... 25

2.11.3 Fuente de alimentación ininterrumpible ...................................................................... 26

2.11.4 Acometida separada ..................................................................................................... 27

2.12 Principios de puesta a tierra. .............................................................................................. 27

2.12.1 Electrodos de tierra ...................................................................................................... 27

2.12.2 Rejilla o red de tierra.................................................................................................... 28

2.12.3 Placa de tierra............................................................................................................... 28

2.12.4 Anillo de tierra ............................................................................................................. 28

Page 7: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

viii

CAPÍTULO 3. MANUAL DE INSTALACIONES ELÉCTRICAS INDUSTRIALES ........ 29

3.1 Descripción de la planta ....................................................................................................... 29

3.2 Identificación de las zonas ................................................................................................... 30

3.3 Clasificación de las zonas .................................................................................................... 30

3.3.1 Zonas Inflamables.......................................................................................................... 31

3.3.2 Clase de Temperatura .................................................................................................... 32

3.4 Determinación del nivel de tensión de alimentación ........................................................... 34

3.5 Estimación de la demanda.................................................................................................... 34

3.5.1 Alumbrado ..................................................................................................................... 35

3.5.2 Tomacorrientes .............................................................................................................. 40

3.5.3 Fuerza............................................................................................................................. 44

3.5.4 Cargas esenciales ........................................................................................................... 45

3.5.4.1 Iluminación de emergencia...................................................................................... 45

3.5.5 Reservas ......................................................................................................................... 46

3.6 Determinación de la distribución y locación de los tableros eléctricos ............................... 47

3.6.1 Tablero principal............................................................................................................ 48

3.6.2 Tableros secundarios...................................................................................................... 48

3.7 Selección del calibre de los alimentadores........................................................................... 49

3.7.1 Criterio de capacidad de corriente ................................................................................. 50

3.7.2 Criterio de caída de tensión............................................................................................ 52

3.7.3 Selección del conductor de neutro ................................................................................. 54

3.7.4 Selección del conductor de puesta a tierra..................................................................... 54

3.8 Selección de la canalización................................................................................................. 55

3.8.1 Tuberías ......................................................................................................................... 56

Page 8: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

ix

3.8.2 Bandejas portacables...................................................................................................... 57

3.9 Coordinación y ajustes de protecciones ............................................................................... 58

3.9.1 Selección de protección para conductores ..................................................................... 58

3.9.2 Selección de protección para motores............................................................................ 60

3.10 Selección de los tableros eléctricos.................................................................................... 62

3.11 Selección de los sistemas de transformación ..................................................................... 62

3.12 Selección del sistema de puesta a tierra ............................................................................. 64

3.12.1 Electrodos de tierra ...................................................................................................... 65

3.12.2 Sistemas de pararrayos................................................................................................. 67

3.13 Selección del sistema de emergencia ................................................................................. 69

CAPÍTULO 4: APLICACIÓN DEL MANUAL AL CASO DE UNA PLANTA

INDUSTRIAL FARMACÉUTICA............................................................................................ 70

4.1 Descripción de la planta ....................................................................................................... 70

4.2 Identificación de las zonas ................................................................................................... 72

4.3 Clasificación de las zonas .................................................................................................... 72

4.4 Determinación del nivel de tensión de alimentación ........................................................... 73

4.5 Estimación de la demanda.................................................................................................... 73

4.5.1 Alumbrado ..................................................................................................................... 73

4.5.2 Estimación del sistema de tomacorrientes ..................................................................... 77

4.5.3 Estimación del sistema de fuerza................................................................................... 80

4.6 Determinación de la distribución y ubicación de los tableros eléctricos ............................. 80

4.6.1 Tablero principal............................................................................................................ 80

4.6.2 Tableros secundarios...................................................................................................... 82

4.7 Selección del calibre de los alimentadores........................................................................... 82

Page 9: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

x

4.7.1 Criterio de capacidad de corriente ................................................................................. 82

4.7.2 Criterio de caída de tensión............................................................................................ 83

4.7.3 Selección del calibre del conductor del neutro .............................................................. 84

4.7.4 Selección del calibre del conductor de puesta a tierra ................................................... 85

4.8 Selección de la canalización................................................................................................. 86

4.9 Selección de protecciones .................................................................................................... 86

4.10 Selección del tablero eléctrico............................................................................................ 86

4.11 Selección del sistema de transformación ........................................................................... 88

4.12 Selección del sistema de puesta a tierra ............................................................................. 88

4.13 Selección del sistema de pararrayos................................................................................... 89

4.14 Selección del sistema de emergencia ................................................................................. 89

CAPÍTULO 5. CONCLUSIONES Y RECOMENDACIONES .............................................. 90

5.1 Conclusiones ........................................................................................................................ 90

5.2 Recomendaciones................................................................................................................. 91

CAPÍTULO 6. REFERENCIAS BIBLIOGRÁFICAS ............................................................ 93

APÉNCIDE I. TABLAS DE REFERENCIA............................................................................ 96

APÉNDICE II. CÁLCULO DE LUMINARIAS .................................................................... 117

APÉNDICE III. FUNDAMENTOS TEÓRICOS ................................................................... 120

III.1 Estimación de la carga...................................................................................................... 120

III.1.1 Demanda Máxima...................................................................................................... 120

III.1.2 Factor de Demanda .................................................................................................... 121

III.1.3 Factor de Carga .......................................................................................................... 121

III.1.4 Factor de Diversidad .................................................................................................. 122

III.1.5 Factor de Simultaneidad ............................................................................................ 122

Page 10: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

xi

III.1.6 Factor de Utilización.................................................................................................. 123

III.1.7 Factor de Pérdidas...................................................................................................... 124

III.2 Selección del calibre del conductor.................................................................................. 124

III.2.1 Criterio de Capacidad de Conducción de Corriente .................................................. 124

III.2.2 Criterio de Caída de Tensión ..................................................................................... 127

Page 11: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

xii

ÍNDICE DE TABLAS

Tabla I. Área de los conductores con calibres AWG .................................................................... 11

Tabla II. Área de los conductores con calibres MCM................................................................... 11

Tabla III. Calibre mínimo del conductor de acuerdo a su tensión nominal................................... 13

Tabla IV. Calibre mínimo de los conductores de puesta tierra de equipos para canalizaciones y

equipos........................................................................................................................................... 14

Tabla V. Clasificación de zonas según las sustancias inflamables presentes................................ 31

Tabla VI. Formulario del levantamiento de la clasificación de las zonas según las sustancias

inflamables .................................................................................................................................... 32

Tabla VII. Clasificación de Máxima Temperatura de Superficie. [Tabla 500.8(B) - CEN] ......... 33

Tabla VIII. Tipo de lámparas ........................................................................................................ 35

Tabla IX. Clase de Seguridad........................................................................................................ 36

Tabla X. Nivel de Protección contra entrada de polvo, objetos sólidos y humedad de las

luminarias ...................................................................................................................................... 36

Tabla XI. Formulario de levantamiento de especificaciones de luminarias.................................. 37

Tabla XII. Iluminancia media por zona......................................................................................... 38

Tabla XIII. Formulario para el cálculo de luminarias por zona .................................................... 39

Tabla XIV. Reflectancias típicas del techo, pared y piso.............................................................. 39

Tabla XV. Estimación de la demanda del Sistema de Iluminación............................................... 40

Tabla XVI. Cantidad de tomacorrientes para diferentes niveles de tensión por zona................... 42

Tabla XVII. Estimación de la demanda del Sistema de tomacorrientes ....................................... 43

Tabla XVIII. Factores de demanda para cargas de tomacorrientes en unidades no residenciales 43

Page 12: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

xiii

Tabla XIX. Carga estimada de los equipos de fuerza a instalar .................................................... 44

Tabla XX. Formulario para la selección del conductor por el criterio de ampacidad................... 51

Tabla XXI. Formulario para la selección del calibre por el criterio de caída de tensión .............. 52

Tabla XXII. Capacidad de Distribución en A.m para cables monopolares de cobre, con

Aislamiento THW, en ducto magnético para 60 Hz y 75ºC para temperatura del conductor....... 53

Tabla XXIII. Selección del calibre de los conductores de fase, neutro y tierra ............................ 54

Tabla XXIV. Calibre mínimo de los conductores de puesta tierra de equipos para canalizaciones

y equipos. [Tabla 250-95 – CEN].................................................................................................. 55

Tabla XXV. Porcentaje de la sección transversal de conductos y tuberías para conductores.

[Tabla 1 - CEN] ............................................................................................................................. 56

Tabla XXVI. Formulario para el cálculo del diámetro de la tubería............................................. 57

Tabla XXVII. Corriente de diseño del dispositivo de protección contra sobrecarga del motor.... 60

Tabla XXVIII. Formulario para tableros de distribución .............................................................. 63

Tabla XXIX. Formulario para el levantamiento de los datos del transformador .......................... 64

Tabla XXX. Conductor del electrodo puesta a tierra para sistemas de corriente alterna. [Tabla

250.66 – CEN]............................................................................................................................... 67

Tabla XXXI. Formulario para determinar la instalación del sistema pararrayos.......................... 68

Tabla XXXII. Tipos de Sistemas de Emergencia y sus consideraciones ...................................... 69

Tabla XXXIII. Formulario de levantamiento de especificaciones de luminarias ......................... 73

Tabla XXXIV. Formulario para determinar el número de luminarias en la zona de Producción en

el área de Llenado.......................................................................................................................... 74

Tabla XXXV. Cantidad de luminarias e interruptores en el área de Producción.......................... 75

Tabla XXXVI. Estimación de la demanda del Sistema de Iluminación ....................................... 76

Page 13: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

xiv

Tabla XXXVII. Cantidad de tomacorrientes para diferentes niveles de tensión en la zona de

Producción..................................................................................................................................... 78

Tabla XXXVIII. Estimación de la demanda del Sistema de tomacorrientes ................................ 79

Tabla XXXIX. Demanda de los tomacorrientes............................................................................ 79

Tabla XL. Carga estimada de los equipos de fuerza a instalar...................................................... 81

Tabla XLI. Selección del conductor por el criterio de ampacidad del Sistema de fuerza en la Zona

de Producción ................................................................................................................................ 83

Tabla XLII. Selección del calibre por el criterio de caída de tensión ........................................... 84

Tabla XLIII. Selección del calibre de los conductores de fase, neutro y tierra............................. 85

Tabla XLIV. Formulario para tableros de distribución ................................................................. 87

Tabla XLV. Formulario para determinar la instalación del sistema pararrayos............................ 89

ÍNDICE DE FIGURAS

Figura 1. Cavidades utilizadas en el método [4] ............................................................................. 5

Figura 2. Sistema eléctrico típico para la generación, transmisión, distribución y utilización de

energía eléctrica [4] ....................................................................................................................... 23

Figura 3. Arreglo básico de Generador de Emergencia y Switch de Transferencia [4] ................ 26

Figura 4. Distribución de las áreas de VENFARPA – Planta Baja ............................................... 71

Figura 5. Distribución de las áreas de VENFARPA – Piso 1 ....................................................... 72

Page 14: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

xv

LISTA DE SÍMBOLOS Y ABREVIATURAS

% Porcentaje

°C Grado centígrado

A Amper

AIEE (American Institute of Electrical Engineers). Instituto Americano de Ingenieros

Eléctricos

ANSI American National Standards Institute

AWG (American Wire Gauge) Normas Americanas de Cableado

CEN Código Eléctrico Nacional

CM Circular mil

Cleanroom Área limpia que tiene un nivel controlado de contaminación

cm Centímetros

EMT (Electrical Metalic Tubing). Tubería Metálica Eléctrica

ENT Tubería Eléctrica No Metálica

HP (Horse power). Caballo de fuerza

I Corriente

IEEE (Institute of Electrical and Electronics Engineers). Instituto de Ingenieros

Electricistas y Electrónicos

IES Iluminating Engineering Society

IMC (Intermediate Metal Conduit). Tubo metálico intermedio

ISO (International Standards Organization). Organización Internacional de

Normalización

Page 15: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

xvi

kV Kilo Voltio

kVA Kilo Voltio Amper

kW Kilo Vatio

m2 Metro cuadrado

mm2 Milímetro cuadrado

MGB (Master Ground Bar). Barra principal de conexión a tierra

PVC Policloruro de Vinilo

R Resistencia

UL (Underwriters Laboratories Inc). Institución dedicada al reconocimiento y

aprobación de productos eléctricos y electrónicos acorde a sus propias normas.

UPS (Uninterruptible Power System). Sistema de potencia ininterrumpida

V Voltio

VA Voltio Amper

W Vatio

ΔV Caída de tensión

Page 16: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

1

CAPÍTULO 1: INTRODUCCIÓN

El proyecto de una instalación eléctrica tiene como función principal garantizar un

servicio eléctrico adecuado, dentro de ciertas condiciones indispensables como lo son, ofrecer un

alto grado de seguridad a las personas y a los equipos relacionados con el mismo, ser un proyecto

económicamente justificable en el que además se considere la posibilidad de expansión de la

instalación en un futuro. Es imperante brindar confiabilidad, flexibilidad y facilidad de operación

y mantenimiento en dicha instalación.

1.1 Antecedentes

Este proyecto se desarrolla con el fin de concentrar las exigencias reglamentarias y

orientaciones existente en las referencias técnicas legal para instalaciones eléctricas industriales,

ya que la bibliografía y normativa actual es muy amplia y se encuentra dispersa.

1.2 Importancia

Este manual tiene finalidad práctica y persigue servir como ayuda al proyectista ya que es

una guía para el diseño de las instalaciones eléctricas industriales cumpliendo los requerimientos

del CEN, en el que se definen los requisitos mínimos de seguridad para garantizar el buen

funcionamiento de una instalación eléctrica con el propósito de proteger los recursos humanos y

materiales, en miras de velar por una instalación segura y confiable.

Page 17: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

2

Así mismo, este manual ofrece sencillez y flexibilidad que requiere toda instalación

eléctrica, realizando un diseño de forma ordenada, siguiendo paso a paso los lineamientos

obligatorios, ciertas recomendaciones basadas en la experiencia de proyectistas reconocidos y

considerando algunos materiales que se encuentran en el mercado.

1.3 Alcance

Adoptando los fundamentos y criterios establecidos en el Código Eléctrico Nacional se

desarrolla un manual que se basa en los criterios de diseño básicos para una instalación eléctrica

industrial y abarca los siguientes aspectos:

Ingeniería conceptual de las instalaciones eléctricas de una planta industrial.

Clasificación de las cargas.

Clasificación de las zonas.

Estimación de la demanda de una planta industrial utilizando como soporte las normas del

Código Eléctrico Nacional.

Determinación del sistema de iluminación a partir del método de los Lúmenes.

Determinación de la distribución de la carga total por zona o ubicación.

Diseño del sistema de iluminación y locación de los tableros eléctricos.

Cálculo de los alimentadores.

Diseño de las canalizaciones eléctricas y dimensionamiento de circuitos ramales de fuerza

e iluminación.

Coordinación y ajustes de protecciones.

Selección de los tableros eléctricos.

Page 18: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

3

Diseño y especificaciones del sistema de transformación de media tensión.

Selección del sistema de puesta a tierra.

Para el desarrollo del manual de diseño de una instalación eléctrica industrial se divide en

fases para facilitar el diseño de la instalación eléctrica: fijación de criterios en base a las

necesidades del proyecto, estimación de cargas, punto clave para la selección del conductor,

canalización, protección del sistema, tableros principales y dimensionamiento de la acometida.

1.4 Objetivo general

Realizar un manual para el diseño de las instalaciones eléctricas industriales, utilizando

como caso ejemplo una planta industrial farmacéutica, con finalidad de identificar y usar los

criterios generales utilizados en este tipo de instalación.

Page 19: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

4

CAPÍTULO 2: FUNDAMENTOS TEÓRICOS

2.1 Iluminación

El cálculo de la cantidad de luminarias a partir de la iluminancia requerida en determinado

espacio se diseña por el método del Lumen el cual toma en cuenta las interreflexiones de luz en el

interior de un cuarto. [3]

La iluminación promedio sobre el plano de trabajo es igual al flujo luminoso incidente por

unidad de área, y viene dado por:

AE φ= (1)

En donde,

E = Iluminancia (lux)

Φ = Flujo luminoso (lumens)

A = Área (m2)

Los lúmenes que cubren el plano de trabajo son igual que los lúmenes de lámpara (ΦL)

multiplicados por el coeficiente de utilización (CU). Este factor es una función de las

dimensiones y acabado del cuarto, de la altura de montaje del aparato lumínico, de su tipo y de la

altura del plano de trabajo.

Page 20: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

5

Figura 1. Cavidades utilizadas en el método [4]

Adicionalmente, se considera un factor de pérdida de luz (LLF por sus siglas en inglés

Light Loss Factor) ya que los lúmenes de las lámparas disponibles inicialmente pueden verse

reducidos conforme el tiempo pasa debido al sucio acumulado, baja tensión y temperatura

ambiente entre otros, de manera que la iluminación mantenida Em se expresa así:

ALLFCUE L

m⋅⋅

(2)

El coeficiente de utilización se deduce utilizando el método de cavidad por zonas, el cual

se basa en el concepto de dividir el cuarto en tres cavidades: El espacio entre el techo y la

luminaria es la cavidad del cielo raso, el espacio entre la luminaria y el plano de trabajo es la

cavidad del cuarto, y el espacio entre el plano de trabajo y el piso es la cavidad del piso. Para

cada una de ellas se calcula una razón de cavidad:

Page 21: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

6

(3)

CCR = Razón de cavidad del techo

hcc = Altura de la cavidad del techo

L = Longitud del cuarto

W = Ancho del cuarto

( )WL

WLhRCR rc

⋅+⋅

=5

(4)

RCR = Razón de cavidad del cuarto

hrc = Altura de la cavidad del cuarto

( )WL

WLhFCR fc

+⋅=

5 (5)

FCR = Razón de cavidad del piso

hfc = Altura de la cavidad del piso

Para los aparatos lumínicos superficiales y empotrados hcr = 0 por tanto CCR es igual a

cero.

Adicionalmente, el coeficiente de utilización se halla una vez conocidas las reflectancias

del techo, pared y piso, la tabla para el cálculo del coeficiente de utilización la proporcionan los

fabricantes de los distintos artefactos, así mismo en el IES Handbook se encuentran los datos

Page 22: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

7

típicos; generalmente se considera una reflectancia efectiva de la cavidad del piso de 20%. Dicha

tabla se puede encontrar en el apéndice I.

De manera que la cantidad de luminarias requeridas para un espacio determinado se puede

obtener mediante la ecuación (6).

LLFCUAEariasluN⋅⋅⋅

minº (6)

2.2 Alimentadores

El alimentador son todos los conductores de un circuito entre el equipo de acometida, la

fuente de suministro de un sistema derivado separadamente u otra fuente de suministro, y el

último dispositivo de sobrecorriente del circuito ramal.

2.3 Circuito ramal

El concepto de circuito engloba la idea de un sistema cerrado, que conecta eléctricamente

la fuente de energía o de alimentación y el receptor de ésta, va entre el último dispositivo de

sobrecorriente que protege el circuito y la(s) salida(s). Según como lo define el Código Eléctrico

Nacional, constituye el elemento básico de la instalación eléctrica ya que a partir de su diseño, se

estructura en pasos sucesivos todo el sistema eléctrico.

Page 23: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

8

Así pues al estar ubicadas las cargas que se van a suplir se trazan lo circuitos ramales que

alimentan las salidas agrupando las cargas de la forma más conveniente y determinando así las

necesidades que debe cumplir el sistema de alimentadores.

Entre los componentes básicos del sistema eléctrico se encuentran los conductores, que es

el elemento de enlace entre la fuente de alimentación y la carga, y las canalizaciones eléctricas

que son los elementos que conducen a los conductores.

2.4 Conductores eléctricos

Los conductores están conformados por tres partes:

• El alma o elemento conductor, fabricado de cobre o aluminio; según su

constitución puede ser: alambre o cable, según el número de conductores puede

ser: monoconductor o multiconductor.

• El aislamiento, que se explicará en el punto 2.5.1 y,

• Las cubiertas protectoras, utilizadas para proteger la integridad del aislamiento y el

alma conductora.

Los conductores eléctricos pueden tener diferentes formas: hilos, barras rectangulares,

barras circulares, etc. Los materiales de los conductores típicamente utilizados en las

instalaciones eléctricas son el cobre y el aluminio por ofrecer una buena conductividad a un costo

razonable.

Page 24: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

9

El aluminio posee menor conductividad eléctrica que el cobre aproximadamente en un

16% y es más liviano, lo que resulta más económico al hacer un cálculo comparativo. A pesar de

estas diferencias el cobre es preferido en el mercado por sus propiedades mecánicas.

Para la selección del conductor es importante tener en cuenta los agentes que influyen

durante su funcionamiento, los más relevantes son: mecánicos, químicos y eléctricos.

Entre los agentes mecánicos que pueden afectar se encuentran: presión mecánica,

abrasión, elongación y doblez a 180º, siendo los más comunes agentes externos como el

desempaque, manejo e instalación del conductor que le pueden causar daño ocasionando fallas de

operación al sistema.

Los agentes químicos dependen directamente de los contaminantes que se encuentran en

el lugar de la instalación y se clasifican en: Agua o humedad, hidrocarburos, ácidos y álcalis. El

aislamiento del conductor se determina según las necesidades ante la acción de los contaminantes

presentes, ya que estos pueden variar en espesor y capas de aislamiento.

