68
TRABAJO DE GRADO MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA ESTIMACIÓN DE PARÁMETROS DESCRIPTORES DE PERFUSIÓN CEREBRAL POR RESONANCIA MAGNÉTICA* (*) Título original: “Deconvolution Robustness for Local Perfusion Parameters Estimation in Magnetic Resonance Imaging (MRI)” Juan Pablo SANTAMARIA Noviembre de 2004

MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... [email protected]

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

TRABAJO DE GRADO

MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA ESTIMACIÓN DE PARÁMETROS DESCRIPTORES DE

PERFUSIÓN CEREBRAL POR RESONANCIA MAGNÉTICA*

(*) Título original: “Deconvolution Robustness for Local Perfusion Parameters Estimation in Magnetic Resonance Imaging (MRI)”

Juan Pablo SANTAMARIA Noviembre de 2004

i

Page 2: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

A José Octavio Santamaría y Beatriz Chavarro de Santamaría…

ii

Page 3: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

© 2003 Juan Pablo Santamaría, Todos los Derechos Reservados, All rights reserved

iii

Page 4: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

RESUMEN

El presente trabajo tuvo como objetivo general comparar la robustez de dos

algoritmos para la estimación de parámetros de perfusión en imágenes de

resonancia magnética (RM). Uno de los parámetros que comúnmente se quiere

determinar en la práctica clínica, es el flujo sanguíneo cerebral ya que es un

valioso indicador de la viabilidad del tejido en un paciente. Para la estimación

del flujo, los dos algoritmos utilizan un modelo fisiológico común pero difieren

en el método matemático utilizado. A lo largo del proceso, se hace necesaria la

utilización de un operador matemático denominado deconvolución.

Generalmente, para estimar los parámetros de perfusión, se utiliza como

operador de deconvolución un método de descomposición en valores

singulares (SVD). Sin embargo, en éste trabajo se utilizó también un método

autorregresivo de promedio móvil (ARMA) en diferentes condiciones de ruido y

finalmente se presentaron los resultados obtenidos.

Palabras clave: Imágenes por Resonancia Magnética, deconvolución, ARMA,

SVD, estimación de flujo sanguíneo cerebral.

iv

Page 5: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

ABSTRACT

In clinical practice, it is frequently desired to estimate the cerebral blood flow

since it is a valuable indicator of the patient’s tissular viability. The purpose of

this study was to determine the robustness of two algorithms in blood flow

estimation using MR imaging. To identify this perfusion parameter, both

algorithms use the same physiological model but they differ in the mathematical

procedure. The required mathematical operator is called deconvolution and one

of the algorithms uses a singular value decomposition (SVD) method, whereas

the other one applies an Auto-Regressive Moving Average (ARMA) model. The

performances of both deconvolution methods are exposed here, under different

noisy environments, in cerebral blood flow estimation.

Keywords: Magnetic Resonance imaging, deconvolution, ARMA, SVD,

cerebral blood flow estimation.

v

Page 6: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

ARTÍCULO 23 DE LA RESOLUCIÓN No. 13 DE JUNIO DE 1946

"La universidad no se hace responsable de los conceptos emitidos por sus

alumnos en sus proyectos de grado.

Sólo vela porque no se publique nada contrario al dogma y la moral católica y

porque los trabajos no contengan ataques o polémicas puramente personales.

Antes bien, que se vea en ellos el anhelo de buscar la verdad y la justicia".

vi

Page 7: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

PONTIFICIA UNIVERSIDAD JAVERIANA

FACULTAD DE INGENIERÍA

CARRERA DE INGENIERÍA ELECTRÓNICA RECTOR MAGNIFICO: R.P. GERARDO REMOLINA S.J. DECANO ACADÉMICO: Ing. ROBERTO ENRIQUE MONTOYA VILLA DECANO DEL MEDIO UNIVERSITARIO: R.P. ANTONIO JOSÉ SARMIENTO NOVA S.J. DIRECTOR DE CARRERA: Ing. JUAN CARLOS GIRALDO CARVAJAL DIRECTORES DEL PROYECTO: MARLENE WIART, BRUNO NEYRAN ASESORES DEL PROYECTO: Ing. CARLOS PARRA, Ing. JAIRO HURTADO

vii

Page 8: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

Información acerca de los directores del proyecto:

Bruno Neyran Maestro de conferencias

Investigador del laboratorio CREATIS

[email protected]

Lyon - Francia

Marlène Wiart Investigadora del laboratorio CREATIS

Hospital Neurocardiológico de Lyon

[email protected]

Lyon - Francia

CREATIS Centre de Recherche et d'Applications en Traitement de l'Image et du Signal

CREATIS es una unidad de investigación (UMR 5515) del centro nacional de la

investigación científica de Francia, CNRS. Esta unidad está afiliada al INSERM,

y es común al Instituto Nacional de Ciencias Aplicadas (INSA de Lyon) y a la

Universidad Claude Bernard-Lyon1 (UCBL). El campo de investigación de

CREATIS es el procesamiento de imágenes y sistemas aplicados a la

medicina.

Para mayor información consultar en Internet, las siguientes direcciones:

www.creatis.insa-lyon.fr

www.insa-lyon.fr

viii

Page 9: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

Preliminares Este trabajo fue elaborado durante el segundo semestre de 2003 como una

pasantía de investigación en el laboratorio CREATIS de Lyon -Francia-. Esta

labor me generó interesantes experiencias y pensando en que puedan servir de

motivador para quien desee seguir un plan similar, o simplemente le interese el

tema de los intercambios académicos, plasmo aquí algunas de las que me

trajeron mayores satisfacciones.

A comienzos del año 2003 me encontraba cursando octavo semestre de

ingeniería electrónica en la Universidad Javeriana, y un día cualquiera un aviso

colocado en una de las carteleras de la Facultad, llamó mi atención, se trataba

de un afiche que invitaba a los estudiantes a realizar un intercambio académico

con el INSA1 de Lyon, gracias a un convenio entre la facultad de ingeniería de

la Javeriana y esa Institución. Era la primera experiencia del convenio que se

acaba de concretar, como resultado del ingente esfuerzo del decano

académico de nuestra Facultad, ingeniero Roberto Montoya. Una vez

informado sobre los trámites necesarios, decidí aplicar como estudiante de

intercambio al departamento de Eléctrica del INSA de Lyon. Semanas más

tarde, recibí la buena noticia de que había sido admitido en esa institución.

Cuando llegué al INSA, me enteré de la posibilidad que tenían los estudiantes

de quinto año del departamento de Eléctrica para realizar un programa

académico que se conoce con el nombre de “doble inscripción”. Esta

modalidad consiste en hacer simultáneamente el quinto año de Ingeniería

ix

1 Los Institutos de ciencias aplicadas (Instituts de sciences appliquées) I.N.S.A. están conformados por una red de establecimientos académicos públicos del gobierno francés localizados en cinco grandes metrópolis regionales : Lyon, Rennes, Rouen, Strasbourg y Toulouse.

Page 10: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

Eléctrica y un DEA2. Para ingresar al DEA, el estudiante debe presentar una

entrevista, un examen de admisión y por último elegir un tema de investigación

que debe desarrollarse en los laboratorios asociados a la Institución. Después

de tocar muchas puertas, y gracias a la ayuda de una persona que conocí allá,

Marcela Hernández Hoyos, pude contactar a dos investigadores -Marlène Wiart

y Bruno Neyran- quienes venían desarrollando un tema que resultó de mi

interés. Una vez elegido el tema de investigación, el grupo CREATIS me abrió

sus puertas y de esta manera pude matricularme como doble inscrito en quinto

año de Ingeniería y en DEA. El tema elegido era sobre el estudio de métodos

para el cálculo de descriptores de irrigación sanguínea por imágenes de RM.

Una vez inscrito, debía cursar y aprobar los módulos generales y específicos

del DEA, tales como el de tratamiento de imágenes y señales, movimiento,

resonancia magnética, estimación, decisión y problemas inversos, entre otros.

Para cuando estaba terminando la parte experimental del trabajo de

investigación, debía comenzar a redactar el informe final y en ese momento

sólo tenía dos opciones con relación al idioma: hacerlo en francés o en inglés.

