182
1 Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Profesional Adolfo López Mateos Departamento de Ingeniería en Control y Automatización Plan de mantenimiento para una máquina de inyección Negri Bossi con enfoque de análisis de riesgos. Tesis que para obtener el título en Ingeniero en Control y Automatización. Presentan: Angel Antonio Barrera Mancilla. Marco Antonio Hernández Acosta. Asesores: Guilibando Tolentino Eslava. Rene Tolentino Eslava. México, D.F. Marzo del 2015.

Plan de mantenimiento para una máquina de inyección Negri

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Plan de mantenimiento para una máquina de inyección Negri

1

Instituto Politécnico Nacional

Escuela Superior de Ingeniería Mecánica y Eléctrica

Unidad Profesional Adolfo López Mateos

Departamento de Ingeniería en Control y

Automatización

Plan de mantenimiento para una máquina de

inyección Negri Bossi con enfoque de análisis de

riesgos.

Tesis que para obtener el título en Ingeniero en Control

y Automatización.

Presentan:

Angel Antonio Barrera Mancilla.

Marco Antonio Hernández Acosta.

Asesores:

Guilibando Tolentino Eslava.

Rene Tolentino Eslava.

México, D.F. Marzo del 2015.

Page 2: Plan de mantenimiento para una máquina de inyección Negri

2

Page 3: Plan de mantenimiento para una máquina de inyección Negri

3

CONTENIDO. Página.

Resumen. 06 Introducción. 08

Capítulo 1. Teoría de Mantenimiento. 12 1.1 Definición. 13

1.2 Mantenimiento correctivo. 14

1.3 Mantenimiento preventivo. 14

1.4 Evolución del concepto de mantenimiento. 17

1.4.1 La gestión del riesgo. 21

1.4.2 Patrones de falla. 23

1.4.3 Técnicas de mantenimiento. 27

1.4.4 El mantenimiento como fuente de beneficios. 28

1.5 El riesgo industrial. 29

1.5.1 Definición de riesgo. 30

1.5.2 El riesgo en la empresa. 31

1.6 Análisis de riesgos. 33 1.6.1 Definición matemática de riesgo. 33

1.6.2 Análisis histórico de accidentes. 34

1.6.3 Análisis preliminar de peligros. 34

1.6.4 Análisis “¿what if…?” 34

1.6.5 Análisis de los modos de fallas y sus efectos. 35

1.6.6 Análisis de peligros y operatividad. 35

1.7 Programa de mantenimiento. 36

Capítulo 2. Metodología del mantenimiento basado en

riesgos.

38

2.1 Problemática y metodología a seguir. 39

2.2 El mantenimiento basado en el riesgo. 40 2.2.1 Modos de falla. 41

2.2.2 Causas de falla. 41

2.2.3 Probabilidad de falla. 41

2.2.4 Tasa de fallas. Mecanismos de degradación. 42

2.3 Patrones de tasa de fallas. 44 2.3.1 Patrón de falla “A”. 45

2.3.2 Patrón de falla “B” 45

2.3.3 Patrón de falla “C”. 46

2.3.4 Patrón de falla “D”. 47

2.3.5 Patrón de falla “E”. 47

2.3.6 Patrón de falla “F”. 48

Page 4: Plan de mantenimiento para una máquina de inyección Negri

4

2.4 Evaluación del riesgo. 49 2.4.1 Diagrama de riesgos. 49

2.4.2 La matriz de riesgo. 50

2.4.3 Construcción de la matriz de riesgos. 51

2.4.4 Objetivos de la matriz de riesgos. 53

2.5 Actividades de mantenimiento y reducción de riesgos. 54

2.6 Mantenimiento rutinario. 56

2.7 Fallas relacionados con la edad y mantenimiento

preventivo.

57

Capítulo 3. Descripción de la máquina de inyección Negri

Bossi.

59

3.1 Descripción general. 60 3.1.1 Características básicas de las máquinas. 60

3.1.2 Variables que intervienen en el proceso. 63

3.1.3 Componentes de la máquina de inyección. 65

3.1.4 Ciclo de inyección. 71

3.1.5 Etapas del proceso. 75

3.2 Partes. 77

3.3 Funcionamiento. 88

Capítulo 4. Desarrollo del Plan de Mantenimiento. 97 4.1 Bitácora de Mantenimiento. 98

4.2 Análisis de riesgos. 107

4.2.1 Método what if? Para la determinación de riesgos en la industria. 107

4.2.2 Análisis de fallas. 108

4.2.3 Funciones para la obtención de tasa de fallas semanalmente para

cada elemento.

109

4.2.4 Total de fallas mensuales para cada elemento. 114

4.2.5 Calculo de la tasa de falla para cada elemento. 115

4.2.6 Tasa de fallos – patrón de falla “A”, curva tipo bañera. 116

4.3 Matriz de riesgos. 118 4.3.1 Análisis de riesgos. 119

4.3.2 Evaluación matemática de riesgo. 120

4.3.3 Matriz de riesgo a partir de cada elemento que presentó fallas

identificados en la bitácora de mantenimiento.

123

4.3.4 Riesgos potenciales de accidentes. 124

4.3.5 Identificación de las situaciones de alto riesgo en cada

subsistema.

125

Page 5: Plan de mantenimiento para una máquina de inyección Negri

5

4.4 Identificación de puntos críticos. 129

4.5 Niveles de riesgo de los puntos críticos del sistema. 135

4.6 Elección del programa. 137

4.7 Cálculo del tiempo recomendado de mantenimiento

para cada elemento.

142

4.7.1 Periodo recomendado de mantenimiento. 143

4.7.2 Calendario de fechas sugerido para el mantenimiento periódico

de los elementos identificados como puntos críticos.

145

Capítulo 5. Implementación del programa de

mantenimiento.

147

5.1 Mantenimiento correctivo. 148

5.2 Mantenimiento preventivo. 153

5.3 Resultados. 155 5.3.1 Registro de fallas después de la aplicación del plan de

mantenimiento.

155

5.3.2 Funciones para la obtención de tasa de fallos semanalmente para

cada elemento después de la aplicación del MBR.

156

5.3.3 Calculo de la tasa de fallo para cada elemento con MBR. 162

5.3.4 Tasa de fallos – patrón de fallo “A”, curva tipo bañera. 163

5.3.5 Comparación de fallas antes y después del mantenimiento basado

en riesgos (MBR).

165

5.4 Análisis de resultados. 170 5.4.1 Análisis de fallas antes y después del mantenimiento basado en

riesgos.

170

5.4.2 Análisis del % fallas antes y después del mantenimiento basado

en riesgos.

171

5.4.3 Análisis del % tasa de fallas antes y después del mantenimiento

basado en riesgos.

173

Conclusiones. 175

Bibliografía. 178

Anexos. 180

Page 6: Plan de mantenimiento para una máquina de inyección Negri

6

RESUMEN.

Page 7: Plan de mantenimiento para una máquina de inyección Negri

7

Se desarrolló un programa de mantenimiento para una máquina de inyección de plástico tipo

horizontal de la marca Negri Bossi, para esto se optó por el desarrollo de un plan de

mantenimiento basado en riesgos (MBR) el cual permita reducir los riesgos potenciales tanto

para la máquina de inyección como para los operarios. Estos riesgos son producidos en gran

medida debido a las fallas ocurridas a lo largo de la vida útil de la máquina de inyección. Se

plantea la reducción de riesgos, a partir de un control y monitoreo de las fallas en la máquina,

reduciendo el número de fallas.

Para esto primero se tuvo que analizar la principal problemática que presentaba la máquina, en

este caso las fallas. Esto se hizo mediante un proceso de evaluación e inspección, de las causas

de riesgos debido a fallas, para poder identificar estas causas se hizo uso de un esquema de

actividades para llevar a cabo un análisis de riesgos. El uso de este método fue implementado

debido a su fácil aplicación a las diversas causas (humanas o de la máquina) de riesgos debido

a fallas, como a la veracidad de los datos obtenidos.

Haciendo uso del método de mantenimiento basado en riesgos, se determinó que la principal

causa de riesgos, no fue debido a fallas humanas, sino debido a las constantes fallas sufridas

en la máquina de inyección. Estos resultados ayudaron a poder canalizar el principal problema

(la máquina), para así poder desarrollar un plan de mantenimiento orientado principalmente a

la máquina y sus fallas.

Se procedió a obtener la documentación necesaria para el diseño y desarrollo del plan de

mantenimiento, una vez habiéndonos documentado y analizado los diversos Métodos para el

desarrollo de un plan de mantenimiento Basado en Riesgos, se optó por el desarrollo y

aplicación de un mantenimiento correctivo y preventivo, debido a la disponibilidad y fácil

implementación que ambos presentan a la hora de su aplicación.

Posteriormente de obtuvieron los puntos críticos de la máquina para poder identificar las

principales causas de fallas en esta. Para esto se revisó una bitácora semanal, señalando

elemento de falla y número de veces de falla en esta. Lo anterior para realizar tablas

comparativas de probabilidad de falla, así como tasas de fallos usando el Método (what if), lo

que permitió realizar tablas de niveles de riesgo de puntos críticos. Estas tablas son necesarias

para la obtención de los parámetros necesarios para el desarrollo del plan de mantenimiento

correctivo y preventivo.

Realizado el plan de mantenimiento, se procedió a implementar los planes mediante informes

de fallas y de mantenimiento, principalmente para la realización de un historial de fallas,

necesario para darle prioridad al mantenimiento en elementos críticos Además de obtener

mediante estos datos tablas de análisis de fallas, las cuales permiten integrar y visualizar de

una forma concreta los datos obtenidos a lo largo de la tesis, además de notar el decremento en

el número de fallas, después de la implementación del plan de mantenimiento preventivo,

disminuir el tiempo de reparación de elementos con fallas, después de la implementación del

plan de mantenimiento correctivo.

Page 8: Plan de mantenimiento para una máquina de inyección Negri

8

INTRODUCCIÓN.

Page 9: Plan de mantenimiento para una máquina de inyección Negri

9

En la actualidad, las empresas del ámbito de producción de piezas por inyección de plástico,

sufren de varias problemáticas, entre las cuales destacan los riesgos debido a fallas, ya sea por

errores humanos, errores del sistema o de diseño. Estas fallas debido a errores dañan a la

maquinaria y a los operarios, razón por lo cual se pretende el desarrollo de un plan de

mantenimiento para una máquina de inyección de plástico tipo horizontal. Con este plan de

mantenimiento se busca tener una mayor productividad, aumentando a su vez la calidad en los

productos, brindando las salvaguardas necesarias para asegurar la integridad de la maquinaria,

además de garantizar la seguridad para los operarios. Los métodos de análisis de riesgos, se

basan en estudios de las instalaciones y procesos. Estos métodos siguen un procedimiento

lógico de deducción de fallas, errores, instalaciones, procesos, operaciones, que trae como

consecuencia la obtención de soluciones para este tipo de eventos. El método por análisis de

riesgos "What if ...?", fue la técnica que se usó. Esta técnica es un método inductivo que utiliza

información específica de un proceso como los DFP´s (Diagramas de Proceso), DTI´s

(Diagramas de Tubería e Instrumentación) para generar una serie de preguntas de una lista de

verificación y evaluarlas, incluyendo la más amplia gama de consecuencias posibles.

