14
República Bolivariana de Venezuela Misión Rivas Técnica Valencia Edo. Carabobo Integrantes: Mariaeugenia Malpica

microondas

Embed Size (px)

DESCRIPTION

microondas

Citation preview

República Bolivariana de Venezuela Misión Rivas Técnica

Valencia Edo. Carabobo

Integrantes:Mariaeugenia Malpica

Jhonny Buenaño Henry Morey

7mo Semestre de Electroinstrumentación

Valencia, Febrero 2011

Introducción

Las microondas son ondas electromagnéticas de la misma naturaleza que las ondas de radio, luz visible o rayos X, cuyas frecuencias van desde los 500 MHz hasta los 300 GHz o aún más. Por consiguiente, las señales de microondas, a causa de sus altas frecuencias, tienen longitudes de onda relativamente pequeñas, de ahí el nombre de “micro” ondas.

Las microondas pueden ser generadas de varias maneras, generalmente divididas en dos categorías: dispositivos de estado sólido y dispositivos basados en tubos de vacío.

Una de las aplicaciones más conocidas de las microondas es el horno de microondas, que usa un magnetrón para producir ondas a una frecuencia de aproximadamente 2,45 GHz.

En telecomunicaciones, las microondas son usadas en radiodifusión, ya que estas pasan fácilmente a través de la atmósfera con menos interferencia que otras longitudes de onda mayores.

Las antenas son dispositivos que sirven para transmitir y recibir ondas de radio. Convierte la onda guiada por la línea de transmisión (el cable o guía de onda) en ondas electromagnéticas que se pueden transmitir por el espacio libre.

En realidad una antena es un trozo de material conductor al cual se le aplica una señal y esta es radiada por el espacio libre.

En el presente trabajo se desarrolla el concepto y función de las microondas, la frecuencia FM, así como la antena y los tipos de antenas.

Microondas Se denomina microondas a las ondas electromagnéticas definidas en un rango de

frecuencias determinado; generalmente de entre 300 MHz y 300 GHz, que supone un período de oscilación de 3 ns (3×10-9 s) a 3 ps (3×10-12 s) y una longitud de onda en el rango de 1 m a 1 mm. Otras definiciones, por ejemplo las de los estándares IEC 60050 y IEEE 100 sitúan su rango de frecuencias entre 1 GHz y 300 GHz, es decir, longitudes de onda de entre 30 centímetros a 1 milímetro.

El rango de las microondas está incluido en las bandas de radiofrecuencia, concretamente en las de UHF (ultra-high frequency - frecuencia ultra alta) 0,3–3 GHz, SHF (super-high frequency - frecuencia super alta) 3–30 GHz y EHF (extremely-high frequency - frecuencia extremadamente alta) 30–300 GHz. Otras bandas de radiofrecuencia incluyen ondas de menor frecuencia y mayor longitud de onda que las microondas. Las microondas de mayor frecuencia y menor longitud de onda —en el orden de milímetros— se denominan ondas milimétricas.

La existencia de ondas electromagnéticas, de las cuales las microondas forman parte del espectro de alta frecuencia, fueron predichas por Maxwell en 1864 a partir de sus famosas Ecuaciones de Maxwell. En 1888, Heinrich Rudolf Hertz fue el primero en demostrar la existencia de ondas electromagnéticas mediante la construcción de un aparato para generar y detectar ondas de radiofrecuencia.

Frecuencia modulada

En telecomunicaciones, la frecuencia modulada (FM) o modulación de frecuencia es una modulación angular que transmite información a través de una onda portadora variando su frecuencia (contrastando esta con la amplitud modulada o modulación de amplitud (AM), en donde la amplitud de la onda es variada mientras que su frecuencia se mantiene constante). En aplicaciones analógicas, la frecuencia instantánea de la señal modulada es proporcional al valor instantáneo de la señal moduladora. Datos digitales pueden ser enviados por el desplazamiento de la onda de frecuencia entre un conjunto de valores discretos, una modulación conocida como FSK.