Cualquiera de las opciones representaba para mí un desafío, básicamente por

dos motivos: de una parte, ninguna de las anteriores es mi lengua materna, y

por otro lado, era mi primera experiencia en redactar un documento extenso,

práctica que había abandonado desde la época del colegio. Finalmente opté

por escribir éste trabajo en inglés porque soy consciente de la importancia del

dominio de la lengua anglosajona, especialmente en nuestro medio, pues en

los últimos semestres de la carrera y sobre todo a lo largo de éste trabajo, pude

constatar que la mayoría de los artículos científicos y estudios están escritos en

inglés. Por ende, no preocuparme por perfeccionar ésta lengua era

simplemente un lujo que no podía darme, máxime cuando la importancia del

inglés no solo se ve reflejada en el contexto de la ingeniería, sino en casi todos

los campos del conocimiento humano, imponiéndose poco a poco como un

estándar de comunicación universal. 2 El DEA es el diploma francés oficial orientado hacia la investigación. Es requisito para los estudiantes que deseen realizar un doctorado. Con la reforma LMD (Licenciatura, Maestría y Doctorado), a partir del

x

Page 11: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

Realizar el trabajo de grado en ésta lengua, implicó un esfuerzo adicional, ya

que me obligó a familiarizarme con nuevos términos técnicos en inglés,

manejar expresiones que introducían ecuaciones matemáticas, emplear

sinónimos con el fin de no repetir palabras, etc. Sin embargo, hoy por hoy,

cuando me detengo y miro hacia atrás, ya no veo todo aquello como un trabajo

adicional, sino más bien como la doble oportunidad que tuve de aprender,

circunstancia que conjuntamente con el hecho de haber cumplido las dos

metas, me produce una gran satisfacción.

Finalmente, he decidido no asumir el rol de traductor y presentar éste escrito en

el idioma en el cual fue escrito el original y muy probablemente con los

innumerables errores gramaticales, propios del principiante. Por ésta razón,

ruego al lector su benevolencia y espero no distraiga su atención del tema

central, pues no quise que mi ignorancia lingüística fuera, ella misma, excusa

para no enfrentar el reto científico.

xiaño académico 2004-05 el DEA se convierte en una maestría de investigación.

Page 12: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

Agradecimientos

Son pocas las oportunidades que he buscado para agradecerles a esas

personas que siempre han estado a mi lado, a aquellos que me han dado

absolutamente todo lo que he necesitado para llegar hasta acá. Esas personas

son mis padres, a ellos es que dedico éste trabajo de grado e igualmente les

doy infinitas gracias.

Debo también reconocer la ayuda brindada por toda mi familia, especialmente

la de mi hermana Camila, por su tiempo y conocimiento en los temas

lingüísticos. A Liliam, Ángela y a Julián, igualmente les agradezco por haberme

apoyado emocionalmente.

En Lyon, sin la colaboración de Marcela Hernández, estoy convencido de que

éste trabajo no habría sido posible, ya que fue ella la que me abrió muy

amablemente, las puertas de CREATIS. Gracias a los responsables del

proyecto: Marlène Wiart quien fue enormemente cordial a lo largo de mi estadía

en Lyon y muy paciente al resolver mis dudas sobre el IRM de perfusión. Y

Bruno Neyran, quien hizo que temas inicialmente incomprensibles para mí,

fueran claros al final. A Leonardo Florez le agradezco por las necesarias horas

de esparcimiento en las que me enseñó a disfrutar del buen cine. Les doy

gracias también a Isabelle Magnin y a Olivier Basset por su colaboración y

flexibilidad en la parte administrativa para que yo pudiera cumplir con mis

compromisos en Colombia.

En la Universidad Javeriana, agradezco en primer lugar a Javier Coronado, con

su ayuda y buena voluntad, pude encontrar el camino que me llevó a la

solución de múltiples problemas. Con Carlos Parra estoy endeudado

igualmente: primero porque fue una persona supremamente accesible y xii

Page 13: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

amable desde el primer momento en que me acerqué a su oficina y en segundo

lugar, porque fue una persona clave en la homologación de mi trabajo de

grado. Por otro lado, a Jairo Hurtado, le debo el haberme introducido al área de

análisis de señales y junto con Carolina Soto, les agradezco el haber dedicado

de su tiempo, en la revisión de éste documento.

xiii

Page 14: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

Contents

ABSTRACT..................................................................................................................... v

List of abbreviations.................................................................................................. xvi

List of figures .............................................................................................................. xvii

INTRODUCTION ............................................................................................................1

2. THEORETICAL BACKGROUND ...........................................................................4 2.1. Deconvolution in blood flow estimation using MR perfusion imaging ......................... 4

2.1.1. Singular Value decomposition (SVD).............................................................................. 8 2.1.1.1. General Singular Value decomposition (SVD)....................................................... 8

2.1.1.2. Singular Value decomposition adaptive threshold (aSVD)............................... 9

2.1.2. Auto Regressive Moving Average (ARMA) .................................................................. 12 2.1.2. Auto Regressive Moving Average (ARMA) .................................................................. 12

2.2. Biological system modeling ................................................................................................... 15 2.2.1. The human body model as a dynamic system ........................................................... 15 2.2.2. The Stewart-Hamilton model ........................................................................................... 18

2.3. Sample size selection in statistical experiments .............................................................. 23

3. METHODS ................................................................................................................26 3.1. Monte–Carlo simulations......................................................................................................... 27

3.1.2. Noisy MR signals simulation procedure ...................................................................... 28 3.1.4. Deconvolution performance criteria.............................................................................. 30 3.1.5. ARMA vs. SVD..................................................................................................................... 31 3.1.6. SVD vs. adaptive threshold SVD .................................................................................... 33

3.2. Perfusion MRI in stroke patients ........................................................................................... 34

4. RESULTS AND DISCUSSION ..............................................................................35 4.1. Monte-Carlo simulations.......................................................................................................... 35

4.1.2. SVD and aSVD deconvolution......................................................................................... 42 4.2. Perfusion MRI in stroke patients ........................................................................................... 43

5. CONCLUSIONS AND FURTHER WORK ...........................................................46

xiv

Page 15: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

5.1. CONCLUSIONS .......................................................................................................................... 46 5.2. FURTHER WORK ....................................................................................................................... 48

REFERENCES .............................................................................................................49

xv

Page 16: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

List of abbreviations

MRI: Magnetic resonance imaging

SVD: Singular value decomposition

aSVD: Adaptive singular value decomposition

PSVD: Singular value decomposition percentage threshold

ARMA: Auto-regressive moving average

rCBF: Regional cerebral blood flow

rCBV: Regional cerebral blood volume

rMBF: Regional myocardial blood flow

rMBV: Regional myocardial blood volume

MTT: Mean transit time

SI: Signal intensity

TE: Echo time

ROI: Region of interest

LTI: Linear time Invariant

AIF: Arterial input function

SNR: Signal-to-noise ratio

MPE: Mean percentage error

SSD: Sample standard deviation

SD: Standard deviation

iff: If and only if

xvi

Page 17: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

List of figures Figure 01. A typical RM brain grey-level image................................................ 2

Figure 02. The expected function (a) and the one obtained with SVD (b)........ 9

Figure 03. The Gaussian distribution (a) and its second derivative (b) ............10

Figure 04. Adaptive SVD algorithm ..................................................................11

Figure 05. Discrete time system - ARMA model representation.......................12

Figure 06. The blood circulation as a dynamic system.....................................16

Figure 07. Perfusion black-model approach.....................................................17

Figure 08. Parameter estimation procedure using MR perfusion imaging........32

Figure 09. Example of pixel or ROI selection in MR images. ...........................32

Figure 10. ARMA vs. SVD perfusion simulation strategy. ................................32

Figure 11. SVD vs. aSVD perfusion simulation strategy. .................................33

Figure 12. rCBF estimation without random noise using ARMA and the SVD

deconvolution (PSVD = 30%). ..........................................................................35

Figure 13. Influence of Psvd threshold selection in flow estimation without

random noise in SVD deconvolution method. ................................................37

Figure 14. Standard deviation comparison for ARMA and SVD deconvolution

techniques, for R=1Hz, SNRtis= 18 dB and SNRaif = 15 dB. ........................37

Figure 15. This figure illustrates the SNR shift sensitivity in flow estimation

using both deconvolution methods for a CBV=2% and a sampling rate of 1Hz.

