27
Modos normales en sistemas dipolares semiconductores (TeoremaFluctuaci´on-Disipaci´onparaProcesos Convectivos) Miguel Angel Olivares-Robles a a Secci´on de Posgrado e Investigaci´ on, Escuela Superior de Ingenier´ ıa Mec´anica y El´ ectrica Culhuacan-IPN, Av. Santa Ana 1000, Col. San Francisco Culhuacan Coyoacan 04430, M´ exico D.F. Abstract Este proyecto se dirigi´o inicialmente a estudiar la respuesta f´ ısica de sistemas de baja dimensionalidad en presencia de campos magn´ eticos externos. El tema fue propuesto dentro del campo de estado s´olido de Ingenier´ ıa en Microelectr´onica. Solo que dado que mi contrataci´ on se realiz´oparaIngenier´ ıa de Sistemas Energ´ eticos era mas propio traba- jar en el area de Fluidos como l´ ınea de investigaci´ on de esta maestr´ ıa. Siendo ´ esta prioritaria en mi incorporaci´on a la ESIME-CU, del IPN. As´ ı que el proyecto se dirigi´o a continuar trabajo de investigaci´ on so- bre termodin´amica de procesos convectivos en Fluidos. La investigaci´ on se enfoc´o sobre dos aspectos: Teorema Fluctuaci´on- Disipaci´on para Procesos Convectivos, y el estudio de la producci´on de entrop´ ıa de flujos oscilatorios entre placas paralelas. TeoremaFluctuaci´on-Disipaci´ on para Procesos Convectivos: Para hacer la conexi´on entre la termodin´amica de procesos irreversibles y la teor´ ıa de procesos estoc´asticos es necesario invocar un postu- lado de tipo Einstein-Boltzmann. En este trabajo nosotros obtuvimos el teorema fluctuaci´on-disipaci´ on, el cual mostr´o algunas diferencias comparadas con el caso no-convectivo por ejemplo que d 2 S es una funci´on de Liapunov cuando se incluyen fluctuaciones en la velocidad. Producci´on de Entrop´ ıa: Con las soluciones anal´ ıticas para los campos de velocidad y de temperatura a la mano, calculamos la pro- ducci´ondeentrop´ ıa promediada en el tiempo tanto local como global para un flujo oscilatorio de un fluido newtoniano y un fluido de Maxwell.

Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

Modos normales en sistemas dipolares semiconductores

(Teorema Fluctuacion-Disipacion para ProcesosConvectivos)

Miguel Angel Olivares-Roblesa

aSeccion de Posgrado e Investigacion, Escuela Superior de IngenierıaMecanica y Electrica Culhuacan-IPN, Av. Santa Ana 1000, Col. San

Francisco Culhuacan Coyoacan 04430, Mexico D.F.

Abstract

Este proyecto se dirigio inicialmente a estudiar la respuesta fısicade sistemas de baja dimensionalidad en presencia de campos magneticosexternos. El tema fue propuesto dentro del campo de estado solido deIngenierıa en Microelectronica. Solo que dado que mi contratacion serealizo para Ingenierıa de Sistemas Energeticos era mas propio traba-jar en el area de Fluidos como lınea de investigacion de esta maestrıa.Siendo esta prioritaria en mi incorporacion a la ESIME-CU, del IPN.Ası que el proyecto se dirigio a continuar trabajo de investigacion so-bre termodinamica de procesos convectivos en Fluidos.

La investigacion se enfoco sobre dos aspectos: Teorema Fluctuacion-Disipacion para Procesos Convectivos, y el estudio de la produccionde entropıa de flujos oscilatorios entre placas paralelas.Teorema Fluctuacion-Disipacion para Procesos Convectivos:Para hacer la conexion entre la termodinamica de procesos irreversiblesy la teorıa de procesos estocasticos es necesario invocar un postu-lado de tipo Einstein-Boltzmann. En este trabajo nosotros obtuvimosel teorema fluctuacion-disipacion, el cual mostro algunas diferenciascomparadas con el caso no-convectivo por ejemplo que d2S es unafuncion de Liapunov cuando se incluyen fluctuaciones en la velocidad.Produccion de Entropıa: Con las soluciones analıticas para loscampos de velocidad y de temperatura a la mano, calculamos la pro-duccion de entropıa promediada en el tiempo tanto local como globalpara un flujo oscilatorio de un fluido newtoniano y un fluido de Maxwell.

Page 2: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

1 INTRODUCCION

Este trabajo Teorema Fluctuacion-Disipacion para Procesos Convectivos seenmarca dentro de la termodinamica de procesos irreversibles. El propositodel trabajo es abordar problemas no resueltos satisfactoriamente en esta ramade investigacion. El trabajo se esboza como sigue:

• Termodinamica Irreversible y Procesos Estocasticos

• El Teorema de fluctuaciondisipacion para Sistemas Convectivos

• Fluctuaciones en la velocidad y la Funcion de Liapunov

• Conclusiones

2 METODOS Y MATERIALES

Teorema Fluctuacion-Disipacion para Procesos Convectivos :Revisar las generalizaciones de la relacion de Einstein-Boltzmann por difer-entes autores. Descargar estas versiones electronicas via internet a partir desubscripciones a revistas cientıficas. Modificar o re-enunciar las propuestasmas viables para sistemas convectivos donde las variaciones de la veloci-dad juegan un papel importante. Realizamos los calculos pertinentes parala obtencion del teorema fluctuacion- disipacion, usando recursos como elHandbook of Mathematical-Functions de Abramowitz y Stegun de la edito-rial DOVER, el libro de thermodynamics de Callen, Segunda Edicion y ellibro Table of Integrals, series and Products de Gradshteyn y Rizhik Sextaedicion editorial Academic Press. Estos libros fueron adquiridos con los re-cursos del proyecto.La Produccion de Entropıa de Flujos Oscilatorioslos recursos del proyectos se usaron para actualizar el equipo de computo conlas tarjetas madre optimas para el calculo numerico de la produccion de en-tropıa. Adquirimos software y las subscripciones a revistas de investigacion.En esta fase del proyecto realizamos los calculos en colaboracion del Centrode Investigaciones en Energıa de la UNAM en Temixco, Morelos.El problema de transferencia de calor de un flujo oscilatorio para un fluidoNewtoniano y un fluido de Maxwell se aborda via las ecuaciones diferencialespara los campos de temperatura y velocidades con las condiciones a la fron-tera correspondientes a las condiciones del problema en nuestro caso placasparalelas. Despues aplicamos el metodo de la produccion de mınima entropıapara encontrar los parametros que minimizan la produccion de entropıa.