2.4.1 Aislamiento de los conductores

Para el aislamiento de los conductores las denominaciones varían dependiendo de su

utilización o tipo de fabricante, por ejemplo el material termoplástico se identifica como tipo T, y

su designación según la norma UL (Underwriters Laboratories Inc.) se indica a continuación:

TW, THW, THHN, TTU. También se encuentran los polímeros que se identifican como: R, RW,

RHW, RH, RHH.

Page 25: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

10

Para seleccionar el tipo de aislamiento de los conductores, se debe considerar la capacidad

para resistir diversos aspectos a los que están expuestos en la instalación, como el tipo de lugar de

la instalación:

Lugares Secos y Húmedos: Los conductores aislados y cables usados pueden ser de los

tipos: FEP, FEPB, MTW, PFA, RHH, RHW, RHW-2, SA, THHN, THW, THW-2, THHW,

THHW-2, THWN, THWN-2, TW, XHH, XHHW, WHHW-2 ó ZW.

Lugares Mojados: Los conductores aislados y los cables usados serán impermeables a la

humedad con forro metálico de los tipos: MTW, RHW, RHW-2, TW, THW, THW-2, THHW,

THHW-2, THWN, THWN-2, XHHW, XHHW-2, ZW; o de un tipo aprobado para el uso en

lugares mojados.

Como último aspecto se tienen los agentes eléctricos, las condiciones de operación de la

instalación vienen determinadas por la rigidez dieléctrica del aislamiento de los conductores,

debido a que determina la diferencia de potencial establecida por los límites de seguridad, el

aislamiento de los conductores permite soportar sobrecargas transitorias o impulsos de corrientes

por cortocircuito.

2.4.2 Calibre de los conductores eléctricos

Los conductores se identifican por el número del calibre que por lo general siguen el

sistema de designación americano AWG (American Wire Gauge por sus siglas en inglés). En

Page 26: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

11

caso de tener un área mayor se emplea una unidad denominada circular mil (sección de un círculo

que tiene un diámetro de un milésimo de pulgada). Por ejemplo 1 mm2 = 1974 CM. En la tabla I

se muestran en orden ascendente los calibres AWG de uso común y su área correspondiente.

Tabla I. Área de los conductores con calibres AWG Calibre (AWG) Área (mm2)

12 3.31

10 5.27

8 8.35

6 13.30

4 21.20

2 33.60

1/0 53.5

2/0 67.4

4/0 107

En la tabla II se muestra el área respectiva de los conductores con calibre MCM

convencionales.

Tabla II. Área de los conductores con calibres MCM Calibre (MCM) Área (mm2)

250 126.644

350 177.354

500 253.354

2.4.3 Selección del calibre del conductor

Se emplean dos criterios para escoger el calibre adecuado para el conductor:

Page 27: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

12

• Capacidad de conducción de corriente: representa la máxima corriente que puede

circular por un conductor considerando las propiedades del mismo sin producir

daño.

• Caída de tensión: cálculo que considera las pérdidas por el conductor.

Además de las dos condiciones necesarias para escoger el calibre del conductor el CEN

recomienda considerar el calibre mínimo permitido según su tensión nominal y tipo de

instalación.

2.4.4 Calibre mínimo y capacidad de los circuitos ramales

La capacidad máxima del conductor se determina a través de la potencia, la cual está

expresada por el producto de la tensión por la corriente. El calibre mínimo permitido para los

circuitos ramales es el THW # 12 AWG de cobre o # 10 de aluminio recubierto de cobre. En la

tabla 310.16 del CEN que se muestra en el apéndice se indican las capacidades de corriente (A)

permisibles de conductores aislados de 0 a 2000 V y de 60 º C a 90 º C no más de tres

conductores activos en una canalización, cables o directamente enterrados, para una temperatura

ambiente de 30 º C.

2.4.5 Selección del conductor puesto a tierra

El conductor de puesta a tierra conecta el chasis de los equipos, circuitos y/o

canalizaciones al electrodo de puesta a tierra, para determinar dicho calibre se emplea la tabla IV

extraída del CEN (referencia 250-95) que se muestra a continuación. El calibre se determina en

Page 28: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

13

función a la capacidad nominal del dispositivo automático de sobrecorriente ubicado del lado de

la alimentación.

Tabla III. Calibre mínimo del conductor de acuerdo a su tensión nominal

Tensión nominal del conductor

(Volt)

Calibre mínimo del conductor

(AWG) 14 De Cobre

De 0 a 2000 12 De aluminio o aluminio recubierto de cobre

De 2001 a 8000 8 De 8001 a 15000 2 De 15001 a 28000 1 De 28001 a 35000 1/0

2.5 Canalizaciones y Cajas de paso

Las canalizaciones se utilizan en una instalación eléctrica dependiendo del alcance a

cubrir, para proteger el conjunto de conductores o alimentadores por razones climáticas,

mecánicas o de seguridad. Dichas canalizaciones pueden ser clasificadas de la siguiente forma:

• A la vista.

• Embutidas: Oculta en muros e inaccesible en forma directa.

• Ocultas: No a la vista, pero accesible en toda su extensión.

• Subterráneas: Bajo tierra.

Page 29: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

14

Tabla IV. Calibre mínimo de los conductores de puesta tierra de equipos para canalizaciones y equipos

Capacidad nominal o ajuste máximo del dispositivo

automático de sobrecorriente ubicado del lado de la

alimentación

Cable de

Cobre (A) N°

Cable de Aluminio o

de Aluminio recubierto de Cobre *

15 20 30

40 60

100

200 300 400

500 600 800

1000 1200 1600

2000 2500 3000

4000 5000 6000

14 12 10

10 10 8

6 4 3

2 1

1/0

2/0 3/0 4/0

250 Kcmil 350 Kcmil 400 Kcmil

500 Kcmil 700 Kcmil 800 Kcmil

12 10 8

8 8 6

4 2 1

1/0 2/0 3/0

4/0

250 Kcmil 350 Kcmil

400 Kcmil 600 Kcmil 600 Kcmil

800 Kcmil

1200 Kcmil 1200 Kcmil

* Véanse las restricciones de instalaciones señaladas en el Artículo 250-92(a). NOTA: Para cumplir lo establecido en el Artículo 250-51, los conductores de puesta a tierra de los equipos podrían ser de mayor calibre que lo especificado en esta Tabla.

2.5.1 Tuberías

Las tuberías son uno de los elementos más importantes, se encargan de resguardar los

conductores desde la fuente de alimentación hasta la carga, éstas puede ser de dos tipos:

embutidas o a la vista.

Page 30: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

15

Las dimensiones de la tubería dependen directamente del número de conductores que

protege, considerando un espacio libre que se habilita con la finalidad de disipar el calor de los

alimentadores, por tal razón se diseña una relación entre la sección del tubo y la de los

conductores, llamada factor de relleno que viene dado por:

AA

F CR = (7)

en donde:

FR = factor de relleno.

Ac = área total de los conductores.

A = área interior de la tubería.

Los porcentajes de los factores de relleno para obtener la sección transversal de los

conductores, se indican en la tabla Nº 1 del capítulo 9 del CEN.

2.5.1.1 Tuberías tipo EMT

El artículo 358 del CEN explica todas las disposiciones generales respecto a este tipo de

tuberías, tales como su uso, instalación y especificaciones de fabricación. Generalmente esta

tubería metálica conocida como tipo EMT se utiliza en canalizaciones embutidas.

El tamaño a utilizar oscila desde 1/2 pulgada hasta un máximo de 4 pulgadas. El área de

las tuberías que puede ser ocupada por los conductores se encuentra en la tabla 4 del capítulo 9

del CEN, Dimensiones y área porcentual de los tubos y tuberías, igualmente en el apéndice I se

Page 31: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

16

encuentra la tabla que indica la cantidad de conductores máximos en los distintos tamaños de

tuberías tipo EMT, de acuerdo al porcentaje de ocupación permisible.

2.5.1.2 Tuberías tipo PVC

Al igual que las tuberías tipo EMT, estas tuberías también son utilizadas en canalizaciones

embutidas, se clasifican como no metálicas y tienen la propiedad de ser autoextinguible,

resistente al aplastamiento, humedad y a ciertos agentes químicos. En cuanto a las tablas

referenciales concernientes a la capacidad máxima de ocupación de la canalización estas se

encuentran en el apéndice I.

2.5.1.3 Tuberías tipo “Conduit” (IMC)

Estas tuberías se utilizan por lo general en instalaciones a la vista, las cuales requieren de

diversos elementos de sujeción tales como, abrazaderas o estructuras de soporte. El artículo 360

del CEN explica todas las disposiciones generales respecto este tipo de tuberías, tales como su

uso, instalación y especificaciones de fabricación.

Los diámetros de este tipo de tubería están establecidos dentro del mismo rango que para

las tuberías tipo EMT. En el apéndice I se encuentra la información relacionada al área de

ocupación porcentual de las tuberías y la cantidad máxima de conductores de acuerdo a su

calibre.

Page 32: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

17

2.5.2 Bandejas para cables

Un sistema de bandejas es un conjunto de unidades o secciones que junto a sus accesorios

conforman una estructura rígida para soportar cables, existen abiertas o cerradas modelo escalera

con fondo de metal expandido o metálico, representando un elemento importante en las

canalizaciones

En cuanto al número de conductores, el CEN indica en el artículo 366.6, que no tendrán

más de 30 conductores de potencia y que la suma de las secciones transversales de los

conductores contenidos no supere el 20% de la sección transversal interior del canal metálico.

Las extensiones de los canales metálicos con tapa se harán con los siguientes tipos de

tubo: metálico rígido, metálico flexible, metálico intermedio, eléctrico metálico (EMT),

canalizaciones metálicas de superficie o cable metálico blindado.

2.5.3 Cajas de paso y cajetines

Son los elementos utilizados para prevenir derivaciones y empalmes de conductores de

manera insegura, hacia las conexiones de éstos con las protecciones, interruptores para

iluminación, tomacorrientes, maniobras. Dichos elementos se ubican al final y en medio de los

circuitos, en cuanto al material y dimensiones requeridas se encuentran especificadas en el CEN

en la sección 314. Por lo general, las cajas deben tener un 40% del espacio interior libre.

Page 33: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

18

2.6 Selección de protecciones

Los dispositivos de protección son necesarios para preservar la vida útil de los equipos e

instalaciones eléctricas ante fallas que puedan ocurrir en el sistema, es por esto que hacer una

correcta selección de éstos proporcionará un buen servicio y seguridad en el mantenimiento de

los equipos.

Las protecciones a utilizar son interruptores automáticos, están diseñados para operar el

circuito en circunstancias anormales de corriente, el disparo se produce para un cierto valor de

corriente. Existen dos tipos de estos interruptores, electromagnéticos en aire y termomagnéticos

en caja moldeada.

Los interruptores electromagnéticos son utilizados en subestaciones y tableros; y los

termomagnéticos son instalados a nivel residencial, comercial, industrial, etc. Los

termomagnéticos son diseñados para un tiempo fijo de disparo.

2.7 Tableros

Los tableros cumplen la función de recibir la energía eléctrica y distribuirla por medio de

conductores a las cargas de los circuitos derivados, éstos se protegen individualmente para

sobrecorrientes y cortocircuito por medio de fusibles o interruptores termomagnéticos.

Los diferentes tipos de tableros son [6]:

Page 34: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

19

• Tablero de alumbrado tipo NLAB: utilizado para la protección y corte de circuitos

de iluminación, tomacorrientes y cargas menores como pequeños equipos de aire

acondicionado, máquinas de oficinas, etc. Sus características principales son:

o Barras principales: 225 A máx

o Tensión de trabajo: 240 / 120 VAC @ 60 Hz

o Servicio: 3Ф (4 hilos), 2Ф (3 hilos) y 1Ф (2 hilos).

o Capacidad de cortocircuito: 10 kA Icc (RMS) @ 240 VAC

o Número de circuitos: 12, 18, 24, 30, 36 y 42

• Tablero de alumbrado y distribución NAB: utilizado para la protección y corte de

circuitos de iluminación y pequeñas cargas de alimentadores que posteriormente

son protegidos por otros dispositivos, como arrancadores, seccionadores, etc.

Normalmente alimentan circuitos ramales de: maquinarias de pequeñas potencias,

las cuales poseen en forma integrada su panel de control. Sus características

principales son:

o Barras principales: 400 A máx

o Tensión de trabajo: 240 / 120 VAC @ 60 Hz

o Servicio: 3Ф (4 hilos) y 2Ф (3 hilos)

o Capacidad de cortocircuito: 65 kA Icc (RMS) @ 240 VAC

o Número de circuitos 12, 18, 24, 30, 36 y 42

• Tablero de alumbrado y distribución tipo NHB: su utilización y características son

similares al tablero NAB, lo que los diferencia es que éste trabaja con una tensión

Page 35: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

20

de 480/277 VAC y su capacidad de cortocircuito es de 25 kA Icc (RMS) @ 480

VAC y de 18 kA Icc (RMS) @ 600 VAC.

• Tablero de distribución tipo CELDAS o CDEP-1: su utilización, básicamente es la

misma que las del NHB, la diferencia es que la capacidad de corriente es mucho

mayor, las barras principales son de 600 A máx, y su tensión de operación es 480

VAC @ 60 Hz.

2.8 Centro de Control de Motores (CCM)

Es un tablero utilizado para instalar los componentes del alimentador de los motores y de

sus circuitos derivados, además de sus protecciones correspondientes. Es importante para que los

motores de una instalación o de una zona se alimenten en forma centralizada, de manera que un

solo operador pueda controlar fácilmente todo un complejo donde se encuentran los mandos,

protecciones e instrumentos de medición.

Para diseñar un CCM, se debe elaborar una lista indicando los siguientes datos de cada

motor: potencia (HP o kW), total de unidades, demanda total, tensión de operación y corriente

nominal a plena carga. Para corriente de arranque de motores el CEN especifica en su artículo

430 todo lo referente a este punto.

2.9 Cuarto de medidores

Los cuartos de medidores son los espacios utilizados para la ubicación de los módulos de

medición, que a su vez incluyen todos los equipos del sistema de medición y de protecciones

Page 36: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

21

necesarias del sistema eléctrico. Se debe garantizar libre acceso para la compañía eléctrica

encargada de realizar la medición.

Estos centros deben estar separados de depósitos de basura, tuberías o centros de

medidores de gas, depósitos de materiales combustibles, depósitos de productos químicos

inflamables, ambientes de alta contaminación industrial. No deben obstaculizar vías de escape o

emergencia.

2.10 Principios básicos de distribución de media tensión

Un sistema de distribución está conformado por diversos componentes, la acometida

principal de llegada de la compañía de servicio, las protecciones necesarias en todo el sistema, los

transformadores distribuidos alrededor del inmueble para obtener la tensión a la que se desea

realizar la distribución interna en baja tensión, en caso de tener sistemas preferenciales o de

emergencia se debe considerar la utilización de plantas de emergencia para suplir la carga en caso

de falla.

2.10.1 Acometida principal

La acometida principal es suministrada por la compañía de servicio y se encarga de

entregar energía eléctrica desde un sistema de suministro eléctrico al sistema de cableado del

centro de consumo. Estos conductores son de tipo subterráneo o aéreo y debe contar con el

aislamiento de acuerdo al nivel de tensión de servicio además de la protección para las

condiciones atmosféricas a las que se encuentre expuesto.

Page 37: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

22

2.10.2 Protección contra sobrecorriente

Según el artículo 230.90 del CEN todos los conductores activos se deben proteger contra

sobrecorrientes por cualquiera de estos procedimientos:

• Relé de sobrecorriente y transformadores de corriente: debe existir como mínimo tres.

• Fusibles: debe haber un fusible en serie con cada conductor activo.

También en el artículo 230.71 especifica los casos en que se utilizarán los siguientes

dispositivos de interrupción de circuitos:

• Interruptores automáticos.

• Fusibles de potencia y portafusibles.

• Cortacorrientes y fusibles de alta tensión- tipo expulsión.

• Cortacorrientes en aceite.

• Interruptores de carga.

2.10.3 Transformadores de Distribución

Los transformadores de distribución son transformadores reductores, convierten la tensión

del sistema de distribución primario a un valor menor deseado, el cual se conoce como tensión de

utilización. [7]

Estos se encuentran entre los alimentadores primarios en media tensión conectados a

través de un fusible primario, que se encarga de desconectar en caso de una falla en el

Page 38: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

23

transformador o un cortocircuito, y el sistema de distribución secundario (circuito derivador) que

puede estar protegido igualmente por un fusible o por interruptores de los circuitos secundarios.

En la siguiente figura se ilustra el esquema del sistema eléctrico.

Figura 2. Sistema eléctrico típico para la generación, transmisión, distribución y utilización de energía eléctrica [4]

El tipo de transformador depende de su ubicación entre las más comunes para esta

aplicación se encuentran los sumergibles, tipo poste y tipo pedestal o Pad Mounted instalados en

exteriores y vienen con demandas estandarizadas: 45 kVA, 75 kVA, 112,5 kVA, 150 kVA, 225

kVA, 300 kVA, 500 kVA, 750 kVA, 1000 kVA, 1500 kVA, 2000 kVA, 2500 kVA, 3000 kVA,

3750 kVA y 5000 kVA.

Cada transformador es dimensionado de acuerdo a la carga que debe suplir en cada sector

donde sean instalados, teniendo en cuenta los diversos factores para la estimación de la demanda.

La impedancia propia de los transformadores afecta la regulación de la tensión y la magnitud de

las corrientes de corto circuito que circulan por los devanados en caso de fallas.

Page 39: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

24

Adicionalmente, en una instalación industrial o comercial en baja tensión existe una etapa

adicional de transformación para cubrir los sistemas que operan a una tensión diferente del

circuito secundario, motores pequeños, sistema de iluminación, y equipos de fuerza o

tomacorrientes. Existen varios niveles de tensión normalizados entre los cuales se tiene:

480V/277V, 416V/240V y 208/120V, este último se utiliza generalmente como alimentación de

los tableros de fuerza para áreas comunes.

2.11 Sistemas de emergencia

Estos sistemas están diseñados para suministrar energía automáticamente y/o mediante

accionamiento voluntario a determinadas cargas críticas y equipos en caso de falla del suministro

normal o en caso de falla de elementos del sistema diseñado para suministrar, distribuir y

controlar la fuerza e iluminación indispensables para la seguridad de la vida humana.

Entre los requisitos de estos sistemas, el suministro de energía debe ser tal que, en caso de

falla del suministro normal de los suscriptores, el alumbrado, la energía de emergencia o ambos,

estén disponibles dentro del tiempo requerido para tal aplicación, que en todo caso, no debe

exceder de 10 segundos.

Existen varios tipos de Fuentes de alimentación entre las cuales se puede mencionar:

Baterías, Grupo Generador, Fuente de alimentación Ininterrumpible, Acometida separada.

Page 40: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

25

2.11.1 Baterías

Las baterías instaladas como fuente de alimentación para sistemas de emergencia deben

ser de régimen y capacidad adecuados para suministrar y mantener la carga total, durante un

periodo de por lo menos una hora y media, sin que la tensión eléctrica aplicada a la carga caiga

por debajo de 87,5% de lo normal.

Las baterías, ya sean de tipo ácido o alcalino, deben estar diseñadas y construidas para

servicio de emergencia, sólo en el caso de las baterías plomoácido que necesitan la adición

periódica de agua, deben estar provistas de envases transparentes o translúcidos; las baterías de

uso automotriz no están calificadas para esta utilidad. Adicionalmente, se debe proveer un medio

de carga automática de las baterías y ser compatibles con el tipo de cargador de la instalación

particular.

2.11.2 Grupo Generador

El Grupo Generador debe poseer los medios necesarios para el arranque automático de la

fuerza motriz cuando falle el servicio normal, y para la transferencia y operación automática de

todos los circuitos eléctricos requeridos, en caso de que la planta de emergencia tarde más de diez

(10) segundos para generar energía se provee una fuente auxiliar que alimente los servicios

críticos hasta que ésta asuma la carga.

Cuando se use como fuerza motriz un motor de combustión interna, debe proveerse la

cantidad suficiente de combustible para el funcionamiento del sistema por un lapso no menor de

dos horas a plena carga, ya que no debe depender exclusivamente del servicio público para la

Page 41: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

26

alimentación de combustible, o de la fuente de agua municipal para el enfriamiento del sistema.

Se deben proveer medios para transferir automáticamente de un suministro de combustible a otro,

cuando se use doble alimentación.

Figura 3. Arreglo básico de Generador de Emergencia y Switch de Transferencia [4]

Los dispositivos de protección contra sobrecorriente de los circuitos derivados de

emergencia, deben ser accesibles solamente a personas calificadas. Los interruptores automáticos

y los fusibles para la protección contra sobrecorriente de circuitos de emergencia, aumentan la

confiabilidad del sistema cuando están coordinados para asegurar la separación selectiva de las

corrientes eléctricas de falla.

2.11.3 Fuente de alimentación ininterrumpible

Estos equipos (UPS) deben cumplir con las condiciones establecidas para las baterías y

grupo generador.

Page 42: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

27

2.11.4 Acometida separada

En el caso de que la empresa suministradora de energía lo permita se puede utilizar una

acometida eléctrica para uso de emergencia de tipo aérea o subterránea, y debe estar

suficientemente separada de la acometida del servicio normal para disminuir la posibilidad de una

interrupción simultánea del suministro.