Esta tesis consta de una evaluación de las diferentes causas que pueden estar ocasionando

fallas, lo que genera un incremento de riesgos. El programa de mantenimiento es una

propuesta de solución de este problema, para la reducción de riesgos para lograr una mayor

productividad además brindar seguridad a la máquina y a los operarios.

Dado a que la máquina no cuenta con ningún plan de mantenimiento preventivo, debido a que

se ha dado prioridad a cumplir con los lotes de la producción, solo se ha limitado a dar

mantenimiento correctivo a los problemas que van surgiendo durante el transcurso del día. Por

lo cual los problemas de cada paro no pueden ser solucionados de forma rápida y existen paros

los cuales no pueden ser atendidos con eficacia por lo que se han tenido pérdidas económicas

al no cumplir con los pedidos programados.

Todos los paros de producción pueden ser si no erradicados al 100%, se podrían disminuir la

frecuencia y anticiparse a la falla para evitar todos los problemas subsecuentes por lo que el

equipo pretende diseñar un programa de mantenimiento como propuesta de solución al

problema antes planteado, para lograr una mayor productividad y calidad en los productos

elaborados.

Para realizar el plan de mantenimiento se evaluó el funcionamiento de la máquina, tomándose

un registro de todas las fallas surgidas en la máquina, en un tiempo de muestreo de 16

semanas. Al ejecutar el plan de mantenimiento y la implementación de salvaguardas, durante

un lapso de 4 meses, se observó una disminución promedio en % de fallas de un 61.176353 %

de los paros debido a fallas, comprobando la eficiencia del plan de mantenimiento.

Page 10: Plan de mantenimiento para una máquina de inyección Negri

10

Este trabajo se divide en cinco partes principales:

Capítulo I: Teoría del mantenimiento

La primera fase fue la documentación. En esta se investigó la teoría de los tipos de

mantenimiento, su estructura, ventajas en su aplicación y desarrollo de estos planes de

mantenimiento, se optó por seleccionar el mantenimiento basado en riesgos MBR, usando mantenimiento preventivo y correctivo. Siguiendo la metodología What if?, se pudo

mantener los equipos en su mejor estado, evitando posibles riesgos tanto para la máquina

como para los operarios.

Capítulo II: Metodología del mantenimiento basado en riesgos

En la segunda fase se delimitó la problemática y se definió la metodología a seguir,

construyendo un esquema de actividades para llevar a cabo un análisis de riesgos.

La finalidad es proponer un programa de mantenimiento, que permita mantener los equipos en

su mejor estado, evitando las fallas que aumentan los costos, y prolongando la vida útil de los

equipos.

Capítulo III: Análisis y descripción de la máquina de inyección Negri Bossi

En este capítulo se presentan las características básicas de la máquina necesarias para la

comprensión de las etapas y funciones, realizadas durante el proceso de inyección, además de

definir las principales partes responsables del funcionamiento de la máquina, para lo cual se

procederá a describir el sistema por completo

Para esto el sistema será dividido en 3 subsistemas, las cuales serán, subsistemas del grupo de

cierre, subsistemas del grupo de inyección y subsistemas del grupo de control, esto para una

mejor identificación y análisis de los elementos.

Como siguiente etapa se procederá a la identificación de cada elemento de la máquina hasta su

punto más básico, esto a su vez dará la pauta para la identificación y control de los puntos

críticos del sistema, necesarios para el desarrollo del plan mantenimiento preventivo

En este capítulo además se explicara el funcionamiento de la máquina, para esto se dividió el

funcionamiento en 2 subsistemas, sistema eléctrico-mecánico y sistema hidráulico,

centrándonos exclusivamente en el diagrama hidráulico.

Cabe mencionar que ambos diagramas fueron elaborados por los autores, con la ayuda de un

técnico especializado en maquinaria Negri Bossi. Para esto se usaran técnicas como la

identificación visual de los elementos y de las líneas, además de apoyarse con herramientas

tales como multímetros digitales y de gancho, obteniendo la continuidad entra líneas de

conexión y elementos, midiendo la tensión y corriente en cada elemento y línea, además de

hacer uso de manómetros incorporados en la máquina, también ha de mencionarse la ayuda

del técnico y de su vasta experiencia en este tipo de maquinaria.

Page 11: Plan de mantenimiento para una máquina de inyección Negri

11

Capítulo IV: Desarrollo del plan de mantenimiento

En este capítulo se realizó un historial de fallas en un lapso de tiempo definido de 16 semanas,

identificando el día de falla, elemento y número de veces de la falla, para lograr mejor una

identificación de puntos críticos, permitiendo a su vez la obtención de un registro de fallas,

dato necesario para la realización del desarrollo del plan de mantenimiento basado en riesgo.

Se identificaron y analizaron los puntos críticos de la máquina de inyección de plástico Negri

Bossi. El método "What if?", ayudó a brindar un control y monitoreo de los puntos críticos del

sistema, lo que permitió una identificación de posibles fallas antes de que estas causen

incidentes no deseados. A partir de los puntos críticos el enfoque del problema se delimita,

permitiendo centrarse en los elementos que presentan los principales problemas. Finalmente se

procedió a evaluar el funcionamiento del sistema, tomándose registro de todas las fallas que

surgieron en éste, para esto se propuso un tiempo de muestreo de 16 semanas.

Con lo anterior se busca proponer una solución viable y efectiva para la disminución de

riesgos debido a fallas y optimización de la producción.

Capítulo V: Implementación del plan de mantenimiento

En este capítulo se aplicó el plan de mantenimiento desarrollado en el capítulo IV, tomando el

calendario de fechas sugerido para el mantenimiento periódico de los elementos, en un lapso

de tiempo definido de 16 semanas, usando un registro de fallas en el cual se llevará el registro

de la fecha, hora de las fallas que se presenten, así como un breve análisis del técnico del

motivo de la falla y una breve descripción de la acción que tomo para solucionar dichas fallas

y el tiempo que le tomo solucionar el problema.

Page 12: Plan de mantenimiento para una máquina de inyección Negri

12

CAPITULO I.-TEORÍA DE MANTENIMIENTO

Page 13: Plan de mantenimiento para una máquina de inyección Negri

13

1.1 Definición

Mantenimiento es la actividad humana que garantiza la existencia de un servicio dentro de una

calidad esperada. Para que éstos continúen o regresen a proporcionar el servicio con la calidad

esperada. Son trabajos de mantenimiento la búsqueda y reforzamiento de los eslabones más

débiles de la cadena de servicio que tiene la fábrica.

Es importante notar que, basados en el servicio y la calidad deseada, se escogerán los equipos

que aseguren obtener este servicio; el equipo queda en segundo término, dado que si no se

obtienen los resultados esperados éste se deberá cambiar por el que sea más apropiado. Por

ello, hay que recordar que el equipo es un medio y el servicio es el fin.

Existen básicamente 4 tipos de mantenimiento que se enuncian a continuación:

- Mantenimiento correctivo: Son las actividades destinadas, para corregir los defectos

o errores que se presentan de forma imprevista, en los equipos de trabajo, estos

defectos son reportados particularmente por los usuarios de dichos equipos.

- Mantenimiento preventivo: Son las actividades que se tienen programadas, en los

puntos críticos de los equipos, para evitar las fallas en ellos, estas actividades se

realizan en tiempos determinados sin importar si el equipo presenta o no algún indicio

de fallo.

- Mantenimiento predictivo: Este mantenimiento tiene como objetivo conocer de

forma continua y permanente el estado del equipo en todas sus partes y funciones, para

lograr esto se crean informes de los valores de las variables del equipo como pueden

ser la temperatura, el consumo de energía y vibración. Estas indicarán si existe un

posible fallo y antes de que este suceda actuar.

- Mantenimiento integral: Es en el cual se implementa una acción táctica, para corregir

un error, solucionado dicho error, se implementa una acción estratégica para conocer a

que se debió la emergencia y realizar lo necesario para que este error no se vuelva a

presentar:

Mantenimiento Integral =Labores contingentes + Labores programadas.

Page 14: Plan de mantenimiento para una máquina de inyección Negri

14

1.2 Mantenimiento correctivo

Es la actividad humana desarrollada en los bienes físicos de una empresa, como lo son los

equipos, instalaciones o construcciones cuando a consecuencia de una falla han dejado de

proporcionar la calidad de servicio esperada. Este tipo de mantenimiento se clasifica en lo

siguiente:

a) Mantenimiento contingente.

Se refiere a las actividades que se realizan en forma inmediata, debido a que algún equipo que

proporciona servicio vital y ha dejado de hacerla, por cualquier causa, se tiene que actuar en

forma emergente y, en el mejor de los casos, bajo un plan contingente.

Las labores que en este caso deben realizarse, tienen por objeto la recuperación inmediata de

la calidad de servicios; es decir, que ésta se coloque dentro de los limites esperados por medio

de arreglos provisionales, así, el personal de mantenimiento debe efectuar trabajos

indispensables, evitando arreglar otros elementos de la máquina o hacer otro trabajo adicional,

que permiten la atención complementaria cuando el mencionado servicio ya no se requiera o la

importancia de éste sea menor y, por lo tanto, al ejecutar estos trabajos se reduzcan las

pérdidas.

b) Mantenimiento programable.

El mantenimiento correctivo programable se refiere a las actividades que se desarrollan en los

equipos o máquinas que están proporcionando un servicio trivial y éste, aunque necesario, no

es indispensable para dar una buena calidad de servicio, por lo que es mejor programar su

atención, por cuestiones económicas de esta forma, pueden compaginarse si estos trabajos, con

los programas de mantenimiento.

1.3 Mantenimiento preventivo

Ésta es la segunda rama del mantenimiento y se define como la actividad humana desarrollada

en los bienes físicos de una empresa, con el fin de garantizar que la calidad de servicio qué

estos proporciona, continúen dentro de los límites establecidos. Con esta definición se

concluye que toda labor de mantenimiento que se realice con los bienes físicos de la fábrica,

sin que dejen de ofrecer la calidad de servicio esperada, deben catalogarse como de

mantenimiento preventivo.

Este tipo de mantenimiento siempre es programable y existen muchos procedimientos para

llevarlo a cabo pero un análisis de estos, proporciona cuatro tipos de mantenimiento

preventivo bien definidos, los cuales siguen un orden de acuerdo con su grado de confianza, la

cual se relaciona en razón directa con su costo. A continuación se describen los tipos de

mantenimiento preventivo.

Page 15: Plan de mantenimiento para una máquina de inyección Negri

15

a) Mantenimiento predictivo.