2

Page 3: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

3 RESULTADOS

La investigacion sobre el Teorema Fluctuacion-Disipacion para Procesos Con-vectivos dio lugar a la publicacion de un artıculo de investigacion en la re-vista cientıfica internacional, JOURNAL OF NON-EQUILIBRIUM THER-MODYNAMICS. En los productos esperados del proyecto originalse propuso la publicacion de un articulo a nivel internacional y secumplio.Para procesos convectivos, las fluctuaciones hidrodinamicas deben ser in-cluıdas la velocidad es una variable dinamica y aunque la entropıa no puededepender directamente de la velocidad, d2S depende de las variaciones dela velocidad. Algunos autores no incluyen las variaciones de la velocidad end2S, y asi tienen que introducir una funcion no termodinamica que reem-plaza la entropıa y depende d ela velocidad. A primera vista parece quela introduccion de tal funcion requiere la generalizacion de la relacion deEinstein-Boltzmann. Nosotros revisamos porque no es necesario generalizarla relacion de Einstein-Boltzmann en esta manera.

Sobre la investigacion de La Produccion de Entropıa de Flujos Oscila-torios entre placas paralelas: Nuestros resultados de los calculos sobre laproduccion de entropıa para estos flujos se publicaron en el 4th Interna-tional workshop on nonequilibrium thermodynamics and complex fluids, 3-7september 2006, Rhodes, Greece.En los productos esperados del proyecto original se propuso la pub-licacion de un articulo en congreso internacional y se presentaronDOS TRABAJOS.Finalmente con respecto a los estudiantes de la maestrıa de sistemas en-ergeticos, por ser esta maestrıa de nueva creacion, no hubo suficientes estu-diantes para incluirlos en la investigacion de cada profesor de la maestrıa.En mi caso no fue asignado ninguno.

4 IMPACTO

Nuestros resultados sobre Flujos Oscilatorios entre Placas Paralelas con-tribuyen a la minimizacion de las irreversibilidades en el flujo de fluidos entreplacas ayudando a entender el mecanismo optimo para el aprovechamientode la energıa en fluidos confimados.Con respecto al Teorema Fluctuacion-Disipacion para Procesos Convectivos,segun los comentarios de los arbitros: ”Reviewer #1: This is an excellent,concise and well written paper. It attacks a very fundamental issue in ir-reversible thermodynamics: In which form does the fluctuation-dissipationtheorem hold for convective processes? Old masters have attacked this prob-

3

Page 4: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

lem before without satisfactory results. This paper seems to resolve theissue.”Lo que contribuye a la formacion de investigadores en el estudio de la ter-modinamica de procesos irreversibles y la teorıa de procesos estocasticos.

AGRADECIMIENTOS Deseamos agradecer a Y. Oono y a M. Lopez deHaro por sus utiles discusiones.

4

Page 5: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

4th International workshop on nonequilibrium thermodynamics and complex fluids

IWNET

2006

4th International workshop on nonequilibrium thermodynamics and complex fluids 3-7 september 2006, Rhodes, Greece

Home Scope

Location Speakers Program

Abstracts Author index

Organizing Committee Scientific Committee

Venue & Accomodation Registration

News Contact

Medieval City of Rhodes

Program starts on Sunday, Sep. 3rd, 6.30pm, and ends on Thursday, Sep. 7th, at 4.00pm The registration desk will be available: on Sunday, Sept. the 3rd, in the afternoon between 5.00pm-10.30pm, and all day on Monday, Sept. the 4th.

In order to find your way to the conference site or hotel », to browse through the program », the abstracts » or author index » etc. please use the navigation bar on the left.

News

● August, 26th, 2006 Extended versions of some of the papers that will be presented in the Workshop will be submitted for publication in a special issue of the Journal of Non-Newtonian Fluid Mechanics (JNNFM), with Guest Editors: Vlasis Mavrantzas, Thanos Tzavaras and Antony Beris. The deadline for paper submission for this Special Volume is November 30th, 2006.

● July 24th, 2006 Program available online.

http://www.complexfluids.ethz.ch/cgi-bin/CONF/c (1 de 2)28/08/2006 07:56:13 p.m.

Page 6: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

4th International workshop on nonequilibrium thermodynamics and complex fluids

● July 10th, 2006 Book of abstracts & corresponding author index available online.

● March 6th, 2006 Prof. Masao Doi has cancelled his participation due to a conflict of the conference dates with some important duties of his as a chairman of his department. The organizing committee contacted Professor Akira Onuki to replace him. Prof. Onuki has kindly accepted the invitation and he will be one of the three invited speakers.

© and Kleanthi for IWNET 2006

http://www.complexfluids.ethz.ch/cgi-bin/CONF/c (2 de 2)28/08/2006 07:56:13 p.m.

Page 7: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

4th International workshop on nonequilibrium thermodynamics and complex fluids

14:25 2-Fluid Viscoelasticity _» H. Pleiner, J.L. Harden

14:50 Selected nonlinear physical properties of liquid crystalline elastomers _» A.M. Menzel, H.R. Brand

15:15 Suspensions of rodlike molecules: phase transition and equlilibration time scale for a shear flow _» F. Otto, C. Löschke, J. Wachsmuth

15:40 Coffee break

15:45 Poster Session »

16:35 Free time

17:00 Excursion

20:30 End of workshop day 3/5

Day 4: Wednesday morning, September 6, 2006

Session 5 Non-equilibrium thermodynamics: Approaches and formalisms Chair: A.N. Beris

08:00 Towards a thermodynamics of complex systems_» G. Nicolis

08:50 Non-Equilibrium Thermodynamics of Boundary Conditions _» H.C. Öttinger

09:15 Extended thermodynamics of polymers and superfluids_» D. Jou, J. Casas-Vazquez, M. Criado-Sancho, M.S. Mongiovi

09:40 Kinematics of turbulence in simple and polymeric fluids _» M. Grmela

http://www.complexfluids.ethz.ch/cgi-bin/CONF/c?program=on (5 de 8)28/08/2006 07:57:21 p.m.

Page 8: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

4th International workshop on nonequilibrium thermodynamics and complex fluids

10:05 Coffee break

10:20 Nonequilibrium thermodynamics of elasto-viscoplastic deformation _» M. Hütter, T.A. Tervoort, H.C. Öttinger

10:45 On a possible difference between the barycentric velocity and the velocity that gives translational momentum in fluids _» D. Bedeaux, S. Kjelstrup, H.C. Öttinger

11:10 Non-Equilibrium Thermodynamic Fluctuations within the Framework of Path Integrals _» A. McKane, F. Vazquez, M.A. Olivares-Robles

11:35 Discussion A.N. Beris

12:05 Lunch

Day 4: Wednesday afternoon, September 6, 2006

Session 6 Coarse-graining and mesoscopic dynamics - some mathematical aspects Chair: B.J. Edwards

14:00 Dissipation and Stress _» P. Constantin

14:25 Self-similarity in Smoluchowski's coagulation equation _» G. Menon, R.L. Pego

14:50 Stress relaxation theories in the approximation of polyconvex elastodynamics by viscoelasticity _» T. Tzavaras

15:15 Numerical analysis of coarse-graining for stochastic systems _» P. Plechac

15:40 Coffee break

http://www.complexfluids.ethz.ch/cgi-bin/CONF/c?program=on (6 de 8)28/08/2006 07:57:21 p.m.