2.12 Principios de puesta a tierra.

Este sistema se basa en la conexión física entre las partes metálicas de un equipo eléctrico

y tierra, de esta forma se limita la tensión en las partes metálicas de los equipos para evitar que

alcancen valores peligrosos para la vida de un ser humano, además de evitar el acumulamiento de

cargas electrostáticas que podrían provocar explosiones. Adicionalmente, la conexión de puesta a

tierra crea un camino de baja impedancia para el drenaje de la corriente, en el caso que se

presente falla de aislamiento del equipo.

Existen varios tipos de puesta a tierra: [8]

2.12.1 Electrodos de tierra

Barra conductora enterrada usada para reunir o disipar la corriente a tierra, la cual debe

poseer no menos de 2,4 m de longitud y sección comercial 5/8 pulgadas (15,78 mm de diámetro)

y el extremo superior del electrodo debe quedar a nivel del piso a menos que esté protegido

contra daño físico. Los electrodos de hierro o acero deben tener una superficie exterior

galvanizada o revestida de cualquier otro metal que lo proteja contra la corrosión.

Page 43: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

28

2.12.2 Rejilla o red de tierra

Es un arreglo horizontal de electrodos interconectados que proporciona un punto común

de tierra para dispositivos eléctricos o estructuras metálicas.

2.12.3 Placa de tierra

Consiste en una lámina sólida metálica que a menudo se coloca en sitios pocos profundos

encima de una red de tierra o en otra parte de la superficie, con el propósito de obtener una

medida extra de protección minimizando el daño de la exposición a altas tensiones de paso y de

contacto en áreas críticas de operación o en áreas que son frecuentemente transitadas. Una forma

común de la placa de tierra es una malla de cable puesta directamente bajo la piedra picada, cada

electrodo de placa debe tener una superficie útil de contacto con el suelo de al menos 0,2 m2. Los

electrodos de hierro o de placa de acero serán de un espesor mínimo de 6 mm, mientras que los

electrodos de metales no ferrosos serán de un espesor mínimo de 1.5 mm.

2.12.4 Anillo de tierra

Un anillo de tierra consiste en un conductor de cobre desnudo no menor al calibre N° 2,

de longitud no menor a 6 m, enterrado en contacto directo con el suelo a no menos de 80 cm del

nivel del terreno y que rodee el inmueble o estructura.

En cuanto a las tuberías metálicas de gas y los electrodos de aluminio no están permitidos

para ser utilizados como electrodos de puesta a tierra.

Page 44: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

29

CAPÍTULO 3. MANUAL DE INSTALACIONES ELÉCTRICAS INDUSTRIALES

Los requerimientos de diseño varían según el tipo de instalación proyectada ya sea

residencial, comercial e industrial. En este manual se plantean los criterios de diseño a considerar

en una instalación eléctrica industrial para el desarrollo de un proyecto nuevo o remodelación.

El manual consta de formularios que permiten recopilar la información necesaria para

aplicar los criterios de diseño que se señalan en el mismo. Adicionalmente se desarrolló una

herramienta básica con el software Microsoft Office Excel que permite realizar los cómputos

métricos elementales para el cálculo y selección del calibre del conductor de las fases

considerando los diferentes criterios, conductor del neutro y de puesta a tierra, y la selección de

los dispositivos de protección. Así mismo se cuenta con una herramienta para el cálculo de la

cantidad de luminarias en cierta área según el nivel de iluminación requerido.

3.1 Descripción de la planta

Es necesario identificar la producción de la planta para establecer las necesidades y las

limitantes o restricciones en cuanto al diseño del sistema eléctrico. Además se requiere conocer el

uso de los ambientes, la ubicación geográfica y las dimensiones de la construcción.

Page 45: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

30

Se debe contar con el plano del diseño arquitectónico, en el que se muestra la estructura

de la planta, ésta puede sectorizar en líneas generales de la siguiente manera: un área de

producción, control de calidad, almacén, oficinas, servicios básicos, servicios críticos, áreas

exteriores y otras áreas comunes como pasillos, etc., pero esto dependerá exclusivamente del

plano con el diseño arquitectónico.

Una vez que se conocen los equipos a utilizar y su ubicación dentro de la planta se

establecen las necesidades del servicio eléctrico.

3.2 Identificación de las zonas

Es importante dividir el área de trabajo en sectores para facilitar los cómputos,

asignándole un código de identificación (ID) a cada área rectangular según la distribución

espacial en el plano, pensando en el cálculo de las luminarias que se explicará más adelante.

Adicionalmente se recomienda identificar el tipo de carga presente por zona, por ejemplo,

en el área de oficinas los tipos de carga por sistema más comunes son: iluminación,

tomacorrientes y si existe algún equipo que requiera un sistema de energía de respaldo se incluye

en las cargas esenciales.

3.3 Clasificación de las zonas

En el CEN desde la sección 500 hasta la 504 se cubren los requisitos para los equipos

eléctricos, electrónicos y el cableado para todas las tensiones, en las zonas donde pueda existir

Page 46: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

31

riesgo de incendio o explosión debido a la presencia de gases o vapores inflamables, líquidos

inflamables, polvos combustibles, fibras o partículas inflamables en suspensión.

3.3.1 Zonas Inflamables

El resumen de la clasificación de las zonas según las sustancias inflamables presentes en

un espacio se presenta en la tabla V que se muestra a continuación [9]:

Tabla V. Clasificación de zonas según las sustancias inflamables presentes

Grupo Clase I (Gases) Clase II (Polvos) A Acetileno.

B Hidrógeno, Óxido de Etileno, Óxido de Propileno.

C Éter, Sulfuro de Hidrógeno.

D Metanol, Acetona, Bencina, Gasolina, Naphta.

E Polvos metálicos (todos los metales). F Polvos carboreos: carbón, asfalto, etc.

G Polvos no conductores: grano, medicinas, pesticidas, plásticos.

División 1: Zona de alto riesgo, ambiente en el cual existen condiciones de inflamabilidad con alta frecuencia. División 2: Zonas de menor riesgo, ambiente inflamable presente ocasionalmente.

Existe una tercera clase para aquellos lugares que son peligrosos debido a la presencia de

fibras o pelusas, pero que no es probable que estén en suspensión en el aire en cantidades

suficientes para producir una mezcla combustible. La división 1 es para fibras provenientes del

proceso de manufactura, y la división 2 para las restantes.

Page 47: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

32

Así pues, cada equipo debe cumplir con los requisitos mínimos de seguridad establecidos

en el CEN según el área donde se encuentre. Para realizar el levantamiento se utiliza la siguiente

tabla:

Tabla VI. Formulario del levantamiento de la clasificación de las zonas según las sustancias

inflamables

Clase I Clase II Clase III Zonas / Ubicación División 1 División 2 División 1 División 2 División 1 División 2

3.3.2 Clase de Temperatura

Los equipos serán marcados con la clase de temperatura con referencia a una temperatura

ambiente de 40 °C (mostrada en la tabla 500.8(B) del CEN). Los equipos para Clase I y II serán

marcados con la temperatura máxima de operación segura determinada por la exposición

simultánea a las condiciones Clase I y Clase II.

Temperatura Clase I:

La marcación de temperatura especificada en 500.8(B) no debe exceder la temperatura de

ignición del gas o vapor específico que pueda encontrarse.

Page 48: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

33

Tabla VII. Clasificación de Máxima Temperatura de Superficie. [Tabla 500.8(B) - CEN] Temperatura Máxima

°C Clase de

Temperatura (Código T)

450 300 280 260 230 215 200 180 165 160 135 120 100 85

T1 T2

T2A T2B T2C T2D T3

T3A T3B T3C T4

T4A T5 T6

Temperatura Clase II:

La marcación de temperatura especificada en 500.8(B) debe ser menor que la temperatura

de ignición de polvo específico que pueda encontrarse. Para polvos orgánicos que se puedan

deshidratar o carbonizar, la temperatura marcada no excederá el valor de la temperatura de

ignición ó 165 °C, el que sea menor.

Según la clasificación por zonas los equipos nombrados a continuación deben estar

identificados según la Clase y División a la que correspondan: Transformadores y

Condensadores; Medidores, Instrumentos y Relés; Métodos de Cableado; Sellado y Drenaje;

Suiches, Interruptores Automáticos, Controladores de Motores y Fusibles; Resistores y

Transformadores de Control; Motores y Generadores; Luminarias; Equipos de Utilización;

Cordones Flexibles en Lugares; Tomacorrientes y Enchufes; Aislamiento de los conductores;

Page 49: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

34

Sistemas de Señalización, Alarma, Control Remoto y Comunicaciones; Partes Energizadas;

Puesta a Tierra; Protección de Sobretensiones.

3.4 Determinación del nivel de tensión de alimentación

En función de la ubicación geográfica de la industria se establece la empresa suplidora de

energía y el nivel de tensión ofrecido. La tensión de distribución se establece considerando que

para entregar la misma potencia se puede variar la tensión y la corriente, siendo lo mas

recomendable subir el nivel de tensión para disminuir la corriente y en consecuencia el calibre del

conductor, reduciendo los costos en el diseño dado que el ahorro en conductores a ser dispuestos

como alimentadores es considerable.

El nivel de tensión más común es de 208/120 V y el siguiente es 480/277 V. Es

importante tomar en cuenta los tomacorrientes para uso general establecidos en 120 V y las tomas

de uso especial en función de las cargas a conectar. En caso de que exista algún equipo que

requiera otro nivel de tensión, se sugiere distribuir a una tensión elevada para evitar mayores

perdidas en el conductor, pues la relación viene dada por el producto de la resistencia del mismo

por el cuadrado de la corriente (R x I2), y utilizar un equipo de transformación para cumplir con

el nivel requerido.

3.5 Estimación de la demanda

Se puede registrar de la siguiente manera realizando la estimación de la carga por sistema:

Page 50: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

35

3.5.1 Alumbrado

Para la estimación de la demanda, se precisan las especificaciones de las luminarias según

el tipo, los cuales se muestran en la tabla VIII y se destacan entre las más comunes del tipo

fluorescente e incandescente; siendo altamente recomendadas para el alumbrado interior las

lámparas fluorescentes con balastos electrónicos. También se señala la tensión de alimentación a

la cual funciona, potencia consumida y dimensiones. Por lo general las luminarias deben tener un

alto rendimiento en lúmenes por vatios y alta eficiencia para el ahorro de energía.

Tabla VIII. Tipo de lámparas

Tipo de Lámpara Eficacia

Luminosa (lm/W)

Promedio de Vida Útil (horas)

Tiempo de Encendido (min)

Con Gas 10 - 20 1.000 - Incandescentes Al

Vacío 7,5 - 11 1.000 - Halógenas 18 - 22 2.000 - Flourescentes 38 - 91 (*) 12.500 2 - 3 seg Compactas 50 - 82 10.000 1 seg Mercurio Alta Presión 40 - 63 (*) 24.000 5 - 7 Metal Halide 75 - 95 (*) 12.000 4 - 6 Luz Mixta 19 - 28 (*) 12.000 3 - 4 Sodio Baja Presión 100 - 183 (*) 18.000 2 - 4 Sodio Alta Presión 70 - 130 (*) 24.000 3 - 4 (*) = Utilizan equipos auxiliares ( Balastos, Condensadores e Ignitores )

En esta etapa también se define, el nivel de seguridad de acuerdo al grado de protección

requerido contra contactos eléctricos lo que se conoce como Clase de seguridad (ver tabla IX), y

el nivel de protección contra la entrada de polvo, objetos sólidos y humedad de las luminarias

(ver tabla X). [10].

Page 51: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

36

Tabla IX. Clase de Seguridad

Clase Seguridad Protección

0 Aislamiento Básico

I Aislamiento Básico más Protector de Toma de Tierra

II Aislamiento Doble o Reforzado, no se provee conector protector de toma de tierra.

III Aislamiento de Tensión de Seguridad Extra-baja (50V)

Tabla X. Nivel de Protección contra entrada de polvo, objetos sólidos y humedad de las

luminarias

1er Número Descripción 2do Número Descripción

0 No protegido 0 No protegido contra la humedad.

1 Protegido contra objetos de diámetro superior a 50mm. 1 Protegido contra gotas de agua de

caída vertical.

2 Protegido contra objetos de

diámetro superior a 12mm bajo tensión.

2 Protegido contra goteo inclinado en ángulos hasta 15º.

3 Protegido contra objetos de

diámetro superior a 2,5mm bajo tensión.

3 Protegido contra goteo inclinado en ángulos hasta 60º (lluvia).

4 Protegido contra objetos de

diámetro superior a 1mm bajo tensión.

4 Protegido contra salpicaduras

procedentes de cualquier dirección.

5 Protegido contra acumulación de

polvo y protección completa contra objetos bajo tensión

5 Protegido contra chorros de agua de 125mm de diámetro y 30kpa.

6 Protegido contra chorros de agua de 6,3mm de diámetro y 30kpa.

7 Protegido contra estanco de agua e inmersión temporal. 6 Protección completa contra polvo

y objetos bajo tensión.

8 Protegido contra estanco de agua e inmersión continua.

El formulario para indicar las especificaciones de las luminarias se encuentra a

continuación en la tabla XI:

Page 52: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

37

Tabla XI. Formulario de levantamiento de especificaciones de luminarias

Zonas/ Ubicación

Tipo de lámpara

Clase seguridad

Nivel de protección

Tensión (V)

Potencia (W) Lúmenes

En las plantas industriales es importante establecer un nivel de iluminación apropiado en

el plano de trabajo de acuerdo a la actividad a realizar para asegurar una operación y

mantenimiento eficiente y no incurrir en un factor de riesgo para la salud de los trabajadores.

Para obtener la cantidad y disposición de las luminarias a emplear en el sistema de

alumbrado, se sugiere utilizar el método del Lumen, a partir del nivel de iluminación en

interiores. [3]

Éste se basa principalmente en la cantidad de lux que se necesita por área, los cuales están

predeterminados según la actividad a realizar, ver tabla XII. Se consideran ciertos factores de

perdidas de luz, el coeficiente de utilización que se halla a través del método de cavidad por

zonas y lo facilitan los fabricantes de las luminarias en conjunto con las reflectancias de pared,

piso y techo asumidas.

Adicionalmente se exigen los siguientes datos:

- En cuanto a la descripción de la luminaria a utilizar se solicita la cantidad de lúmenes

que emite, potencia consumida por cada lámpara, dimensiones y tipo de soporte del techo, es

decir empotrado o colgante.

Page 53: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

38

- Los detalles del cuarto que se precisan son las dimensiones: alto, largo y ancho, lo que

incluye a su vez área de la superficie. Se recomienda dividir el espacio en áreas rectangulares

para lograr una mejor aproximación.

Tabla XII. Iluminancia media por zona

Tareas y Clases de Local Iluminancia Media en Servicio (LUX)

Zonas Generales de Edificios Mínimo Recomendado Zona de Circulación, Pasillos 50 100 Escaleras, Roperos, Lavabos, Almacenes y Archivos 100 150

Oficinas Oficinas Normales, Mecanografiado, Salas de Proceso de Datos, Salas de Conferencias. 450 500 Grandes Oficinas, Salas de Delineación, CAD / CAM / CAE 500 750

Industrial (En General) Trabajos con Requerimientos Visuales Limitados 200 300 Trabajos con Requerimientos Visuales Normales 500 750 Trabajos con Requerimientos Visuales Especiales 1.000 1.500

Se puede utilizar el formulario de la tabla XIII para el cálculo de la cantidad de

luminarias, en el que una vez introducido las dimensiones del cuarto (Alto, largo y ancho), la

altura del plano de trabajo hfc, y la distancia entre el techo y la luminaria que para aparatos

empotrados hcc = 0, se obtiene automáticamente las razones de cavidad. Con los datos de las

reflectancias y las razones de cavidad se utiliza la tabla I.1 que se encuentra en el apéndice I o la

que suministre el fabricante de la luminaria para hallar el coeficiente de utilización (CU).

Los factores de perdida de luz típicos son RSDD = 0,97; LLD1 = 0,82; LLD2 = 0,95, lo

cual resulta LLF = 0,76. Una vez hecho esto el número de luminarias a colocar es el indicado en

el campo “Número real”. De esta manera se calcula para cada área hasta alcanzar la cantidad de

luminarias de toda la planta.

Page 54: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

39

Tabla XIII. Formulario para el cálculo de luminarias por zona

ID Zona / Ubicación Lux Lúmenes c/u W Coeficiente de Utilización Razones de cavidad

Altura del local hfc hrc hcc Largo Ancho RCR cuarto

FCR piso

CCR cielo

% Reflectancia Pared pf pc pcc pfc CU

Factores de pérdida de luz RSDD LLD1 LLD2 LLF Cálculo

Iluminación individual /

lámpara

Área (m2) CU LLF

Número de

luminarias

Número real

Posición Nancho Nlargo Nancho Real Nlargo Real

Las reflectancias típicas aproximadas se expresan en la tabla XIV. [5]

Tabla XIV. Reflectancias típicas del techo, pared y piso Descripción Porcentaje

Pintura Blanca Estándar 80%

Pintura Blanca Corrugada 50% Techo

Pintura de Tono Claro Corrugada 30%

Pintura Blanca Estándar 80% Pared

Pintura de Tono Claro Corrugada 30%

Concreto Oscuro 20% Piso

Alfombra 15%

Page 55: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

40

Con la cantidad de luminarias establecidas por zona se puede estimar la demanda en

vatios utilizando el siguiente formulario:

Tabla XV. Estimación de la demanda del Sistema de Iluminación

Zona Nº de luminarias

Potencia por lámpara

Potencia total (W)

Potencia total del Sistema de Iluminación

Una vez obtenido los kW se le aplica el factor de demanda que según lo indicado en el

CEN para el sistema de iluminación es el 100%.

Existe otra forma de estimar la potencia requerida para un sistema de iluminación, el

mismo se indica en el artículo 220-3(A) del CEN, en el cual se estipula la carga mínima de

iluminación por cada metro cuadrado de superficie para determinados tipos de locales, se

muestran en la tabla 220-3(A) del CEN incluida en el apéndice I.

3.5.2 Tomacorrientes

La estimación de las salidas de tomacorrientes y su ubicación se clasificarán según su uso

de acuerdo a lo mencionado en la sección 210.52 del Código Eléctrico Nacional.

Área de cocina

Page 56: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

41

En el área de cocina y comedor está estipulado dos o más circuitos de 20 A (Artículo

220.4 (B) CEN) para las salidas de tomacorrientes de pequeños artefactos a las que se refiere el

artículo 210.52 (A) y (C) y adicionalmente para los equipos de refrigeración. Existe una

excepción a dicho artículo que permite que la salida para los equipos de refrigeración reciba

corriente de un circuito ramal independiente de 15 A nominales o más.

Cuartos de baño

Se debe instalar por lo menos una salida para tomacorrientes en pared, cerca de cada

lavamanos, éstas deben estar alimentadas al menos por un circuito ramal de 20 A. Estos circuitos

no tendrán otra salida y deben ofrecer protección a las personas mediante interruptor contra fallas

a tierra. [1]

Área de lavandería

En esta área se debe instalar como mínimo una salida para tomacorrientes para lavadora y

se considera no menos de 180 VA por cada tomacorriente simple o múltiple.

Pasillos

Deben tener por lo menos una salida por cada tres (3) metros de longitud del pasillo sin

pasar por ninguna puerta. [1]

Los circuitos ramales para tomacorrientes serán de 15, 20, 30, 40 y 50 A y dependerá de

la capacidad amperimétrica del conductor seleccionado, apartado 210.3 [1]. Los circuitos ramales

mayores a 30 A serán destinados para industrias o comercios, no deben ser utilizados para

unidades de vivienda.

Page 57: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

42

A excepción de lo expuesto anteriormente para los circuitos ramales para pequeños

artefactos, el cálculo para tomacorrientes se hace considerando no menos de 180 VA por cada

tomacorriente simple o múltiple, cuando son más de cuatro tomacorrientes en una pieza se

considera como mínimo 90 VA por tomacorriente, apartado 220.3(B)(9) [1]. Adicionalmente se

considera una carga unitaria de 11 VA por cada metro cuadrado para salidas de tomacorriente de

uso general cuando se desconozca el número real de tomacorrientes.

La ubicación de los tomacorrientes, cuando se considere poco probable el uso simultáneo de

ciertos número de artefactos, será asumida una separación de 1,5 m entre las salidas, en cambio

cuando la posibilidad sea alta, las salidas se ubican cada longitud de 30 cm según lo indicado en el

artículo 220.3 (B)(8) [1].

Sabido esto a continuación se presenta un formulario en el que se especifica la cantidad de

tomacorrientes por área según las necesidades de la zona y tomando en cuenta los equipos a

conectar.

Tabla XVI. Cantidad de tomacorrientes para diferentes niveles de tensión por zona

Cantidad de Tomacorrientes Código ID Zona:

120V-1Φ 208V-1Φ 208V-3Φ 480V-3Φ

Luego se realiza el resumen de la cantidad de tomacorrientes por zonas, asumiendo cierto

VA por tomacorriente en base a las observaciones mencionadas anteriormente.

Page 58: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

43

El formulario para la estimación de la demanda de tomacorrientes es el siguiente:

Tabla XVII. Estimación de la demanda del Sistema de tomacorrientes

Zona Nº de tomacorrientes

Tensión del T/C VA por T/C Potencia total

(VA)

Potencia total del Sistema de tomacorrientes

Luego se aplica el factor de demanda de la tabla XVIII (220.13 del CEN) estipulado para

las cargas de tomacorrientes en unidades no residenciales.