.......................................................................................................................38

Figure 16.Comparison of SNR shift sensitivity in blood flow estimation for both

deconvolution methods. CBV=2%, SNRtis= 18 dB and SNRaif = 15 dB. ......39

Figure 17. Comparison of tissular SNR shift sensitivity in blood flow estimation

for both deconvolution methods. Rs = 0.5 Hz and SNRaif = 15 dB................41

Figure 18. Example of oscillation index calculation of four different residue

functions from the adaptive SVD algorithm....................................................42

xvii

Page 18: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

Figure 19. Example of arterial and tissular concentrations calculated from SI

functions for patient 6.....................................................................................43

figure 20. Estimated residue function using the ARMA and SVD deconvolution

model for patient 6. ........................................................................................44

Figure 21. Comparison of identified cerebral blood flow in 19 stroke patients

using ARMA and SVD deconvolution.............................................................45

xviii

Page 19: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

INTRODUCTION

Cerebral and cardiovascular diseases caused by the obstruction of blood

vessels, are one of the major causes of death in our modern society. The

medical community has determined this class of disorders as an important

public health threat.

Magnetic resonance imaging (MRI) technology has been widely used in clinical

practice as a non-invasive technique to visualize the inside of the human body

and to detect health-threatening situations in patients. In many cases, it is

required to image the patient flowing blood, with the purpose to detect

anomalies in the circulatory system. Perfusion3 MR imaging is a suitable

method for this task, in which a contrast agent is introduced into the blood

stream and then, it is digitally imaged as it travels across the tissue. MR

perfusion imaging is especially a good choice for diagnosis and follow-up

studies of several injuries in the arterial system. The different grey scale slices

of a MR human brain image is shown in figure 01.

The study field for new concepts and applications within MRI medicine is today

a vast and dynamic area, as it was proved last year by Paul C. Lauterbur4 and

Sir Peter Mansfield5, 2003 physiology/medicine Nobel Prize winners, for their

discoveries concerning magnetic resonance imaging.

3 The term “perfusion”, from Latin perfusus, is defined as the act of perfusing; specifically: the pumping of a fluid through an organ or tissue. 4 University of Illinois Urbana, IL, USA.

1

5 University of Nottingham, School of Physics and Astronomy Nottingham, United Kingdom

Page 20: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

When thrombosis is detected, it is also often desired to evaluate the regional

cerebral blood flow (rCBF). This perfusion parameter quantifies the blood flow

at the capillary level where the delivery of nutrients takes place. Its value is an

indicator of the tissue viability, which is useful in taking appropriate treatment

decisions. However, in clinical practice there is still a need for robust diagnostic

tools for determining perfusion parameters in environments affected by random

electrical noise. The rCBF can be estimated using a circulatory system

modeling, in which at a certain moment it is necessary to use a mathematical

operator, called deconvolution.

figure 01. A typical RM brain grey-level image

The purpose of this study was to determine the robustness of two deconvolution

techniques in rCBF estimation: the singular value decomposition (SVD) and the

Auto-Regressive Moving Average (ARMA) model. The SVD method is

commonly used in the literature whereas the ARMA model is being recently

applied at the CREATIS laboratory in some specific tests. Preceding

experiments used the ARMA method for experimental data from an isolated pig

heart preparation due the similarities between the pig and human’s heart. After

some studies, satisfactory results were obtained so ARMA was proposed as an

appropriate method for regional myocardial blood flow (rMBF) estimation. On

the other hand, it is known that the order of magnitude of the blood flow in the

human brain is less than the rMBF. Therefore, it is desired to compare both

deconvolution methods in rCBF estimation under different noisy environments,

to see their behavior in the cerebral context.

2

Page 21: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

Each algorithm was tested on 150 data sets in two distinct cerebral blood

volumes, and error measurements were defined in order to compare the

performance of the different methods. Computer simulations here were not

intended to substitute practical data but were only applied as a first approach

before analyzing the clinical samples.

3

Page 22: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

2. THEORETICAL BACKGROUND

In the following chapter a review on the basic theory required to understand the

current work is presented. From a physical point of view, some concepts such

as the magnetic resonance technology are not entirely covered here since its

understanding is not indispensable to comprehend the development of this

work. The reader can refer to Edelman’s work [11] for a deeper description of

the MR basis and its clinical applications.

2.1. Deconvolution in blood flow estimation using MR perfusion imaging

One way of estimating the human blood flow is by using MR perfusion imaging

and a mathematical model of the circulatory system. The main process to

visualize the inside of the human body in order to measure the perfusion

parameters can be summarized as follows:

I. The patient receives an intravascular injection of a contrast product that

has specials physical properties and allows an easier visualization of the

blood flow when the tissue is affected by a magnetic field. This magnetic

field is created inside the cube of the MRI machine which can vary from

0.5 Tesla to 2 Tesla.

II. A finite sequence of images is taken to detect the variations of the signal

intensity functions (SI) over the time.

III. Once the sequence of digital images is obtained, the concentrations

signals of the contrast product are calculated from the SI functions using a

logarithmic relation.

4

Page 23: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

IV. A mathematical operator called deconvolution is used between the arterial

and tissular concentration in order to calculate a particular signal named

residue function.

V. The blood flow is calculated evaluating the residue function in zero.

This five-step process may sound a little complex to the reader in the beginning;

however it is not crucial to understand all its steps as this procedure is

explained and discussed in more detail in the following sections. For the

moment, it is just necessary to keep in mind that somehow a mathematical

operator called deconvolution must be used (step V) in order to estimate the

rCBF. However, to understand what a deconvolution method it is first necessary

to introduce the convolution integral.

In signal processing, the convolution operator is a very useful mathematical

procedure when describing linear systems. The convolution product, usually

denoted or , between two signals X(t) and Y(t) is defined, in continuous

time, as:

⊗ ∗

)()()();( tYtXtYtXnConvolutio ⊗= Where:

τττ dtYXtYtX )()()()( −=⊗ ∫+∞

∞− (1)

However, the convolution of those two functions X and Y can be defined as

well, over a finite interval [ ]21 , tt as follows:

τττ dtYXtYtXt

t

)()()()(2

1

−=⊗ ∫ (2)

Usually, this product leads to another signal. Let Z be the generated signal:

5

Page 24: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

)()()( tYtXtZ ⊗=

One way of dealing with those signals is using digital processors because of its

versatility and execution time. This is usually known as digital signal processing.

However, the computers of today do not work with analog signals so the

discrete-time form of the previous equations must be used. Therefore, the

convolution of X and Y in discrete time is defined as:

∑ −=k

knYkXnZ )()()( (3)

Considering now, the function Z only over a finite sample interval

∑=

−=N

kknYkXnZ

1)()()(ˆ (4)

The expression bellow generates N equations:

)1()1()1()2()0()1(

)1()()21()2()11()1()1()()1(ˆ1

NYXYXYX

NYNXYXYXkYkXZN

k

−++−+=

−++−+−=−=∑=

L

L

∑=

−+++=−=N

kNYNXYXYXkYkXZ

1)2()()0()2()1()1()2()()2(ˆ L

∑=

++−+−=−=N

k

YNXNYXNYXkNYkXNZ1

)0()()2()2()1()1()()()(ˆ L

M

For simplication, these equations can be considered as a set of simultaneous

equations that can be expressed in its matricial representation:

6

Page 25: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

−−

−−−

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

)(

)2()1(

)0()2()1(

)2()0()1()1()1()0(

)(ˆ

)2(ˆ)1(ˆ

NX

XX

YNYNY

NYYYNYYY

NZ

Z

Z

M

L

OM

L

L

M (5)

The equation bellow can be compactly denoted as:

XYZ =ˆ (6)

Now, independently if working with the integral or matricial form of this operator,

it can be stated in general terms that:

YXYXnConvolutioZ ⊗== ; (7)

Supposing that Z and Y are known an inverse mathematical process could be

defined to calculate an approximation6 of X. This inverse operator is called

deconvolution and it could be used as follows:

YZionDeconvolutXYXZIf ;≅⇒⊗= (8)

Or equivalently:

XZionDeconvolutYYXZIf ;≅⇒⊗= (9)

In the following section two different deconvolution methods -ARMA and SVD-

and its applications in MR imaging are presented. It is important to keep in mind

that the convolution can be treated from a matricial point of view.

7

6 The term of approximation is used here, since most of the time the signals found in practice are blurred with random noise, making it difficult to calculate of an exact solution.

Page 26: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

2.1.1. Singular Value decomposition (SVD)

2.1.1.1. General Singular Value decomposition (SVD) The singular value decomposition is a widely used technique to solve ill-

conditioned problems with several applications, (e.g., in image compression,

watermarking, image filtering). The general SVD statement can be expressed

as:

Every real matrix A can be decomposed into a product of three matrices of the

form: TVSU=Α (10)

Where, U and V are orthogonal matrices.