Se define como un sistema permanente de diagnóstico que permite detectar con anticipación,

la posible pérdida de calidad de servicio que esté entregando un equipo. Con ello realizar con

tiempo cualquier clase de mantenimiento preventivo y, si lo atendemos adecuadamente, nunca

se pierda la calidad del servicio esperado.

El mantenimiento predictivo es una técnica para pronosticar el punto futuro de falla de un

componente de una máquina, de tal forma que dicho componente pueda reemplazarse, con

base en un plan, justo antes de que falle. Así, el tiempo muerto del equipo se minimiza y el

tiempo de vida del componente se maximiza.

El mantenimiento predictivo permite que la gerencia de la planta tenga el control de las

máquinas y de los programas de mantenimiento y no al revés. En una planta donde se usa el

mantenimiento predictivo el estado general de las máquinas es conocido en cualquier

momento y con una planificación más precisa, será posible anticiparse a la fallas.

En este tipo de mantenimiento, los trabajos por efectuar proceden de un diagnóstico

permanente derivado de inspecciones continuas, este tipo de mantenimiento requiere, para su

aplicación, de un estudio profundo del recurso que se va a mantener para conocer sus partes

vitales, su tiempo de vida útil y la calidad de servicio que se espera de cada una de ellas, así

como de su conjunto.

La implantación de este tipo de mantenimiento en la fábrica es costosa, pero su operación es

económica y se obtiene el más alto grado de fiabilidad; por lo que su uso es ideal para partes,

máquinas y sistemas vitales. En la tabla 1 se ofrece un resumen de este tipo de mantenimiento.

Tabla 1. Mantenimiento predictivo.

Mantenimiento predictivo.

Sistema permanente de diagnóstico que permite detectar con anticipación el posible.

Funcionamiento defectuoso o cambio de estado de una máquina.

Sus objetivos.

• Protección preventiva de las personas y bienes físicos vitales.

• Maximización de la efectividad de las máquinas.

• Reducción del costo combinado (mantenimiento más paros).

• Obtención de información para estadística.

Page 16: Plan de mantenimiento para una máquina de inyección Negri

16

b) Mantenimiento periódico.

Desde el funcionamiento-hasta-fallar procesamos al mantenimiento periódico preventivo que a

veces es llamado "mantenimiento histórico". En este tipo se analizan las historias de cada

máquina y se programan reacondicionamientos periódicos antes de que ocurran los problemas

que estadísticamente se pueden esperar.

Desde hace mucho que grupos de máquinas similares van a tener proporciones de fallas que se

pueden predecir hasta cierto punto, si se toman promedios durante un tiempo largo. Esto

produce "la curva de la tina" que relaciona la proporción de fallas al tiempo de operación

como se muestra en la figura 1:

Figura 1. Curva de la tina.

Si esta curva es aplicable a las máquinas del grupo, y si la forma de la curva es conocida, se

podría usar el mantenimiento preventivo de manera ventajosa. El mantenimiento preventivo

también incluye actividades como el cambio del aceite y de los filtros y la limpieza e

inspección periódica. La actividad de mantenimiento se puede planificar en base al tiempo del

calendario o a horas de operación de la máquina y cantidad de partes producidas.

c) Mantenimiento analítico.

Es el análisis de fallas que indica cuando se debe aplicar las actividades de mantenimiento

para prever las fallas de equipo.

Page 17: Plan de mantenimiento para una máquina de inyección Negri

17

d) Progresivo.

El mantenimiento progresivo es uno de los pilares más importantes en la búsqueda de

beneficios en una organización industrial. El Instituto Japonés de Mantenimiento de Plantas

(JIPM) le ha dado a este pilar el nombre de "Mantenimiento Planificado". En algunas

empresas utilizan el nombre de Mantenimiento Preventivo o Mantenimiento Programado.

Se estudian las funciones administrativas para dirigir el mantenimiento:

- Definición de estrategias de mantenimiento.

- Selección de actividades.

- Preparación de estándares de trabajo.

- Ciclo de planificación.

- Programación.

- Ejecución.

- Control.

Se analizan estrategias para el desarrollo e implantación de sistemas de información de

mantenimiento incluyendo: codificación de equipos, averías y acciones de intervención en

equipos, ciclo de órdenes de trabajo y formas para conservar el conocimiento adquirido

mediante el análisis de averías y fallos

Ventajas del mantenimiento preventivo.

Confiabilidad, los equipos operan en mejores condiciones de seguridad, ya que se

conoce su estado, y sus condiciones de funcionamiento.

Disminución del tiempo muerto, tiempo de parada de equipos/máquinas.

Mayor duración, de los equipos e instalaciones.

Disminución de existencias en almacén y, por lo tanto sus costos, puesto que se ajustan

los repuestos de mayor y menor consumo.

Uniformidad en la carga de trabajo para el personal de Mantenimiento debido a una

programación de actividades.

Menor costo de las reparaciones.

1.4 Evolución del concepto de mantenimiento

Se puede encontrar infinidad de definiciones diferentes para el concepto, según los criterios de

cada autor. Intentando homogeneizar diferentes criterios, se puede definir el mantenimiento

como:

El conjunto de actividades que se realizan sobre un componente, equipo o sistema para

asegurar que continúe desempeñando las funciones que se esperan de él, dentro de su

contexto operacional.

Page 18: Plan de mantenimiento para una máquina de inyección Negri

18

El objetivo fundamental del mantenimiento, por tanto, es preservar la función y la

operatividad, optimizar el rendimiento y aumentar la vida útil de los activos, procurando una

inversión óptima de los recursos. Este enfoque del mantenimiento es resultado de una

evolución importante a través del tiempo. John Moubray (1997) en su libro RCM II distingue

entre tres generaciones diferentes de mantenimiento. Cada una de las cuales representa las

mejores prácticas utilizadas en una época determinada.

Primera Generación.

La primera generación cubre el período entre 1930 y la Segunda Guerra Mundial. En esta

época la industria estaba poco mecanizada y por tanto los tiempos fuera de servicio no eran

críticos, lo que llevaba a no dedicar esfuerzos en la prevención de fallos de equipos. Además

al ser maquinaria muy simple y normalmente sobredimensionada, los equipos eran muy

fiables y fáciles de reparar, por lo que no se hacían revisiones sistemáticas salvo las rutinarias

de limpieza y lubricación. El único mantenimiento que se realizaba era el de “Reparar

cuando se averíe”, es decir, mantenimiento correctivo (tabla 2).

Tabla 2.- Primera generación del mantenimiento.

Objetivos.

Técnicas.

Reparar cuando se produce el fallo. Mantenimiento Correctivo.

Segunda Generación.

La Segunda Guerra Mundial provocó un fuerte aumento de la demanda de toda clase de

bienes. Este cambio unido al acusado descenso en la oferta de mano de obra que causó la

guerra, aceleró el proceso de mecanización de la industria.

Conforme aumentaba la mecanización, la industria comenzaba a depender de manera crítica

del buen funcionamiento de la maquinaria. Esta dependencia provocó que el mantenimiento se

centrara en buscar formas de prevenir los fallos y por tanto de evitar o reducir los tiempos de

parada forzada de las máquinas. Con este nuevo enfoque del mantenimiento, apareció el

concepto de mantenimiento preventivo. En la década de los 60, éste consistía

fundamentalmente en realizar revisiones periódicas a la maquinaria a intervalos fijos.

Además se comenzaron a implementar sistemas de control y planificación del mantenimiento

con el objetivo de controlar el aumento de los costes de mantenimiento y planificar las

revisiones a intervalos fijos (tabla 3).

Tabla 3- Segunda generación del mantenimiento.

Objetivos

Técnicas

Mayor disponibilidad de los equipos.

Mayor vida de operación de los equipos.

Reducción de costes.

Mantenimiento planificado.

Sistemas de control.

Utilización de grandes ordenadores.

Page 19: Plan de mantenimiento para una máquina de inyección Negri

19

Tercera Generación.

Se inició a mediados de la década de los setenta, cuando se aceleraron los cambios a raíz del

avance tecnológico y de las nuevas investigaciones. La mecanización y la automatización

siguieron aumentando, se operaba con volúmenes de producción muy elevados, cobraban

mucha importancia los tiempos de parada debido a los costos por pérdidas de producción.

En esta generación se alcanzó mayor complejidad la maquinaria y aumentaba nuestra

dependencia de ellas, se exigían productos y servicios de calidad, considerando aspectos de

seguridad y medio ambiente y se consolidó el, desarrollo del mantenimiento preventivo (tabla

4).

Tabla 4.- Tercera generación del mantenimiento.

Objetivos.

Técnicas.

Mayor disponibilidad y fiabilidad.

Mayor seguridad.

Mayor calidad del producto.

Respeto al medio ambiente.

Mayor vida de los equipos.

Eficiencia de costes.

Monitoreo de condición.

Diseño basado en fiabilidad y mantenibilidad.

Estudios de riesgo.

Utilización de pequeños y rápidos ordenadores.

Modos de fallo y causas de fallo (FMEA, FMECA).

Sistemas expertos.

Polivalencia y trabajo en equipo.

La cuarta Generación. Nuevas tendencias del mantenimiento.

En los últimos años se ha vivido un crecimiento muy importante de nuevos conceptos de

mantenimiento y metodologías aplicadas a la gestión del mantenimiento.

Hasta finales de la década de los 90, los desarrollos alcanzados en la 4º generación del

mantenimiento incluían:

Herramientas de ayuda a la decisión, como estudios de riesgo, modos de fallo y

análisis de causas de fallo.

Nuevas técnicas de mantenimiento, como el monitoreo de condición.

Equipos de diseño, dando mucha relevancia a la fiabilidad y mantenibilidad.

Un cambio importante en pensamiento de la organización hacia la participación, el

trabajo en equipo y la flexibilidad.

A estos usos, se han ido añadiendo nuevas tendencias, técnicas y filosofías de mantenimiento

hasta nuestros días, de tal forma que actualmente se habla de una cuarta generación del

mantenimiento.

Page 20: Plan de mantenimiento para una máquina de inyección Negri

20

El nuevo enfoque se centra en la eliminación de fallas utilizando técnicas proactivas. Ya no

basta con eliminar las consecuencias de la falla, sino que se debe encontrar la causa de esa

falla para eliminarlo y evitar así que se repita. Asimismo, existe una preocupación creciente en

la importancia de la mantenibilidad y fiabilidad de los equipos, de forma que resulta clave

tomar en cuenta estos valores desde la fase de diseño del proyecto (tabla 5).

Otro punto importante es la tendencia a implantar sistemas de mejora continua de los planes

de mantenimiento preventivo y predictivo, de la organización y ejecución del mantenimiento.

Tabla 5.- Cuarta generación del mantenimiento.

Objetivos

Técnicas

Mayor disponibilidad y fiabilidad.

Mayor seguridad.

Mayor calidad del producto.