Tabla XVIII. Factores de demanda para cargas de tomacorrientes en unidades no

residenciales

Parte de la carga de tomacorriente a que se

le aplica el factor de demanda

(en Voltampere)

Factor de

demanda %

Primeros 10 kVA o menos A partir de 10 kVA

100

50

De esta forma se obtiene la demanda de los tomacorrientes:

Para los primeros 10 kVA

Resto sobre los 10 kVA

Demanda de los tomacorrientes

Page 59: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

44

3.5.3 Fuerza

- Aire Acondicionado y Ventilación: Dado que este sistema representa por lo general un

porcentaje alto de la carga total de la instalación, es importante incluir las características

eléctricas (tensión, número de fases, etc.) y el lugar donde se encuentra ubicado. Para estos

equipos el factor de demanda es del 100%.

- Equipos Hidroneumáticos: Para estos equipos además de indicar todos lo motores que

integran el sistema, es conveniente mostrar el régimen de trabajo a fin de determinar la

simultaneidad del funcionamiento en los equipos.

A continuación se muestra el formulario para la estimación de la carga de los equipos de

fuerza y se procede de igual forma que para los casos anteriores aplicando los factores de

demanda que corresponda.

Tabla XIX. Carga estimada de los equipos de fuerza a instalar

Zona Equipo Cantidad Capacidad en W o HP

Capacidad total en kW

Carga total estimada

Page 60: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

45

3.5.4 Cargas esenciales

Por ser cargas de vital importancia es imprescindible mostrar el grado de continuidad de

servicio requerido. La determinación de las cargas esenciales en una planta industrial va

directamente relacionada con los procesos o actividades que no pueden interrumpir su servicio,

para los tableros de 208/120 V tenemos las siguientes: Tomacorrientes de uso general,

tomacorrientes para computadoras, tomacorrientes de uso especial dedicados a equipos

específicos, nevera, microondas.

Para los tableros en 480/277 V se toman en cuenta las cargas especificadas a

continuación: iluminación de emergencia con sus respectivos balastos, unidades de manejo de

aire y transformadores de servicios preferenciales entre otros.

3.5.4.1 Iluminación de emergencia

La iluminación de emergencia es un factor fundamental en toda instalación y debe

cumplir con ciertos criterios establecidos por el Código Eléctrico Nacional, deben estar incluidas

las siguientes cargas, la iluminación de emergencia de pasillos y escaleras, iluminación de las

salidas de emergencia, señales luminosas de salidas, y demás luces que se consideren necesarias

para garantizar la seguridad de la instalación, según apartado 700-16 del CEN.

Por lo general se utiliza la tercera parte de los circuitos de iluminación general para

emergencia, de ser así es importante conocer el tipo de luminaria a utilizar, la cual fue establecida

anteriormente, para verificar el tiempo mínimo de encendido, ya que según las normas del CEN

Page 61: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

46

se exige que sea antes de 10 segundos y en algunos casos por ejemplo las luminarias del tipo

metal halide requieren de un tiempo mínimo para volver a encender, superior al indicado.

Por tal razón, si el sistema de iluminación normal consta de lámparas de descarga de gran

intensidad, tales como las de vapor de sodio o mercurio de alta y baja presión o las de halógenos,

el sistema de iluminación de emergencia debe funcionar hasta que se restablezca totalmente la

iluminación normal [1].

Las luminarias de emergencia se consideran como servicio crítico por lo que necesitan

fuente de alimentación alterna como baterías, planta generadora o sistema de potencia

ininterrumpible.

3.5.5 Reservas

Se especifica la carga estimada para reserva, tanto actual como para expansión futura,

incluyendo el tipo de carga. Esta previsión garantiza que las revisiones hechas posteriormente

sean sencillas, y las reformas no acarreen un incremento en el costo inicial calculado para la

instalación, dado que es frecuente la modificación de los datos de la carga por compra de equipos

determinados con valores nominales diferentes a los asumidos en un principio.

Por lo general en cada tablero de distribución se deja 20% de la carga total en amperes

destinada para salidas de reserva.

Page 62: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

47

3.6 Determinación de la distribución y locación de los tableros eléctricos

La ubicación de los tableros se debe establecer según el tipo de tablero, tablero principal y

secundario, siempre considerando las condiciones ambientales del lugar ya que debe ser un lugar

seco, en caso contrario debe cumplir con el grado de protección IP según las condiciones en las

que se encuentre, en el apartado 408.9 del CEN se indica que los tableros utilizados en lugares

húmedos o mojados son los CFD para cumplir con lo establecido en 312.2(A). En el apéndice I se

encuentra una tabla con las especificaciones de este tipo de tablero. [11]

Otra consideración, cuando están ubicados cerca de materiales fácilmente combustibles,

deben ser instalados donde se reduzca la probabilidad de propagar fuego a materiales

combustibles adyacentes y cuando éste no sea totalmente cerrado conservar una distancia desde

la parte superior del gabinete hasta cualquier techo combustible no inferior a 900 mm (3 pies),

excepto si se instala una pantalla no combustible entre el gabinete y el techo, apartado 408.7 y

408.8(A).

Por otro lado, debe ser un espacio de fácil acceso y alejado de otras instalaciones como la

del agua, gas o teléfono. Los tableros deben estar identificados como mínimo con los siguientes

datos: fabricante responsable, nivel de tensión e intensidad de corriente de cortocircuito máxima;

así mismo los circuitos del tablero y las modificaciones de los circuitos deben ser identificados de

manera legible en cuanto a su finalidad o uso, en un directorio situado en la parte frontal o

interior de la puerta de un panel de distribución y en cada suiche si se trata de tableros de

distribución.

Page 63: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

48

3.6.1 Tablero principal

Debe estar cerca de la acometida principal de alimentación, en un cuarto con las

condiciones adecuadas de seguridad.

El cuarto donde se encuentre el tablero principal debe cumplir con ciertos requisitos

mínimos, dimensiones del local y el número de salidas, la puerta del cuarto debe abrir hacia fuera

del mismo para no ser un obstáculo en su interior y estar identificada con caracteres de fácil

visualización, así mismo el nivel de iluminación mínima debe ser de 200 lux a un plano de

trabajo de 1 m del nivel del piso, y el sistema de iluminación debe considerarse como un sistema

de energía de emergencia.

El número de salidas del cuarto vienen dadas por el largo del tablero el cual está

identificado por la letra “a” y se calcula de la siguiente forma:

Acceso frontal = (a/5) + 1

Acceso frontal y posterior = 2 (a/5)

3.6.2 Tableros secundarios

Estos tableros deben estar ubicados en lugares de fácil localización y en una locación

central cerca del punto de concentración de la carga para reducir los niveles de caída de tensión

en los circuitos derivados, así como también por medida de seguridad a la hora de cualquier

incidente.

Page 64: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

49

En el caso de que el espacio más adecuado sea un pasillo por la cercanía a las cargas, debe

tener en la parte frontal del tablero un espacio mayor o igual a 1 m para que permita realizar

maniobras.

3.7 Selección del calibre de los alimentadores

Para la selección del calibre se debe considerar el tipo de aislamiento del conductor, los

más utilizados en el interior son tipo THW (Thermoplastic vinyl insulated building wire,

moistuire and heat resistant), que poseen la propiedad de ser resistentes a la humedad y al fuego.

Su temperatura máxima de servicio según el CEN en la tabla 310.13 de aplicaciones y

aislamientos de estos conductores es de 75 °C y su tensión máxima es de 600 V. Están diseñados

para ser instalados en ambientes secos o húmedos, colocados dentro de tubos embutidos o

sobrepuestos o directamente sobre aisladores.

Otro tipo de conductores muy utilizados son los TTU (por sus siglas en inglés

Thermoplastic Insulation, Thermoplastic Jacket, Underground), en su mayoría son instalados en

exteriores, en ambientes húmedos, especialmente en líneas subterráneas, en tuberías, bandejas

portacables o directamente bajo tierra, en agua y a la intemperie sin exponerse a los rayos solares.

Se pudo observar que en el CEN no aparece listado, siendo un conductor de alta preferencia en el

mercado actual por sus propiedades. Este tipo de cable está certificado por la norma UL 1581

(Standard for Flexible Metal Conduit) de Underwriters Laboratories Inc, referencia muy utilizada

en la Comunidad Europea.

Page 65: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

50

Según el Código Eléctrico Nacional los alimentadores e interruptor principal para las

cargas de iluminación deben ser calculados para suministrar energía a todas las cargas conectadas

sin aplicar ningún factor de demanda y considerando adicionalmente un 20% para cargas futuras

o reservas.

Para la selección del calibre de los alimentadores se deben considerar dos criterios para realizar el

cálculo, el criterio de ampacidad y el de caída de tensión. Una vez arrojado el resultado por cada

uno de estos se debe escoger el calibre que cumpla con estas exigencias de manera que no se

viole ningún requerimiento.

3.7.1 Criterio de capacidad de corriente

Cuando se alimenta a un motor en forma individual la capacidad de conducción de

corriente de los conductores del circuito debe ser al menos 125% de la corriente a plena carga o

nominal del motor. En el caso de que se alimente más de un motor la capacidad de corriente del

conductor es la suma de 1,25 veces la corriente a plena carga del motor mayor más la suma de las

corrientes a plena carga del resto de los motores. Ver sección 3.6.3 del ABC de las instalaciones

eléctricas industriales, en el que se expresa de la siguiente manera: [12]

∑+⋅= MPCMMPCTPC III 25.1 (8)

en donde,

ITPC = Corriente total a plena carga expresada en Amperes

IMMPC = Corriente a plena carga del motor mayor en Amperes

IMPC = Corriente a plena carga de otros motores en Amperes

Page 66: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

51

La corriente del equipo a partir de la potencia aparente se calcula de la siguiente manera

para circuitos trifásicos:

LL V

SI

⋅=

33φ (9)

en donde,

IL = Corriente nominal del equipo

S3Φ = Potencia aparente consumida por el equipo

VL = Tensión de línea de alimentación del equipo

Por otro lado, en esta condición se considera que para la selección del conductor el

porcentaje de carga debe ser menor al 80% de su capacidad, así que la corriente de diseño para el

conductor considera un 25% de sobrecarga del equipo, con esta corriente en la tabla 310.16 del

CEN que se muestra en el apéndice, se indican los calibres correspondientes a las capacidades del

conductor.

El formulario para la selección del conductor por el criterio de ampacidad se muestra a

continuación:

Tabla XX. Formulario para la selección del conductor por el criterio de ampacidad

Datos del conductor Datos del equipo Ubica-ción (ID)

Equipo Tipo Cu / Al

Aislamiento TW / THW

Volt (V)

Potencia (kW)

Corriente nom. (A)

Corriente de diseño

(A) Calibre

Page 67: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

52

3.7.2 Criterio de caída de tensión

Según lo señalado en el CEN en el artículo 215.2 para obtener un funcionamiento

razonablemente eficiente del conductor se recomienda que los porcentajes de caída de tensión no

excedan el 5% en alimentadores y circuitos ramales, y para el circuito ramal se considera hasta un

3% de caída de tensión.

Tabla XXI. Formulario para la selección del calibre por el criterio de caída de tensión

Ubicación (ID) Equipo Corriente de

diseño (A) Longitud

(m) A.m Factor de potencia ΔV (%) Calibre

Una vez con este formulario completo el calibre del conductor es calculado

automáticamente con la herramienta desarrollada en Microsoft Office Excel, considerando un

factor de potencia de 0,9 y que el aislamiento del conductor de cobre elegido es THW en ducto

magnético para 60 Hz. En la tabla XXII se presenta la Capacidad de Distribución en A.m para

cables monopolares de cobre.

Para el cálculo de los A.m se utiliza la siguiente igualdad:

correc

d

fmI

mA⋅

=⋅ (10)

en donde,

A.m = Corriente de diseño por la longitud del conductor

Id = Corriente de diseño

m = Longitud del conductor

f correc = Factor de corrección que depende del nivel de tensión

Page 68: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

53

Tabla XXII. Capacidad de Distribución en A.m para cables monopolares de cobre, con

Aislamiento THW, en ducto magnético para 60 Hz y 75ºC para temperatura del conductor

A.m ∆V = 2%

Cos θ AWG o MCM

0,9 0,8 14 249 278 12 394 439 10 622 687 8 975 1076 6 1473 1616 4 2288 2481 2 3526 3762 1 4329 4549

1/0 5269 5470 2/0 6247 6411 3/0 7590 7665 4/0 9164 9095 250 10378 10163 300 11015 10740 350 12250 11781 400 13456 12770 500 15306 14186 600 16138 14852 700 17488 15893 750 17786 16149

Este factor de corrección se muestra en el apéndice en la tabla I.6, en la que se establece

como nivel de tensión de referencia 3 x 208 /120 V, para el cual el valor del factor de corrección

será igual a la unidad. Para otros valores de ∆V se divide el valor A.m calculado para el 2% de

caída de tensión por el nuevo ∆V / 2. [2]

Después de determinar el calibre del conductor por ambos criterios se debe seleccionar el

mayor entre estos dos, de manera de no incumplir con ningún criterio.

Page 69: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

54

3.7.3 Selección del conductor de neutro

Para simplificar los cálculos y unificar el cableado de instalación, aunque aumente un

poco los costos, se escoge el calibre calculado para las fases.

En el CEN se establece que para los circuitos de 120 V el calibre de los dos conductores

será el mismo, pero en circuitos de 208 V o 240 V a 2 o 3 hilos, se determina por la corriente

calculada a partir del desequilibrio máximo de cargas resultantes, o se toma el neutro de un

calibre menor al de la fase hasta una corriente de 200A. Para corrientes superiores, los primeros

200 A se toman al 100% y el resto al 70%.

3.7.4 Selección del conductor de puesta a tierra

Es importante resaltar que la selección del conductor de puesta a tierra se realiza a partir

del dimensionamiento del dispositivo de sobrecorriente que se ubica antes del equipo. En la tabla

XXIV se presentan los calibres mínimos de los conductores de puesta a tierra para canalizaciones

y equipos. El formulario se muestra a continuación, el cual también está asociado a la

herramienta de cálculo en Excel.

Tabla XXIII. Selección del calibre de los conductores de fase, neutro y tierra

Conductor de las fases y neutro Conductor de PAT Ubicación (ID) Equipo

Calibre Ampacidad

Calibre Caída de tensión

Calibre mayor IProtección IProtección

comercial Calibre

Page 70: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

55

Tabla XXIV. Calibre mínimo de los conductores de puesta tierra de equipos para canalizaciones y equipos. [Tabla 250-95 – CEN]

Calibre del conductor de puesta a tierra Capacidad nominal o ajuste máximo del dispositivo automático de sobrecorriente ubicado antes del equipo, tubería, etc. No

mayor de (Amperios) Alambre de cobre

Alambre de aluminio o recubrimiento de

cobre N°

15 14 12 20 12 10 25 10 8 30 10 8 40 10 8 45 10 8 50 10 8 60 10 8 70 8 6 80 8 6 90 8 6 100 8 6 110 6 4 125 6 4 150 6 4 175 6 4 200 6 4 300 4 2 350 2 1/0 400 2 1/0 450 2 1/0 500 2 1/0 600 1/0 2/0 800 1/0 3/0

1000 2/0 4/0 1200 3/0 250 1600 4/0 350 2000 250 400 2500 350 600 3000 400 600 4000 500 800 5000 700 1200 6000 800 1200

3.8 Selección de la canalización

Los tipos de canalizaciones más empleadas son las tuberías, las bandejas portacables y los

ductos.

Page 71: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

56

3.8.1 Tuberías

La instalación de estas canalizaciones puede ser de dos tipos, embutidas o a la vista. El

factor fundamental para seleccionar la tubería es el espacio libre necesario para disipar el

calentamiento de los conductores, éste viene dado por el factor de relleno que se expresa en la

tabla XXV (tabla 1 del capítulo 9 del CEN) y establece una relación entre el área transversal del

conductor y la tubería.

Tabla XXV. Porcentaje de la sección transversal de conductos y tuberías para conductores.

[Tabla 1 - CEN]

N° de conductores Porcentaje de ocupación

1 53%

2 31%

más de 2 40%

En la tabla 4 del capítulo 9 del CEN se especifican las dimensiones y área porcentual de

los tubos y tuberías según su tipo, tubos metálicos rígidos, tuberías eléctricas metálicas y no

metálicas de tipo ENT, ésta se anexa al apéndice I.

Para determinar el diámetro de la tubería según la cantidad de conductores se emplean las

tablas C1 y C2 del capítulo 9 del CEN que especifican el número máximo de conductores o

cables de aparatos en tubería eléctrica metálica de tipo EMT y el número máximo de conductores

o cables de aparatos en tubería eléctrica no metálica de tipo ENT, respectivamente.

Page 72: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

57

A continuación se presenta el formulario necesario para realizar el levantamiento de los

elementos que se necesitan para determinar el diámetro de la tubería.

Tabla XXVI. Formulario para el cálculo del diámetro de la tubería Sistema Tipo de

tubería Nombre del circuito

Aislamiento del conductor

Calibre del conductor

Nº de conductores

Distancia (m)

Diámetro de la tubería (pulg)

3.8.2 Bandejas portacables

En la sección 392 del Código Eléctrico Nacional se establece todo lo referente al caso, el

uso de las mismas no se encuentra limitado a instalaciones industriales, pero es importante

destacar que sólo será instalado donde las condiciones de mantenimiento y supervisión aseguren

que únicamente personas calificadas tengan acceso al sistema de bandejas.

Los usos no permitidos del sistema de bandejas portacables son los pozos de los

ascensores donde puedan estar sujetos a daños físicos, espacios de circulación de aire de

ventilación, a excepción de lo permitido en la sección 300.22 como método de cableado

reconocido.

Para la selección de la cantidad de conductores que se permiten en una bandeja

portacables considerando el calibre de los conductores de potencia o de iluminación se debe

revisar la tabla 392.9 del CEN, la cual se incluye en el apéndice. En dicha tabla, en la columna 1

se hace referencia al artículo 392.9(A)(2) el cual se aplica si todos los conductores existentes son

Page 73: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

58

menores al calibre 4/0 AWG, y en la columna 2 se llama al artículo 392.3(A)(3) que vale cuando

existe una combinación de calibres mayores y menores al 4/0 AWG.

3.9 Coordinación y ajustes de protecciones

Como es el caso de una planta industrial existen subtableros que dependen de otros y

éstos a su vez del principal, por lo que las protecciones deben seleccionarse con cuidado para que

estén bien coordinadas, tanto en capacidad de corriente como de interrupción y el tiempo de

disparo.

Es importante conocer los siguientes datos, independientes del tipo de interruptor que se

vaya a utilizar: tensión del circuito, capacidad de interrupción, corriente de operación en

condiciones normales de trabajo del circuito, número de polos, frecuencia y condiciones de

operación (ambientales, humedad, corrosión, altitud o posición de montaje).

3.9.1 Selección de protección para conductores

Para realizar la selección de las protecciones para un conductor se parte de la corriente de

diseño, ésta permite escoger el conductor adecuado, y mediante la capacidad del mismo se escoge

la protección correspondiente. Según el artículo 240.4 (B) del CEN referente a protección de los

conductores, indica que para dispositivos menores de 800 A se permite el uso del dispositivo del

valor nominal inmediato superior a la intensidad máxima del conductor a proteger.

La capacidad de la protección se determina con la siguiente igualdad:

Page 74: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

59

2cd

pII

I+

= (11)

en donde,

Ip = Capacidad de corriente de la protección.

Id = Corriente de diseño obtenido por cálculos y estimaciones.

Ic = Corriente máxima permisible del conductor seleccionado.

Para los conductores de pequeña sección la protección de sobrecorriente no debe exceder

de 15 A para el conductor de cobre 14 AWG, 20 A para 12 AWG y 30 A para 10 AWG. En el

caso de dispositivos con más de 800 A nominales la ampacidad de los conductores que protege

será igual o mayor que la intensidad nominal del dispositivo.

Las capacidades normalizadas de corriente de los fusibles e interruptores automáticos

(breakers) de tiempo inverso, serán las de 15, 20, 25, 30, 40, 45, 50, 60, 70, 80, 90, 100, 110, 125,

150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 600, 700, 800, 1000, 1200, 1600, 2000, 2500,

3000, 4000, 5000 y 6000 Amperes.

Los conductores del secundario de un transformador se consideran protegidos por el

dispositivo de protección contra sobrecorriente del primario, y los circuitos derivados protegidos

por el dispositivo del alimentador, cuando la longitud de los conductores de la derivación no

superan los 3 m, y la capacidad del conductor no es inferior a la suma de las cargas conectadas al

circuito derivado. En caso de que el circuito ramal sea menor o igual a 8 m de longitud, la

capacidad de los conductores de la derivación no debe ser inferior a 1/3 de la capacidad del

dispositivo de sobrecorriente del circuito alimentador.

Page 75: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

60

3.9.2 Selección de protección para motores

Lo concerniente a la selección de protecciones para motores de cumplimiento obligatorio

está especificado desde la sección 430.1 a la 430.145 del CEN.

Los dispositivos de protección contra sobrecarga protegen a los motores y sus

componentes asociados, contra una sobrecorriente de funcionamiento que si se mantiene por un

período de tiempo suficientemente largo podría causar un calentamiento excesivo y/o daños en el

aparato.