On the other hand, S is a diagonal matrix whose elements are the singular

values of the original matrix. Therefore:

),...,,( 21 rdiagS σσσ= (11) With:

0...21 ≥≥≥≥ rσσσ

Consequently, the inverse of A can be expressed as:

TUWV=Α−1 (12)

Where W is also a diagonal matrix of elements i

i sw 1

=

Depending on the signal-to-noise ratio of the signal intensity function, a

tolerance threshold PSVD is set. The values of wi corresponding to values where

si is less than PSVD are set to zero. Typically the threshold is given as a

percentage of the greater singular value 1σ . Generally, in MR perfusion imaging

8

Page 27: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

the threshold value varies between 20 and 30% and the general principle is the

higher the noise, the higher the PSVD.

2.1.1.2. Singular Value decomposition adaptive threshold (aSVD) When the SVD algorithm is used to calculate the residue function it is common

to obtain a graph of the function with some non-expected oscillations. In theory,

the residue function is monotone decreasing and therefore those oscillations do

not have a physical sense (see figure 02). Liu et al. [4] showed that the PSVD

selection had a significant influence in the shape of the residue function and an

apparently inaccuracy in the rCBF estimation. The residue function is a signal

from which the blood flow is calculated and it is the one mentioned on the 4th

step in section 2.1.

R(t) R(t)

t

(a) (b)

figure 02. The expected residue function (a) and the one obtained with SVD (b)

An oscillation index O, was proposed by Østergaard et al. [1] to measure the

distortion in the residue function as follows:

⎟⎠

⎞⎜⎝

⎛−+−−

⋅= ∑

=

1

2max

)2()1(2)(1 L

kkfkfkf

fLO (13)

9

Page 28: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

Where f is the scaled estimated residue function, fmax is the maximum amplitude

of f, and L is the number of sample points.

This oscillation index may be viewed as the discrete form of the convolution

between the residue function and the second derivative of a Gaussian

distribution which is shown in figure 03. The use of this digital filter, which is the

same as calculating the sum of the absolute value of the second derivative of

f(t), quantifies the change in the curvature of the function over the time.

figure 03. The Gaussian distribution (a) and its second derivative (b)

As it was said before, a threshold is typically chosen between 20 and 30% in

rCBF estimation, depending on the SNR of the digital image. However, it is

theoretically possible to design an algorithm in which an optimum PSVD is

chosen automatically. The main adaptive SVD algorithm that was used in this

work is shown in figure 04. Again, it can be summarized in a step-by-step

procedure as follows:

I. The lower value of the PSVD threshold is initialized. 10

Page 29: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

II. The residue function is calculated using the SVD deconvolution method.

III. The oscillation index O of the correspondent residue function is calculated.

IV. The PSVD threshold value is incremented.

V. The process is repeated from step II until the upper value of the PSVD

threshold is reached.

VI. The residue function which has the minimum oscillation index O is selected

and the rCBF is calculated using Omin.

figure 04. Adaptive SVD algorithm

Select R(t) with minimum O

aSVD

Initialize PSVD

Calculate R(t)

Measure Oscillation

End?

Calculate minimun O

Y

N

Inc Psvd

Calculate perfusion parameters

11

Page 30: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

2.1.2. Auto Regressive Moving Average (ARMA)

ARMA is the second method of deconvolution used in this work to estimate the

rCBF. As is was noted earlier, to calculate the blood flow it is necessary to

calculate a specific function denoted r(t) -more specifically the discrete form r(n)

because the sequence of images is discrete-. The estimation of this residue

function r(n) can be treated as a spectral parametric analysis problem. One way

of solving this kind of problems is presented here from the system theory point

of view and showing its basic mathematical statements.

It is known that when a linear time-invariant (LTI) system is excited by the

Dirac's delta function, the output is the transfer function of the system.

figure 05. Discrete time ARMA model representation

The discrete time filtering theory states that the impulse response of a linear

system h(n) can be modeled using one of the following frequency responses:

I. The “zeros model” or moving average (MA):

)()( zBzH = (14)

12

Page 31: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

II. The “poles model” or autoregressive (AR):

)(1)(zA

zH = (15)

III. And the “zeros and poles” model (ARMA):

)()()(

zAzBzH = (16)

This last model (III) is the one used and as its name suggest, it is presented as

the ratio of poles and zeros in the Z-transform. Therefore equation (16)

becomes:

=

=

⋅−

⋅= N

l

ll

M

k

kk

za

zbzH

1

0

1)( (17)

The aim of the ARMA technique modeling is to find the transfer function H(z),

whose impulse response h(n) approximates the scaled tissue response r(n),

such that the sum of the squared error, denoted e, is minimum:

[ ]∑ −= 2)()( nrnhe (18)

Considering the system illustrated in figure 05, and using the ARMA model, the

output y(n) is computed as:

∑∑==

−⋅+−⋅−=M

kk

N

ll knxblnyany

01

][][][ (19)

13

Page 32: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

This mathematical statement generates a set of simultaneous equations:

⎪⎪⎪

⎪⎪⎪

−−++−+−+−−−−−−−−=−

−++++−−−−−−=−++−++−−−−−−−=

)1()2()1()1()3()2()1(

)1()0()1()1()1()0()1()()1()0()()2()1()0(

1

021

1021

1021

mNxbNxbNxbnNyaNyaNyaNy

mxbxbxbnyayayaymxbxbxbnyayayay

m

n

mn

mn

L

L

M

LL

LL

(20)

This can be compactly expressed, in matrix notation as

Θ= AY (21)

where Y represents the output matrix, A is the input-output matrix and Θ is the

ARMA parameter matrix (coefficients ak and bk).

Therefore, this general ARMA-model matricial representation is written as

⎟⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜⎜⎜

−−−−−−−−−−−−−−−−

−−−−−−−−−−

=

⎟⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜⎜⎜

−−

n

m

a

ab

b

nNyNyNymNxNxNxnNyNyNymNxNxNx

nyyymxxxnyyymxxx

nyyymxxx

NyNy

yy

M

M

LL

LL

MLLLM

LL

LL

LL

M 1

0

)1()3()2()1()2()1()2()4()3()2()3()2(

)2()0()1()2()1()2()1()1()0()1()0()1(

)()2()1()()1()0(

)1()2(

)1()0(

To solve the linear equations system Θ= AY , an estimation square error is

defined as

TeeSE =

where Θ−= AYe

14

Page 33: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

The minimization of the error by the least mean square process gives the

coefficients ai and bi, and consequently the searched solution.

( )[ ])(minargˆ Θ=Θ LMSQ (22)

Where 2)( Θ−=Θ AYQLMS

To minimize this equation the SE must be differentiated with respect to Θ and

equated to zero.

0=Θ∂

∂ SE (23)

Solving equation (23) :

YAAA TT 1)(ˆ −=Θ (24) Where represents the unknown ARMA parameters and the solution of the

deconvolution problem needed to estimate the rCBF.

Θ

2.2. Biological system modeling

2.2.1. The human body model as a dynamic system The physiological behavior of some organs can be modeled using the dynamic

systems theory. The heart, veins, arteries and capillaries may be treated as a

biological system which can be mathematically represented, where variables

and parameters interact regularly. This representation provides a powerful tool

to estimate variables when some parameters are unknown.

Another advantage of the dynamic systems theory is that various -apparently

different- physical parameters (e.g., temperature, flow, concentration and

voltage) can be handled without modifying the equation’s essence. In recent 15

Page 34: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

years, the study field for new concepts such as the biochemical circuit theory

analysis is today a fundamental field of interest for many laboratories.

The physical elements treated in this medical context, are the perfusion

parameters, i.e., regional cerebral blood flow rCBF, regional cerebral blood

volume rCBV, mean transit time MTT. However, the same parameters and

relationships can be deduced and applied in a different area such as the

myocardial circulatory system. In the published literature, the notation is quite

similar except for that the letter M (myocardial) replaces the letter C (cerebral),

in the perfusion parameter abbreviations.

figure 06. Simplified blood circulation scheme

The human circulatory system is divided into two main parts with the heart

acting as a double pump. This organ pumps a special kind of fluid, which is the

blood. The across variable in this case, the blood flow, leaves the left side of the

pump (heart) and travels through arteries which gradually divide into capillaries.

In the capillaries, the nutrients are released to the body cells. The blood then

travels in veins back to the right side of the pump, and the whole process

begins again. The human simplified blood circulation process is shown in figure 06.