Respeto al medio ambiente.

Mayor vida de los equipos.

Eficiencia de costes.

Mayor mantenibilidad.

Patrones de fallos / Eliminación de los fallos.

Monitoreo de condición.

Utilización de pequeños y rápidos ordenadores.

Modos de fallo y causas de falla (FMEA, FMECA).

Polivalencia y trabajo en equipo/ mantenimiento autónomo.

Estudio fiabilidad y mantenibilidad durante el proyecto.

Gestión del riesgo.

Sistemas de mejora continúa.

Mantenimiento preventivo.

Mantenimiento predictivo.

Mantenimiento proactivo/ eliminación del fallo.

Grupos de mejora y seguimiento de acciones.

A continuación se muestra cómo han evolucionado las expectativas del mantenimiento que

John Moubray describía en su tercera generación del mantenimiento:

Disponibilidad y fiabilidad de los equipos- La disponibilidad y la fiabilidad de una máquina

se siguen viendo en nuestros días como buenos indicadores de rendimiento para el

mantenimiento. Las expectativas del mantenimiento en estas áreas se han mantenido e incluso

aumentado en los últimos 15 años.

Mayor seguridad- La seguridad sigue siendo una expectativa importante del mantenimiento,

particularmente en el sentido de poder operar los equipos con seguridad. Tradicionalmente, la

seguridad se centraba en eventos de alta frecuencia y pequeñas consecuencias. En los últimos

años se está ampliando el estudio a eventos que aunque presentan una frecuencia muy baja

traen consigo consecuencias muy graves (catástrofes industriales). Existe una creciente

percepción de que las metodologías o sistemas de mantenimiento necesarios para evitar estas

catástrofes industriales, deben ser diferentes que los usados típicamente para incidentes menos

graves y más frecuentes. Para el control de este tipo de eventos se están desarrollando nuevas

metodologías de mantenimiento basado en riesgo, sobre las cuales se realizará un amplio

estudio en este proyecto.

Page 21: Plan de mantenimiento para una máquina de inyección Negri

21

Mayor calidad del producto- En un mercado global, asegurar que el producto reúna todas las

especificaciones de calidad sigue siendo un punto clave. Para las organizaciones que operan

con “comodidades”, la calidad del producto es una de las pocas vías de diferenciar su producto

respecto a sus competidores. El mantenimiento debe asegurar que el producto fabricado

presenta los requisitos de calidad que han sido definidos para ese producto.

Aumento de la vida operativa de los equipos- El ritmo creciente de los cambios tecnológicos

y la disminución de los ciclos de vida de los productos han provocado en algunos casos un

descenso en la importancia de aumentar la vida operativa de los equipos, al menos en la parte

que concierne al mantenimiento. A pesar de ello, evitar la “muerte prematura” de las máquinas

sigue siendo un objetivo muy importante del mantenimiento.

Eficiencia de costos- La tercera generación de mantenimiento buscaba la optimización de sus

gastos, para con ello colaborar en minimizar los costes totales de la organización. Esto es

cierto, sólo en teoría. A pesar de las ventajas que podría tener conseguir mayor eficiencia en

los costes del mantenimiento, la realidad ha sido que en muchas industrias- sobre todo en las

intensivas en capital- lo que se ha hecho es minimizar la plantilla y conseguir un

“mantenimiento esbelto” (Lean Maintenance) dentro de la organización, más que buscar un

correcto nivel de gastos en mantenimiento.

A parte de estas características descritas anteriormente, existen otros dos temas importantes

dentro del mantenimiento actual cuya importancia ha aumentado de forma muy importante en

los últimos años:

La Gestión del Riesgo

Los Nuevos Patrones de Falla

1.4.1 La gestión del riesgo

Cada día cobra más importancia la identificación y control de los posibles sucesos que

presentan una baja probabilidad pero consecuencias graves, sobretodo en organizaciones que

operan en industrias con riesgo. El mantenimiento se está viendo como un participante clave

en este proceso.

En el pasado, este tipo de sucesos se controlaban simplemente con una extensión de los

Sistemas de Gestión de Seguridad y Medio Ambiente implantados en cada empresa. Sin

embargo, existe una creciente percepción de que la aplicación de estos sistemas de gestión a

los sucesos de “baja probabilidad / consecuencias graves” no es efectiva, por lo que es

necesario desarrollar otras metodologías.

Page 22: Plan de mantenimiento para una máquina de inyección Negri

22

Un caso a mencionar es el accidente en la refinería de Longford, en Australia en 1998, ocurrió

a pesar de que contaban con un Sistema de Seguridad de Mantenimiento de Clase Mundial.

Como este desastre, otras muchas organizaciones han padecido accidentes de baja

probabilidad y consecuencias graves en los últimos años a pesar de tener implantados sistemas

apropiados de control. Estos sucesos, han puesto de manifiesto las limitaciones que presentan

las actuales metodologías de gestión del riesgo como la “Valoración Cuantitativa del Riesgo”

(Quantitative Risk Assessment”), las Valoraciones Probabilísticas de Seguridad (Probabilistic

Safety Assessments- PSA) y otras.

Evan y Manion identifican los siguientes problemas asociados a este tipo de metodologías:

Dificultad para identificar todos los factores potenciales de riesgo.

Problemas con las incertidumbres en los modelados de los sistemas, especialmente

para obtener datos probabilísticos realistas para eventos de baja frecuencia.

Problemas para determinar las relaciones causa-efecto. A menudo éstas no son

demostrables.

La incertidumbre provocada por el factor humano, a menudo no se puede modelar.

Problemas de complejidad y acoplamiento. El acoplamiento y la complejidad

interactiva entre los componentes de un sistema anulan cualquier modelo completo de

fallos potenciales de un sistema.

El valor de la vida. El problema moral de asignar un valor monetario a la vida humana.

Para otros autores como Bougumil, el problema fundamental es que las probabilidades que se

asignan a los modos de fallo individuales que están basados en análisis no corroborados

experimentalmente. Esto es especialmente cierto para las incertidumbres que aparecen debido

a relaciones causa-efecto ocultas o desconocidas.

Con el objetivo de superar estas debilidades, las “Organizaciones Altamente Confiables” han

desarrollado una serie de puntos culturales clave dentro de la organización a tener en cuenta:

Preocupación ante las fallas. Cualquier falla debe ser tenido en cuenta, por pequeño

que sea, ya que la coincidencia de pequeñas fallas en un mismo punto puede traer

consecuencias graves.

Reticencia a simplificar interpretaciones, teniendo en cuenta que el mundo real es

complejo e impredecible.

Sensibilidad en las operaciones. Se debe asegurar que los operarios de primera línea,

donde se realiza el trabajo, sean conscientes de la situación y avisen cuando algo no va

bien.

Compromiso de resistencia. Se deben desarrollar capacidades para recuperarse ante los

errores que ocurran.

Respeto de la experiencia. Las decisiones se toman en la primera línea de producción y

la autoridad recae sobre la persona con más experiencia, independientemente de su

lugar o nivel dentro de la organización.

Page 23: Plan de mantenimiento para una máquina de inyección Negri

23

Asimismo indicar una serie de funciones que utilizan las organizaciones para defenderse de

los eventos de baja probabilidad y consecuencias graves:

Crear una conciencia y un conocimiento del riesgo.

Proporcionar una guía clara de cómo operar de manera que se evite el riesgo.

Utilizar advertencias y alarmas cuando el peligro es inminente.

Restablecer el sistema a una situación estable cuando este se encuentra en una

situación anormal.

Interponer barreras de seguridad entre el accidente y las pérdidas potenciales.

Contener y eliminar el accidente, si sobrepasa la barrera.

Proporcionar vías

Algunas vías para intentar compensar las consecuencias graves de este tipo de eventos pueden

ser (tabla 6):

Tabla 6.-Medidas a tomar en consecuencias graves.

Medidas suaves

Medidas severas

Legislación.

Reglas y procedimientos.

Programas de mantenimiento.

Entrenamiento.

Informes y ejercicios.

Controles Administrativos.

Supervisión.

Elementos automáticos de

seguridad.

Barreras físicas.

Avisadores y alarmas.

Elementos de corte.

Equipos de protección personal.

Para conseguir un control efectivo de los sucesos de baja frecuencia y graves consecuencias

desde el punto de vista del mantenimiento se necesita establecer una extensa capa de defensas

contra el riesgo de manera efectiva. Para ello, no basta simplemente con la utilización de una

herramienta simple de manejo del riesgo como RCM (Reliability-centered Maintenance),

PMO (Plant Maintenance Optimization), QRA (Quantitive Risk Analysis), PSA (Probabilistic

Safety Assessment) y otras, sino que habrá que complementarlas con estudios específicos para

cada caso.

1.4.2 Patrones de falla

Las nuevas investigaciones están cambiando muchas de las tradicionales creencias sobre la

relación existente en una máquina entre el envejecimiento y la falla. En particular, se ha

demostrado que para muchos equipos existe muy poca relación entre el tiempo de operación y

la probabilidad de falla.

Page 24: Plan de mantenimiento para una máquina de inyección Negri

24

El enfoque inicial del mantenimiento suponía que la probabilidad de que una máquina falle,

aumenta según el tiempo de operación, siendo mayor la probabilidad de fallo en la “vejez” de

la máquina.

La segunda generación de mantenimiento introdujo el concepto de “mortalidad infantil”. De

esta forma la tasa de fallos de una máquina puede ser representada con una curva de bañera,

existiendo, por tanto, más probabilidad de fallo durante el principio y el final de su vida útil.

Sin embargo, en el mantenimiento actual se ha demostrado que podemos definir seis patrones

diferentes de tasa de fallos, según el tipo de máquina que estemos utilizando.

Tener en cuenta el patrón al que se ajusta cada elemento es fundamental si se quiere conseguir

una óptima planificación del mantenimiento (figura 2).

Se asegura de que el mantenimiento que ha sido planificado es el adecuado, ya que de nada

sirve realizar el trabajo planificado de forma correcta, si éste no es el más adecuado.

Patrones de Tasa de Fallos

Figura 2. Patrones de fallo.

Para los patrones de fallo “A”, “B” y “C”, la probabilidad de fallo aumenta con la edad hasta

alcanzar un punto en el que es conveniente reemplazar el componente antes de que falle y así

reducir su probabilidad de fallo.

Page 25: Plan de mantenimiento para una máquina de inyección Negri

25

En el caso de los componentes que presentan una probabilidad de fallo del “modelo E”,

reemplazar el componente no mejorará en ningún caso su fiabilidad, ya que el nuevo elemento

tendrá la misma probabilidad de fallo que el antiguo.

Si el patrón de fallo al que se ajusta el componente es el “F”, reemplazar el elemento a

intervalos fijos por un componente nuevo, no sólo no mejorará la fiabilidad, sino que

aumentará la probabilidad de fallo, ya que en la “infancia” presenta más mortalidad que en la

vejez.