A continuación se presenta una tabla resumen para los distintos tipos de motores,

capacidad y características para determinar su dispositivo de protección contra sobrecarga. [2]

Tabla XXVII. Corriente de diseño del dispositivo de protección contra sobrecarga del

motor

Tipo de motor y capacidad

Características Corriente de diseño

Motores con factor de servicio no menor a 1.15 (Corriente nominal) Id = 125% In

Motores con temperatura no mayor de 40 ºC Id = 125% InServicio continuo

> 1 HP Todos los demás motores Id = 115% InMotores con corriente no mayor de 9 Amp. Id = 170% InMotores con corriente entre 9 y 20 Amp. Id = 156% InCon protector térmico

integrado Motores con corriente mayor de 20 Amp. Id = 140% InMotores con factor de servicio no mayor de 1.15 Id = 125% InMotores con temperatura menor de 40 ºC Id = 125% InCon arranque automático

< 1 HP Todos los demás motores Id = 115% In

Page 76: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

61

Cuando se tengan motores con potencias no mayores de 1 HP con arranque no

automático, se considera que el motor está protegido contra sobrecarga por el dispositivo de

protección contra corto circuito y fallas a tierra del circuito ramal.

En el caso de un solo motor y conociendo el tipo de sistema de arranque, letra código,

kVA y las características de funcionamiento del mismo, se puede obtener las capacidades

máximas de corriente de los dispositivos contra cortocircuitos y fallas a tierra de circuitos

ramales, en la tabla 430.52 del CEN.

Para seleccionar la protección de sobrecorriente, de un circuito ramal que alimenta un

grupo de motores se calcula sumando 1,25 veces el valor nominal comercial del interruptor

mayor, más la suma de la corriente nominal de trabajo de los demás motores, luego se escoge el

dispositivo de valor inmediato superior al calculado.

resNOtrosMotorPMotorMayoP III ∑+⋅= 25,1 (12)

en donde,

IP = Corriente de la protección del alimentador.

IP Motor Mayor = Corriente del dispositivo de protección del motor mayor.

IN Otros Motores = Corriente nominal del resto de los motores.

Page 77: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

62

3.10 Selección de los tableros eléctricos

• Cada tablero debe tener una capacidad nominal no menor que la capacidad mínima del

alimentador.

• Es importante considerar para los tableros eléctricos espacios de reserva a la razón de

uno por cada cinco circuitos en uso o fracción.

• Una limitante existente para los tableros es el número máximo de dispositivos de

sobrecorriente permitidos que resulta ser 42.

• Los tableros se pueden clasificar según la protección que ofrecen, en el apéndice I se

presenta la tabla con la clasificación NEMA.

En la tabla XXVIII se presenta la hoja de tableros que posee las especificaciones del mismo.

3.11 Selección de los sistemas de transformación

En las instalaciones eléctricas usualmente se tienen transformadores de distribución que

por lo general poseen tipo de aislamiento en aceite conocidos como Pad Mounted que son los

encargados de alimentar el circuito secundario; y los transformadores de baja capacidad que están

destinados a cubrir los sistemas que operan a una tensión diferente del circuito secundario como

tomacorrientes o cargas particulares, para este caso se utilizan transformadores del tipo seco cuyo

mecanismo de enfriamiento es el aire. Comúnmente el nivel de tensión que manejan estos

transformadores es en el lado primario es de 480 /277 V y en el secundario 208 / 120 V.

Page 78: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

63

Tabla XXVIII. Formulario para tableros de distribución

HOJA DE TABLERO PROYECTO PLANTA INDUSTRIAL FECHA

TABLERO UBICACIÓN TIPO DE TABLERO TENSIÓN BARRAS DE COBRE INTERRUPTOR PRINCIPAL ALIMENTADOR POLOS FASES AMPERIOS NEUTRO TENSIÓN TIERRA KA SIM. INTERRUPCIÓN

KVA CARGA

CONECTADA CAL AMP Nº R S T Nº AMP CAL CARGA CONECTADA KVA 1 * │ │ 2 3 │ * │ 4 5 │ │ * 6 7 * │ │ 8 9 │ * │ 10 11 │ │ * 12

KVA DEMANDA TIPO DE CARGA R S T TOTAL

FACTOR DEMANDA KVA

ALUMBRADO T/C USO GEN A/A OTROS SUB-TOTAL KVA RESERVA CI. 20% TOTAL KVA ALIMENTADOR AMPERIOS CALIBRE MAYOR METROS IPROTECCIÓN A.m I COMERCIAL CAP. CARGA CAÍDA TENSIÓN

Page 79: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

64

La selección del transformador se realiza en base a la demanda total calculada y

aproximando por arriba al valor normalizado, en el siguiente formulario se declaran las

características requeridas para especificar el tipo de transformador a utilizar.

Tabla XXIX. Formulario para el levantamiento de los datos del transformador

3Φ 1Φ Tensión primario Banco de transformación

Delta Estrella - PAT kVA % Z Tensión secundarioTipo de conexión/ Capacidad

Exterior Interior Estructura autosoportante Poste En piso Tipo de Instalación

Aceite Seco Tipo de aislamiento

En la tabla 5.III del Harper se encuentran los valores de impedancias de transformadores

expresadas en porcentaje, a la base de potencia nominal.

3.12 Selección del sistema de puesta a tierra

Cada elemento del sistema de puesta a tierra debe ser diseñado para que asegure que la

integridad de la red subterránea se mantenga por años siempre que el calibre de los conductores

sea el adecuado, por esto los elementos tienen que [8]

• Tener suficiente conductividad, para no contribuir con diferencias de tensión locales.

• Resistir la fusión y el deterioro mecánico bajo la más adversa combinación de la

magnitud y duración de la corriente de falla.

• Ser mecánicamente fiable y robusto a altas temperaturas, especialmente en los lugares

expuestos a la corrosión o abusos físicos.

Page 80: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

65

Por tal razón el cobre es el material más comúnmente usado para puesta a tierra, los

conductores de cobre además de su alta conductividad, tienen la ventaja de ser resistente a la

corrosión subterránea. De igual forma el cobre revestido de acero es usualmente usado para

barras de puesta a tierra (conocidas como Copperweld) y ocasionalmente para las rejillas de

puesta a tierra.

3.12.1 Electrodos de tierra

El código eléctrico de seguridad nacional ANSI C2-1984, específica que el calibre

mínimo permitido del conductor de puesta a tierra es cobre 6 AWG y aluminio 4 AWG.

Los requerimientos mecánicos determinarán el conductor mínimo de puesta a tierra. El

AIEE y el IEEE recomiendan conductores de calibre mínimo 1/0 y 2/0 de cobre para las

soldaduras y uniones.

Para crear un anillo de equipotencialidad por lo general la puesta a tierra se realiza

enterrando barras de Copperweld de 5/8’’ x 2,4 m y son conectadas mediante un alambre de

cobre desnudo calibre 4. También se podría hacer el sistema de puesta a tierra conectando la red

de tierra a las tuberías de aguas blancas, si son de cobre o hierro galvanizado.

El artículo 250 del CEN se encuentra lo referente a los sistemas de puesta a tierra, dentro

de éste se incluyen los requerimientos generales de estos sistemas en las instalaciones eléctricas,

además se dispone de lo siguiente:

Page 81: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

66

• Sistemas, circuitos y equipos requeridos, cuya puesta a tierra sea permitida o no.

• Conductor de circuito que debe ser puesto a tierra en sistemas eléctricos.

• Ubicación de las conexiones de puesta a tierra.

• Tipos y calibres de conductores, puentes de unión y electrodos de puesta a tierra.

• Métodos de puesta a tierra y ejecución de puntos de unión.

• Condiciones en las que se puede sustituir protecciones, separaciones o aislamiento

por puesta a tierra.

Es recomendado que un conductor de tierra continuo, rodee el área de la instalación si ésta

lo amerita para encerrar la mayor cantidad posible de terreno. Los conductores de tierra

adicionales, se colocan en líneas paralelas distribuidos uniformemente en forma de cuadrícula,

con separaciones razonables. Eventualmente se puede usar en algunas áreas, placa de cobre en

lugar de la malla cuadriculada, esto especialmente donde la magnitud de las corrientes es elevada,

o bien donde la resistividad del terreno es muy elevada, o también en las salas donde se efectúan

mediciones precisas, y se requiere un buen blindaje con poca interferencia.

Las varillas o electrodos se consideran como un complemento de la malla de tierra; y se

deben distribuir de manera uniforme, y cercanos a puntos donde se encuentra el equipo instalado.

A continuación se presenta la tabla XXX en la cual se establece el calibre del conductor del

electrodo de puesta a tierra según el calibre del mayor conductor activo de la acometida principal.

Page 82: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

67

Tabla XXX. Conductor del electrodo puesta a tierra para sistemas de corriente alterna.

[Tabla 250.66 – CEN]

Calibre del mayor conductor activo de la acometida o área equivalente de conductores a en paralelo (AWG/kcmil)

Calibre del conductor del electrodo de tierra

(AWG/kcmil)

Cobre

Aluminio o aluminio con recubrimiento de cobre

Cobre

Aluminio o aluminio recubrimiento de cobre

2 o < 1 o 1/0 2/0 o 3/0 > de 3/0 a 350 > de 350 a 600 > de 600 a 1100 > de 1100

1/0 o < 2/0 o 3/0 4/0 o 250 > de 250 a 500 > de 500 a 900 > de 900 a 1750 > de 1750

8 6 4

2

1/0

2/0

3/0

6 4 2

1/0

3/0

4/0

250 Notas:

1. Cuando se utilicen conjuntos múltiples de conductores de acometida como permitido por 230.40, Excepción N° 2,

el calibre equivalente del mayor conductor de la acometida será determinado por la suma mayor de las áreas de los

correspondiente conductores de cada conjunto.

2. Cuando no existen conductores de acometida, el calibre del conductor del electrodo de tierra será determinado por

el calibre equivalente del conductor de una acometida necesaria para alimentar las cargas servidas. a Esta tabla también aplica a los conductores de los sistemas de ca derivados separadamente. b Véase restricciones en la instalación en 250.64(A).

3.12.2 Sistemas de pararrayos

Los sistemas de pararrayos deben ser instalados para cumplir la función de protección

contra descargas atmosféricas. El objeto de instalar pararrayos en edificios es ofrecer protección

al inmueble contra sobretensiones, producto de una descarga eléctrica, derivada de una tormenta

atmosférica, que venga o vaya hacia tierra.

Para determinar la necesidad de un pararrayos se debe calcular el índice de riesgo en la

instalación que depende de los siguientes factores [2]:

Page 83: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

68

GFEDCBAI r ++++++= (13)

en donde, cada uno de estos términos son índices parciales que toman en cuenta lo siguiente:

A = Uso al que se destina la estructura.

B = Tipo de construcción.

C = Contenido e importancia por efectos secundarios.

D = Grado de aislamiento.

E = Tipo de región o terreno.

F = Altura de la estructura.

G = Número de tormentas por año.

En la norma COVENIN 599-73 [13] se indican los valores de los índices señalados

anteriormente, el extracto de la norma de la página 9 a la 12 se incluye en el apéndice I.

El formulario para recopilar esta información se muestra a continuación, el índice parcial

“A” se refiere al uso al que se destina la estructura, para las industrias el valor es 6. El índice de

riesgo “C” representa al contenido o tipo de inmueble en este caso el valor puede ser 2, 5 u 8.

Tabla XXXI. Formulario para determinar la instalación del sistema pararrayos

A B C D E F G Ir 0 < Ir < 30 Opcional

30 < Ir < 60 Recomendado

Ir ≥ 60 Indispensable

6 2/5/8

En caso de necesitar un protector contra sobretensiones se recomienda utilizar puntas

franklin utilizando como bajante, conductor desde el pararrayos a la línea o a la conexión de

Page 84: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

69

puesta a tierra, calibre mínimo N° 14 de cobre o N° 12 de aluminio para acometidas menores a 1

kV y calibre N° 6 de cobre o aluminio para circuitos mayores de 1 kV.

3.13 Selección del sistema de emergencia

Un factor importante a considerar a la hora de escoger el tipo de fuente de alimentación es

el tiempo de respaldo requerido según la clase de servicio que se necesite y el grado de

confiabilidad del sistema de suministro de energía de emergencia. En cualquier caso el sistema

debe poseer los medios automáticos para transferir en caso de que falle la energía de la red.

Tabla XXXII. Tipos de Sistemas de Emergencia y sus consideraciones

Tiempos Mínimos Requeridos Baterías Grupo

GeneradorSistema Potencia Ininterrumpida

Acometidaseparada

Tiempo de respaldo ≥ 90 min ≥ 90 min - Tiempo de interrupción ≤ 10 seg -

Si el sistema de emergencia escogido supera el tiempo mínimo de interrupción del

servicio se requiere una fuente auxiliar hasta que el equipo tome la carga. Usualmente cuando el

tiempo de respaldo requerido es alto y la carga a respaldar es elevada se recomienda un grupo

generador el cual se dimensiona seleccionando la carga crítica y se escoge el siguiente valor

normalizado aproximando hacia arriba. Si es necesario se coloca un UPS (Sistema de Potencia

Ininterrumpida) para respaldar las cargas más críticas en las que el tiempo de interrupción deba

ser menor a 10 segundos.

Page 85: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

70

CAPÍTULO 4: APLICACIÓN DEL MANUAL AL CASO DE UNA PLANTA INDUSTRIAL FARMACÉUTICA

4.1 Descripción de la planta

El objetivo del caso estudio es ilustrar los criterios de diseño utilizados en el manual de

instalaciones eléctricas industriales con fines prácticos.

La planta industrial farmacéutica VENFARPA está destinada a la producción de fluidos

terapéuticos. El edificio está ubicado en la zona industrial de La Fría, estado Táchira y posee un

área total de 7.215 m2 conformado por dos plantas:

• Planta baja: posee una superficie de 4.415 m2 y se encuentra estructurada con las

siguientes áreas: producción, oficinas, control de calidad y/o laboratorios, servicios

básicos y almacenes, siendo este último de doble altura y con una superficie de 1.600 m2,

mientras que el resto de las áreas poseen sólo un nivel.

• Piso 1: se encuentran las áreas de servicios críticos, oficinas, descanso y

entrenamiento, las cuales poseen un área de 2.800 m2. La ubicación de dichas áreas está

representada en la figura 4 para la planta baja y en la figura 5 para el piso 1.

Adicionalmente posee un entrepiso de 60 cm de alto destinado para la distribución de los

servicios básicos de la planta.

Page 86: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

71

Figura 4. Distribución de las áreas de VENFARPA – Planta Baja

El área de producción posee una superficie total de 1.000 m2 que está destinada a la

elaboración del producto final, por tal razón se encuentran ubicados la mayoría de los equipos y

se cataloga como área limpia (Cleanrooms), ya que tiene un nivel controlado de contaminación

que se especifica por la cantidad y el tamaño de las partículas presentes en el aire según la

clasificación ISO (ISO5 – ISO 8).

El área de almacenes tiene una superficie de 1.600 m2 a doble altura y está destinada para

el acopio tanto de la materia prima como del producto terminado.

En el área de servicios básicos se encuentran los siguientes sistemas: agua potable,

compresor de aire, compresor de agua purificada y caldera. Además se incluye un espacio para el

cuarto de tableros de alimentación principal del sistema eléctrico.

Page 87: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

72

El área de servicios críticos contempla el sistema de agua purificada, aire acondicionado,

extracción y ventilación.

Figura 5. Distribución de las áreas de VENFARPA – Piso 1

4.2 Identificación de las zonas

La asignación del código de identificación (ID) de cada área se realiza con el plano de la

planta dividiendo los sectores en forma rectangular, esta codificación se puede observar en la

tabla II.1 que se encuentra en el apéndice II.

4.3 Clasificación de las zonas

La clasificación de las zonas según las sustancias inflamables presentes especificada en el

CEN no aplica para este caso.

Page 88: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

73

4.4 Determinación del nivel de tensión de alimentación

El nivel de tensión ofrecido por la empresa que abastece de energía a la planta, en este

caso CADAFE, es de 13,8 kV; la distribución se realizará en 480 V configuración estrella con

neutro puesto a tierra, lo que corresponde a 277 V fase neutro, para las cargas de iluminación,

sistemas de fuerza y algunos tomacorrientes de uso específico, el otro nivel de tensión a utilizar

es 208/120 V para tomacorrientes de uso general y ciertos equipos que se alimentan a ese nivel de

tensión.

4.5 Estimación de la demanda

La estimación de la demanda clasificando la carga por sistema se presenta a continuación:

4.5.1 Alumbrado

Las especificaciones de las luminarias según la zona a utilizar son las siguientes:

Tabla XXXIII. Formulario de levantamiento de especificaciones de luminarias

Zonas/ Ubicación

Tipo de lámpara

Clase seguridad

Nivel de protección

Tensión (V)

Potencia (W) Lúmenes

Almacenes Fluorescente I 54 277 3 x 32 3350

Oficinas Fluorescente I 21 277 3 x 32 3350

Producción Fluorescente I 67 277

4 x 17 1300

Servicios críticos Fluorescente

I 21 277 3 x 32 3350

Laboratorios Fluorescente I 54 277

3 x 32 3350

Servicios básicos Fluorescente

I 54 277 3 x 32 3350

Baños / Esclusas Fluorescente

I 20 277 2 x 26 1800

Page 89: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

74

A continuación se presenta un ejemplo del cálculo realizado para determinar el número de

luminarias por área según el método del Lumen.

Tabla XXXIV. Formulario para determinar el número de luminarias en la zona de

Producción en el área de Llenado

22 Llenado 750 Lux 1300 lúmenes 4 c/u 17W Coeficiente de Utilización Razones de cavidad

Altura del local hfc hrc hcc Largo Ancho RCR

cuarto FCR piso

CCR cielo

2,40 0,85 1,55 0,00 7,80 5,60 2,38 1,30 0,00

%

Reflectancia Pared

pf pc pcc pfc CU

50 20 80 77 19 0,61 Factores de pérdida de luz RSDD LLD1 LLD2 LLF 0,97 0,82 0,95 0,76 Cálculo

Iluminación individual /

lámpara

Área (m2) CU LLF

Número de

luminarias

Número real

5200,00 43,68 0,61 0,76 13,67 14,00 Posición

Nancho Nlargo Nancho

real Nlargo Real

3,17 4,42 3,00 4,00

Page 90: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

75

Tabla XXXV. Cantidad de luminarias e interruptores en el área de Producción

Cantidad de luminarias 4x17W

Interruptores Código ID Zona: Producción

277V - 1Φ 2 vías 3 vías 12 Esclusa de Personal acceso a pesada y muestreo 1 1 sencillo 13 Esclusa de Materia Prima I 1 2 sencillos 14 Esclusa de Materia Prima II 1 1 sencillo 15 Pesada y Muestreo 2 1 sencillo 16 Esclusa de acceso de personal a Mezcla y formulación. 2 2 sencillos 17 Área de Distribución de Personal 4 2 sencillos 18 Zona de Mezcla y Formulación. 23 1 doble 19 Cuarto de lavado de Mezcla y Formulación. 1 1 sencillo 20 Esclusa de acceso de Personal a Llenado 1 2 2 sencillos 21 Esclusa de acceso de Personal a Llenado 2 2 2 sencillos 22 Área de Llenado 14 1 sencillo 23 Zona de Lavado y Preparación. 22 1 doble 24 Esclusa de Materia Prima (III) Lavado y Preparación 3 1 sencillo 25 Pasillo de almacén hacia Esclusa de Materia Prima (III) 6 2 sencillos 26 Zona de Recepción de frascos hacia Autoclave 9 1 sencillo 27 Zona de Autoclaves 2 28 Pasillo paralelo a Autoclaves 2 2 sencillos 29 Zona de Recepción de Frascos desde Autoclaves 13 2 sencillos 30 Zona de Inspección Visual y Etiquetado 10 1 sencillo 31 Esclusa de Materia Prima (IV) Embalaje 1 1 sencillo 32 Zona de Embalaje 18 2 dobles 33 Baños Damas - zona de cambio calle 2 2 sencillos 34 Baños Damas - zona sanitarios 3 2 sencillos 35 Baños Damas - zona de cambio 2 1 1 sencillo 36 Baños Damas – lavamanos 1 1 sencillo 37 Baños Damas - Esclusa de entrada a producción 1 1 sencillo 38 Baños Caballeros - zona de cambio calle 2 2 sencillos 39 Baños Caballeros - zona sanitarios 4 2 sencillos 40 Baños Caballeros - zona de cambio 2 2 1 sencillo 41 Baños Caballeros-Esclusa de entrada a producción 1 1 sencillo 42 Baños Caballeros – lavamanos 1 1 sencillo 43 Lavandería 3 1 sencillo 44 Lava Mopas 1 1 sencillo

45A Pasillo perimetral de circulación A 7 1 sencillo 45B Pasillo perimetral de circulación B 9 1 doble 1 sencillo 45C Pasillo perimetral de circulación C 10 2 sencillos 45D Pasillo perimetral de circulación D 3 1 sencillo

Page 91: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

76

En el apéndice II se indica el resto del cálculo del número de luminarias por zona, y en la

tabla XXXV se presenta el resumen del cálculo de la cantidad de luminarias e interruptores de la

planta en el área de Producción

Una vez definido la cantidad de luminarias por zona se puede realizar el cálculo de la

demanda, en la siguiente tabla se da el resumen de los kW estimados:

Tabla XXXVI. Estimación de la demanda del Sistema de Iluminación

Zona Nº de luminarias

Potencia por lámpara

Potencia total (W)

38 3 x 32 W 3.648 Oficinas PB

8 2 x 26 W 416 101 3 x 32 W 9.696

Oficinas Nivel 1 21 2 x 26 W 1.092 59 3 x 32 W 5.664

Almacenes 61 400 W 24.400 13 3 x 32 W 1.248

Laboratorios 2 2 x 26 W 104

Producción 190 4 x 17 W 12.920

13 3 x 32 W 1.248 Mantenimiento

5 2 x 26 W 260

Servicios básicos 16 3 x 32 W 1.536

Servicios críticos 40 3 x 32 W 3.840

Potencia total del Sistema de Iluminación 66.072

El factor de demanda aplicable al sistema de iluminación según lo indicado en la tabla

220.11 del CEN es del 100%, por lo tanto la carga total de iluminación estará definida por:

Page 92: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

77

kVAkWkVAIlum 413,739,066 == (14)

4.5.2 Estimación del sistema de tomacorrientes

Para estimar la cantidad de tomacorrientes se asignan por área un número determinado en

función de las necesidades de la zona considerando los equipos a instalar, en la tabla XXXVII se

muestra la zona de producción.