La frecuencia modulada es usada comúnmente en las radiofrecuencias de muy alta frecuencia por la alta fidelidad de la radiodifusión de la música y el habla (véase Radio FM). El sonido de la televisión analógica también es difundido por medio de FM. Un formulario de banda estrecha se utiliza para comunicaciones de voz en la radio comercial y en las configuraciones de aficionados. El tipo usado en la radiodifusión FM es generalmente llamado amplia-FM o W-FM (de la siglas en inglés "Wide-FM"). En la radio de dos vías, la banda estrecha o N-FM (de la siglas en inglés "Narrow-FM") es utilizada para ahorrar banda estrecha. Además, se utiliza para enviar señales al espacio.

La frecuencia modulada también se utiliza en las frecuencias intermedias de la mayoría de los sistemas de vídeo analógico, incluyendo VHS, para registrar la luminancia (blanco y negro) de la señal de video. La frecuencia modulada es el único

Una señal moduladora (la primera) puede

transmitirse modulando una onda portadora en

AM (la segunda) o FM (la tercera), entre otras.

método factible para la grabación de video y para recuperar de la cinta magnética sin la distorsión extrema, como las señales de vídeo con una gran variedad de componentes de frecuencia - de unos pocos hercios a varios megahercios, siendo también demasiado amplia para trabajar con equalisers con la deuda al ruido electrónico debajo de -60 dB. La FM también mantiene la cinta en el nivel de saturación, y, por tanto, actúa como una forma de reducción de ruido del audio, y un simple corrector puede enmascarar variaciones en la salida de la reproducción, y que la captura del efecto de FM elimina a través de impresión y pre-eco. Un piloto de tono continuo, si se añade a la señal - que se hizo en V2000 o video 2000 y muchos formatos de alta banda - puede mantener el temblor mecánico bajo control y ayudar al tiempo de corrección.

Dentro de los avances más importantes que se presentan en las comunicaciones, el mejoramiento de un sistema de transmisión y recepción en características como la relación señal – ruido, sin duda es uno de los más importantes, pues permite una mayor seguridad en las mismas. Es así como el paso de Modulación en Amplitud (A.M.), a la Modulación en Frecuencia (F.M.), establece un importante avance no solo en el mejoramiento que presenta la relación señal ruido, sino también en la mayor resistencia al efecto del desvanecimiento y a la interferencia, tan comunes en A.M.

La frecuencia modulada también se utiliza en las frecuencias de audio para sintetizar sonido. Está técnica, conocida como síntesis FM, fue popularizada a principios de los sintetizadores digitales y se convirtió en una característica estándar para varias generaciones de tarjetas de sonido de computadoras personales.

Ecuación Característica

Tipos de Antenas y Funcionamiento

Características de las antenas:Una antena es un dispositivo hecho para transmitir (radiar) y recibir ondas de

radio (electromagnéticas). Existen varias características importantes de una antena que deben de ser consideradas al momento de elegir una específica para su aplicación: Patrón de radiación Ganancia Directividad Polarización

Patrones de Radiación:El patrón de radiación de una antena se puede representar como una grafica

tridimensional de la energía radiada vista desde fuera de esta. Los patrones de radiación usualmente se representan de dos formas, el patrón de elevación y el patrón de azimuth. El patrón de elevación es una gráfica de la energía radiada por la antena vista de perfil. El patrón de azimuth es una gráfica de la energía radiada vista directamente desde arriba. Al combinar ambas gráficas se tiene una representación tridimensional de como es realmente radiada la energía desde la antena.

Ganancia:La ganancia de una antena es la relación entre la potencia que entra en una

antena y la potencia que sale de esta. Esta ganancia es comúnmente referida en dBi's, y se refiere a la comparación de cuanta energía sale de la antena en cuestión, comparada con la que saldría de una antena isotrópica. Una antena isotrópica es aquella que cuenta con un patrón de radiación esférico perfecto y una ganancia lineal unitaria.

Directividad:La directividad de la antena es una medida de la concentración de la potencia

radiada en una dirección particular. Se puede entender también como la habilidad de la antena para direccionar la energía radiada en una dirección especifica. Es usualmente una relación de intensidad de radiación en una dirección particular en comparación a la intensidad promedio isotrópica.