En la figura 5 se observa que más del 50% de los componentes presentan fallos en la

“infancia”. Esto quiere decir que cada vez que se repara o reemplaza un equipo, las

posibilidades de fallo prematuro debido a esa operación de mantenimiento son muy elevadas.

Alguna de las posibles explicaciones que se pueden dar a este hecho, son:

Errores humanos. La tarea de reemplazo o reparación no se completa de manera

adecuada por falta de experiencia o conocimiento del personal de mantenimiento.

Errores del sistema. El equipo se vuelve a poner en servicio tras haberle realizado una

operación de mantenimiento de alto riesgo y no haber revisado dicha operación.

Errores de diseño. La capacidad de diseño del componente está demasiado cerca del

rendimiento que se espera de él, por lo que las piezas de menos calidad pueden fallar

cuando se le exige dicho rendimiento.

Errores de piezas. Se suministran piezas incorrectas o de baja calidad.

El mantenimiento actual debe centrarse en reducir las operaciones de mantenimiento

provocadas por fallos que se ajustan al “modelo F”. Es decir, fallos ocurridos en la “infancia”

de los equipos. Para los elementos que ajusten su tasa de fallos a este patrón “F”, un

mantenimiento planificado a intervalos fijos aumentará las posibilidades de fallo, ya que el

equipo nuevo presentará más probabilidad de fallo que el antiguo. Por ese motivo existe una

tendencia generalizada a “mantener lo mínimo posible”, debido a que cualquier operación de

mantenimiento realizada puede aumentar la probabilidad de fallo.

Otra posibilidad, es centrarse en reducir de forma global las probabilidades de falla sobre

todos los modelos. La forma de realizar esto, es mediante la utilización de un mantenimiento

proactivo, es decir buscar la forma de eliminar los fallos, más que eliminar sus consecuencias.

Para eliminar los fallos, hay que eliminar sus causas, lo que implica conocerlas. Existen

herramientas como el Análisis Causa-Raíz que ayudan a identificar y eliminar las causas de

los fallos, aunque en muchas ocasiones se utiliza como una herramienta reactiva más que

proactiva.

Page 26: Plan de mantenimiento para una máquina de inyección Negri

26

La eliminación proactiva de las causas de fallo implica la utilización de metodologías y

herramientas que proporcionen:

Asegurar que los equipos utilizados han sido adecuadamente diseñados para la

operación requerida y que a la hora de su adquisición se han tenido en cuenta su

mantenibilidad, y costo de ciclo de vida, más que minimizar la inversión. Esto requiere

una interacción importante entre los ingenieros y el personal de mantenimiento.

Asegurar que los equipos están operando dentro de sus condiciones de diseño. Esto

requiere un aumento en la disciplina del personal de producción a la hora de ajustarse a

los estándares, documentos y procedimientos de operación.

Asegurar un correcto funcionamiento de la gestión de los repuestos e inventarios.

Asegurar que los procesos de reparación funcionan correctamente, de tal forma que se

asegure que los equipos son reparados correctamente a la primera. Esto requiere un

alto grado de atención en los detalles y una mayor disciplina en la organización.

En la figura 3 y 4 se presenta como han ido evolucionando las expectativas y técnicas del

mantenimiento durante el último siglo:

Figura 3.- Objetivos del mantenimiento.

Page 27: Plan de mantenimiento para una máquina de inyección Negri

27

Figura 4.- Evolución de las técnicas de mantenimiento.

1.4.3 Técnicas de mantenimiento

Hoy en día existen diferentes herramientas, técnicas, metodologías y filosofías de

mantenimiento. Algunas de las más utilizadas pueden ser:

• Mantenimiento Autónomo / Mantenimiento Productivo Total (TPM)

• Mejoramiento de la Confiabilidad Operacional (MCO)

• Mantenimiento Centrado en la Confiabilidad (RCM)/ (MCC)

• Mantenimiento Basado en el Riesgo (MBR)

• Asset Integrity

• Mantenimiento Centrado en Confiabilidad en Reversa (MCC-R)

• Análisis Causa raíz (ACR)

• Análisis de Criticidad (AC)

• Optimización Costo Riesgo (OCR)

• Inspección Basada en Riesgo (RBI)

Actualmente uno de los mayores retos para las personas encargadas en temas de

mantenimiento no es sólo aprender todas las técnicas existentes, sino identificar cuáles son las

adecuadas para aplicar en su propia organización y cuáles no, tanto desde el punto de vista

técnico como económico. Tomando una decisión correcta es posible mejorar el rendimiento de

nuestros activos y al mismo tiempo incluso reducir los costes de mantenimiento.

Page 28: Plan de mantenimiento para una máquina de inyección Negri

28

1.4.4 El mantenimiento como fuente de beneficios

Para evaluar la gestión del mantenimiento, se han de definir claramente los objetivos que el

mantenimiento pretende conseguir. Estos objetivos se han de definir en función de los

objetivos de la empresa. La mejor forma de saber si dichos objetivos se consiguen o no y

cómo contribuyen a mejorar la competitividad de la empresa es cuantificarlos en términos

monetarios.

Hoy en día, las estrategias del mantenimiento están encaminadas a garantizar la disponibilidad

y eficacia requerida de los equipos e instalaciones, asegurando la duración de su vida útil y

minimizando los costes de mantenimiento, dentro del marco de la seguridad y el medio

ambiente.

Los factores críticos de éxito de la gestión del mantenimiento son la Disponibilidad y la

Eficacia, que van a indicarnos la fracción de tiempo en que los equipos están en condiciones

de servicio (Disponibilidad) y la fracción de tiempo en que su servicio resulta efectivo para la

producción.

La disponibilidad se ha de tener sólo cuando se requiere, lo cual no quiere decir que haya de

ser por igual en todos los recursos, pues depende mucho de la criticidad de los mismos, y esa

criticidad puede variar según las condiciones del mercado. Tener una disponibilidad

demasiado elevada en recursos que no la necesitan sólo ocasiona un exceso de costos, al hacer

un uso excesivo de los recursos de mantenimiento (figura 5).

Figura 5.- Tiempos de producción.

Page 29: Plan de mantenimiento para una máquina de inyección Negri

29

Lo que podemos visualizar a partir de la figura 5 es:

Una parte del tiempo no se emplea por falta de Demanda. Este tiempo se emplea para

realizar el mantenimiento programado de las instalaciones. Lo que nos queda del

tiempo calendario una vez deducido este tiempo, es el Tiempo de Producción

Requerido.

Otra parte del tiempo se puede emplear si no se ha podido hacer completamente el

mantenimiento programado en el tiempo de falta de demanda. El tiempo que nos queda

disponible, una vez descontado este concepto, se denomina Tiempo Programado

para Producción.

Una parte del Tiempo Programado para Producción se pierde por averías de las

instalaciones. Por lo tanto, el tiempo que le queda a producción para realizar su trabajo

es menor y se denomina Tiempo Disponible para Producción.

La producción también se para por otros motivos: los paros directos e indirectos de las

instalaciones. El tiempo que queda al restarle éste concepto se denomina Tiempo Real

de Producción.

Se comparan el tiempo en que se ha realizado la producción real, con el tiempo en que se

podría haber hecho si todo hubiera ido perfectamente y las instalaciones hubiesen podido

trabajar a su capacidad máxima. Este tiempo lo denominamos Tiempo de Producción

Efectiva. A partir de estos conceptos, definimos Disponibilidad y Eficacia como:

𝐷𝑖𝑠𝑝𝑜𝑛𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑 =𝑇𝑖𝑒𝑚𝑝𝑜 𝑑𝑖𝑠𝑝𝑜𝑛𝑖𝑏𝑙𝑒 𝑝𝑎𝑟𝑎 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖ó𝑛

𝑇𝑖𝑒𝑚𝑝𝑜 𝑑𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖ó𝑛 𝑟𝑒𝑞𝑢𝑒𝑟𝑖𝑑𝑜. (1)

𝐸𝑓𝑖𝑐𝑎𝑐𝑖𝑎 =𝑇𝑖𝑒𝑚𝑝𝑜 𝑑𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖ó𝑛 𝐸𝑓𝑒𝑐𝑡𝑖𝑣𝑎

𝑇𝑖𝑒𝑚𝑝𝑜 𝑑𝑖𝑠𝑝𝑜𝑛𝑖𝑏𝑙𝑒 𝑝𝑎𝑟𝑎 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖ó𝑛 (2)

La mejora en estos dos factores y la disminución de los costos de mantenimiento suponen el

aumento de la rentabilidad de la empresa y por tanto tiene influencia directa sobre los

beneficios.

1.5 El riesgo industrial

El concepto del riesgo ha tomado mucha importancia en los últimos años, siendo común el uso

de términos como “exposición al riesgo”, “gestión de riesgos”, “análisis de riesgos”, etc. Por

lo cual surgen una serie de preguntas como:

1. ¿El riesgo es una medida natural?

2. ¿Se puede medir el riesgo de forma directa?

3. ¿En qué unidades se mide el riesgo?

4. ¿Se puede disminuir o aumentar el riesgo?

5. ¿Todos los riesgos son malos?

6. ¿Que entendemos por modificación del riesgo?

Page 30: Plan de mantenimiento para una máquina de inyección Negri

30

Parece que cuanto más conocemos sobre el mundo en el que vivimos, más aprendemos sobre

los peligros existentes. Los avances tecnológicos permiten ser conscientes de los posibles

desastres que podrían ocurrir.

Esta mayor conciencia del riesgo provoca que cada vez haya más interés en mitigarlo o

gestionarlo mediante diferentes tipos de análisis. Aun así, una única cosa es segura, es

imposible eliminar todos los riesgos por completo y en muchos casos no sería ni aconsejable.

El término riesgo se asocia generalmente a aspectos negativos, como a la probabilidad de

ocurrencia de un suceso no deseable o incluso a catástrofes. Así, se habla del riesgo a tener un

accidente, o del riesgo a desarrollar un cáncer de pulmón debido al tabaco pero no se habla del

riesgo a ganar la lotería.

El riesgo es siempre futuro. Si algo ha ocurrido ya, el riesgo asociado a ese evento ya no

existe. Por tanto el riesgo se refiere únicamente a cosas que pueden pasar y así cuanto más

conocimiento obtenemos sobre él, más posibilidades existirá de evitar posibles desastres que

pueden ocurrir.

Nuestra sociedad tecnológica, cada día más consciente de los peligros y sus riesgos, aplica

continuamente sistemas para reducirlos. De esta forma, usamos el cinturón de seguridad,

evitamos conducir de noche, etc.

El hecho es que el análisis de riesgos es una característica natural e innata a la existencia

humana. El riesgo no se puede medir directamente sino que debe ser calculado. El riesgo no es

un fenómeno natural sino un parámetro que requiere la integración de al menos dos

cantidades: La posibilidad y el tipo de evento.