Page 9: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

4th International workshop on nonequilibrium thermodynamics and complex fluids

IWNET

2006

4th International workshop on nonequilibrium thermodynamics and complex fluids 3-7 september 2006, Rhodes, Greece

Home Scope

Location Speakers Program

Abstracts Author index

Organizing Committee Scientific Committee

Venue & Accomodation Registration

News Contact

ORAL PRESENTATION

Session: 5 Non-equilibrium thermodynamics: Approaches and formalisms (scheduled: Wednesday, 11:10 )

Non-Equilibrium Thermodynamic Fluctuations within the Framework of Path

Integrals

A. McKane1, F. Vazquez2, M.A. Olivares-Robles3 1 Theory Group, School of Physics and Astronomy, University of Manchester M13 9PL, United

Kingdom

2 Facultad de Ciencias, UAEM, Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico

3 Seccion de Investigacion y Posgrado, ESIME-Culhuacan, IPN, Mexico D.F.

Fluctuational non-equilibrium thermodynamics is formulated in terms of path integrals. The theory is presented in such a way that it will be applicable to a wide class of stochastic processes, including non-Markovian processes. In particular, we show how to construct the path-integral scheme when the noise-correlation matrix is singular, which is the case for fluctuations in non-equilibrium thermodynamics, since the continuity equation has no stochastic term associated with it. The theory is illustrated by calculating the light-scattering spectrum in fluids. Non-linear contributions to this quantity are also computed. © IWNET 2006

© and Kleanthi for IWNET 2006

http://www.complexfluids.ethz.ch/cgi-bin/CONF/c?search=Olivares-Robles&COUNT=2828/08/2006 08:00:57 p.m.

Page 10: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

4th International workshop on nonequilibrium thermodynamics and complex fluids

IWNET

2006

4th International workshop on nonequilibrium thermodynamics and complex fluids 3-7 september 2006, Rhodes, Greece

Home Scope

Location Speakers Program

Abstracts Author index

Organizing Committee Scientific Committee

Venue & Accomodation Registration

News Contact

Medieval City of Rhodes

Program starts on Sunday, Sep. 3rd, 6.30pm, and ends on Thursday, Sep. 7th, at 4.00pm The registration desk will be available: on Sunday, Sept. the 3rd, in the afternoon between 5.00pm-10.30pm, and all day on Monday, Sept. the 4th.

In order to find your way to the conference site or hotel », to browse through the program », the abstracts » or author index » etc. please use the navigation bar on the left.

News

● August, 26th, 2006 Extended versions of some of the papers that will be presented in the Workshop will be submitted for publication in a special issue of the Journal of Non-Newtonian Fluid Mechanics (JNNFM), with Guest Editors: Vlasis Mavrantzas, Thanos Tzavaras and Antony Beris. The deadline for paper submission for this Special Volume is November 30th, 2006.

● July 24th, 2006 Program available online.

http://www.complexfluids.ethz.ch/cgi-bin/CONF/c (1 de 2)28/08/2006 07:56:13 p.m.

Page 11: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

4th International workshop on nonequilibrium thermodynamics and complex fluids

● July 10th, 2006 Book of abstracts & corresponding author index available online.

● March 6th, 2006 Prof. Masao Doi has cancelled his participation due to a conflict of the conference dates with some important duties of his as a chairman of his department. The organizing committee contacted Professor Akira Onuki to replace him. Prof. Onuki has kindly accepted the invitation and he will be one of the three invited speakers.

© and Kleanthi for IWNET 2006

http://www.complexfluids.ethz.ch/cgi-bin/CONF/c (2 de 2)28/08/2006 07:56:13 p.m.

Page 12: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

4th International workshop on nonequilibrium thermodynamics and complex fluids

15:55 Mathematical and computational methods for coarse-graining _» M.A. Katsoulakis

16:20 Some mathematical issues arising in the multiscale modelling of complex fluids_» C. Le Bris

16:45 Discussion B.J. Edwards

17:00 Free time

20:30 Gala dinner

22:30 End of workshop day 4/5

Day 5: Thursday morning, September 7, 2006

Session 7 Applications to complex materials: glasses, micelles, colloids, blends, interfaces Chair: V.G. Mavrantzas

08:00 Ergodicity-breaking in glassforming liquids (and related systems), and relaxation processes below the glass temperature, Tg_» C.A. Angell

08:50 Entropy production of oscillatory flows between parallel plates _» M. Lopez de Haro, S. Cuevas, M.A. Olivares-Robles, F. Vazquez

09:15 A thermodynamically consistent model for the thixotropic rheological behavior of concentrated colloidal star polymer solutions_» A.N. Beris, D. Vlassopoulos

09:40 Extrudate swell control by balancing short and long polyethylene chains using multi-scale modeling _» C.F.J. den Doelder

10:05 Coffee break

http://www.complexfluids.ethz.ch/cgi-bin/CONF/c?program=on (7 de 8)28/08/2006 07:57:21 p.m.

Page 13: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

4th International workshop on nonequilibrium thermodynamics and complex fluids

10:20 Flow of Polymer blends between Concentric Cylinders _» M. Dressler, B.J. Edwards, E.J. Windhab

10:45 On the rheology of a dilute suspension of vesicles _» C. Misbah, G. Danker

11:10 Atomistic molecular dynamics simulation of the temperature and pressure dependences of local and terminal relaxations in cis-1,4-polybutadiene_» G. Tsolou, V.G. Mavrantzas

11:35 Discussion V.G. Mavrantzas

12:00 Lunch

14:00 Discussion - Closing remarks V.G. Mavrantzas

15:00 End of workshop day 5/5

© and Kleanthi for IWNET 2006

http://www.complexfluids.ethz.ch/cgi-bin/CONF/c?program=on (8 de 8)28/08/2006 07:57:21 p.m.