To determine if a specific human tissue is correctly irrigated, the artery tissue

exchange process must be analyzed. To this aim, several approaches have

16

Page 35: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

been developed. One of the most common ways in which this kind of process is

analytically described is the black-box model which is shown in figure 07. This

model is not only used to describe electrical circuits, communication systems

but it is also seen as suitable mathematical approach to physiological processes

such as the circulatory system. Usually, the black-model description is used to

predict the output of a system for a particular input when the transfer function is

known.

Supposing that the input of a certain system H is X, the output Y can be

calculated as:

HXY ⊗= (25)

Where ⊗ denotes the convolution operator.

figure 07. Perfusion black-model

approach.

If X and Y represent respectively the arterial and tissular concentration of the

system with transfer function H, the equation (25) may be rewritten as:

( ) )()( thtCtC arterytissue ⊗= (26)

However, in MR perfusion imaging the transfer function of human organs is

rarely known, therefore the convolution approach is not directly used. However,

using the MR images it is possible to indirectly measure the arterial and tissular

concentrations. Therefore, knowing Ctissue(t) and Cartery(t) it is possible to

17

Page 36: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

calculate an approximation of the transfer function h(t) using one of the

deconvolution methods explained in the previous section. The estimation of h(t)

as it will be explained later, will lead to the estimation of the residue function

and consequently to the rCBF measure.

The biodynamic system has the following components:

• Parameters: the rCBF and rCBV.

• Dependent variables: the arterial, tissular and venous concentration,

denoted Ca, Ct and Cv respectively.

• Independent variable: the time.

2.2.2. The Stewart-Hamilton model

The Stewart-Hamilton model applied to MRI acquisition techniques can help

estimate perfusion parameters such as the regional cerebral blood flow rCBF,

mean transit time MTT or regional cerebral blood volume rCBV, describing the

tissue condition.

The concentration of tracer within a tissular volume, at a given time t, during the

passage of a bolus injection of a contrast agent, is given by:

( ) )()( tCtRrCBFtC arterytissue ⊗⋅⋅= ρ (27)

Where ρ denotes the tissue density (i.e., the tissue mass per unit volume),

Cartery is the arterial concentration and R(t) is the residue function and

represents the tissular retention of the contrast agent.

18

Page 37: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

If this biodynamic system has a single fluid storage element hence, the residue

function can be treated as the response of a first-order circuit. The general

solution for this differential equation is of the form:

τt

eKtR−

⋅=)( (28)

In MR perfusion imaging, K is equal to one and τ is usually replaced by the

mean transit time constant, denoted MTT. This value is considered as the mean

time taken by the blood to pass trough the system, from the arterial entrance to

the vascular exit.

Let

)()( tRrCBFtr ⋅= (29) Where r(t) is a scaled residue function.

Therefore, one way to know the rCBF is evaluating the scaled residue in zero:

)0(rrCBF = (30)

Assuming the tissular density being close to the water density, i.e.,

mlg10 =≈ ρρ ,

Then the equation (27) becomes:

( ) )()( tCtrtC arterytissue ⊗= (31)

Once the regional blood flow is estimated, the unknown perfusion parameters,

can be computed from the central volume theorem (Stewart, 1984; Meier and

Zierler, 1954):

19

Page 38: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

MTTrCBVrCBF = (32)

where rCBV and MTT are the regional cerebral blood and mean transit time,

respectively and

∫∞

=0

)( dttRMTT (33)

However, the concentration is measured from the MR digital images, therefore,

the continuous time form of the previous equations is not considered. In

consequence, the Stewart-Hamilton model becomes a discrete convolution:

( ) ( ) ( )ikriCkCk

iarterytissue −⋅= ∑

=0 (34)

Moreover, the discrete convolution can be viewed as a matricial product:

⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

=

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

)(....

)1()0(

)0()1()(

0)0()1(00)0(

)(...

)1()0(

Nr

rr

CNCNC

CCC

NC

CC

arteryarteryartery

arteryartery

artery

tissue

tissue

tissue

LL

LLLLLLL

ML

LL

Where N is the number of samples taken in the RM sequence.

This product can be compactly denoted as:

ΓΑ=Τ (35) Where is unknown. Γ

Hence, the deconvolution process becomes a linear algebra problem,

specifically, a matrix inversion problem:

20

Page 39: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

ΤΑ=Γ −1 (36)

However, this process, when working with noisy signals, could sometimes lead

to determinants close to zero, the matrix A is said to be “ill-conditioned”, and

consequently, unexpected results may be obtained. For this reason, a robust

deconvolution method such like the ones exposed in section 2.1 must be used.

Moreover, the concentration of the contrast agent is not directly measured in

clinical practice; instead, MR images are used to determine signal intensity (SI)

variations over time, which are related with the change in the spin-spin

relaxation -also known as the transverse relaxation ( )*2R∆ -. The SI functions are

obtained by selecting a pixel or a region of interest (ROI) in the MR gray-scale

digital images.

Previous studies have shown the existence of a linear relation between the

measured concentration C(t) and . *2R∆

( ) *2RtC ∆α (37)

On the other hand, the transverse relaxation and the signal intensity have an

exponential dependence. The main relation can be written as follows:

( )0

)(ln1S

tSITE

KtC ⋅−= (38)

Where TE is the sequence echo time, SI(t) is the signal intensity over time and

S0 is the baseline MR intensity. Consequently, by measuring SItissue and SIaif the

regional blood flow can be estimated using a deconvolution technique and

evaluating the expression r(t) at zero. The main process is summarized in

figure 08.

21

Page 40: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

r(t)

Bolus Injection Contrast Agent

MR perfusion imaging

SIaif (t) SItissue (t)

SI to concentration conversion

Caif (t) Ctissue (t)

DECONVOLUTION

SI to concentration conversion

r(t) : Scaled residue function rCBF= r(0)

figure 08. Parameter estimation procedure using MR perfusion imaging

22

Page 41: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

2.3. Sample size selection in statistical experiments

In the present work, it is desired to know which of the two deconvolution

methods is more appropriate to cerebral blood flow estimation. The first part of

the experiment consisted in simulating the MR signals using the MATLAB

software. However, the first problem appeared when it was necessary to

choose the number of samples in order to obtain statistical data. The statistical

data was needed to make the mathematical comparison of the ARMA, SVD and

aSVD deconvolution methods.

Nevertheless, the sample size selection is not an arbitrary decision; it is

necessary to know the maximum error allowed in the clinical context and to

have a general idea of estimation theory to determine it. Demonstrations and

more detailed information on the principles in population size selection can be

found in the probability and statistics literature [10]. A basic review on the theory

is presented here to help to non-familiarized readers, since its

misunderstanding is usually a source of inaccuracies in system-modeling

simulations.

The present experiment is very similar to the situation of political polls, designed

for example, to determine who is the most likely to be president between two

candidates. As it is known, polls are not error free and most of the time, the

number of votes counted after the elections, is not exactly the same as the

predicted by the official survey. However polls are used world wide since they

are useful not only in politics but in economy, sociology and many other fields. A

mayor issue in a survey is the selection of the population size, in order to obtain

a specific error that can be measured. In other words, it is wanted to know how

confident the poll is.

Of course, different fields require different precision, so the first thing that

should be known is the minimum number that is significant for a specific

23

Page 42: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

context. In the politician election example, suppose that we a sample size of

100 000 random citizens is selected in the poll. Results show candidate A with

30% of the votes and candidate B with 40%, now suppose that more precision

is wanted, so the sample size is doubled. The second poll now shows candidate

A with 29% and candidate B with 43% of the votes. It is clear that it was not

worth to double the sample size since both polls are giving almost the same

information, i.e., candidate B is more likely to win the elections. However, time

and money spent on the second poll was almost certainly greater than the one

on the first poll. Therefore, a difference of 1± vote is not crucial, except on the

special case where candidates tie. However in the medical context, a difference

of ml/s in cerebral blood flow assessment can be crucial, especially if the life

of the patient depends on the correct estimation of this perfusion parameter.

Consequently, mathematicians have developed techniques to calculate the

sample size of an experiment to obtain a certain degree of precision, in other

words, a confidence interval. However, the population size selection is

dependent of the standard deviation and most of the time, this parameter is

unknown. Therefore, it is necessary to select an arbitrary sample size (N) in the

beginning (habitually N>30) and then calculate the sample standard deviation

(SSD). However for simplicity, the SSD will be just denoted from now on, as the

standard deviation (SD). Assuming a normal distribution:

( )

N

xxSSDSD

N

ii∑

=

−=≅ 1

2

(39)

Where x is the arithmetic mean of the set of samples.