1.5.1 Definición de riesgo

Toda actividad conlleva un riesgo, y una actividad exenta de él representa inmovilidad total.

Pero así, si todos nos permaneciéramos en casa sin hacer nada y se detuviera toda actividad

productiva y de servicios, aún existirían riesgos, no cabe duda que menores, pero existirían. El

riesgo cero no existe.

Se define el riesgo como:

La probabilidad de que un peligro (causa inminente de pérdida) asociado a una actividad

determinada, ocasione un incidente con consecuencias factibles de ser estimadas.

De forma subjetiva, el riesgo se puede describir como la percepción de un peligro. La forma

de percepción que tienen las personas de los peligros influye en la percepción que tienen del

riesgo asociado. Así, las personas están dispuestas a aceptar riesgos más elevados cuando ellas

mismas tienen control sobre el proceso. De esta forma, las personas se sienten mucho más

seguras conduciendo un automóvil que viviendo cerca de una central nuclear aunque la tasa de

mortalidad sea mucho mayor en el caso de los accidentes de automóviles. Esto ocurre porque

la conducción del automóvil es algo que pueden controlar.

Page 31: Plan de mantenimiento para una máquina de inyección Negri

31

1.5.2 El riesgo en la empresa

Dentro de la actividad empresarial se hace una clasificación de los principales tipos de riesgos

que a encontrar:

Estratégicos. Son riesgos relacionados con las decisiones estratégicas de la organización

(adaptación a cambios de entorno, gestión de alianzas, decisiones sobre los negocios en los

que se quiere entrar…).

De mercado. Influencia de variables de mercado del negocio en resultados futuros

(demanda, competencia, coste de factores….)

Financieros. Impacto sobre el rendimiento financiero de la empresa producto de su

apalancamiento financiero, su posición con respecto al tipo de cambio y a los valores

(Riesgo por apalancamiento, riesgo cambiario, riesgo por posición en valores, riesgo

por liquidez y riesgo crediticio).

Operativos. Derivados del desarrollo práctico del negocio (fallos técnicos/humanos,

infrautilización de recursos, sistemas de información/control, tecnología). Este riesgo

de pérdida causado por fallas en procesos, personas, sistemas internos y eventos

externos se puede minimizar con una estrategia de administración de riesgo.

Regulatorios/Legales. Relacionados con la inestabilidad de las reglas del juego en la

regulación, fiscalidad y contabilidad.

Una empresa tomará diferentes actitudes ante el riesgo según este afecte a su negocio.

De esta forma se pueden diferenciar diferentes niveles de riesgo:

Riesgos a eliminar (el riesgo como “peligro”). Son riesgos que llevan asociado un peligro

importante, siendo ajenos a las competencias esenciales de la empresa. Estos riesgos pueden

amenazar la viabilidad de la empresa (baja probabilidad y alta incidencia).

Riesgos a gestionar (el riesgo como “oportunidad”). Riesgos que están vinculados a las

actividades de la empresa. Presentan una media/alta probabilidad y muy diferente incidencia.

Riesgos a asumir (el riesgo como negocio). Son riesgos inherentes a las actividades de la

empresa son consecuencia del tipo de negocio y de su regulación

El sistema empresa está compuesto por cuatro subsistemas que son:

• Personas.

• Equipos.

• Material.

• Entorno.

Estos subsistemas, bien interrelacionados e interactuando de forma armoniosa dan lugar a los

resultados operacionales y financieros que la empresa ha planeado obtener. La empresa

necesita de estos cuatro elementos o subsistemas por lo que siempre requieren especial

atención y cuando un riesgo no es controlado, puede dañar a alguno de los subsistemas o a

todos ellos, como por ejemplo, un incendio o una demanda judicial.

Page 32: Plan de mantenimiento para una máquina de inyección Negri

32

En los cuatro elementos mencionados existen riesgos específicos que se deben controlar en

forma efectiva para que estos no produzcan pérdidas. Estos riesgos tienen relación con la

actividad específica de cada empresa ya que los riesgos de una empresa de transporte son

diferentes a una empresa eléctrica, minera, de servicios, metalmecánica, etc. Aunque por

supuesto existen riesgos comunes en todas las actividades. Estos riesgos específicos a cada

actividad se llaman riesgos inherentes. Los riesgos en general, se pueden clasificar en riesgo

puro y riesgo especulativo.

El riesgo especulativo es aquel riesgo en el cual, existe la posibilidad de ganar o perder, como

por ejemplo, las apuestas o los juegos de azar. En cambio el riesgo puro es el que se da en la

empresa y existe la posibilidad de perder o no perder pero jamás de ganar.

El riesgo puro en la empresa a su vez se clasifica en:

Riesgo inherente.

Riesgo incorporado.

El riesgo inherente Es aquel riesgo que por su naturaleza no se puede separar de la situación

donde existe. Es propio del trabajo a realizar. Es el riesgo propio de cada empresa de acuerdo

a su actividad.

El riesgo incorporado es aquel riesgo que no es propio de la actividad, sino que es producto

de conductas poco responsables de un trabajador, el cual asume otros riesgos con objeto de

conseguir algo que cree que es bueno para la empresa, como por ejemplo ganar tiempo,

terminar antes el trabajo para destacar, demostrar a sus compañeros que es mejor, etc.

Los siguientes son ejemplos de riesgos incorporados:

Clavar con un alicate o llave y no con un martillo.

Subir a un andamio sin amarrarse.

Sacar la protección a un esmeril angular.

Levantar o transportar sobrepeso.

Transitar a exceso de velocidad.

No reparar un fallo mecánico de inmediato.

Trabajar en una máquina sin protección en las partes móviles

Los riesgos inherentes en una empresa se deben controlar y/o eliminar siempre que sea

posible, ya que al estar en directa relación con la actividad de la empresa, si ésta no los asume

no puede existir. Los riesgos incorporados se deben eliminar de inmediato.

Cuando un riesgo se sale de nuestro control produce accidentes que provocan muertes,

lesiones incapacitantes, daños a los equipos, materiales y/o medio ambiente. Todo esto,

provoca pérdidas para la empresa, ya que ocurrido un accidente, la empresa debe:

1. Contratar un nuevo trabajador y prepararlo para esa actividad.

2. Redistribuir los trabajadores en el área.

3. Pérdidas de tiempo.

4. Aumentos de seguro.

5. Comprar o reparar la maquinaria y/o equipos.

6. Pago de indemnizaciones.

7. Pérdida de tiempo de los trabajadores involucrados en el accidente.

Page 33: Plan de mantenimiento para una máquina de inyección Negri

33

1.6 Análisis de riesgos

1.6.1 Definición matemática de riesgo

Se define el riesgo, como la esperanza matemática de la pérdida. Si un suceso con una

probabilidad de ocurrencia “P” y un daño o consecuencia “C”, el riesgo vendrá definido por el

producto de esta probabilidad por el efecto o magnitud del daño.

Riesgo = P x C Siendo 0≤P≤1 (3)

Una definición equivalente se obtiene sustituyendo la probabilidad por la frecuencia y la

consecuencia por la severidad:

Riesgo = F x S (4)

En este caso, “F” representa la esperanza matemática de la pérdida en un determinado periodo

de tiempo o lo que es lo mismo, la probabilidad de ocurrencia de la pérdida en dicho periodo.

Estos efectos se pueden medir en distintas unidades: en términos económicos, en pérdida de

vidas humanas, en daños personales, etc. Así si un accidente se produce con una frecuencia de

una vez cada 5 años y provoca en cada ocasión quince muertos, el riesgo será de:

Riesgo= 1/5 x 15 = 3 muertos / año (5)

Si para este mismo accidente, las pérdidas económicas ascienden a 300 millones de euros, el

riesgo será:

Riesgo = 1/5 x 300 = 60 millones de euros / año (6)

Obviamente, para reducir el riesgo se puede actuar sobre las dos variables, bien reduciendo las

probabilidades de ocurrencia, bien reduciendo la magnitud esperable del daño, bien actuando

sobre las dos.

Para algunos autores, disminuir la probabilidad es PREVENCIÓN y disminuir la gravedad de

los efectos es PROTECCIÓN. La sencillez matemática de esta expresión está reñida, sin

embargo, con su utilidad práctica. En primer lugar, es preciso identificar todos y cada uno de

los peligros presentes en una instalación industrial y después conocer la frecuencia con la que

ocurrirá un evento (en el contexto del análisis de riesgos será siempre un evento no deseado),

y la magnitud del daño que se producirá. Esta tarea es muy costosa en términos de tiempo y

recursos a emplear. De hecho, algo tan aparentemente simple como conocer estas dos

magnitudes ha obligado al desarrollo de un sinfín de metodologías encaminadas a su

estimación más o menos precisa.

El objetivo de este apartado es describir de forma somera las principales técnicas hoy por hoy

disponibles para identificar peligros y/o evaluar riesgos, ya sea bajo una perspectiva

cualitativa, ya sea mediante el uso de métodos cuantitativos o semi-cuantitativos.

Page 34: Plan de mantenimiento para una máquina de inyección Negri

34

1.6.2 Análisis histórico de accidentes

Su objetivo primordial es detectar los peligros presentes en una instalación por comparación

con otras similares que hayan tenido accidentes registrados en el pasado.

Analizando esos antecedentes es posible conocer las fuentes de peligro, estimar el alcance

posible de los daños e incluso, si la información es suficiente, estimar la frecuencia de

ocurrencia. Para llevar a cabo estos trabajos se dispone de bancos de datos informatizados,

recopilaciones bibliográficas de accidentes o incluso de la propia experiencia de la empresa.

Es una metodología simple y económica, ya que no compromete muchos recursos materiales o

humanos. Su gran ventaja es que detecta peligros absolutamente reales, que ya en el pasado se

han puesto de manifiesto. Sin embargo, las informaciones recogidas son limitadas dado que

sólo se registran los accidentes que acaban en eventos de relativa importancia y se obvian

incidentes, potencialmente más peligrosos que los anteriores, pero que por circunstancias

fortuitas favorables no desencadenan un gran accidente. Asimismo, las informaciones

recogidas no son completas y están afectadas de imprecisiones importantes, lagunas y datos

confidenciales desconocidos.

1.6.3 Análisis preliminar de peligros

Este método es similar al análisis histórico de accidentes, aunque no se basa en el estudio de

siniestros previos sino en la búsqueda bibliográfica de peligros que puedan hallarse presentes

en una nueva instalación a partir de la lista de productos químicos presentes. De forma no

estricta se le suele denominar también "Análisis preliminar de riesgos".

El procedimiento consiste en obtener información completa sobre materiales, sustancias,

reactivos y operaciones previstas, comparar estos procesos con otros de los que se tenga

experiencia anterior, adaptar esas semejanzas al caso actual y analizar las operaciones y

equipos previstos desde el punto de vista de los peligros presentes en cada uno (toxicidad,

corrosividad, carga energética, etc.).