Page 14: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

4th International workshop on nonequilibrium thermodynamics and complex fluids

IWNET

2006

4th International workshop on nonequilibrium thermodynamics and complex fluids 3-7 september 2006, Rhodes, Greece

Home Scope

Location Speakers Program

Abstracts Author index

Organizing Committee Scientific Committee

Venue & Accomodation Registration

News Contact

ORAL PRESENTATION

Session: 7 Applications to complex materials: glasses, micelles, colloids, blends, interfaces (scheduled: Thursday, 08:50 )

Entropy production of oscillatory flows between parallel plates

M. Lopez de Haro1, S. Cuevas1, M.A. Olivares-Robles2, F. Vazquez3 1 Centro de Investigacion en Energia, UNAM, Temixco, Morelos 62580, Mexico

2 Seccion de Investigacion y Posgrado, ESIME-Culhuacan, IPN, Mexico D.F.

3 Facultad de Ciencias, UAEM, Cuernavaca, Morelos 62209, Mexico

The heat transfer problem of a zero-mean oscillatory flow of both a Newtonian and a Maxwell fluid between infinite parallel plates with boundary conditions of the third kind is considered. With the analytic solutions for the velocity and temperature fields at hand, the local and global time-averaged entropy production are computed. The consequences of convective cooling of the plates are assessed for this problem. © IWNET 2006

© and Kleanthi for IWNET 2006

http://www.complexfluids.ethz.ch/cgi-bin/CONF/c?search=Olivares-Robles&COUNT=2728/08/2006 08:00:48 p.m.

Page 15: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

View Letter

Close

Date: Jul 03, 2006

To: "Miguel A Olivares-Robles" [email protected]

From: "Journal of Non-Equilibrium Thermodynamics" [email protected]

Subject: JNE Acceptance JNE-D-06-00018R1

Dear Dr Olivares-Robles, We are glad to inform that your paper ON THE FLUCTUATION-DISSIPATION THEOREM FOR CONVECTIVE PROCESSES reg.no. JNE-D-06-00018R1 has now been accepted for publication in the Journal of Non-Equilibrium Thermodynamics. With the release of the manuscript for publication, the author transfers the copyright to Walter de Gruyter GmbH & Co. KG, Berlin - New York, including the rights to produce offprints, photocopies or translations. The manusript will soon be sent to the typesetters. You will receive galley proofs together with your manuscript for proof reading as soon as they are available. Yours sincerely, Torsten Krueger for Professor Juergen U. Keller Editor-in-Chief __________________________________ Torsten Krueger Managing Editor, Journal of Non-Equilibrium Thermodynamics Walter de Gruyter GmbH & Co. KG Genthiner Strasse 13 10785 Berlin, Germany Tel. ++49-30-26005-176 Fax. ++49-30-26005-298 E-Mail: [email protected]

Close

Página 1 de 1View Letter

23/11/2006http://www.editorialmanager.com/jne/viewLetter.asp?id=2973

Page 16: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

J. Non-Equilib. Thermodyn.2007 �Vol. 32 � pp. 1–12

J. Non-Equilib. Thermodyn. � 2007 �Vol. 32 �No. 16 Copyright 2007 Walter de Gruyter �Berlin �New York. DOI 10.1515/JNETDY.2007.aaa

On the Fluctuation-Dissipation Theoremfor Convective Processes

Alan J. McKane1, Federico Vazquez2, and Miguel A. Olivares-Robles3,*1 Theory Group, School of Physics and Astronomy, University of Manchester,Manchester M13 9PL, UK2 Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, AvenidaUniversidad 1001, Chamilpa, Cuernavaca, Morelos 62209, Mexico3 Seccion de Posgrado e Investigacion, Escuela Superior de Ingenierıa Mecanicay Electrica Culhuacan-IPN, Av. Santa Ana 1000, Col. San Francisco CulhuacanCoyoacan 04430, Mexico D.F.

*Corresponding author ([email protected])

Abstract

When making the connection between the thermodynamics of irreversibleprocesses and the theory of stochastic processes through the fluctuation–dissipation theorem, it is necessary to invoke a postulate of the Einstein–Boltzmann type. For convective processes hydrodynamic fluctuations must beincluded, the velocity is a dynamical variable and although the entropy cannotdepend directly on the velocity, d2S will depend on velocity variations. Someauthors do not include velocity variations in d2S, and so have to introduce anon-thermodynamic function which replaces the entropy and does depend onthe velocity. At first sight, it seems that the introduction of such a functionrequires a generalisation of the Einstein–Boltzmann relation to be invoked.We review the reason why it is not necessary to introduce such a function,and therefore why there is no need to generalise the Einstein–Boltzmann re-lation in this way. We then obtain the fluctuation–dissipation theorem, whichshows some di¤erences as compared with the non-convective case. We alsoshow that d2S is a Liapunov function when it includes velocity fluctuations.

1. Introduction

Velocity fluctuations play an important role in a variety of non-equilibriumphenomena. Mention can be made, for instance, of time-dependent di¤usion

(AutoPDF V7 28/11/06 12:12) WDG (170�240mm) Tmath J-1657 JNET, 32:1 PMU: H(A1) 17/11/2006 pp. 1–12 1657_32-1_06-18 (p. 1)

(06-18)

Page 17: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

processes in binary liquid mixtures, where they are the principal mechanismleading to anomalously large fluctuations in concentration [1]. Also, the cou-pling between temperature and transverse-velocity fluctuations in the well-known case of a horizontal fluid layer heated from below may be associatedwith a small convective heat transfer below the Rayleigh–Benard instability[2]. It is natural to consider these kind of problems from the point of view ofirreversible thermodynamics. However, there is no prescription for how to in-troduce the velocity fluctuations into the formalism.

The standard method of introducing fluctuations into irreversible thermo-dynamics is through the Einstein–Boltzmann relation, PS P expfd2S=2kBg,where PS is the stationary probability distribution and d2S is the second vari-ation of the local entropy [3]. In this paper we will be interested in convectiveprocesses where the velocity is included as a dynamical variable, and in theexplicit form for d2S in this case. It should be noted, and is widely appreci-ated, that the entropy does not depend directly on the velocity of the system:velocity is a hydrodynamic, but not a thermodynamic variable. Thereforesome authors, notably Glansdor¤ and Prigogine [4], do not include velocityvariations in the expression for d2S.

A solution to this problem could be to introduce a new function which is es-sentially a generalisation of the entropy, which does depend on the velocity.This would not be a thermodynamic function, but it would then be necessaryto generalise the Einstein–Boltzmann relation in such a way that entropywould be replaced by this new function. Such a function has been introducedsome time ago by Glansdor¤ and Prigogine, but in the context of thermody-namic and hydrodynamic stability [4]. They suggested defining a new func-tion zC s� v2=2T0, where s is the entropy per unit mass, v is the barycentricvelocity, and T0 is the temperature in the reference state (for example, thetemperature in equilibrium). The analogous quantity for the system as awhole will be denoted by Z and is given by Z ¼

Ðrz dV , just as S ¼

Ðrs dV .

This function has not been utilised a great deal, perhaps in part becauseamong those who explicitly use the Z-function [4–7], most do not consistentlyuse the definition given above, sometimes using the (varying) temperature T inplace of the (non-varying) reference temperature T0.