De igual forma que se hizo el cálculo para el sistema de iluminación se realiza el resumen

con la cantidad de tomacorrientes por zonas, tabla XXXVIII, en este caso se asume para los

tomacorrientes con tensión superior a 120 V, 300 VA por tomacorriente.

Page 93: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

78

Tabla XXXVII. Cantidad de tomacorrientes para diferentes niveles de tensión en la zona de

Producción

Cantidad de Tomacorrientes Código ID Zona: Producción

120V-1Φ 208V-1Φ 208V-3Φ 480V-3Φ 12 Esclusa de Personal acceso a pesada y muestreo 1 13 Esclusa de Materia Prima I 1 14 Esclusa de Materia Prima II 1 15 Pesada y Muestreo 1 1 16 Esclusa de acceso de personal a Mezcla y formulación. 2 17 Área de Distribucion de Personal 2 1 18 Zona de Mezcla y Formulación. 3 2 3 1 19 Cuarto de lavado de Mezcla y Formulación. 1 1 20 Esclusa de acceso de Personal a Llenado 1 1 21 Esclusa de acceso de Personal a Llenado 2 1 22 Área de Llenado 2 1 1 1 23 Zona de Lavado y Preparación. 3 3 3 1 24 Esclusa de Materia Prima (III) Lavado y Preparación 1 1 25 Pasillo de almacen hacia Esclusa de Materia Prima (III) 3 1 26 Zona de Recepción de frascos hacia Autoclave 2 1 1 27 Zona de Autoclaves 1 1 28 Pasillo paralelo a Autoclaves 29 Zona de Recepción de Frascos desde Autoclaves 3 1 2 30 Zona de Inspección Visual y Etiquetado 2 1 1 1 31 Esclusa de Materia Prima (IV) Embalaje 1 32 Zona de Embalaje 4 4 2 2 33 Baños Damas - zona de cambio calle 1 34 Baños Damas - zona sanitarios 1 35 Baños Damas - zona de cambio 2 36 Baños Damas - lavamanos 1 37 Baños Damas - Esclusa de entrada a producción 1 38 Baños Caballeros - zona de cambio calle 1 39 Baños Caballeros - zona sanitarios 1 40 Baños Caballeros - zona de cambio 2 41 Baños Caballeros-Esclusa de entrada a producción 1 42 Baños Caballeros - lavamanos 1 43 Lavandería 3 2 44 Lava Mopas 1

45A Pasillo perimetral de circulación A 4 2 45B Pasillo perimetral de circulación B 4 2 45C Pasillo perimetral de circulación C 4 2 45D Pasillo perimetral de circulación D 1 1

Page 94: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

79

Tabla XXXVIII. Estimación de la demanda del Sistema de tomacorrientes

Zona Nº de tomacorrientes

Tensión del T/C VA por T/C Potencia total

(VA)

32 120V - 1Φ 180 5.760 Oficinas PB

12 208V - 1Φ 300 3.600 41 120V - 1Φ 180 7.380

Oficinas Nivel 1 12 208V - 1Φ 300 3.600 31 120V - 1Φ 180 5.580

Almacenes 10 208V - 1Φ 300 3.000 9 120V - 1Φ 180 1.620

Laboratorios 5 208V - 1Φ 300 1.500

60 120V - 1Φ 180 10.800 27 208V - 1Φ 300 8.100 14 208V - 3Φ 300 4.200

Producción

7 480V - 3Φ 300 2.100 13 120V - 1Φ 180 2.340

Mantenimiento 5 208V - 1Φ 300 1.500 5 120V - 1Φ 180 900 5 208V - 1Φ 300 1.500 4 208V - 3Φ 300 1.200

Servicios básicos

4 480V - 3Φ 300 1.200 2 120V - 1Φ 180 360

Servicios críticos 1 208V - 1Φ 300 300

Potencia total del Sistema de tomacorrientes 66.240

Aplicando el factor de demanda de la tabla 220-13 del CEN se obtiene lo siguiente:

Tabla XXXIX. Demanda de los tomacorrientes

Para los primeros 10 kVA 10.000

Resto sobre los 10 kVA 28.120

Demanda de los tomacorrientes 38.120

Page 95: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

80

Así pues, los kVAT/C son igual a 38,12 kVA.

4.5.3 Estimación del sistema de fuerza

La estimación de la demanda de los equipos proviene de demandas genéricas utilizadas en

proyectos similares, tabla XL.

De manera que la potencia total de los equipos de fuerza es de 914,91 kW lo que equivale

a una potencia activa de 1.016,57 kVA considerando un factor de potencia de 0,9.

Considerando que para la carga de aire acondicionado se toma el factor de demanda al

100% y tomando en cuenta para el resto del sistema de fuerza 0,8; se tiene que la demanda total

es de 887,85 kVA para los equipos de fuerza.

4.6 Determinación de la distribución y ubicación de los tableros eléctricos

La distribución de los tableros será de la siguiente manera:

4.6.1 Tablero principal

El tablero principal está ubicado en uno de los sectores de la zona de Servicios Básicos,

Cuarto de Tableros, siendo éste el punto más cercano a la acometida de alimentación de la planta.

Posee dos salidas, un acceso frontal y otro posterior.

Page 96: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

81

Tabla XL. Carga estimada de los equipos de fuerza a instalar

Zona Equipo Cantidad Capacidad Capacidad total en kW

Bomba 1 1 5 kW 5

Bomba 2 1 5 kW 5

Llenadota 1 1 10 kW 10

Llenadota 2 1 10 kW 10

Llenadota 3 1 20 kW 20

Autoclave 1 1 7.5 kW 7.5

Autoclave 2 1 7.5 kW 7.5

Autoclave 3 1 5 kW 5

Etiquetadora 1 7.5 HP 5.6

Encajonadora 1 20 kW 20

Termo encogible 1 20 kW 20

Paletizadora 1 10 HP 7.46

Lavadora 1 2.6 kW 2.6

Campana 1 1 3 HP 2.24

Producción

Campana 2 1 3 HP 2.24

Agua potable 1 96 A 71.83

Caldera 1 10 HP 7.46

Compresor de aire 1 2 23 kW 46 Servicios básicos

Compresor de agua refrigerada 2

2 75 HP 111.9

Agua purificada 1 30 HP 28.38

Ventilador UMA 10 10 HP 74.6

Resistencia 10 20 HP 149.2

Ventilador extractor 10 12 HP 89.5

Control 10 3A / 480V 22.4

Extracción y ventilación

8 22 kW 176

Servicios críticos

Bomba 3 1 7.5 kW 7.5

Page 97: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

82

4.6.2 Tableros secundarios

Los tableros están ubicados en las siguientes zonas:

• Producción.

o Zona de Mezclado y Formulación. (Equipos en 480 V y 208 V)

o Zona de Lavado y Preparación.

o Zona Recepción de frascos desde Autoclaves.

o Pasillo D.

• Servicios básicos.

• Servicios críticos.

• Oficinas nivel planta baja.

• Almacén de Productos terminados.

4.7 Selección del calibre de los alimentadores

Los alimentadores utilizados para todas las instalaciones son cables de conductor de

cobre, trenzado revestido, con tipo de aislamiento THW.

4.7.1 Criterio de capacidad de corriente

Para el criterio de capacidad de corriente se considera que los calibre 14, 12 y 10 soportan

un máximo de corriente de 15, 20 y 30 A, respectivamente, ya que existe una excepción en la

tabla de capacidad de corriente que no permite que los dispositivos de protección para dichos

calibres superen el valor mencionado anteriormente.

Page 98: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

83

Tabla XLI. Selección del conductor por el criterio de ampacidad del Sistema de fuerza en la

Zona de Producción

Datos del Datos del equipo

Tipo AislamientoUbicación (ID) Equipo

Cu / Al TW / THW

Tensión (V)

Potencia (kW)

Corriente nominal

(A)

Corriente de diseño

(A) Calibre

Mezcla (18) Bomba 1 Cu THW 480 10,00 13,36 16,71 12 Mezcla (18) Bomba 2 Cu THW 480 10,00 13,36 16,71 12 Llenado (22) Llenadora 1 Cu THW 480 10,00 13,36 16,71 12 Llenado (22) Llenadora 2 Cu THW 480 10,00 13,36 16,71 12 Llenado (22) Llenadora 3 Cu THW 480 20,00 26,73 33,41 8 Lavado (23) Autoclave 1 Cu THW 480 15,00 20,05 25,06 10

Autoclaves (27) Autoclave 2 Cu THW 480 15,00 20,05 25,06 10 Autoclaves (27) Autoclave 3 Cu THW 480 5,00 6,68 8,35 14 Etiquetado (30) Etiquetadora Cu THW 480 5,60 7,48 9,35 14

Embalaje (32) Encajonadora Cu THW 480 20,00 26,73 33,41 8

Embalaje (32) Termo encogible Cu THW 480 20,00 26,73 33,41 8

Prod. Termin (10) Paletizadora Cu THW 480 7,46 9,97 12,46 14 Lavado (23) Lavadora Cu THW 480 15,00 20,05 25,06 10

Muestreo (15) Campana 1 Cu THW 208 2,24 6,90 8,63 14 Muestreo (15) Campana 2 Cu THW 208 2,24 6,90 8,63 14

4.7.2 Criterio de caída de tensión

Para realizar los cómputos de la caída de tensión se necesita la longitud del conductor la

cual se determinó calculando la distancia lineal desde el equipo hasta el tablero de distribución

para la zona, adicionalmente se considera 1 m de distancia desde el tablero hasta el techo ya que

el recorrido del cableado se hará por el entrepiso del edificio, igualmente a la llegada del equipo

se agrega 1 m más.

Page 99: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

84

Tabla XLII. Selección del calibre por el criterio de caída de tensión

Ubicación (ID) Equipo Corriente

diseño (A) Longitud

(m) A.m Fp ΔV (%) Calibre

Mezcla (18) Bomba 1 16,71 12 86,90 0,8 2 14

Mezcla (18) Bomba 2 16,71 14 101,38 0,8 2 14

Llenado (22) Llenadora 1 16,71 20 144,83 0,9 2 14

Llenado (22) Llenadora 2 16,71 20 144,83 0,9 2 14

Llenado (22) Llenadora 3 33,41 20 289,65 0,9 2 12

Lavado (23) Autoclave 1 25,06 12 130,34 0,9 2 14

Autoclaves (27) Autoclave 2 25,06 14 152,07 0,9 2 14

Autoclaves (27) Autoclave 3 8,35 14 50,69 0,9 2 14

Etiquetado (30) Etiquetadora 9,35 6 24,31 0,9 2 14

Embalaje (32) Encajonadora 33,41 12 173,79 0,9 2 14

Embalaje (32)

Termo encogible 33,41 14 202,76 0,9 2 14

Prod.Termin (10) Paletizadora 12,46 24 129,65 0,9 2 14

Lavado (23) Lavadora 25,06 6 65,17 0,9 2 14 Muestreo

(15) Campana 1 8,63 14 52,36 0,9 2 14

Muestreo (15) Campana 2 8,63 14 52,36 0,9 2 14

4.7.3 Selección del calibre del conductor del neutro

Se escogió el mismo calibre que se utiliza para las fases considerando el calibre mayor

resultado de aplicar los dos criterios anteriores, para unificar y facilitar la instalación del

cableado.

Page 100: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

85

4.7.4 Selección del calibre del conductor de puesta a tierra

Dado que la selección depende de la capacidad del dispositivo de protección, en el

siguiente formulario se presenta el cálculo de la corriente de la protección y el valor comercial

del dispositivo para determinar el calibre del conductor de puesta a tierra. Adicionalmente, está el

resumen de los calibres escogidos.

Tabla XLIII. Selección del calibre de los conductores de fase, neutro y tierra

Conductor de las fases y neutro Conductor de PAT Ubicación

(ID) Equipo Calibre

Ampacidad Cal. Caída de tensión

Calibre mayor IProtección IProtección

comercial Calibre

Mezcla (18) Bomba 1 12 14 12 20,85 20 12

Mezcla (18) Bomba 2 12 14 12 20,85 20 12

Llenado (22) Llenadora 1 12 14 12 20,85 20 12

Llenado (22) Llenadora 2 12 14 12 20,85 20 12

Llenado (22) Llenadora 3 8 12 8 41,71 45 10

Lavado (23) Autoclave 1 10 14 10 30,03 30 10

Autoclaves (27) Autoclave 2 10 14 10 30,03 30 10

Autoclaves (27) Autoclave 3 14 14 14 14,18 15 14

Etiquetado (30) Etiquetadora 14 14 14 14,67 15 14

Embalaje (32) Encajonadora 8 14 8 41,71 45 10

Embalaje (32)

Termo encogible 8 14 8 41,71 45 10

Prod. Termin (10) Paletizadora 14 14 14 16,23 15 14

Lavado (23) Lavadora 10 14 10 30,03 30 10 Muestreo

(15) Campana 1 14 14 14 14,31 15 14

Muestreo (15) Campana 2 14 14 14 14,31 15 14

Page 101: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

86

4.8 Selección de la canalización

La canalización de los alimentadores se hará mediante bandejas portacables ya que se

dispone de un entrepiso que facilita el transporte de los mismos, además que reduce los costos

de la instalación. Las dimensiones de las bandejas serán de 60 cm tipo escalera o ventilada.

Para los circuitos ramales se escogieron tuberías metálicas que van desde los tableros

secundarios a los equipos utilizando ¾” para calibres N° 12 y 10.

4.9 Selección de protecciones

El cálculo de las protecciones se realizó para obtener el calibre de los conductores de

puesta a tierra los cuales se muestran en la tabla XLIII.

4.10 Selección del tablero eléctrico

A continuación se presenta el formulario con los datos de un tablero eléctrico, en el

que se especifica el nombre del proyecto y fecha de levantamiento, adicionalmente se

presentan los datos del alimentador, interruptor principal, carga conectada por fase y tipo de

carga.

Page 102: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

87

Tabla XLIV. Formulario para tableros de distribución

HOJA DE TABLERO PROYECTO PLANTA INDUSTRIAL

VENFARPA FECHA

TABLERO TSSF-PR18 UBICACIÓN PROD 18 TIPO DE TABLERO NHB TENSIÓN 3x277/480V BARRAS DE COBRE INTERRUPTOR PRINCIPAL ALIMENTADOR POLOS 3 FASES # 6 AMPERIOS 40 NEUTRO # 6 TENSIÓN 480 TIERRA # 8 KA SIM. INTERRUPCIÓN

KVA CARGA

CONECTADA CAL AMP Nº R S T Nº AMP CAL CARGA CONECTADA KVA 1 * │ │ 2

11,11 BOMBA 1 12 20 3 │ * │ 4 20 12 BOMBA 2 11,11 5 │ │ * 6 RESERVA 7 * │ │ 8 RESERVA RESERVA 9 │ * │ 10 RESERVA RESERVA 11 │ │ * 12 RESERVA

KVA DEMANDA TIPO DE CARGA R S T TOTAL

FACTOR DEMANDA KVA

ALUMBRADO T/C USO GEN A/A OTROS 22,22 1,00 22,22 SUB-TOTAL KVA 22,22 RESERVA CI. 20% 4,44 TOTAL KVA 26,67 ALIMENTADOR AMPERIOS 30,07 CALIBRE MAYOR # 6 METROS 40 IPROTECCIÓN 38,36 A.m 1202,81 I COMERCIAL 40 CAP. CARGA # 8 CAÍDA TENSIÓN # 6

Page 103: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

88

4.11 Selección del sistema de transformación

Para dimensionar el transformador de acuerdo al valor obtenido de las demandas antes

mencionadas 999,39 kVA en total, se busca el valor normalizado por encima para su selección.

Se obtiene un transformador tipo pedestal de capacidad 1500 kVA a una tensión de 13,8/0,48 kV

con impedancia de 5,75 %. El cálculo del nivel de cortocircuito del lado de baja tensión se

muestra a continuación, la selección de las protecciones correspondientes le concierne a la

empresa suplidora de energía.

cos41,310575,04803

1500RMSsimétrikA

VkVAIcc =⋅⋅

= (15)

4.12 Selección del sistema de puesta a tierra

Para el sistema no se emplea un anillo de puesta a tierra sino que se aplica un arreglo en

forma de triángulo formado por barras Copperweld de 5/8’’ x 2,4 m, conectadas mediante un

alambre de cobre desnudo calibre 4. A su vez el sistema de puesta a tierra se unirá a la entrada

principal de tuberías de aguas blancas para contribuir a bajar la resistencia de puesta a tierra y

mantener todo el conjunto a un mismo potencial.

El sistema eléctrico del edificio de conectará al arreglo mediante una barra principal de

tierra (MGB) ubicada en el cuarto de tableros, donde se encuentra el tablero principal.

Page 104: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

89

4.13 Selección del sistema de pararrayos

Se realiza considerando los siguientes aspectos: índice B: estructura de concreto armado

con techo metálico; índice C: industrias con contenido vulnerable al fuego; índice D: localizado

en un área de inmuebles o árboles de la misma altura; índice E: planicie y piedemonte, altitud 127

msnm; índice F: altura de la estructura 6 m; e índice G: número de días de tormenta por año de 3

a 6.

Resulta que la colocación es opcional ya que el índice de riesgo se encuentra en el rango

de 0 a 30.

Tabla XLV. Formulario para determinar la instalación del sistema pararrayos

A B C D E F G Ir 0 < Ir < 30 Opcional

30 < Ir < 60 Recomendado

Ir ≥ 60 Indispensable

6 5 5 2 2 2 5 27 X

4.14 Selección del sistema de emergencia

Dado que el sistema de producción no puede ser interrumpido y la carga conectada son

130 kVA, adicionalmente se incluye la carga correspondiente a los servicios básicos y servicios

críticos 450 kVA y la iluminación de emergencia, por lo que se escoge como sistema de respaldo

un Grupo Generador de 750 kVA, 480 V que actúa automáticamente a través de una transferencia

automática en menos de 10 segundos.

Page 105: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

90

CAPÍTULO 5. CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

Con este proyecto se elaboró un manual de diseño para instalaciones eléctricas

industriales con enfoque práctico. Para el desarrollo del mismo se utilizó como ejemplo un

sistema eléctrico de una planta industrial farmacéutica.

El Código Eléctrico Nacional 200:2004 sirvió como base para seleccionar los criterios

básicos de diseño, pero fue de la literatura especializada de donde se extrajeron los conocimientos

provenientes de la experiencia de los ingenieros del ramo. Mediante este estudio se pudo observar

que el CEN presenta faltas de actualización en los materiales utilizados en el mercado y con las

tendencias a nivel mundial.

Como herramienta fundamental se crearon formularios que permiten recopilar los datos

necesarios para realizar los cómputos que determinan las características del sistema a desarrollar.

El software Microsoft Office Excel 2003 sirvió como facilitador para realizar dichas plantillas y a

su vez para efectuar los cálculos necesarios para determinar las luminarias por área, la selección

de los conductores, dispositivos de protección y tableros eléctricos.

Page 106: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

91

Este manual arroja los lineamientos que mejor aplican para el caso de estudio, pero no

toma en cuenta las posibles exigencias del cliente al proyectista ni el presupuesto asignado para el

proyecto.

El diseño realizado en el caso estudio cumple con los requisitos mínimos de seguridad

establecidos, adicionalmente las luminarias seleccionadas para la zona de producción son las

adecuadas según las exigencias que aplican para áreas limpias (Cleanrooms). En cuanto a los

cables escogidos soportan hasta 75 °C ya que para este tipo de industria la temperatura estimada

en ningún caso excederá este rango. Se seleccionaron bandejas portacables para la canalización

de los alimentadores ya que se contó con un entrepiso que facilita su distribución. Se

concentraron los tableros principales en un cuarto de tableros para restringir el acceso al área

dada la importancia de la zona de producción.

5.2 Recomendaciones

• Se recomienda darle continuidad al proyecto, ampliando la aplicación del manual hacia

los principales tipos de industrias apoyándose en especialistas de cada ramo, quienes

deberán exponer las necesidades básicas tanto de seguridad como de suministro de

energía eléctrica.

• Incluir el análisis económico del proyecto tomando en cuenta la rentabilidad del mismo,

para seleccionar los criterios y materiales que garanticen el buen diseño del sistema

eléctrico.

Page 107: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

92

• Elaborar un software que permita de forma automática realizar los cómputos necesarios

considerando los criterios fundamentales de seguridad para el proyecto y que a su vez

permita al proyectista incluir los parámetros de exigencia del cliente.

• Se recomienda al Comité de Electricidad de Venezuela realizar una revisión tanto al

mercado actual como de las nuevas normas internacionales para de esta manera completar

la información del Código Eléctrico Nacional (CEN).