Los puntos críticos que se hayan detectado en el paso anterior deben ser objeto de un estudio

técnico algo más detallado. Por último, como resulta lógico, deberán proponerse las medidas a

adoptar para disminuir o eliminar los peligros detectados.

Es un procedimiento de análisis simple y económico, aunque no sistemático; es estrictamente

cualitativo y depende en exceso de los conocimientos previos de los ejecutantes. Resulta

idóneo para instalaciones en fase de anteproyecto o ingeniería básica, cuando aún no se han

desarrollado planos detallados de la instalación.

1.6.4 Análisis "¿what if…?"

El objetivo fundamental de este método es la detección y análisis de las desviaciones sobre los

procesos y condiciones previstos, intentando evitar aquellos eventos que puedan resultar no

deseables. Básicamente consiste en responder cualitativamente a una batería de preguntas del

tipo “¿Qué pasa si…?”, en relación con la calidad o la concentración de las materias primas, o

en relación con las variables de proceso o los servicios necesarios.

Page 35: Plan de mantenimiento para una máquina de inyección Negri

35

Para llevar a cabo este análisis de forma estructurada se recomienda seguir la línea de proceso,

desde la recepción de materiales hasta la entrega del producto terminado. En una primera fase

se pide a los participantes que planteen cualquier pregunta del tipo “¿Qué pasa si…?” en

relación con cada unidad o etapa del proceso. Una vez recopiladas todas estas cuestiones, se

intentará dar respuesta a cada una de ellas, con la participación de especialistas si fuera

necesario.

Una vez identificados los peligros y sus posibles consecuencias, deben proponerse las medidas

disponibles para minimizarlos, tales como alternativas en el proceso o modificaciones de la

línea de producción. Resulta un sistema muy creativo y de simple aplicación (y por lo tanto,

económico). Sin embargo, aun realizándose de modo estructurado puede pasar por alto

algunos peligros menos evidentes pero no por ello menos graves.

1.6.5 Análisis de los modos de fallas y sus efectos

Denominado también "Failure Mode and Effect Analysis" o FMEA es una técnica muy

utilizada en los sistemas de calidad para identificar causas de fallas.

El FMEA persigue establecer las posibles fallas de todos y cada uno de los elementos de la

planta, analizando las consecuencias y considerando aquellas que puedan desencadenar un

accidente, sugiriendo las medidas a adoptar para controlar tales situaciones de peligro.

Se inicia el estudio identificando todos los equipos de la planta y estableciendo sus

condiciones normales de proceso. A continuación, para cada equipo, se detallan todos y cada

uno de los fallos posibles y se analizan sus posibles consecuencias. Si se da la circunstancia de

que una situación de fallo en un equipo produce una alteración en otro, debe trasladarse esta

influencia al estudio del equipo afectado.

Una vez conocidas las consecuencias, se deben proponer las acciones de mejora necesarias

para eliminar o reducir el peligro. En general para cada elemento se cumplimenta una tabla

con las siguientes columnas: elemento, descripción del equipo, modo de fallo, forma de

detección del fallo, efectos del fallo y medidas correctoras.

Requiere poca información y es relativamente económico. Es un análisis cualitativo (aunque

admite cierto tratamiento semi-cuantitativo). Su principal inconveniente es que no contempla

la posibilidad de fallas combinados o en secuencia.

1.6.6 Análisis de peligros y operatividad

Denominado también "Hazard and Operability Análisis” o HAZOP es una técnica de

seguridad orientada a identificar circunstancias de peligro y de accidente, siendo la operación

(la garantía de funcionamiento) un aspecto secundario.

Page 36: Plan de mantenimiento para una máquina de inyección Negri

36

El HAZOP, es un método absolutamente sistemático, porque se controlan todas y cada una de

las variables de proceso, en todos y cada uno de los equipos de la planta. Su aplicación se

fundamental en la identificación de todos los parámetros del proceso (presión, temperatura,

nivel, caudal, etc.) y sus condiciones de trabajo habituales, analizando de forma sistemática las

desviaciones posibles.

Se inicia el estudio identificando los equipos y líneas principales de la planta. Para cada

equipo o línea se relacionan todos los parámetros que afectan al sistema y se concretan sus

condiciones habituales de proceso.

Para cada situación peligrosa identificada se propondrán las medidas correctoras oportunas en

el sentido de evitar las desviaciones detectadas. Este método requiere documentación completa

y un conocimiento exhaustivo de la planta, de los productos utilizados y de las condiciones de

proceso. Está especialmente adaptado a plantas relativamente complejas en las que otros

métodos serían totalmente anárquicos. En particular, está mejor preparado para ser usado en

plantas de trabajo en continuo, aunque se han desarrollado variantes para procesos por lotes.

Su aplicación es económicamente costosa, dada la necesidad de involucrar en el estudio a un

cierto número de profesionales calificados que deberán dedicarle un tiempo considerable.

Existen en el mercado numerosos paquetes informáticos que apoyan la realización del análisis.

1.7 Programa de mantenimiento

Determinar una lista de pasos a seguir para un programa de mantenimiento es difícil, dado que

cada equipo es diferente en muchos aspectos como son su función, tamaño, piezas, etc. Pero

esto nos impide crear una serie de pasos generales con los cuales apoyarnos para crear un

programa de mantenimiento. Estos pasos son los siguientes:

Administración del plan: Reunir una fuerza de trabajo la cual sea la que inicie y

ejecute cada paso del plan.

Inventario de las instalaciones: Es una lista de todo el entorno al equipo al que se le

dará mantenimiento, se realizará un inventario de todas las herramientas que se tengan,

así como designar una ubicación y prioridad.

Identificación del equipo: Se identificará cada parte del equipo, separándolo en sus

partes más importantes como puede ser sus partes mecánicas, eléctricas, neumáticas,

hidráulicas, control según sea el caso, de preferencia se debe desarrollar un sistema de

códigos que nos ayude a la identificación de cada una de estas partes.

Registros: Es un archivo en donde se encontrarán todos los detalles del equipo como

son los manuales de operación, manuales de servicio, dimensiones del equipo, ficha

técnica, bitácoras.

Programa específico de mantenimiento: Al conocerse las partes que conforman al

equipo es necesario elaborar un programa para cada uno de ellos como es un programa

para la parte eléctrica, un programa para la parte de control y así para cada parte que

conforma el equipo.

Page 37: Plan de mantenimiento para una máquina de inyección Negri

37

Especificaciones del trabajo: Es un documento en el cual se describe el

procedimiento para cada tarea de mantenimiento desde a que equipo se le dará

mantenimiento, así como a que piezas, en que tiempos, quién realizará dicha labor,

componentes que se van a cambiar (en caso de ser necesario), procedimientos de

seguridad, herramientas a utilizar y la frecuencia que se realizarán dichas tareas.

Programa de mantenimiento: Es el documento donde se asignan las tareas de

mantenimiento a períodos de tiempo específicos, en esta etapa en donde nuestro

programa o plan de mantenimiento entra en marcha.

Control del programa: Es la etapa de seguimiento al programa implementado, revisar

que se ejecute conforme a lo planeado y en caso de surgir algún inconveniente,

corregirlo y analizar la falla para que esta no vuelva a suceder.

Page 38: Plan de mantenimiento para una máquina de inyección Negri

38

CAPITULO II.- METODOLOGÍA DEL MANTENIMIENTO

BASADO EN RIESGOS

Page 39: Plan de mantenimiento para una máquina de inyección Negri

39

2.1 Problemática y metodología a seguir

Se tiene que definir la las causas que pueden causar una falla y los riesgos que estos pueden

contraer, así como definir las medidas o tomar para la solución e incluso anticipación de estas

fallas, reduciendo las riesgos tanto para la máquina como para los operarios. Figura 6.

Figura 6.- Flecha definición de las causas de la falla.

Tipos de riesgo.

El riesgo puede ser definido cualitativa / cuantitativamente como el siguiente conjunto de par

de datos para un escenario de falla en particular.

La evaluación de riesgos puede ser cualitativa o cuantitativa.

El resultado de una evaluación cuantitativa del riesgo será típicamente un número, como el

impacto de los costos por unidad de tiempo.

El número podría ser utilizado para dar prioridad a una serie de elementos que han sido

evaluados por los riesgos. La evaluación cuantitativa del riesgo requiere una gran cantidad de

datos tanto para la evaluación de probabilidades y evaluación de las consecuencias. El árbol de

fallas o de árboles de decisión se utiliza para determinar la probabilidad de que una cierta

secuencia de acontecimientos dará lugar a una consecuencia determinada.

La evaluación cualitativa del riesgo es menos rigurosa y los resultados se presentan en la

forma de una matriz de riesgo simple donde uno de los ejes representa la probabilidad y la otra

representa las consecuencias. Si se da un valor a cada una de la probabilidad y la consecuencia

de ello, se puede calcular un valor relativo de riesgo. Es importante reconocer que el valor de

riesgo cualitativo es un número relativo que tiene poco significado fuera del marco de la

matriz. En el marco de la matriz, proporciona una priorización de los elementos naturales que

evaluó utilizando la matriz. Sin embargo, como estos valores de riesgo son subjetivos, la

priorización sobre la base de estos valores es siempre discutible.

¿Qué puede funcionar o ir mal

que podría conducir a un fallo

del sistema?

¿Cuáles serían las

consecuencias si ocurre?

¿Qué tan probable es su ocurrencia?

¿Cómo puede darse la

condición de mal

funcionamiento?

Page 40: Plan de mantenimiento para una máquina de inyección Negri

40

Si

No

2.2 El mantenimiento basado en el riesgo La Figura 7 muestra un esquema posible para llevar a cabo un análisis de riesgos:

Figura 7. Esquema de evaluación de riesgos.

Análisis de riesgos

Identificación de causas del problema

Dividir el sistema en unidades o

subsistemas

Identificación de riesgos

Evaluación de la

probabilidad

Evaluación de las

Consecuencias

Estimación del nivel de riesgo

Riesgo

Aceptable

Actuar para solucionar Riesgo

Ma

nte

nim

ien

to

Co

rrec

tiv

o

o

Pre

ven

tivo

Su

per

vis

ión

y M

on

ito

reo

de

las

fall

as

del

Sis

tem

a

Funcionamiento e Identificación de las

partes totales del sistema

Page 41: Plan de mantenimiento para una máquina de inyección Negri

41

2.2.1 Modos de falla

Una vez que se ha establecido la jerarquía técnica y que las funciones de cada sistema,

subsistema y componente han sido definidas, se deben identificar los modos de falla.

Un modo de falla es cualquier estado donde una función definida no puede desarrollar su

rendimiento esperado. Una misma función podría tener uno o varios modos de fallo. Si la

jerarquía técnica y las funciones han sido bien elegidas resultará sencillo listar los modos de

falla.