Polarización:Es la orientación de las ondas electromagnéticas al salir de la antena. Hay dos

tipos básicos de polarización que aplican a las antenas, como son: Lineal (incluye vertical, horizontal y oblicua) y circular (que incluye circular derecha, circular izquierda, elíptica derecha, y elíptica izquierda). No olvide que tomar en cuenta la polaridad de la antena es muy importante si se quiere obtener el máximo rendimiento de esta. La antena transmisora debe de tener la misma polaridad de la antena receptora para máximo rendimiento.

Tipos de antenasHay varios tipos de antenas. Los más relevantes para aplicaciones en bandas libres son: Antenas Dipolo Antenas Dipolo multi-elemento Antenas Yagi Antenas Panel Plano (Flat Panel) Antenas parabólicas (plato parabólico)

Patrones de radiacióna) Patrón de elevación de un dipolo genérico b) Patrón de azimuth de un dipolo genérico c) Patrón de radiación 3D

Antenas Dipolo:Todas las antenas de dipolo tienen un patrón de radiación generalizado. Primero

el patrón de elevación muestra que una antena de dipolo es mejor utilizada para transmitir y recibir desde el lado amplio de la antena. Es sensible a cualquier movimiento fuera de la posición perfectamente vertical. Se puede mover alrededor de 45 grados de la verticalidad antes que el desempeño de la antena se degrade más de la mitad. Otras antenas de dipolo pueden tener diferentes cantidades de variación vertical antes que sea notable la degradación.Un ejemplo de patrón de elevación puede verse en la figura 1a. A partir del patrón de azimuth se ve que las antenas operan igualmente bien en 360 grados alrededor de la antena. Físicamente las antenas dipolo son cilíndricas por naturaleza, y pueden ser ahusadas o con formas especificas en el exterior para cumplir con especificaciones de medidas. Estas antenas son usualmente alimentadas a través de una entrada en la parte inferior, pero también pueden tener el conector en el centro de la misma.

Antenas Dipolo Multi-Elemento:Las antenas multi-elemento tipo dipolo cuentan con algunas de las

características generales del dipolo simple. Cuentan con un patrón de elevación y azimuth similar al de la antena dipolo simple. La diferencia más clara entre ambas es la direccionalidad de la antena en el plano de elevación, y el incremento en ganancia debido a la utilización de múltiples elementos. Con el uso de múltiples elementos en la construcción de la antena, esta puede ser configurada para diferentes ganancias, lo cual permite diseños con características físicas similares. Tal como se puede ver en el patrón de elevación de la fig. 2, múltiples antenas de dipolo son muy direccionales en el plano vertical. Debido a que la antena de dipolo radía igualmente bien en todas las direcciones del plano horizontal, es capaz de operar igualmente bien en configuración horizontal.

Antenas Yagi:Estas se componen de un arreglo de elementos independientes de antena, donde

solo uno de ellos transmite las ondas de radio. El número de elementos (específicamente, el número de elementos directores) determina la ganancia y

Patrón de Elevación multi-dipoloPatrón de Elevación de una antena multi-dipolo

directividad. Las antenas Yagi no son tan direccionales como las antenas parabólicas, pero son más directivas que las antenas panel.

Antena YagiFigura 3. Construcción de una antena Yagi

Antenas Panel Plano (Flat Panel):Las antenas de panel plano como su nombre lo dice son un panel con forma

cuadrada o rectangular. y están configuradas en un formato tipo patch. Las antenas tipo Flat Panel son muy direccionales ya que la mayoría de su potencia radiada es una sola dirección ya sea en el plano horizontal o vertical. En el patrón de elevación (Fig. 4) y en el patrón de azimuth (Fig. 5) se puede ver la directividad de la antena Flat Panel. Las antenas Flat Panel pueden ser fabricadas en diferentes valores de ganancia de acuerdo a su construcción. Esto puede proveer excelente directividad y considerable ganancia.

Patrón de Elevación YagiPatrón de Radiación en Elevación Yagi

Patrón de Elevación Flat PanelPatrón de Elevación Flat Panel de Alta Ganancia

 

Antenas Parabólicas:Las antenas parabólicas usan características físicas así como antenas de

elementos múltiples para alcanzar muy alta ganancia y direccionalidad. Estas antenas usan un plato reflector con la forma de una parábola para enfocar las ondas de radio recibidas por la antena a un punto focal. La parábola también funciona para capturar la energía radiada por la antena y enfocarla en un haz estrecho al transmitir. Como puede verse en la Figura 5, la antena parabólica es muy direccional. Al concentrar toda la potencia que llega a la antena y enfocarla en una sola dirección, este tipo de antena es capaz de proveer muy alta ganancia.