• Como recomendación final se sugiere la publicación de este manual para lograr su

objetivo inicial, servir de guía práctica a los proyectistas del ramo en el desempeño de sus

funciones.

Page 108: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

93

CAPÍTULO 6. REFERENCIAS BIBLIOGRÁFICAS

[1] CÓDIGO ELÉCTRICO NACIONAL.

COVENIN 200:2004 (7ma REVISIÓN). Caracas 2004.

[2] Penissi, Oswaldo.

“Canalizaciones Eléctricas Residenciales”

Sexta Edición, Caracas 1998.

[3] I.E.S. LIGHTING HANDBOOK.

“The Standard Lighting Guide”

Cuarta Edición.

[4] Tutorial de Instalaciones Eléctricas

http://sistemas.itlp.edu.mx/tutoriales/instalacelectricas/

[5] GUTH.

“A division of lighting group, inc.”

[6] Valectra C. A.

“Tableros de alumbrado, distribución y potencia”

http://www.valectra.com.ve/catalogos/NLAB-NHB-CDP.pdf

Page 109: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

94

[7] “Electrical Transmisión and Distribution Reference Book”. 7 tono

Westinghouse Electric Corporation.

Cuarta Edición. East Pittsburgh, Pennsylvania, 1964.

[8] IEEE Std. 80-1986.

“An American National Standard IEEE Guide for Safety in AC Substation Grounding.”

[9] Catálogo general MARESA (Información técnica)

[10] Catálogo profesional de lámparas, luminarias y postes 2005-2007.

“Luminotecnia”

www.obralux.com

[11] Tableros de fuerza y distribución tipo CFD.

http://www.subtaca.com/tableros.php

[12] Harper, Enrique.

“El ABC de las Instalaciones Eléctricas Industriales”

Editorial Limusa, S. A. México, 2004.

[13] “Código de Protección Contra rayos”

COVENIN 599:73.

Segunda Edición, 1973.

Page 110: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

95

APÉNDICE I

Tablas de Referencia

Page 111: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

96

APÉNCIDE I. TABLAS DE REFERENCIA

Tabla I.1. Coeficientes de utilización típicos

Page 112: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

97

Tabla I.1. Coeficientes de utilización típicos. (Continuación)

Page 113: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

98

Tabla I.2. Número máximo de conductores y cables de aparatos de la misma sección en tubería EMT de acuerdo al porcentaje de ocupación permisible

Tipo. Letras

Calibre del cable AWG/Kcmil

Tamaño comercial de la tubería en pulgadas

½ ¾ 1 1 ¼ 1 ½ 2 2 ½ 3 3 ½ 4

TW RHH*, RHW*, RHW-2*, THHW, THW, THW-2 RHH*, RHW*, RHW-2*, THHW, THW RHH*, RHW*, RHW-2*, THHW, THW, THW-2 RHH*, RHW*, RHW-2*, TW, THW, THHW, THW-2

14 12 10 8

14

12 10

8

6 4 3 2 1 1/0 2/0 3/0 4/0 250 300 350 400 500 600 700 750 800 900 1000 1250 1500 1750 2000

8 6 5 2 6 4 3 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 11 8 5

10

8 6

4

3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 19 14 8

16

13 10

6

4 3 3 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

43 33 24 13

28

23 18

10

8 6 5 4 3 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

58 45 33 18

39

31 24

14

11 8 7 6 4 3 3 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

96 74 55 30

64

51 40

24

18 13 12 10 7 6 5 4 3 3 2 1 1 1 1 1 1 1 1 1 1 1 0 0

168 129 96 53

112

90 70

42

32 24 20 17 12 10 9 7 6 5 4 4 3 3 2 1 1 1 1 1 1 1 1 1

254 195 145 81

169

136 106

63

48 36 31 26 18 16 13 11 9 7 6 6 5 4 3 3 3 3 2 2 1 1 1 1

332 255 190 105

221

177 138

83

63 47 40 34 24 20 17 15 12 10 8 7 7 6 4 4 4 3 3 3 2 1 1 1

424 326 243 135

282

227 177

106

81 60 52 44 31 26 22 19 16 13 11 10 9 7 6 5 5 5 4 4 3 2 2 1

* Los cables RHH, RHW y RHW-2, sin cubierta exterior.

Page 114: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

99

Tabla I.2. Número máximo de conductores y cables de aparatos de la misma sección en

tubería no metálica de acuerdo al porcentaje de ocupación permisible. (Continuación)

Letras de tipo Sección del cable AWG/Kcmil

Sección comercial en pulgadas

½ ¾ 1 1 ¼ 1 ½ 2

RHH*, RHW*, RHW-2*, THHW, THW, THW-2 RHH*, RHW*, RHW-2*, THHW, THW RHH*, RHW*, RHW-2*, THHW, THW, THW-2 RHH*, RHW*, RHW-2*, TW, THW, THHW, THW-2

14

12 10

8

6 4 3 2 1 1/0 2/0 3/0 4/0 250 300 350 400 500 600 700 750 800 900 1000 1250 1500 1750 2000

4 3 3 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 7 5 3 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15

12 9 5 4 3 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27

21 17

10 7 5 5 4 3 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

37

29 23

14

10 8 7 6 4 3 3 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

61

49 38

23

17 13 11 9 6 5 5 4 3 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0

* Los cables RHH, RHW y RHW-2, sin cubierta exterior.

Page 115: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

100

Tabla I.3. Cargas de iluminación general por tipo de local [Tabla 220-3(b)-CEN]

Tipo de local Carga unitaria por

metro cuadrado (en Voltampere)

Salas de armas y auditorios 10

Bancos 35**

Barberías y salones de belleza 30

Iglesias 10

Clubs 20

Juzgados 20

Unidades de vivienda* 30

Estacionamientos comerciales 5

Hospitales 20

Hoteles y moteles, incluidos apartamentos sin cocina*

20

Inmuebles industriales y comerciales

20

Casas de huéspedes 15

Tipo de local Carga unitaria por metro cuadrado (en

Voltampere)

Inmuebles de oficinas 35**

Restaurantes 20

Colegios 30

Tiendas 30

Almacenes, Depósitos 2,5

En cualquiera de los locales anteriores excepto en viviendas unifamiliares y unidades individuales de vivienda bifamiliares y multifamiliares, se aplicará lo siguiente:

Salas de reunión y auditorios

10

Recibos, pasillos, roperos, escaleras

5

Espacios de almacenaje 2,5

* Todos los tomacorrientes de uso general de 20 Ampere nominales o menos en unidades de vivienda

unifamiliares, bifamiliares y multifamiliares y en las habitaciones de los hoteles y moteles [excepto las

conectadas a los circuitos de tomacorrientes especificados en el Artículo 220-4(b) y (c)], se deben considerar

salidas para iluminación general y en tales salidas no serán necesarios cálculos para cargas adicionales.

** Se debe incluir además una carga unitaria de 10 Voltampere por metro cuadrado para salidas de

tomacorriente para uso general cuando desconozca el número real de este tipo de salidas.

Page 116: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

101

Tabla I.4. Tablero de Fuerza y Distribución tipo CFD

Tablero de Fuerza y Distribución tipo CFD (CCB)

Barras principales, con o sin principal:

1200 Amp. máx. Ó 2000 máx sin principal.

Interruptor principal: 1200 Amp. Máx.

Voltaje de trabajo: 600 Voltios máx.

Voltaje de aislamiento: 600 Volt. Min.

Servicio: 3F 4H, 3F 5H.

Construcción montaje: Caja o celda superficial o embutido, interior o intemperie.

Número de circuitos: Según requerimientos, con disposición de los elementos de distribución en forma horizontal.

Barras de cobre: Desnudas, plateadas.

Capacidad de interrupción : 200 KA simétricos RMS a 480 Voltios.

Page 117: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

102

Tabla I.5. Capacidad de Distribución en A.m para cables monopolares de cobre, con

Aislamiento THW, en ducto magnético y no magnéticos para 60 Hz y 75ºC para

temperatura del conductor

Page 118: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

103

Tabla I.6. Factores de corrección por caída de tensión

Page 119: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

104

Tabla I.7. Dimensiones y Área Porcentual de los tubos y tuberías. (Área de los tubos y tuberías ocupada por las combinaciones de cables permitidas en la Tabla 1 Capítulo 9) NOTA: (Cond. = Conductor)

Tubería Metálica Eléctrica Tubería No Metálica Eléctrica Tamaño

comercial <pulg>

Diam. Interno <mm>

Área Total 100%

<mm2>

2 Cond. 31%

<mm2>

Más de 2 Cond. 40%

<mm2>

1 Cond. 53%

<mm2>

Diam. Interno <mm>

Área Total 100%

<mm2>

2 Cond. 31%

<mm2>

Más de 2 Cond. 40%

<mm2>

1 Cond. 53%

<mm2>

1/2 15,8 196 60 78 103 14,2 158 49 63 843/4 20,9 343 106 137 182 19,3 292 90 116 1541 26,6 557 172 223 295 25,4 506 156 202 268

1 1/4 35,0 965 299 385 511 34,0 909 281 363 4811 1/2 40,9 1313 407 525 696 39,8 1249 387 499 661

2 52,5 2165 670 865 1147 51,3 2067 641 827 10962 1/2 69,4 3779 1171 1511 2003 - - - - -

3 85,2 5707 1769 2282 3024 - - - - - 3 1/2 97,4 7448 2309 2979 3947 - - - - -

4 110,0 9518 2950 3807 5044 - - - - -

Tubo Metálico Flexible Tubo Metálico Intermedio IMC Tamaño

comercial <pulg>

Diam. Interno <mm>

Área Total

100% <mm2>

2 Cond. 31%

<mm2>

Más de 2 Cond. 40%

<mm2>

1 Cond. 53%

<mm2>

Diam. Interno <mm>

Área Total100%

<mm2>

2 Cond. 31%

<mm2>

Más de 2 Cond. 40%

<mm2>

1 Cond. 53%

<mm2>

3/8 9,7

74 23 29 39 - - - - -

1/2 16,1 204 63 81 108 16,8 220 68 88 1163/4 20,9 343 106 137 181 21,9 378 117 151 2001 25,9 527 163 210 279 28,1 618 191 247 327

1 1/4 32,4 823 255 329 436 36,8 1061 329 424 5621 1/2 39,0 1198 371 479 634 42,7 1434 444 573 760

2 51,8 2109 653 843 1117 54,6 2341 725 936 12402 1/2 63,5 3167 981 1567 1678 64,9 3312 1027 1325 1756

3 76,2 4560 1413 1823 2416 80,7 5110 1584 2044 27093 1/2 88,9 6207 1924 2482 3289 93,2 6828 2116 2731 3619

4 101,6 8107 2513 3243 4296 105,8 8794 2726 3517 4660

Page 120: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

105

Tabla I.7. Dimensiones y Área Porcentual de los tubos y tuberías. (Área de los tubos y tuberías ocupada por las combinaciones de cables permitidas en la Tabla 1 Capítulo 9) (Continuación)

Tubo No Metálico Flexible Hermético a los Líquidos (Tipo

FNMC-B*) Tubo No Metálico Flexible Hermético a los Líquidos (Tipo

FNMCA-A*) Tamaño

comercial <pulg>

Diam. Interno <mm>

Área Total 100%

<mm2>

2 Cond. 31%

<mm2>

Más de 2 Cond. 40%

<mm2>

1 Cond. 53%

<mm2>

Diam. Interno <mm>

Área Total 100%

<mm2>

2 Cond. 31%

<mm2>

Más de 2 Cond. 40%

<mm2>

1 Cond. 53%<mm2>

3/8 12,5 123 38 49 65 12,6 123 38 49 651/2 16,0 202 62 80 107 16,0 201 62 80 1063/4 21,1 349 108 139 185 21,0 345 107 138 1821 26,8 562 174 225 298 26,5 550 170 220 291

1 1/4 35,4 985 305 394 522 35,1 968 300 387 5131 1/2 40,3 1276 396 510 676 40,7 1301 403 520 689

2 51,6 2093 649 837 1109 52,4 2155 668 861 1142

Tubo metálico Flexible Hermético a los Líquidos Tubo Metálico Rígido

Tamaño comercial

<pulg>

Diam. Interno <mm>

Área Total

100% <mm2>

2 Cond. 31%

<mm2>

Más de 2 Cond. 40%

<mm2>

1 Cond. 53%

<mm2>

Diam. Interno <mm>

Área Total 100%

<mm2>

2 Cond. 31%

<mm2>

Más de 2 Cond. 40%

<mm2>

1 Cond. 53%<mm2>

3/8 12,5 123 38 49 65 - - - - - 1/2 16,0 202 62 80 107 16,0 202 62 80 1073/4 21,1 349 108 139 185 21,2 354 109 140 1871 26,8 562 174 225 298 27,0 572 177 229 303

1 1/4 35,4 985 305 394 522 35,4 984 305 393 5211 1/2 40,3 1276 396 511 676 41,2 1336 414 534 708

2 51,6 2093 649 837 1110 52,9 2198 681 879 11652 1/2 63,3 3147 976 1259 1668 63,2 3139 972 1255 1663

3 78,3 4822 1494 1929 2556 78,5 4838 1500 1935 25643 1/2 89,4 6278 1946 2511 3327 90,7 6458 2001 2583 3422

4 102,1 8188 2538 3275 4339 102,9 8311 2576 3324 44055 - - - - - 128,8 13040 4042 5216 69116 - - - - - 154,8 18811 5831 7524 9970

Page 121: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

106

Tabla I.7. Dimensiones y Área Porcentual de los tubos y tuberías. (Área de los tubos y tuberías ocupada por las combinaciones de cables permitidas en la Tabla 1 Capítulo 9) (Continuación)

Tubo de PVC Rígido, Sch. 80 Tubo de PVC Rígido, Sch. 40 y tubo de PE-AD

Tamaño comercial

<pulg>

Diam. Interno <mm>

Área Total

100% <mm2>

2 Cond. 31%

<mm2>

Más de 2 Cond. 40%

<mm2>

1 Cond. 53%

<mm2>

Diam. Interno <mm>

Área Total 100%

<mm2>

2 Cond. 31%

<mm2>

Más de 2 Cond. 40%

<mm2>

1 Cond. 53%<mm2>

1/2 13,4 140 43 56 74 15,2 183 56 73 973/4 18,3 263 81 105 140 20,4 327 101 130 1731 23,8 443 137 177 235 26,1 536 166 214 284

1 1/4 31,9 798 247 319 423 34,5 937 290 374 4961 1/2 37,5 1103 341 441 585 40,4 1281 397 512 678

2 48,6 1854 574 741 743 52,0 2123 658 849 11252 1/2 58,2 2657 823 1062 1408 62,1 3029 938 1211 1605

3 72,7 4158 1288 1662 2202 77,3 4689 1453 1875 24853 1/2 84,5 5605 1737 2241 2970 89,4 6281 1947 2512 3329

4 96,2 7263 2251 2905 3849 101,5 8099 2510 3239 42925 121,1 11519 3570 4607 6105 127,4 12749 3952 5099 67566 145,0 16514 5119 6605 8752 153,2 18430 5713 7372 9768

Tubo de PVC, Tipo A Tubo de PVC, Tipo EB

Tamaño comercial

<pulg>

Diam. Interno <mm>

Área Total

100% <mm2>

2 Cond. 31%

<mm2>

Más de 2 Cond. 40%

<mm2>

1 Cond. 53%

<mm2>

Diam. Interno <mm>

Área Total 100%

<mm2>

2 Cond. 31%

<mm2>

Más de 2 Cond. 40%

<mm2>

1 Cond. 53%<mm2>

1/2 17,8 248 76 99 131 - - - - - 3/4 23,1 419 130 167 222 - - - - - 1 29,8 699 216 280 370 - - - - -

1 1/4 38,1 1140 353 456 604 - - - - - 1 1/2 43,7 1499 464 599 794 - - - - -

2 54,7 2352 729 941 1247 56,4 2499 774 1000 13242 1/2 66,9 3518 1090 1407 1864 - - - - -

3 82,0 5286 1638 2117 2801 84,8 5618 1741 2247 29783 1/2 93,7 6899 2138 2759 3656 96,6 7332 2272 2932 3886

4 106,6 8853 2744 3541 4692 108,9 9321 2889 3728 49395 - - - - - 135,0 14319 4439 5727 75896 - - - - - 160,9 20341 6305 8136 10781

Page 122: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

107

Tabla I.8. Área de ocupación máxima permisible para cables multiconductores en bandejas portacables tipo escaleras, canal ventilado y fondo sólido para cables de 2000 V nominales o

menos. [Tabla 392.9-CEN]

Área de ocupación máxima permisible de los cables multiconductores en cm²

Bandejas tipo escalera o canal ventilado, Artículo 392.9(A)

Bandejas de fondo sólido, Artículo 392.9(C)

Ancho interior de la bandeja

en cm

Columna 1 Aplicable sólo

al Artículo 392.9(A)(2)

Columna 2* Aplicable sólo

al Artículo 392.3(A)(3)

Columna 3 Aplicable sólo

al Artículo 392.9(C)(2)

Columna 4* Aplicable sólo

al Artículo 392.9(C)(3)

15 30 45 60 76 90

45 90 135 180 225 270

45-(3Sd)** 90-(3Sd)

135-(3,2Sd) 180-(3Sd) 225-(3Sd) 270-(3Sd)

35 70 106 142 177 213

35-(2,5Sd)** 70-(2,5Sd) 106-(2,5Sd) 142-(2,5Sd ) 177-(2,5Sd ) 213-(2,5Sd)

* Las ocupaciones máximas de las columnas 2 y 4 deberán calcularse según la fórmula indicada. Por ejemplo, la ocupación máxima en cm² para una bandeja de ancho 15 cm en la columna 2 debe ser: 45 menos (3 X SD)

** El término SD de las columnas 2 y 4 es la suma de los diámetros, en cm de todos los cables multiconductores de calibres 4/0 y mayores que están en una misma bandeja con cables de calibres menores.

Page 123: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

108

Tabla I.9. Clasificación NEMA de los tableros

Page 124: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

109

Tabla I.10. Valores de los índices de riesgo para la instalación de un pararrayo

Page 125: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

110

Tabla I.10. Valores de los índices de riesgo para la instalación de un pararrayo.

(Continuación)

Page 126: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

111

Tabla I.10. Valores de los índices de riesgo para la instalación de un pararrayo.

(Continuación)

Page 127: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

112

Tabla I.10. Valores de los índices de riesgo para la instalación de un pararrayo.

(Continuación)

Page 128: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

113

Tabla I.11. Capacidades de corriente (A) permisibles de conductores aislados de 0 a 2000 Volt y 60 °C a 90 °C no más de tres conductores activos en una canalización, cables o directamente enterrados, para una

temperatura ambiente de 30°C

CALIBRE TEMPERATURA NOMINAL DEL CONDUCTOR (VER TABLA 310-13) SECCIÓN

60º C 75º C 90º C 60º C 75º C 90º C

AWG/ Kcmil

TIPOS TW*, UF*

TIPOS FEPW*, RH*, RHW*, THHW*, THW*, THWN*, XHHW*, USE*, ZW*

TIPOS TBS, SA, SIS, FEP*, FEPB*, MI, RHH*, RHW-2, THHN*, THHW*, THW-2*, THWN-2*, USE-2, XHH, XHHW*, XHHW-2, ZW-2

TIPOS TW*, UF*

TIPOS RH*, RHW*, THHW*, THW*, THWN*, XHHW*, USE*

TIPOS TBS, SA, SIS, THHN*, THHW*, THW-2, THWN-2, RHH*, RHW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2

AWG/ Kcmil

COBRE ALUM O ALUM RECUBIERTO DE COBRE 18 16 14 12 10 8

....

.... 20* 25* 30 40

....

.... 20* 25* 35* 50

14 18 25* 30* 40* 55

....

....

.... 20* 25 30

....

....

.... 20* 30* 40

....

....

.... 25* 35* 45

....

....

.... 12 10 8

6 4 3 2 1

55 70 85 95 110

65 85 100 115 130

75 95 110 130 150

40 55 65 75 85

50 65 75 90 100

60 75 85 100 115

6 4 3 2 1

1/0 2/0 3/0 4/0

125 145 165 195

150 175 200 230

170 195 225 260

100 115 130 150

120 135 155 180

135 150 175 205

1/0 2/0 3/0 4/0

250 300 350 400 500

215 240 260 280 320

255 285 310 335 380

290 320 350 380 430

170 190 210 225 260

205 230 250 270 310

230 255 280 305 350

250 300 350 400 500

600 700 750 800 900

355 385 400 410 435

420 460 475 490 520

475 520 535 555 585

285 310 320 330 355

340 375 385 395 425

385 420 435 450 480

600 700 750 800 900

1000 1250 1500 1750 2000

455 495 520 545 560

545 590 625 650 665

615 665 705 735 750

375 405 435 455 470

445 485 520 545 560

500 545 585 615 630

1000 1250 1500 1750 2000

FACTORES DE CORRECCION TEMP.AMBIENTE

EN °C PARA TEMPERATURA AMBIENTE DISTINTA DE 30 °C, MULTIPLICAR LAS ANTERIORES CAPACIDADES DE CORRIENTE POR EL CORRESPONDIENTE FACTOR ABAJO INDICADO

21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 61-70 71-80

1,08 1,00 0,91 0,82 0,71 0,58 0,41 .... .... ....

1,05 1,00 0,94 0,88 0,82 0,75 0,67 0,58 0,33 ....