The main reason why the function Z has not been widely used is no doubtthe demonstration by Oono [6] that d2S does in fact contain velocity varia-tions, even though the entropy does not depend on the velocity. In fact, theentropy may be written in terms of the velocity if other variables are intro-duced that exactly cancel out the velocity dependence [8]. To see this let uswrite [6]

dU ¼ T dS � p dV þ mg dNg; ð1Þ

(AutoPDF V7 28/11/06 12:12) WDG (170�240mm) Tmath J-1657 JNET, 32:1 PMU: H(A1) 17/11/2006 pp. 1–12 1657_32-1_06-18 (p. 2)

2 A.J. McKane et al.

J. Non-Equilib. Thermodyn. � 2007 �Vol. 32 �No. 1

Page 18: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

where U is the internal energy, V the volume, Ng the number of moles of theg-chemical species, p the pressure, and mg the chemical potential of the g-species. In addition, let ET be the total energy:

ET ¼ U þmvmvm=2; ð2Þ

vm being the barycentric velocity and m the mass. We assume that the changesin potential energy due to altitude, for instance, are negligible. Therefore weomit a potential term in this definition. Then Eq. (1) can be written as

dET ¼ T dS � p dV þ mg dNg þmvm dvm: ð3Þ

Now note that in Eq. (3) the term dET �mvm dvm does not depend on velocityin accordance with the definition of the total energy, Eq. (2). So the entropyin Eq. (3) does not depend on the velocity and the thermodynamic consis-tency of this form of Gibbs relation, Eq. (1), is ensured.

Oono also showed that d2Z is nothing else but d2S. However, mention mustbe made of the fact that d2S and d2Z are only equal within approximationschemes where T can be replaced by T0. There is also a lack of consensus asto whether d2S is a Liapunov function in systems where velocity is a dynam-ical variable: some authors believe it is [9], others believe it is not [4]. Some ofthis confusion involves matters of principle, some involves matters of nota-tion (for instance, d2S meaning two entirely di¤erent things), and some in-volves inconsistencies in definitions of key quantities. Our objective in thispaper is to clarify many of these points, by examining their consequences inthe context of linear theories of irreversible thermodynamics, and to obtainthe explicit form of the fluctuation–dissipation theorem for convective pro-cesses. We remark in passing that there are a whole set of di¤erent subtletiesand controversies in extending these ideas to the non-linear regime [5, 10–12],but we do not explore these here.

2. Irreversible thermodynamics and stochastic processes

A fluid being described within linear irreversible thermodynamics (LIT) re-quires five local variables: the volume per unit mass v, the barycentric velocityvm, and the temperature T [3], but our conclusions will be more widely appli-cable, for example applying also to a fluid in extended irreversible thermody-namics (EIT), which requires 14 dynamic variables [13–17]. To keep the no-tation general, we will denote the fluctuations in the independent dynamicvariables as abðr; tÞ, where b ¼ 1; . . . ;N and assume that they satisfy a set ofLangevin-type equations:

(AutoPDF V7 28/11/06 12:12) WDG (170�240mm) Tmath J-1657 JNET, 32:1 PMU: H(A1) 17/11/2006 pp. 1–12 1657_32-1_06-18 (p. 3)

On the Fluctuation-Dissipation Theorem for Convective Processes 3

J. Non-Equilib. Thermodyn. � 2007 �Vol. 32 �No. 1

Page 19: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

qabðr; tÞqt

¼ �Xc

ðdr 0Gbcðr; r 0Þacðr 0; tÞ þ ~ffbðr; tÞ: ð4Þ

Here the first term on the right-hand side is a result of the linearisation of themacroscopic equation about the stationary state and ~ffbðr; tÞ is a stochasticterm that represents fluctuations in the system. For the particular case of afluid within LIT N ¼ 5 and the five local variables a1; . . . ; a5 are the scaledversions of fluctuations in fv; vm;Tg. Specifically, if the equilibrium state isdenoted by fv0; 0;T0g, and fluctuations away from this state by fv1; vm;T1g,then we define the ab by [9, 18]:

a1 ¼ �r3=20 v1; amþ1 ¼

r1=20

cTvm; a5 ¼

r0Cv

T0c2T

� �1=2

T1; ð5Þ

with m ¼ 1; 2; 3. Here r0 is the mass density, cT the isothermal speed ofsound, and Cv the specific heat at constant volume, all in equilibrium. Theserescalings simplify the algebraic structure of the results. We use the same no-tation for the velocity and the velocity fluctuations, since no confusion shouldarise.

The analysis of the fluctuations is made more transparent if we adopt an ab-breviated form where the continuous labels r and r 0 are replaced by the dis-crete labels j and k and where the summation convention is assumed. In thiscase, (4) becomes

_aa jbðtÞ þ G

jkbc a

kc ðtÞ ¼ ~ff j

b ðtÞ; b; c ¼ 1; . . . ;N: ð6Þ

To complete the specification of the stochastic dynamics, the statistics of the

stochastic terms ~ff jb ðtÞ need to be given. We will take them to have a Gaussian

distribution with mean zero and correlator

3 ~ff jb ðtÞ ~ff k

c ðt 0Þ4 ¼ 2Qjkbcdðt� t 0Þ: ð7Þ

The requirement that they have zero mean follows from the fact that we askthat the ab have zero mean: 3a j

b4 ¼ 0. The matrix Q is real, symmetric, andpositive semidefinite. We will not give an explicit form for the matrix G here:it may be straightforwardly derived by a linearisation of the macroscopicequations [9]. As will be discussed below, the matrix Q may be given in termsof the matrix G and another matrix E, which is the covariant matrix of the ak

b

in the stationary state:

3alea

mf 4S ¼ ðE�1Þ lmef : ð8Þ

(AutoPDF V7 28/11/06 12:12) WDG (170�240mm) Tmath J-1657 JNET, 32:1 PMU: H(A1) 17/11/2006 pp. 1–12 1657_32-1_06-18 (p. 4)

4 A.J. McKane et al.

J. Non-Equilib. Thermodyn. � 2007 �Vol. 32 �No. 1

Page 20: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

Therefore, the stochastic dynamics will be completely specified if we can de-termine the matrix E. Clearly we need some new information from which tofind it. This is the Einstein–Boltzmann relation.

The Gaussian assumption determines the class of phenomena to be dealt with.In general, the Gaussian assumption is valid for a wide range of conditions inwhich the physical variables do not change too fast with time [3]. It may besaid that the su‰cient condition for the validity of this assumption is the localequilibrium hypothesis. Nevertheless, the system may be in a non-equilibriumnon-stationary state in which such a hypothesis is not satisfied and yet will bewell described throughout using the Gaussian assumption.