Antena de Ranura:Las antenas de ranura cuentan con características de radiación muy similares a

las de los dipolos, tales como los patrones de elevación y azimuth, pero su construcción consiste solo de una ranura estrecha en un plano. Así como las antenas microstrip mencionadas abajo, las antenas de ranura proveen poca ganancia, y no cuentan con alta direccionabilidad, como evidencian sus patrones de radiación y su similiridad al de los dipolos. Su más atractiva característica es la facilidad de construcción e integración en diseños existentes, así como su bajo costo. Estos factores compensan por su desempeño poco eficiente.

Antenas Microstrip:Estas antenas pueden ser hechas para emular cualquiera de los diferentes tipos

de antenas antes mencionados. Las antenas microstrip ofrecen varios detalles que deben de ser considerados. Debido a que son manufacturadas con pistas en circuito impreso, pueden ser muy pequeñas y livianas. Esto tiene como costo no poder manejar mucha potencia como es el caso de otras antenas, además están hechas para rangos de frecuencia muy específicos. En muchos casos, esta limitación de frecuencia de operación puede ser benéfica para el desempeño del radio. Debido a sus características las antenas microstrip no son muy adecuadas para equipos de comunicación de banda amplia.

Patrón de Elevación ParabólicaPatrón de Elevación de Plato Parabólico

Conclusión

Las microondas son ondas de radio de alta frecuencia y por consiguiente de longitud de onda muy corta, están situadas entre los rayos infrarrojos (cuya frecuencia es mayor) y las ondas de radio convencionales. Su longitud de onda va aproximadamente desde 1 mm hasta 30 cm. Las microondas se generan con tubos de electrones especiales como el klistrón o el magnetrón, que incorporan resonadores para controlar la frecuencia, o con osciladores o dispositivos de estado sólido especiales.

Las microondas tienen muchas aplicaciones: radio y televisión, radares, meteorología, comunicaciones vía satélite, medición de distancias, investigación de las propiedades de la materia o cocinado de alimentos. Las microondas pueden detectarse con un instrumento formado por un rectificador de diodos de silicio conectado a un amplificador y a un dispositivo de registro o una pantalla.

La frecuencia modulada (FM) es una modulación angular que transmite información a través de una onda portadora variando su frecuencia. La frecuencia modulada es usada comúnmente en las radiofrecuencias de muy alta frecuencia por la alta fidelidad de la radiodifusión de la música y el habla (véase Radio FM). El sonido de la televisión analógica también es difundido por medio de FM.

La frecuencia modulada también se utiliza en las frecuencias intermedias de la mayoría de los sistemas de vídeo analógico, incluyendo VHS, para registrar la luminancia (blanco y negro) de la señal de video.

Las antenas son instrumentos utilizados en electrónica para propagar o recibir ondas de radio o electromagnéticas. Son indispensables para emitir o recibir señales de radio, televisión, microondas, de teléfono y de radar.

La mayoría de las antenas están hechas de cables o varillas metálicas conectadas al equipo emisor o receptor. Cuando se utiliza una antena para transmitir (propagar) ondas de radio, el equipo emisor hace oscilar la corriente eléctrica a lo largo de los cables o de las varillas. La energía de esta carga oscilante se emite al espacio en forma de ondas electromagnéticas (radio). En el caso de la recepción, estas ondas inducen una pequeña corriente eléctrica en la parte metálica de la antena, que se amplifica con el receptor de radio.

Por lo general se puede utilizar una misma antena para recibir y transmitir en una misma longitud de onda, siempre que la potencia de emisión no sea demasiado grande. Las dimensiones de la antena dependen de la longitud, o frecuencia, de la onda de radio para la que está diseñada. Los radiotelescopios y los sistemas de radar operan con longitudes de onda inferiores a 30 cm, denominadas microondas, que se comportan de forma similar a las ondas de luz.