1,04 1,00 0,96 0,91 0,87 0,82 0,76 0,71 0,58 0,41

1,08 1,00 0,91 0,82 0,71 0,58 0,41 .... .... ....

1,05 1,00 0,94 0,88 0,82 0,75 0,67 0,58 0,33 ....

1,04 1,00 0,96 0,91 0,87 0,82 0,76 0,71 0,58 0,41

* Si no se permite otra cosa específicamente en otro lugar de este Código, la protección contra sobreintensidad de los conductores marcados con un asterisco (*), no deben superar los 15 Ampere para el número 14 AWG; 20 Ampere para el número 12 AWG y 30 Ampere para el número 10 AWG, todos de cobre; o 15 Ampere para el número 12 AWG y 25 Ampere para el número 10 AWG de aluminio y aluminio recubierto de cobre, una vez aplicados todos los factores de corrección por la temperatura ambiente y el número de conductores.

Page 129: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

114

Tabla I.12. Dimensiones de los conductores aislados y cables de aparatos [Tabla 5 -CEN]

Tipos: AF, FFH-2, RFH-1, RFH-2, RH, RHH*, RHW*, RHW-2*, RHH, RHW, RHW-2, SF-1, SF-2, SFF-1, SFF-2,

Tipo Calibre Diámetro aprox. mm Sección aprox. mm²

RFH-2 18 3,45 9,37 FFH-2 16 3,76 11,10 RH 14 4,14 13,46 12 4,62 16,78 RHW-2, RHH 14 4,90 18,87

RHW 12 5,38 22,77 RH, RHH 10 5,99 28,22 RHW 8 8,28 53,85 RHW-2 6 9,24 67,13 4 10,46 86,01 3 11,17 98,09 2 11,99 112,88 1 14,78 171,63 1/0 15,80 196,03 2/0 16,96 226,10 3/0 18,28 262,67 4/0 19,76 306,70 250 22,73 405,88 300 24,13 457,30 350 25,42 507,72 400 26,62 556,51 500 28,77 650,45 600 31,57 782,88 700 33,37 874,87 750 34,24 920,74 800 35,05 964,97 900 36,67 1056,55 1000 38,15 1143,13 1250 43,91 1514,77 1500 47,04 1737,95 1750 49,93 1958,50 2000 52,63 2175,38 SF-2, SFF-2 18 3,07 7,42 16 3,38 8,96 14 3,76 11,10 SF-1, SFF-1 18 2,31 4,20 RFH-1, AF, XF, XFF 18 2,69 5,69 AF, TF, TFF, XF, XFF 16 3,00 7,05 AF, TW, XF, XFF 14 3,38 8,96 TW 12 3,86 11,70 10 4,47 15,69 8 5,99 28,22 RHH*, RHW*, RHW-2*, 14 4,14 13,46 THHW,THW,THW-2

* Los tipos RHH, RHW y RHW-2 sin cubierta exterior.

Page 130: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

115

Tabla I.12. Dimensiones de los conductores aislados y cables de aparatos [Tabla 5 -CEN] (Continuación)

Tipos: AF, RHH*, RHW*, RHW-2*, THHN, THHW, THW, THW-2, TFN, TFFN, Tipo Calibre Diámetro aprox. mm Sección aprox. mm²RHH*, RHW*, RHW-2* 12 4,62 16,78 THHW, THW, AF, XF, XFF 10 5,23 21,50 RHH*, RHW*, RHW-2*, THHW, THW, THW-2.

8 6,76 35,85

TW, THW 6 7,72 46,82 THHW 4 8,94 62,78 THW-2 3 9,65 73,17 RHH* 2 10,46 86,01 RHW* 1 12,50 122,65 RHW-2* 1/0 13,51 143,41 2/0 14,68 169,28 3/0 16,00 201,11 4/0 17,47 239,84 250 19,43 296,53 300 20,83 340,71 350 22,12 384,40 400 23,31 427,01 500 25,47 509,75 600 28,27 627,69 700 30,07 710,33 750 30,93 751,71 800 31,75 791,73 900 33,37 874,87 1000 34,85 953,81 1250 39,09 1200,15 1500 42,21 1399,65 1750 45,11 1598,24 2000 47,80 1794,72 TFN 18 2,13 3,57 TFFN 16 2,44 4,67 THHN 14 2,82 6,24 THWN 12 3,30 8,56 THWN-2 10 4,16 13,63 8 5,48 23,64 6 6,45 32,69 4 8,23 53,19 3 8,94 62,78 2 9,75 74,71 1 11,33 100,79 1/0 12,34 119,68 2/0 13,51 143,41 3/0 14,83 172,81 4/0 16,30 208,84 250 18,06 256,15 300 19,45 297,31

* Los tipos RHH, RHW y RHW-2 sin cubierta exterior.

Page 131: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

116

APÉNDICE II

Cálculo de las luminarias

Page 132: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

117

APÉNDICE II. CÁLCULO DE LUMINARIAS

Tabla II.1. Cálculo de luminarias por Zona

Zona ID Área Lux Requeridos

Tipo de Lámpara

N° de Luminarias

12 Esclusa de Personal 400 4 x 17 W 1 13 Esclusa de Material 1 400 4 x 17 W 1 14 Esclusa de Material 2 400 4 x 17 W 1 15 Pesada y Muestreo 400 4 x 17 W 2 16 Esclusa de Acceso a Material y Fórmulas 400 4 x 17 W 2 17 Área de Distribución de Personal 400 4 x 17 W 4 18 Mezclado y Distribución 700 4 x 17 W 23 19 Área de Lavado 400 4 x 17 W 1 20 Esclusa de acceso de Personal a Llenado (c) 400 4 x 17 W 2 21 Esclusa de acceso de Personal a Llenado (d) 400 4 x 17 W 2 22 Llenado 750 4 x 17 W 14 23 Zona de Lavado y Preparación. ISO 7 700 4 x 17 W 22 24 Esclusa de Materia Prima (III) Lavado y Prepar. 400 4 x 17 W 3 25 Pasillo de almacén hacia Esclusa (III) 400 4 x 17 W 6 26 Zona de Recepción de frascos x Aut ISO 8 500 4 x 17 W 9 27 Zona de Autoclaves 450 4 x 17 W 2 28 Pasillo paralelo a Autoclaves 400 4 x 17 W 2 29 Zona de Recepción de Frascos Autoclaves 500 4 x 17 W 13 30 Zona de Inspección Visual y Etiquetado ISO 8 800 4 x 17 W 10 31 Esclusa de Materia Prima (IV) Embalaje 400 4 x 17 W 1 32 Zona de Embalaje ISO 8 500 4 x 17 W 18 33 Baños Damas - Zona de Cambio Calle 400 4 x 17 W 2 34 Baños Damas - Zona Sanitarios 400 4 x 17 W 3 35 Baños Damas - Zona de Cambio 2 400 4 x 17 W 1 36 Baños Damas - Lavamanos 400 4 x 17 W 1

37 Baños Damas - Esclusa de Entrada a Producción 400 4 x 17 W 1

38 Baños Caballeros - Zona de Cambio Calle 400 4 x 17 W 2 39 Baños Caballeros - Zona Sanitarios 400 4 x 17 W 4 40 Baños Caballeros - Zona de Cambio 2 400 4 x 17 W 2 41 Baños Caballeros - Lavamanos 400 4 x 17 W 1

42 Baños Caballeros - Esclusa de Entrada a Producción 400 4 x 17 W 1

43 Lavandería 400 4 x 17 W 3 44 Lava Mopas 400 4 x 17 W 1

Prod

ucci

ón

45 Pasillos 400 4 x 17 W 59

Page 133: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

118

Tabla II.1. Cálculo de luminarias por Zona (Continuación)

Zona ID Área Lux Requeridos

Tipo de Lámpara

N° de Luminarias

46 Archivo Control de Calidad 400 3 x 32 W 2 47 Cuarto de Retención de Muestras 500 3 x 32 W 2 48 Lab. de Microbiología 700 3 x 32 W 3 49 Esclusa de Personal 400 2 x 26 W 1 50 Área Limpia 400 2 x 26 W 1 51 Lab. Físico-Químico 700 3 x 32 W 4 52 Cuarto de Estabilidad 700 3 x 32 W 2 53 Oficinas de Producción 500 3 x 32 W 4 54 Oficinas de Validación 500 3 x 32 W 4 55 Laboratorio de Validación 700 3 x 32 W 3 56 Oficina de Supervisores de Mantenimiento 500 3 x 32 W 2 57 Oficina de Jefe de Mantenimiento 500 3 x 32 W 1 58 Baños 400 2 x 26 W 5 59 Pasillos de Circulación Oficinas 400 3 x 32 W 2 60 Pasillo de Circulación Servicios Básicos 400 3 x 32 W 6 C

ontr

ol d

e C

alid

ad

61 Almacén de Repuestos 400 3 x 32 W 2 62 Áreas Comunes 400 3 x 32 W 3 63 Escalera Principal 400 3 x 32 W 2 64 Sala de Reunión Informales 500 3 x 32 W 3 65 Sala de Reproducción 500 3 x 32 W 2 66 Baño de Damas 400 2 x 26 W 4 67 Baño de Caballeros 400 2 x 26 W 4 68 Pasillo de Circulación Control de Calidad 400 3 x 32 W 5 69 Pasillo de Circulación Otras Oficinas 400 3 x 32 W 5 70 Disponible 400 3 x 32 W 2 71 Escalera Almacén 42 3 x 32 W 2 O

tras

Áre

as P

B

72 Recepción 400 3 x 32 W 5

1 Almacén de Materia Prima y Empaques Rechazados 450 3 x 32 W 9

4 Almacén Cuarentena Materia Prima 400 3 x 32 W 6 5 Almacén de Insumos 400 3 x 32 W 10 8 Almacén Químicos 400 3 x 32 W 3 9 Almacén Materia Prima 400 3 x 32 W 8

Alm

acen

es

10 Recepción de Productos Terminados 400 3 x 32 W 5

Page 134: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

119

Tabla II.1. Cálculo de luminarias por Zona (Continuación)

Zona ID Área Lux Requeridos

Tipo de Lámpara

N° de Luminarias

73 Oficinas de Almacén 1 400 3 x 32 W 4 74 Oficinas de Almacén 2 400 3 x 32 W 4 75 Enfermería 500 3 x 32 W 3 76 Comedor 400 3 x 32 W 5 77 Kitchenette 300 2 x 26 W 2 78 Sala de Descanso 350 2 x 26 W 5 79 Sala de Entrenamiento 450 3 x 32 W 4 80 Área de Espera 400 3 x 32 W 3 81 Sala de Reuniones 500 3 x 32 W 3 82 Gerencia 4 500 3 x 32 W 2 83 Gerencia 3 500 3 x 32 W 2 84 Gerencia 2 500 3 x 32 W 2 85 Gerencia 1 500 3 x 32 W 2 86 Aseguramiento de Calidad 500 3 x 32 W 2 87 Administración 500 3 x 32 W 2 88 Recursos Humanos 500 3 x 32 W 2 89 Baños 1 400 2 x 26 W 5 90 Baños 2 400 2 x 26 W 6 91 Mantenimiento Nivel Técnico 318 3 x 32 W 3 92 Servicios Críticos 280 3 x 32 W 40 93 Pasillo Oficina Almacén 400 3 x 32 W 7 94 Pasillo A 400 3 x 32 W 6

Niv

el 1

95 Pasillo B 400 3 x 32 W 8 2 Servicios Básicos 1 400 3 x 32 W 4 3 Servicios Básicos 2 390 3 x 32 W 6 6 Servicios Básicos 3 400 3 x 32 W 2 SB

7 Cuarto de Tableros 400 3 x 32 W 1

Page 135: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

120

APÉNDICE III. FUNDAMENTOS TEÓRICOS

III.1 Estimación de la carga

Existen diversos factores que influyen en el diseño de una instalación eléctrica, uno de los

determinantes fundamentales es la estimación de la carga, ya que es el punto de partida para

desarrollar un diseño eficiente de la instalación eléctrica. Por lo tanto es importante obtener una

aproximación lo mas cercana posible al comportamiento de la carga real conectada y a su

demanda asociada. Para determinar este comportamiento es necesario considerar los siguientes

factores:

III.1.1 Demanda Máxima

La demanda máxima es la potencia medida (en VA o W) asociada a la carga conectada en

un cierto intervalo de tiempo, el cual depende del rango de estudio de interés.

Por ser éste el máximo valor medido se parte de aquí como peor condición para

determinar la carga conectada al sistema. La carga conectada se define como la suma de las

cargas nominales de los equipos instalados y viene expresado tanto en unidades de potencia como

de corriente, dependiendo de las especificaciones del equipo.

Page 136: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

121

III.1.2 Factor de Demanda

Es la relación existente entre la demanda máxima de la instalación y la carga total

conectada al sistema, este valor es menor o igual a uno (1) debido a que la carga conectada es el

resultado de los valores nominales de todos los equipos conectados a la instalación.

Viene dado por:

CCDF Max

D = (16)

En donde,

FD = Factor de demanda del sistema de distribución.

DMax = Demanda máxima del sistema de distribución.

CC = Carga total conectada al sistema de distribución.

III.1.3 Factor de Carga

El factor de carga se refiere al valor obtenido de la relación entre la demanda promedio en

un intervalo de tiempo y la demanda máxima que se obtiene para ese mismo periodo de tiempo.

Este valor es adimensional y menor o igual que uno.

La expresión para el factor de carga es:

Mc PT

dtPF

⋅= ∫ (17)

en donde,

Page 137: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

122

Fc = Factor de carga.

P = Potencia instantánea.

PM = Potencia máxima.

T = Período de tiempo.

III.1.4 Factor de Diversidad

El factor de diversidad está dado por la relación de la sumatoria de las demandas máximas

individuales de las cargas y la demanda máxima del grupo de cargas de la instalación. Éste es un

valor adimensional y mayor o igual a uno.

El factor de diversidad resulta de la siguiente expresión:

Máxt

MáxiDiv D

DF ∑= (18)

en donde,

FDiv = Factor de diversidad del sistema.

DMáxi = Demanda máxima de las cargas individuales.

DMáxt = Demanda máxima total del grupo.

III.1.5 Factor de Simultaneidad

Se define como el inverso del factor de diversidad. Este factor se puede considerar como

un promedio de las demandas máximas individuales coincidentes en el momento que ocurre la

demanda máxima del grupo.

Page 138: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

123

El factor de simultaneidad depende del número de cargas individuales, decrece en un

principio y a medida que las cargas aumentan decrece más lentamente.

El factor viene dado por:

DivSim F

F 1= (19)

en donde,

FSim = Factor de simultaneidad del sistema.

FDiv = Factor de diversidad del sistema.

III.1.6 Factor de Utilización

Está definido como la relación que existe entre la demanda máxima y la capacidad

nominal del sistema o del equipo individual. Al igual que los factores anteriores es adimensional

y muestra el porcentaje de la capacidad del sistema o del equipo que se utiliza en el momento de

demanda máxima. [2]

Se puede expresar como:

S

MáxU C

DF = (20)

en donde,

FU = Factor de utilización del sistema.

DMáx= Demanda máxima del sistema o equipo.

CS = Capacidad nominal del sistema o del equipo.

Page 139: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

124

III.1.7 Factor de Pérdidas

Este factor es la relación que existe entre las pérdidas promedio y las pérdidas máximas

de potencia del sistema.

La expresión de esta relación es:

( )2

0

21

I

dttiT

F

T

Per

∫ ⋅⋅= (21)

en donde,

FPer = Factor de pérdidas.

i = Corriente instantánea.

I = Corriente máxima.

T = Período de tiempo.

III.2 Selección del calibre del conductor

Para la selección del calibre de los conductores se emplean los dos criterios que se

explican a continuación:

III.2.1 Criterio de Capacidad de Conducción de Corriente

La ampacidad del conductor está directamente relacionada con la condición natural de

conductividad y la capacidad térmica del aislamiento.

Page 140: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

125

La resistencia del conductor depende de la temperatura y en consecuencia su capacidad de

transmitir corriente. Así tenemos que los principales factores determinantes de la temperatura de

funcionamiento de los conductores son:

- La temperatura ambiente, que puede variar a lo largo del conductor así como de

tiempo en tiempo.

- El calor generado interiormente en el conductor por el paso de la corriente,

incluidas las corrientes fundamentales y sus armónicos.

- La velocidad de disipación del calor generado al medio ambiente. El aislamiento

térmico que cubre o rodea a los conductores, puede afectar a esa velocidad de disipación.

- Los conductores adyacentes cargados que tienen el doble efecto de elevar la

temperatura ambiente e impedir la disipación de calor.

De manera que la capacidad térmica del aislamiento está asociada a la propiedad de

disipar el calor producido en función del medio en el que se encuentre el conductor. Para un

conductor desnudo la disipación del calor con el ambiente es más rápida por el aire circulante,

mientras que si el conductor posee aislamiento la concentración del calor es mayor, al tener

menos contacto con el ambiente, generándose un aumento de temperatura considerable que puede

reducir la vida útil del mismo debido a la concentración de corriente.

Por tal razón el Código Eléctrico Nacional establece factores de corrección aplicables a la

capacidad de corriente permitida por conductor según los diversos factores que afecten la

disipación de calor, para así obtener la selección más adecuada. Los casos que se pueden

presentar son los siguientes: Capacidad de corriente para cables aislados en tuberías o

directamente enterrados, cables aislados en aire, conductores desnudos, factores de corrección

Page 141: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

126

para la capacidad de corriente para más de 3 conductores en ductos, y para el caso de temperatura

ambiente superior a 30° C.

Para el cálculo de la capacidad de conducción de corriente se toma en cuenta uno o más

de los siguientes factores:

- La compatibilidad de temperatura con el equipo conectado, sobre todo en los

puntos de conexión.

- La coordinación con los dispositivos de protección contra sobrecorriente del

circuito y de la instalación.

- El cumplimiento de los requisitos del producto de acuerdo con su norma

específica correspondiente. Véase 110.3(b) del CEN.

- El cumplimiento de las normas de seguridad establecidas por las prácticas

industriales y procedimientos normalizados.

Adicionalmente, el cálculo se realiza mediante la siguiente fórmula general:

RCAYCRDCTDTATCI⋅+⋅

Δ+−=

)1()(

(22)

En donde,

TC = Temperatura del conductor en °C.

TA = Temperatura ambiente en °C.

∆TD = Aumento de temperatura por perdidas dieléctricas.

RDC = Resistencia en cc del conductor a la temperatura TC.

Page 142: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

127

YC = Aumento de Resistencia en ca resultante de los efectos pelicular y de proximidad.

RCA = Resistencia térmica efectiva entre el conductor y el ambiente que lo rodea.

Así pues el CEN especifica en las tablas de aplicación 310.16 a 310.19 la ampacidad para

determinar el calibre de los conductores de 0 a 2000 V.

III.2.2 Criterio de Caída de Tensión

La caída de tensión es la diferencia de potencial entre los puntos de la carga y la fuente de

alimentación, debida a la impedancia propia del conductor. La impedancia es la suma de la

resistencia y la reactancia, dependiendo esta última de la sección, frecuencia de operación,

longitud, material, materiales magnéticos cercanos y la tensión de operación asociada al valor de

la corriente de la carga.

La expresión para la caída de tensión se puede expresar de la siguiente forma:

co VVV −=Δ (23)

Vo = Tensión de la fuente de alimentación.

Vc = Tensión en la carga.

ΔV = Caída de tensión en el conductor.

En el caso de instalaciones eléctricas de baja tensión se utilizan líneas cortas en donde se

desprecia el efecto de la capacitancia por lo tanto queda del diagrama vectorial lo siguiente:

Page 143: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

128

22 )cos()cos( θθθθ senRIRIsenRIRIVV co ⋅⋅−⋅⋅+⋅⋅+⋅⋅+= (24)

Por otro lado, la componente reactiva se puede despreciar cuando IR e IX no exceden a un

10%, así que:

θθ senXIRIVVV co ⋅⋅+⋅⋅=−=Δ cos (25)

Los parámetros R y X están en función de la longitud del conductor, siendo:

r = Resistencia (ohm/unidad de longitud)

x = Reactancia (ohm/unidad de longitud)

LrR ⋅= (26)

LxX ⋅= (27)

Combinando las ecuaciones de resistencia y reactancia con la obtenida anteriormente de

caída de tensión se obtiene:

)cos( θθ senxrLIV ⋅+⋅⋅⋅=Δ (28)

Introduciendo una nueva variable M, donde:

)cos( θθ senxrM ⋅+⋅= (29)

Expresando ΔV en porcentaje de tensión de la fuente Vo:

100% 2 ⋅⋅⋅⋅=Δo

o VMLIVV (30)

Utilizando los conceptos de kVA y kV, lo anterior se convierte en:

Page 144: Manual para el diseño de instalaciones eléctricas …159.90.80.55/tesis/000140652.pdf · universidad simÓn bolÍvar coordinaciÓn de ingenierÍa elÉctrica manual para el diseÑo

129

)cos(10

% 2 θθ senxrLkV

kVAV ⋅+⋅⋅⋅⋅

=Δ (31)

Según el Código Eléctrico Nacional en el artículo 210.19 (A) se recomienda que la

máxima caída de tensión en el conductor no supere el 5% desde el alimentador hasta la salida

más alejada, de los cuales un 3% está permitido para los circuitos derivados de fuerza o

iluminación, con el fin de proveer una eficiencia de funcionamiento razonable.

La caída de tensión por encima de los valores establecidos por el CEN, genera baja

tensión en la carga lo que implica un comportamiento en los equipos conectados no deseado.