We now introduce the fluctuation–dissipation theorem by recalling that an-other way of specifying the stochastic process defined by Eqs. (6) and (7) isthrough the Fokker–Planck equation [19, 20],

qPða; tÞqt

¼ q

qajb

½G jkbc a

kc Pða; tÞ� þ

q2

qajbqa

kc

½QjkbcPða; tÞ�; ð9Þ

where Pða; tÞ is the probability distribution function of the local variables a.This is a linear Fokker–Planck equation and so the solution is a Gaussian,which may be written down explicitly as [21]

Pða; tÞ ¼ Nðdet XðtÞÞ�1=2 � exp � 1

2aTXðtÞ�1

a

� �; ð10Þ

where N is a normalisation constant and where the matrix XðtÞ is givenby

Xðt� t0Þ ¼ 2

ð t

t0

e�ðt�t 0ÞGQeðt�t 0ÞG dt 0: ð11Þ

Here initial conditions have been set at t ¼ t0 and we have made use of thefact that 3a j

b4 ¼ 0. By letting t0 ! �l, we find the stationary distribution.It has the form (10), but with XðtÞ replaced by

XðlÞ ¼ 2

ð t

�le�ðt�t 0ÞGQeðt�t 0ÞG dt 0

¼ 2

ðl0

e�rGQerG dr: ð12Þ

To make use of the Einstein–Boltzmann relation, let us observe that since theakb have zero mean, and since they are linearly related to the f k

b , which are

(AutoPDF V7 28/11/06 12:12) WDG (170�240mm) Tmath J-1657 JNET, 32:1 PMU: H(A1) 17/11/2006 pp. 1–12 1657_32-1_06-18 (p. 5)

On the Fluctuation-Dissipation Theorem for Convective Processes 5

J. Non-Equilib. Thermodyn. � 2007 �Vol. 32 �No. 1

Page 21: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

Gaussian, they also have a Gaussian distribution with a stationary probabilitydistribution of the form

PSðaÞ ¼ N exp � 1

2ajbE

jkbc a

kc

� �: ð13Þ

Here a ¼ ða1; a2; . . .Þ where ai ¼ ðai1; . . . ; a

iNÞ and N is a normalisation con-

stant. By comparing Eq. (13) with Eq. (10) when t0 ! �l, we can make theidentification

E�1 ¼ XðlÞ ¼ 2

ðl0

e�rGQerG dr: ð14Þ

Performing the integral in Eq. (14) gives the result [21]

2Qijab ¼ Gik

acðE�1Þkjcb þ ðE�1Þ ikacGTkjcb ; ð15Þ

where T denotes transpose. This is the fluctuation–dissipation theorem of thetheory. It is the required relationship that gives the matrix Q in terms of thematrices G and E.

3. The fluctuation–dissipation theorem for convective systems

The result (13) may be compared directly [18] with the Einstein–Boltzmannrelation

PSðaÞP expfd2S=2kBg; ð16Þ

so that

SðaÞ ¼ Seq �1

2kBa

jbE

jkbc a

kc : ð17Þ

The indices b and c in Eq. (13) or Eq. (17) run from 1 to N (from 1 to 5 inLIT) and include the velocity as a variable. However, if only specific volume(or density) and temperature are included as variables in d2S [4, 22], then itapparently seems that Eqs. (13) and (16) cannot be compared to determinethe E

jkbc matrix. Thus, it seems clear that the d2S that we need to use in the

Einstein–Boltzmann relation is the one that allows for variations in the veloc-ity. In fact, as shown by Oono [6],

d2S ¼ d1

T

� �dU þ d

p

T

� �dV �mdvmdvm

T

¼ d2Sjv �mdvmdvm

T; ð18Þ

(AutoPDF V7 28/11/06 12:12) WDG (170�240mm) Tmath J-1657 JNET, 32:1 PMU: H(A1) 17/11/2006 pp. 1–12 1657_32-1_06-18 (p. 6)

6 A.J. McKane et al.

J. Non-Equilib. Thermodyn. � 2007 �Vol. 32 �No. 1

Page 22: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

where d2Sjv is d2S with no variation in the velocity. Using d2S, rather thand2Sjv allows Eqs. (13) and (16) to be compared and the matrix E determined.It should be noted that (i) in [18], the additional term to be added to d2Sjv wasgiven as mdvmdð�vm=TÞ, and (ii) in [6] it was stated that d2Z ¼ d2S – whereasfrom the definition of z we see that

d2Z ¼ d2Sjv �mdvmdvm

T0: ð19Þ

Both the results (i) and (ii) are true in the linear regime, where T�1 may be re-placed by T�1

0 , but they are not true in general; the correct form for d2S isgiven in Eq. (18), and d2Z is not equal to d2S, it is given by Eq. (19). A conse-quence of this is that in the linear regime the Einstein–Boltzmann relation mayalso be written as PS P expfd2Z=2kBg. This means that if we were to use d2Sjv,as Glansdor¤ and Prigogine do, we would need to invoke this latter form ofthe Einstein–Boltzmann relation to identify the matrix E and so make theconnection between irreversible thermodynamics and the theory of stochasticprocesses, at least in the linear regime. However, as we have stressed, there isno need to introduce this extra postulate, and we may use the usual formPS P expfd2S=2kBg, as long as the correct form of d2S (18) is used.

We can now come back to the task of determining the matrix E. Let us firstwrite down the expression for d2S without velocity variations in terms of thescaled versions of v1 and T1, namely a1 and a5, to see explicitly where the pro-cess fails. After some straightforward manipulations [18] of this standard re-sult [22], we obtain, using the Einstein–Boltzmann relation,

PSðaÞP expc2T

2kBT0½�a

j1a

j1 � a

j5a

j5�

� �: ð20Þ

If this result were to be compared with Eq. (13), then it would imply that Ewould be diagonal, but with entries corresponding to the velocity fluctuationsbeing zero. This is clearly not correct since, for instance, the velocity–velocitycorrelation function in equilibrium (8) would be formally infinite. Using in-stead the form of d2S allowing for velocity variation we find

PSðaÞP expc2T

2kBT0½�a

jba

jb�

� �; ð21Þ

since vm ¼ ðc2T=r0Þ1=2

amþ1 and where b ¼ 1; . . . ; 5. A comparison with Eq. (8)gives the identification

Ejkbc ¼ c2T

kBT0djkdbc: ð22Þ

(AutoPDF V7 28/11/06 12:12) WDG (170�240mm) Tmath J-1657 JNET, 32:1 PMU: H(A1) 17/11/2006 pp. 1–12 1657_32-1_06-18 (p. 7)

On the Fluctuation-Dissipation Theorem for Convective Processes 7

J. Non-Equilib. Thermodyn. � 2007 �Vol. 32 �No. 1

Page 23: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

This now gives a consistent result, which when used in conjunction with thefluctuation–dissipation theorem (15), completely specifies the stochastic dy-namics described by Eqs. (6) and (7) or by Eq. (9). An explicit expression formatrix Q is obtained by substituting Eq. (22) into Eq. (15). The result is

Qjkbc ¼

kBT0

AS

jkbc ; ð23Þ

where S jkbc represents the symmetric part of the dynamic matrix G:

Smþ1;nþ1ðr; r 0Þ ¼1

r0½2mXmrns þ zdmrdns�

q2

qxrqx 0s

dðr� r 0Þ; ð24Þ

S55ðr; r 0Þ ¼1

r0Cldmn

q2

qxmqx 0n

dðr� r 0Þ; ð25Þ

with all other Sbcðr; r 0Þ, including S11ðr; r 0Þ, equal to zero. The tensor Xmnrs isdefined by

Xmnrs ¼1

2dmrdns þ dmsdnr �

2

3dmndrs

� �: ð26Þ

In Eqs. (24) and (25), the continuum limit has been taken so that the discretespatial variables j, k have been replaced by r, r 0. As mentioned above, all thematrices in Eq. (15) are 5� 5 in the convective case, unlike in the non-convective case where they are 2� 2.