Once, the SD of the population sample is calculated, N can be determined with

the following theorem:

24

Page 43: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

“We can be %100)1( ⋅−α confident that the error will be less than a specified

amount e when the sample size is: 2

2/ ⎟⎠⎞

⎜⎝⎛ ⋅

=e

SDZN α (40)

Where is the value of the standard normal distribution leaving an area of 2/αZ

2/α to the right. ”

25

Page 44: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

3. METHODS

With the increasing software and hardware advances, computer simulation is

today seen as an extremely powerful and useful tool in modern science

research. Uncountable experiments are performed using random computer

simulations in many different fields such as economy, acoustics, weather

forecasting, sociology, medicine, engineering, etc.

The main purpose of these simulations is to recreate a virtual environment in

which an experiment is done. The same action in the same experiment

conditions is often repeated an elevated number of times in order to analyze its

statistical properties. This kind of statistical sampling techniques using

computers simulations is frequently known in the scientific literature, as the

Monte-Carlo methods. There are several historical explanations of the use of

this expression. In general, it is believed this term was first used by the Polish-

American mathematician, Stanisław Marcin Ulam. The Monte-Carlo area

(Principality of Monaco) is well known for its gambling and casinos and

apparently, the phrase was given in honor of Ulam’s uncle who was a gambler.

In the present work, the name of Monte-Carlo simulations was used to describe

the first part of the deconvolution experiment in which computer tools were

applied. A basic description of the Monte-Carlo methods used in this text is

presented in this section.

26

Page 45: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

3.1. Monte–Carlo simulations

In order to assess the performance of the different deconvolution techniques,

realistic MR signals were generated. The statistical data sample of the Monte

Carlo simulation was the estimated regional blood flow, which was calculated

from noisy concentration functions. These simulated signals were considered as

a suitable approximation of what is typically measured in patients.

3.1.1. Range of simulated perfusion parameters

Representative rCBF values were selected from the scientific literature [1]. The

rCBF range varying from 5 to 35 ml/100g/min in 5 ml/100g/min increments was

chosen for a volume rCBV = 2%, corresponding to healthy white matter.

Afterwards, the rCBF was used to calculate the MTT characteristic values,

applying the central volume theorem (32).

The same process was used for rCBV=4%, corresponding to healthy gray

matter, except for that the range varied from 10 to 70 ml/100g/min, in 10

ml/100g/min increments. These values are summarized in the following table.

MTT (s) 24 12 8 6 4,8 4 3,43

rCBF(ml/100g/min) RBV=2% 5 10 15 20 25 30 35

rCBF(ml/100g/min) RBV=4% 10 20 30 40 50 60 70

table 1. Simulated perfusion parameters. Mean transit time, regional blood flow

and regional blood volume.

27

Page 46: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

3.1.2. Noisy MR signals simulation procedure

In order to simulate each of the rCBF in both blood volumes values (i.e., rCBV=

2% and rCBV= 4%), the following procedure was applied:

First, the simulated residue functions were generated as:

simMTTt

sim etR−

=)( (41)

for each of the 14 different rCBF values.

The arterial input function (AIF) was simulated as a gamma-variate function

)()( tuetCtCAIFt

peakaif ⋅⋅⎟⎠⎞

⎜⎝⎛⋅==

+−

αταα

τ (42)

where u(t) is the step function (due to causality in the modeled system).

The concentration tissue response C(t) was then obtained by convolving the

AIF with each residue function -equation (31)-. The signal intensity functions

(SI) were calculated assuming an exponential relationship between C(t) and the

pixel gray-level, as it was exposed in equation (38). Solving this equation, for

SI(t):

TEtCkeStSI )(

0)( −= (43) where SI(t) is the signal intensity function over the time, S0 is the baseline MR

image intensity, k is a proportionality factor and TE is the echo time.

Additive white Gaussian noise was then used to impose the SI function samples

with SNRtissue = 6 or 18 dB and SNRAIF = 15 dB, measured from our set of

patient data. The lower SNR in tissue corresponds to one pixel and higher SNR

28

Page 47: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

to a typical region of interest (ROI). It is very important to notice, that the noise

can not be directly added to the concentration functions since the existence of a

non linear relationship between C(t) and the simulated signal intensities.

To simplify the notation, let the function 'Ψ be the noisy version of : Ψ

( ) ( )tt noisyΨ=Ψ'

Once the noisy SI functions were generated, arterial and tissue concentrations

were calculated using equation (38), which is the inverse of equation (43).

Therefore, the arterial concentration over the time is:

( ) ( )⎟⎟⎠

⎞⎜⎜⎝

⎛⋅

⋅−=

0

'ln1'

StSI

TEKtC arterial

arterial (44)

And similarly, the tissular concentration was calculated as:

( ) ( )⎟⎟⎠

⎞⎜⎜⎝

⎛⋅

⋅−=

0

'ln1'

StSI

TEKtC tissular

tissular (45)

From the moment that the concentration signals were calculated, the scaled

residue function was computed, applying the Stewart Hamilton model and one

of the deconvolution methods:

( ) ( )[ ])(',')(')(')('' tCtCionDeconvoluttrtCtrtC arterialtissulararterialtissular =⇒⊗= (46)

Finally, the blood flow was calculated as

)0('rrCBFestimated = (47)

29

Page 48: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

Every deconvolution method was tested in the 7 different blood flows values

and the number of replicates for each one, denoted N, was of 150.

3.1.4. Deconvolution performance criteria

The mean of the simulated samples, for each of the estimated rCBF, was

calculated and subsequently compared with the true values (see table 1).

To evaluate the performance of the deconvolution techniques, the percentage

error (PE) and the standard deviation was calculated for different rCBF and

blood volumes. The standard deviation for a discrete variable made up of N observations is the positive square root of the variance and is defined as:

( )

N

xxSD

N

ii∑

=

−= 1

2

where x is the arithmetic mean of the set of samples and N=150.

The mean percentage error, denoted MPE, was defined as follows:

∑=

=N

iiPE

NMPE

1

1

where N is the number of simulated flows and,

true

trueidentified

rCBFrCBFrCBF

PE−

⋅= 100 (48)

30

Page 49: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

However, the deconvolution performance was not only assessed in terms of its

error and standard deviation. Sensibility to SNR shifts or to sample rate was

also considered in the analysis.

3.1.5. ARMA vs. SVD

The first part of the simulation was the comparison of the ARMA and the SVD

deconvolution in the cerebral perfusion context. Similar studies have been done

in the myocardial environment [2], so different blood flow ranges are found in

this project. Moreover, the sample rate was included as an additional issue in

the analysis and it was tested in different noisy environments. The different

simulation environments are summarized in figure 10. For the ARMA

deconvolution algorithm, a first poles-model order and a second order for the

zeros-model was used. On the other hand, a fixed 30% threshold was first

chosen for the SVD method.

Two distinct tissular signal-to-noise ratios were used, in order to simulate an

approximated realistic random noise when using single pixel or ROI selection.

The pixel and ROI SNR are two simulated levels of noise and they recreate an

approximation of the different real noise environments depending on whether

the user selects a single pixel or a group of pixels. An example of ROI or pixel

selection in perfusion MR imaging is illustrated in figure 09. To calculate the

rCBF, the user must first select an option, denoted Op, from two possibilities:

ROI or P. Depending on the selected Op, the area of interest ASelected in the MR

image, will be a set of pixels S or a single pixel P:

⎪⎩

⎪⎨

==

=⎭⎬⎫

⎩⎨⎧

== =

POpifPixelP

ROIOpifPixelSA

x

N

jj

SelectedU

1

31

Page 50: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

figure 09. Example of pixel or ROI selection in MR images. The user can select

a set of pixels (ROI) or a single pixel (P) in rCBF estimation

(e.g., ROI= Pixel 1+Pixel 2+ Pixel3 or P=Pixel 4)

figure 10. ARMA vs. SVD perfusion simulation strategy.

32

Page 51: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

3.1.6. SVD vs. adaptive threshold SVD

The adaptive threshold SVD deconvolution (aSVD) performance was tested and

compared with the non-adaptive method for a sampling rate of 1 Hz in two

different noisy environments, as shown in the following scheme:

figure 11. SVD vs. aSVD perfusion

simulation strategy.