The discussion above took place within the framework of LIT, which con-tains five dynamical variables, but the idea is more general. We have alreadymentioned EIT where the dissipative fluxes are raised to the same status asthe thermodynamic variables. In this case, d2S (where S now denotes the cor-responding non-equilibrium thermodynamic potential in place of the localequilibrium entropy) contains terms involving these fluxes, as well as themore conventional thermodynamical variables, but not the velocity variables[13–17]. Written in terms of scaled variables, it has the form [18]

PSðaÞP exp

�c2T

2kBT0

��a

j1a

j1 � a

j5a

j5 �

1

2ao j

mnao j

nm

� ajmþ10a

jmþ10 � a

j14a

j14

��: ð27Þ

Here the variables ao j

mn, ajmþ10 and a

j14 are scaled versions of the traceless stress

tensor, the heat flux, and the trace of the stress tensor, respectively. The result

(AutoPDF V7 28/11/06 12:12) WDG (170�240mm) Tmath J-1657 JNET, 32:1 PMU: H(A1) 17/11/2006 pp. 1–12 1657_32-1_06-18 (p. 8)

8 A.J. McKane et al.

J. Non-Equilib. Thermodyn. � 2007 �Vol. 32 �No. 1

Page 24: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

(27) su¤ers from the same defect as Eq. (20), but if we now include the veloc-ity variations in d2S, then we again obtain (21), but now with b ¼ 1; . . . ; 14.Therefore, the matrix E can be consistently identified, and again is given by(22).

4. Velocity fluctuations and the Liapunov function

Finally, within the context of LIT or EIT, we can investigate the claim thatd2Z is a Liapunov function, but that d2S can no longer be adopted as a Lia-punov function when velocity is included as a dynamical variable [4]. In thelanguage we have been using in this paper, the former is d2S and the latter isd2Sjv, and this is the notation we will use in what follows. To investigatewhether these functions are Liapunov functions, we begin from the form ofd2S su‰ciently near equilibrium that LIT will apply:

d2S ¼ � c2TT0

ajbðtÞa

jbðtÞ: ð28Þ

Here the a jb are averaged variables, that is, non-fluctuating variables that obey

the hydrodynamic balance equations. From Eq. (28) we see that d2Sa0 withequality if and only if a j

bðtÞ ¼ 0. Di¤erentiating Eq. (28) with respect to timegives

d

dtðd2SÞ ¼ � 2c2T

T0_aa jbðtÞa

jbðtÞ ¼

2c2TT0

Gjkbc a

kc ðtÞa

jbðtÞ

¼ 2c2TT0

Sjkbc a

kc ðtÞa

jbðtÞ; ð29Þ

where Sjkbc is the symmetric part of G jk

bc . Using the expressions for S jkbc , Eqs.

(24) and (25), and integrating by parts gives

d

dtðd2SÞ ¼ 2c2T

r0T0

ðdr 2mDmnDmn þ zD2

mm þl

Cv

qa5

qxm

qa5

qxm

� �b0; ð30Þ

where we have gone back to an explicit notation for the continuous spacevariable r. In Eq. (30), l, z, and m are the thermal conductivity, the bulk vis-cosity, and the shear viscosity, respectively, Dmn is the symmetric part of thescaled velocity gradient, and Dmn its traceless form:

Dmn ¼1

2

qamþ1

qxnþ qanþ1

qxm

� �; Dmn ¼ Dmn �

1

3Drrdmn: ð31Þ

(AutoPDF V7 28/11/06 12:12) WDG (170�240mm) Tmath J-1657 JNET, 32:1 PMU: H(A1) 17/11/2006 pp. 1–12 1657_32-1_06-18 (p. 9)

On the Fluctuation-Dissipation Theorem for Convective Processes 9

J. Non-Equilib. Thermodyn. � 2007 �Vol. 32 �No. 1

Page 25: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

This shows explicitly, when d2S is defined in terms of the averaged variables,that it is a Liapunov function, as suggested by Glansdor¤ and Prigogine [4].However, this calculation is identical to one carried out in [9], where dS=dtwas evaluated and shown to be non-negative. Since all of these calculationshave been carried out in the linear regime, and dS=dt ¼ ð1=2Þ dðd2SÞ=dt ¼ð1=2Þ dðd2ZÞ=dt, this is not surprising. Note that the inequality in Eq. (30) isan equality if and only if Dmn ¼ 0, Dmm ¼ 0, and qa5=qxm ¼ 0. From the con-stitutive relations for LIT, this corresponds to the vanishing of the tracelessstress tensor and its trace and of the heat flux. This condition corresponds tothe thermodynamic equilibrium state and it is equivalent to the conditionajbðtÞ ¼ 0 found when d2S given by Eq. (28) is equal to zero.

A similar calculation may be carried out for EIT. In this case, Eqs. (28) and(29) also hold, but now with the indices b and c running from 1 to 14. Theforms of the S

jkbc are di¤erent for EIT – in some ways they are simpler, since

they do not involve derivatives, and so no integration by parts is required toobtain an explicit expression for the time derivative of d2S. Using the expres-sions for S jk

bc given in [18] for EIT, one finds that

d

dtðd2SÞ ¼ 2c2T

T0

ðdr

1

2t�12 amnanm þ t�1

0 a14a14 þ t�11 amþ10amþ10

� �b0; ð32Þ

where the ti, i ¼ 0; 1; 2 are the relaxation times of the various fluxes. Onceagain, d2S is seen to be a Liapunov function, with the inequality in Eq. (32)becoming an equality if and only if amn ¼ 0, a14 ¼ 0, and amþ10 ¼ 0. These arejust scaled versions of the traceless stress tensor and its trace, and of the heatflux, and so equality is obtained when these vanish, just as for LIT. If we usethis method to try and show that d2Sjv is a Liapunov function, we find, forexample in the case of LIT,

d2Sjv ¼ � c2TT0

ða j1ðtÞa

j1ðtÞ þ a

j5ðtÞa

j5ðtÞÞ; ð33Þ

and di¤erentiating with respect to time gives

d

dtðd2SjvÞ ¼ � 2c2T

T0ð _aa j

1ðtÞaj1ðtÞ þ _aa j

5ðtÞaj5ðtÞÞ

¼ 2c2TT0

ðG jk1c a

kc ðtÞa

j1ðtÞ þ G

jk5c a

kc ðtÞa

j5ðtÞÞ: ð34Þ

Substituting the actual expressions for G jkbc [9, 18] in Eq. (34) does not give an

expression that is manifestly positive semidefinite. This is no doubt what

(AutoPDF V7 28/11/06 12:12) WDG (170�240mm) Tmath J-1657 JNET, 32:1 PMU: H(A1) 17/11/2006 pp. 1–12 1657_32-1_06-18 (p. 10)

10 A.J. McKane et al.

J. Non-Equilib. Thermodyn. � 2007 �Vol. 32 �No. 1

Page 26: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

Glansdor¤ and Prigogine meant by saying that d2S loses its properties as aLiapunov function when velocity is included as a dynamical variable. How-ever, since we are assuming that v is fixed in the definition of d2S, it might bemore consistent to take v to be a constant in the balance equations. If we dothis, we find that only the third term in the parentheses in Eq. (30) is present.It now follows that dðd2SjvÞ=dtb0.

5. Conclusions

In summary, when studying fluctuations in irreversible thermodynamics usingthe formalism of Langevin or Fokker–Planck equations, velocity is includedas a variable. When making use of the Einstein–Boltzmann relation to deter-mine the exact form of the fluctuation–dissipation relation, the form of d2Swhere velocity variation is allowed must be used. Although S and dS maybe written in forms that do not involve velocity, d2S does depend on the ve-locity variation. If, as some authors do, d2S is taken not to include velocityvariations – using what we have called d2Sjv – then these velocity variationshave to be introduced by some other means, for example, by the introduc-tion of the Z function. However, in this case an added postulate of the formPS P expfd2Z=2kBg has to be introduced. Clearly, this is unnecessary sincethe usual Einstein–Boltzmann relation, with the correct use of d2S, that is,including velocity variations, may be used without contradiction to com-plete the link between thermodynamic and hydrodynamic fluctuations andthe theory of stochastic processes.

Acknowledgements

We wish to thank Y. Oono and M. Lopez de Haro for useful discussions.AJM wishes to thank the Department of Physics at the Universidad Auton-oma del Estado de Morelos for hospitality while this work was carried out.Financial support from CONACYT-Mexico under project number40454 and from PROMEP-Mexico is gratefully acknowledged.

References

[1] Vailati, A., Giglio, M., Nonequilibrium fluctuations in time-dependent di¤usionprocesses, Phys. Rev. E 58 (1998), 4361–4371.

[2] Ortiz de Zarate, J.M., Sengers, J.V., Fluctuations in fluids in thermal non-equilibrium states below the convective Rayleigh–Benard instability, PhysicaA, 300 (2001), 25–52.

[3] de Groot, S.R., Mazur, P., Non-Equilibrium Thermodynamics, Dover, NewYork, 1984.

(AutoPDF V7 28/11/06 12:12) WDG (170�240mm) Tmath J-1657 JNET, 32:1 PMU: H(A1) 17/11/2006 pp. 1–12 1657_32-1_06-18 (p. 11)

On the Fluctuation-Dissipation Theorem for Convective Processes 11

J. Non-Equilib. Thermodyn. � 2007 �Vol. 32 �No. 1

Page 27: Modos normales en sistemas dipolares semiconductores …sappi.ipn.mx/cgpi/archivos_anexo/20060195_2987.pdf · 2011-11-14 · Modos normales en sistemas dipolares semiconductores (Teorema

[4] Glansdor¤, P., Prigogine, I., Thermodynamic Theory of Structural Stability andFluctuations, Wiley, London, 1971.

[5] Landsberg, P.T., The fourth law of thermodynamics, Nature, 238 (1972), 229–231.

[6] Oono, Y., Physical meaning of d2z of Glansdor¤ and Prigogine, Phys. Lett.,57A (1976), 207–208.

[7] Matsushita, M., On the stability and evolution criterion of electrothermohydro-dynamic system, J. Phys. Soc. Jpn., 41 (1976), 674–680.

[8] Landau, L.D., Lifshitz, E.M., Statistical Physics, 3rd ed., Part 1, Section 10,Pergamon, Oxford, 1980.

[9] Fox, R.F., Uhlenbeck, G.E., Contributions to non-equilibrium thermodynamics.I. Theory of hydrodynamical fluctuations, Phys. Fluids, 13 (1970), 1893–1902.

[10] Lavenda, B.H., Generalized thermodynamic potentials and universal criteria ofevolution, Lett. Nuovo Cimento, 3 (1972), 385–390.

[11] Keizer, J., Fox, R.F., Qualms regarding the range of validity of the Glansdor¤–Prigogine criterion of stability of non-equilibrium states, Proc. Nat. Acad. Sci.,71 (1974), 192–196.

[12] Dunning-Davies, J., Lavenda, B.H., Problems with the entropy concept inmodern applications of thermodynamics, Phys. Essays, 11 (1998), 375–385.

[13] Jou, D., Casas-Vazquez, J., Lebon, G., Extended Irreversible Thermodynamics,Springer, Berlin, 1996.

[14] Muller, I., Ruggeri, T., Extended Thermodynamics, Springer, New York, 1993.[15] Velasco, R.M., Garcıa-Colın, L.S., Viscoheat coupling in a binary mixture, J.

Phys. A: Math. Gen., 24 (1991), 1007–1015.[16] Lopez de Haro, M., del Castillo, L.F., Rodrıguez, R.F., Linear viscoelasticity

and irreversible thermodynamics, Rheol. Acta, 25 (1986), 207–213.[17] Eu, B.C., Kinetic Theory and Irreversible Thermodynamics, Wiley, New York,

1992.[18] McKane, A.J., Vazquez, F., Fluctuation dissipation theorems and irreversible

thermodynamics, Phys. Rev. E, 64 (2001), 046116.[19] Gardiner, C., Handbook of Stochastic Methods, Springer, Berlin, 1985.[20] Risken, H., The Fokker–Planck Equation, Springer, Berlin, 1989.[21] van Kampen, N.G., Stochastic Processes in Physics and Chemistry, Elsevier,

Amsterdam, 1992.[22] Callen, H.B., Thermodynamics, 1st ed., Wiley, New York, 1960.

(AutoPDF V7 28/11/06 12:12) WDG (170�240mm) Tmath J-1657 JNET, 32:1 PMU: H(A1) 17/11/2006 pp. 1–12 1657_32-1_06-18 (p. 12)

12 A.J. McKane et al.

J. Non-Equilib. Thermodyn. � 2007 �Vol. 32 �No. 1