The percentage threshold was first set at 30 % and then the oscillation index

was calculated. The aSVD algorithm consisted in systematically changing the

PSVD in the range [20% , 40%] in 4 % increments in order to recalculate the

respectively oscillation index of the residue functions. Afterwards, all the

oscillation indexes were compared and the minimum was selected. The residue

function having this minimum oscillation index is then used to calculate the

desired perfusion parameters. The reader can refer to section 2.1.1.2. to obtain

the detailed description of the adaptive SVD algorithm.

33

Page 52: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

3.2. Perfusion MRI in stroke patients

Patients and image acquisition

Nineteen patients (age range, 32-94) with symptoms of acute hemispheric

stroke were retrospectively included in the present study, observing all

respective medical and ethical regulations.

MRI studies were obtained within 6 hours from symptom onset using a 1.5-T

Magnetom Vision whole body MR imager (Siemens, Erlangen, Germany).

Perfusion-weighted MRI was performed with a T2*-weighted gradient-echo

echo-planar imaging sequence, using the bolus passage of contrast agent

(repetition time: 2000 ms; echo time: 60ms; 7 slices; slice thickness: 5 mm;

interslice gap: 0.5 mm; field of view: 240 mm; matrix 128 x 128 voxels; 30

measurements obtained at intervals of 2s).

The contrast injection (15 ml of Gd-DTPA) was performed after the third scan,

using a power injector at a rate of 5 ml/s via access through anantecubital vein;

the bolus of contrast medium was followed by a 15-ml bolus of saline solution at

the same injection rate.

Data post-processing

Perfusion data were transferred onto an independent work-station and analyzed

using homemade programs written in Matlab language (Math Works, Natick,

MA). To obtain the SI functions, tissular and arterial ROIs were manually

selected and converted to concentration signals applying the logarithmic

relationship (43). The cerebral blood flow estimation was then calculated using

the ARMA and SVD deconvolution techniques (46).

34

Page 53: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

4. RESULTS AND DISCUSSION 4.1. Monte-Carlo simulations

4.1.1. ARMA vs. SVD

Sampling Rate: 1 Hz (1 sample per second)

Non-noisy data

In the case of non-noisy data for a PSVD threshold of 30%, the SVD estimated

flow was underestimated. The mean percentage error was –34%. In contrast,

using the ARMA deconvolution, the true and identified cerebral blood flows

were identical for both blood volume values hence the percentage error was

0%. The rCBF estimation results are shown in the following figure:

0

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35True CBF [ml/100 g/min]

Iden

tifie

d C

BF

[ml/1

00 g

/min

]

ARMASVD

figure 12. rCBF estimation without random noise using ARMA

and the SVD deconvolution (PSVD = 30%).

35

Page 54: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

The estimation in a non-noisy environment was used to show the influence of

the Psvd percentage threshold selection in blood flow estimation. The

underestimation in the SVD method was due to the elimination of the lower

singular values that contain non-noisy information in the matrix. Those elements

are not supposed to be removed without the presence of random noise.

Obviously, if a small (close to zero) Psvd percentage threshold had been

chosen, both results would have been the same. The variation effect of this

parameter is shown in figure 13. Note that the appropriate Psvd for a high SNR

tends to zero.

Noisy data in ROI simulation

For SNRtis = 18 dB and SNRaif = 15 dB the identified rCBF was underestimated

in the ARMA simulation, with a mean percentage error of –6.9% and a mean

standard deviation of 5.8. In SVD, there was also an underestimation; however,

the absolute value of the mean percentage error was greater than the ARMA

one. On the other hand, the standard deviation of the SVD was less than the

ARMA one. This phenomenon was valid for both blood volumes as illustrated in

figure 14.

Noisy data in pixel simulation

When the tissular SNR was decreased to 6 dB without changing the arterial

signal-to-noise ratio (SNRaif = 15 dB) the calculated data was, in this case,

overestimated using the ARMA model with a mean percentage error of +86%.

On the contrary, the identified CBF with the SVD deconvolution technique

remained underestimated with a mean percentage error of -34.5 %.

36

Page 55: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

01020304050607080

10 20 30 40 50 60 70True CBF (ml/100g/min)

Iden

tifie

d C

BF

(ml/1

00g/

min

)

Psvd=5%Psvd=30%Psvd=80%True CBF

figure 13. Influence of Psvd threshold selection in flow estimation

without random noise in SVD deconvolution method.

figure 14. Standard deviation comparison for ARMA and SVD.

(R=1Hz, SNRtis= 18 dB and SNRaif = 15 dB.

37

Page 56: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

SNR tis = 6dB SNR aif= 15dB

0

10

20

30

40

50

60

70

80

5 10 15 20 25 30 35True CBF [ml/100 g/min]

Iden

tifie

d C

BF

[ml/1

00

g/m

in] ARMA

SVDTrue

SNR tis = 18dB SNR aif = 15 dB

05

101520253035404550

5 10 15 20 25 30 35True CBF [ml/100 g/min]

Iden

tifie

d C

BF

[ml/1

00 g

/min

]

ARMASVDTrue

figure 15. This figure illustrates the SNR shift sensitivity in flow

estimation using both deconvolution methods (rCBV=2% and

sampling rate of 1Hz.)

38

Page 57: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

Sampling Rate: Rs= 0.5 Hz (1 sample every 2 seconds)

Non-noisy data

When the sample rate was halved, there was no significant change in the rCBF

estimation. The performance without the presence of random noise for Rs= 0.5

Hz, was similar for both techniques. That means a zero mean percentage error

(MPE) using ARMA and a variable MPE in the SVD deconvolution, depending

on the selected threshold:

%00 →≈ SVDSVD PifMPE

Noisy data in ROI simulation

Sensitivity to sample rate shift:

The estimated blood values that were first underestimated in the ROI SNR, for

Rs=1 Hz in both deconvolution methods changed to overestimation, when the

sample rate was halved to Rs=0.5 Hz.

0

10

20

30

40

50

60

5 10 15 20 25 30 35

True CBF [ml/100g/min]

Iden

tifie

d C

BF

[ml/1

00g/

min

]

ARMA 1HzARMA 0,5HzSVD 1HzSVD 0,5HzTRUE

figure 16.Comparison of SNR shift sensitivity in blood flow estimation for both

deconvolution methods. CBV=2%, SNRtis= 18 dB and SNRaif = 15 dB.

39

Page 58: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

Specifically, the effect in the ARMA performance for a tissular SNR=18dB and

an arterial SNR=15dB, for this sample rate shift, was similar to the simulation for

Rs=1 Hz when the SNR was decreased. That means that the ARMA model

passed from underestimation to overestimation when the sample rate was

halved. For Rs=0.5 Hz the mean percentage estimation error was of 70%. This

variation represents a mean relative increment of 0.4 in the initially identified

flow with a sample rate of 1Hz. The ARMA standard variation increased in

average 50%.

The SVD deconvolution passed from underestimation to overestimation as well,

when the sample rate was changed to 0.5 Hz. This change represented a mean

increment of 0.5 into the estimated flows for Rs=1 Hz. The standard variation

for the SVD method increased in average 60 % in both blood volumes after the

sample rate shift.

Noisy data in pixel simulation

Sensitivity to SNR shift:

When the random noise was increased (SNRtis was changed from ROI to pixel

level) the ARMA deconvolution passed from an MPE overestimation of 68% to

135%. Its mean standard deviation increased as well from 7.5 to 15.6 in other

words there was a standard deviation increment of 108%.

On the other hand, SVD was less sensitive to the SNR shift, when the tissular

signal-to-noise ratio was decreased to SNRtis=6dB as seen in the following

figure. The MPE passed from a mean percentage error of 32% to a MPE=35%

with this SNR change. The mean SVD standard deviation passed from 3.7 to 5.

40

Page 59: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

0

10

20

30

40

50

60

70

80

5 10 15 20 25 30 35

True CBF [ml/100g/min]

Iden

tifie

d C

BF

[ml/1

00g/

min

]

ARMA 18dBARMA 6dBSVD 18dBSVD 6dBTrue

figure 17. Comparison of tissular SNR shift sensitivity in blood flow

estimation for both deconvolution methods. Rs = 0.5 Hz and SNRaif =

15 dB.

41

Page 60: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

4.1.2. SVD and aSVD deconvolution For a percentage threshold PSVD = 30 %, the performance of the SVD method

was not enhanced in terms of its mean percentage error, when the adaptive

threshold deconvolution was used. The estimated flow was still underestimated

in both blood volumes in the same proportions. For pixel and ROI simulations,

neither the MPE nor the standard deviation was improved for both cerebral

blood volumes. The reason for this lack of improvement was probably because

the selected PSVD was appropriate for the S/N ratio and therefore, the optimal

oscillation index was already chosen in the SVD deconvolution.

figure 18. Example of oscillation index calculation of four different residue

functions from the adaptive SVD algorithm. 42

Page 61: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

Under these noisy conditions, the main difference found between the basic SVD

and aSVD deconvolution was in terms of its execution time. It is important to

keep in mind that the aSVD algorithm needed to test 5 different matrix

thresholds, recalculating at each time by deconvolution, the estimated residue

function. Therefore aSVD was much more expensive in terms of execution time

than SVD.

4.2. Perfusion MRI in stroke patients

figure 19. Example of arterial and tissular concentrations calculated from SI

functions for patient 6.

43

Page 62: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

Due to the lack of a reference method for the assessment of perfusion, it was

not possible to determine if there was under or overestimation for each case.

However, this part of the experiment was useful to determine the orders of

magnitude of the rCBF in clinical practice and to assess the relationship of the

ARMA and SVD deconvolution.

A set of perfusion signals from one of the patients is shown in figure 21 and its

corresponding identified residue functions using both deconvolution methods

are presented in the following figure.

figure 20. Estimated residue function using the ARMA and SVD deconvolution

model for patient 6.

Note that the residue function falls monotonically to zero in ARMA while the

SVD function presents fluctuations over the time. The blood flow range in the 18

patients varied from 84 to 370 ml/min/100g in ARMA and from 43 to 300

ml/min/100g using SVD.

44

Page 63: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

The clinically acquired human MRI data were coherent with the simulations

since the estimated blood flow applying ARMA was in average 1.21 times

greater than the SVD method. All the identified rCBF are summarized in the

following figure:

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Patient

Iden

tifie

d C

BF

[ml/m

in/1

00g]

ARMASVD

figure 21. Comparison of identified cerebral blood flow in 19 stroke patients

using ARMA and SVD deconvolution.

Note that the real values of the regional cerebral blood flow are not shown in

this figure. To obtain the true values it would be necessary to use a reference

method such as the PET7 scan.

45

7 Positron Emission Tomography (PET)

Page 64: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

5. CONCLUSIONS AND FURTHER WORK 5.1. CONCLUSIONS

The performances of the ARMA and SVD deconvolution method have been

compared in ROI and pixel SNR, using two different sample rates. Monte-Carlo

simulations and real clinical RM images were used during this work to

determine the strengths and weaknesses of both algorithms. The simulation

data was blurred with a realistic additive noise procedure and the results

obtained were coherent with the flow estimation using the clinical data.

Satisfactory results in blood flow estimation using the ARMA model in previous

studies encouraged the present work to apply this model into the cerebral

context. The preceding tests [2] used experimental data from an isolated pig

heart preparation due the similarities between the pig and human’s heart.

However, the estimation performance in the present circumstances, i.e., under

less than myocardial flow conditions, was not the expected. The difference of

the orders of magnitude between the brain and heart’s flow changed the

expected behavior of the ARMA method. However, each deconvolution method

had its troubles depending on the application environment. This is why it is not

desirable to search for the perfect deconvolution method, without knowing the

context. Instead, the main question should be reformulated as:

Under which circumstances is it better to apply one algorithm instead of

another?

Or, which is the most appropriate algorithm for some specific situation?

46

Page 65: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

The ARMA deconvolution was generally closer to the true blood flow value than

the SVD, when working with the higher sample rate and noise ratio. This signal

to noise ratio corresponded respectively, to 18 dB and 15 dB for tissular and

arterial concentration, i.e., a ROI selection. Therefore it is advisable to work with

the ARMA model when working under these circumstances. Oppositely, it can

be stated that ARMA estimation is not advisable when the blood flow is not

greater than 100 ml/100g/minute with under-sampling (i.e., a sample rate of 0,5

Hz). This leads SI functions to be highly susceptible by random noise and

therefore poor precision is found on regional cerebral blood flow identification.

The standard deviation in ARMA was generally greater that the SVD one.

However, when the sample rate was halved, the increment of the SVD standard

deviation was greater than the one of ARMA.

On the other hand, the singular values decomposition technique, showed to be

less sensitive to SNR shifts. In others words, even if the SVD estimator was

biased when the sample rate was of 1Hz it remained biased on the same

proportions when the sample rate was of 0.5 Hz. Consequently, SVD is a

suitable technique when the sample rate needs to be changed and if ROI or

pixel selection is simultaneously being used.

The adaptive threshold deconvolution can be a useful method when the order of

magnitude of the signal-to-noise ratio is unknown. Otherwise, this model is not

advisable, since its execution time was much greater than the SVD

deconvolution.

The simulations suggested that there is no difference in blood flow estimation in

the two simulated volumes. In other words, the behavior of both deconvolution

methods was very similar when dealing with healthy cerebral white or gray

matter.

47

Page 66: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

5.2. FURTHER WORK

The results from this study showed the influence of random noise in blood flow

estimation and it was seen how strategies such as the ROI selection could

optimize the rCBF identification. Further research could include regularization

solutions to solve these kinds of discrete ill-posed problems. Different

regularization strategies would be compared in order to determine the most

appropriate technique for this MR perfusion-imaging context.

Knowing that the image of the patient is not completely motionless, it would be

interesting to quantify the influence of image registration in the correct blood

flow estimation.

The integration of both deconvolution methods into the software developed by

the Cardiotools Creatis team is highly conceivable. Additionally, it would be

attractive to prepare a synergetic deconvolution method. This fusion algorithm

would automatically select the strengths of ARMA and SVD deconvolution, in

order to produce a greater effect than the sum of their individual performances.

In this study, the ARMA deconvolution was applied using the first and second

order for the poles and zeros models respectively. However, it would be

interesting to see whether the rCBF estimation could be or not improved by

changing the zeros model order.

48

Page 67: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

REFERENCES [1] Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG.

Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-

weighted imaging using singular value decomposition with a block-circulant

deconvolution matrix. Magn Reson Med. 2003 Jul;50(1):164-74.

[2] Neyran B, Janier M, Casali C, Revel D, Canet E. Mapping myocardial

perfusion with an intravascular MR contrast agent : Robustness of

deconvolution methods at various blood flows. Magn. Reson Med, 2002 ; vol

48, pp. 261-268.

[3] Gobbel GT, Fike JR. A deconvolution method for evaluating indicator

dilution curves. Phys med Biol 1994;39:1833-1854.

[4] Liu H, Pu Y, Liu Y, Nickerson L, Adrews T, Fox P, Gao J. Cerebral blood

flow measurement by dynamic contrast MRI using singular value decomposition

with an adaptive threshold. Magn. Reson Med 42:167-172 (1999)

[5] Smith M, Lu H, Frayne R. Signal-to-noise effects in quantitative cerebral

perfusion using dynamic susceptibility contrast agents. Magn. Reson Med 49:

122-128 (2003)

[6] Wiart M, Imagerie par résonance magnétique (IRM) de la perfusion

cérébrale. Modélisation de la cinétique d’un produit de contraste pour la

quantification de la perfusion. Thèse de doctorat, Lyon : Université Claude

Bernard Lyon 1; 2000, pp.266

49

Page 68: MÉTODOS ROBUSTOS DE DECONVOLUCIÓN PARA LA … · algoritmos para la estimación de parámetros de perfusión en imágenes de resonancia magnética (RM). ... marlene.wiart@creatis.univ-lyon1.fr

[7] Wiart M, Rognin N, Berthezene Y, Nighoghossian N, Froment JC,

Baskurt A. Perfusion-based segmentation of the human brain using similarity

mapping. Magn. Reson Med, 2001 ; vol 45, n°2, pp. 261-268.

[8] Carme S, Modélisation de la perfusion quantitative en imagerie par

résonance magnétique (IRM) cardiaque in-vivo. Thèse de doctorat, Lyon :

Ecole doctorale : Electronique, Electrotechnique Automatique ;2004.

[9] Edelman R., Hesselink J., Zlatkin M., Clinical Magnetic Resonance

Imaging.Volume One. 1996.

[10] Ronald E. Walpole & Raymond H. Myers, Probability and statistics for

engineers and scientists. New York : Macmillan, 1978

[11] Robert R. Edelman, Michael B. Zlatkin, John R. Hesselink, Clinical

magnetic resonance imaging. Volume 1. Philadelphia : W.B. Saunders, 1996

50