Para fallos que presentan un riesgo alto puede resultar eficiente a nivel de costos, desarrollar

un análisis de los mecanismos de falla. El modo de falla más común considerado en el

Mantenimiento basado en riesgos, son las fugas externas. En este caso el análisis se hace

basándose en los mecanismos de daño y en la causa raíz, los cuales son herramientas muy

útiles para descubrir el lugar de la fuga.

2.2.2 Causas de falla

Una causa de fallo es una razón potencial de un modo de fallo. En el análisis, para cada modo

de fallo se deben listar todas las posibles causas de fallo.

La lista de causas de fallo puede estar asociada a modos de fallo incluidos en el programa de

mantenimiento actual, a modos de fallo que se han observado en las instalaciones en el pasado

o a modos de fallo que no han sido nunca observados en la planta.

Se debe tener en cuenta que los fallos más importantes son aquellos para los que no está

preparada una empresa u organización. La metodología de Mantenimiento basado en riesgos

busca prever estos fallos.

La lista de causas de falla deberá incluir todas las causas probables para identificar los modos

de falla, incluyendo aspectos como desgaste o deterioro, impacto de los factores humanos,

diseño, etc. Los factores humanos son muy importantes ya que la falta de preparación o

incluso el desconocimiento son una fuente muy importante de fallas.

2.2.3 Probabilidad de falla

En instalaciones en las que se quiere optimizar la confiabilidad del proceso productivo y evitar

accidentes de graves consecuencias, se hace hoy imprescindible conocer la probabilidad de

que éstos acontezcan durante la vida del sistema. Ello obliga a la aplicación de técnicas de

cuantificación del riesgo, como los árboles de sucesos y los árboles de fallas, los cuales

precisan en último término del conocimiento probabilístico de fallas y errores de sucesos

básicos, a fin de poder establecer la adecuación e idoneidad de las medidas preventivas.

Page 42: Plan de mantenimiento para una máquina de inyección Negri

42

Por estos motivos, los estudios de fiabilidad adquieren cada vez mayor relevancia en la

actividad de prevención de los técnicos de seguridad y en general de los responsables de

procesos u operaciones que puedan desencadenar situaciones críticas.

Una vez que se hayan identificado los modos de falla (para los componentes activos) y los

mecanismos creíbles de degradación para los componentes estáticos, el primer paso en la

evaluación del riesgo es determinar la probabilidad de fallo (PdF).

La probabilidad de falla se define como la probabilidad de que ocurra el modo de falla

(de acuerdo con el modo de falla dado) en un intervalo de tiempo definido T.

El intervalo de tiempo deberá ser fijo durante todo el análisis (si no se hace así, los riesgos no

podrán ser comparados entre ellos o según algún otro criterio de aceptación).

Se pueden utilizar varios métodos para calcular la PdF:

1. Enfoque analítico: Consiste en estimar la PdF utilizando modelos matemáticos y/o datos

estadísticos para los procesos de degradación.

2. Solicitación experta: Consiste en dejar al equipo de expertos en mantenimiento basado en

riesgos (compuesto por personal clave de la planta con conocimiento experto de los equipos)

evaluar la PdF.

2.2.4 Tasa de fallas. Mecanismos de degradación

Durante la planificación de la inspección y el mantenimiento es importante considerar como la

PdF varía en función del tiempo. Se utiliza la tasa de fallos para definir este concepto.

Antes de definir la tasa de fallas, se realizara un repaso a los conceptos básicos de fiabilidad:

T es la variable aleatoria continua que describe los tiempos de falla de un determinado

componente.

T = “Tiempo transcurrido hasta que se produce el fallo”.

Función de densidad de probabilidad (f.d.p) f (t). La función de densidad representa

la probabilidad de que el componente falle en el instante de tiempo t.

Función de Distribución F (t). La función de distribución representa la probabilidad

de que el componente falle en el periodo de tiempo comprendido entre 0 y t.

Page 43: Plan de mantenimiento para una máquina de inyección Negri

43

Se cumple que:

(7)

Se llama vida media o tiempo medio hasta el fallo (Mean Time To Failure o MTTF) de un

dispositivo a la esperanza de la variable aleatoria T. La vida media determina el tiempo de

duración esperada de un dispositivo:

(8)

Cuando se consideren dispositivos reparables (que pueden seguir funcionando tras un fallo), se

hablará de tiempo medio entre fallos (MTBF).

La tasa de fallos o tasa de riesgo h (t) se define como la probabilidad que tiene un

componente de fallar en el instante siguiente al dado (t+Δt), si éste ha sobrevivido desde el

instante 0 hasta el tiempo t. Es una medida de lo propenso que resulta un componente a fallar

en función de su edad.

La tasa de fallos se puede obtener a partir de otras distribuciones estadísticas de tiempo hasta

el fallo, como la función de fiabilidad o la función de supervivencia vista anteriormente.

Tradicionalmente se ha considerado que la tasa de fallos tenía forma de bañera Cuando se

inicia la vida del equipo, la tasa de fallos resulta ser relativamente alta (“mortalidad infantil”);

una vez que todos los componentes se han acoplado, la tasa de fallos es relativamente

constante y baja (etapa de “vida útil”); posteriormente, tras un tiempo de funcionamiento la

tasa de fallos comienza a aumentar (periodo de “envejecimiento”) hasta que llega un momento

en el que todos los elementos habrán fallado.

Page 44: Plan de mantenimiento para una máquina de inyección Negri

44

2.3 Patrones de tasa de fallas

En la figura 8, se puede observar los patrones de falla más comunes.

Figura 8. Patrones de falla.

La razón de que el 68% de los componentes sigan la curva del modelo F es probablemente

que los equipos se reemplazan antes de finalizar su vida útil o que estos son sometidos a una

reparación o mantenimiento severo.

Estos datos muestran la importancia que tiene el tener en cuenta las tasas de fallos de los

equipos a la hora de elaborar un plan de mantenimiento o inspección.

Si la tasa de fallos sigue el modelo F, entonces las actividades de mantenimiento preventivo

no son eficaces ya que no previenen los fallos.

Los equipos estáticos siguen fundamentalmente los patrones “A” o “F”, aunque existen pocos

datos estadísticos. Para muchos mecanismos de degradación el modelo más común es aplicar

un patrón como el de tipo “C”, donde la tasa de fallos aumenta en función del tiempo de

operación.

% de componentes que se ajustan los patrones de fallas

Page 45: Plan de mantenimiento para una máquina de inyección Negri

45

2.3.1 Patrón de falla “A”

Este patrón de falla, llamado “curva de bañera”, es realmente una combinación de dos

patrones de fallo diferentes, uno de los cuales contiene mortalidad infantil y el otro nos

muestra una probabilidad de fallo que aumenta con la edad. Incluso se puede considerar un

tercer período (la parte central de la bañera) donde se produce fallos de manera aleatoria

(figura 9).

Figura 9. Patrón de fallo A.

2.3.2 Patrón de falla “B”

Este patrón de fallo muestra una probabilidad de fallo constante o en ligero aumento y una

zona final de agotamiento donde la probabilidad de fallo aumenta rápidamente.

Un elemento que tenga que desarrollar una función, la cual le someta a un estrés o fatiga irá

deteriorando su resistencia a dicho estrés hasta un punto en el cual, el elemento ya no puede

desarrollar el rendimiento esperado y por tanto falla.

Se suele relacionar la exposición total a la fatiga con la vejez del elemento. Esta conexión

entre fatiga y tiempo sugiere que debe haber una relación directa entre el deterioro y la vejez

de un componente y por tanto el punto en el que falle dependerá de su vejez.

En elementos que se rigen según este patrón de fallos, se comprueba que elementos idénticos

trabajando en condiciones iguales tienden a fallar alrededor de un valor denominado “vida

media” de los componentes. Aunque no es inusual que aparezcan elementos que fallan de

manera prematura.

Se aprecia en la figura 9 de patrón de fallo A, que la palabra “vida” puede tener dos

significados diferentes. La primera sería “Tiempo medio entre fallos o MTBF”, lo cual indica

la vida media de los componentes. La segunda estaría marcada por el punto en el cual se

produce un incremento importante de la probabilidad condicionada de fallo. Esta se denomina

“vida útil” del componente.

Page 46: Plan de mantenimiento para una máquina de inyección Negri

46

Si se realiza la inspección o reemplazo de los componentes en el MTBF, la mitad de ellos ya

habrán fallado, lo que puede conducir a consecuencias operacionales inaceptables. Por tanto,

si lo que se busca es prevenir la mayoría de los fallos, es necesario intervenir al final de la vida

útil del elemento, aunque esta sea menor que el MTBF (Tiempo Medio Hasta el Fallo) (figura

10).

Figura 10. Patrón de fallos B.

Se puede concluir que para elementos que se rigen según el patrón de fallo”, no se debe

utilizar el MTBF para establecer la frecuencia de reemplazo o de las tareas inspección. Otro

hecho a tener en cuenta es que reemplazando el componente al final de su vida útil, la media

de vida de servicio de cada componente será menor que si lo hubiésemos dejado funcionando

hasta el fallo. Esto provoca un aumento del coste del mantenimiento.

Actualmente muy poco elementos se ajustan a este patrón de fallos, siendo mucho más común

encontrar modos de fallos que no presentan una relación “vejez-fallo”. Un ejemplo de un

elemento que se comporta según este patrón puede ser el impulsor de una bomba que bombee

un líquido moderadamente abrasivo.

2.3.3 Patrón de falla “C”

Este patrón muestra una probabilidad de fallo creciente durante todos los períodos, pero sin

alcanzar un punto en el que se pueda considerar al elemento como “desgastado”. La fatiga es

la causa más probable que puede crear que una tasa de fallos tome esta forma. El fallo por

fatiga está provocado por un estrés cíclico y la relación entre el estrés cíclico y el fallo está

gobernada por la curva S-N que se muestra en la figura 11.

Figura 11. Curva S-N.

Page 47: Plan de mantenimiento para una máquina de inyección Negri

47

Parece que conociendo la curva S-N, se podría predecir con precisión la vida de un

componente para una amplitud de estrés cíclico dado. Sin embargo, esto no es posible en la

realidad porque la amplitud del estrés no es constante y la capacidad de resistir a la fatiga no

es la misma para todos los componentes.

Se demuestra que la función de densidad de elementos de este tipo, se puede ajustar

aceptablemente a una distribución de Weibull de parámetro de forma β=2.

Este patrón de tasa de fallos no está asociado únicamente a la fatiga. Por ejemplo, se ha

descubierto que es válido para ajustar el fallo de aislamiento en los bobinados de los

generadores. De la misma forma no todos los fallos relacionados con la fatiga se tienen que

ajustar necesariamente a este patrón.

2.3.4 Patrón de falla “D”

Este patrón presenta una probabilidad condicionada de fallo asociada a una distribución de

Weibull de parámetro de forma 1≤β≤2.

2.3.5 Patrón de falla “E”

Este patrón de fallo muestra una probabilidad de fallo constante durante toda la vida del

componente. Representa componentes que fallan de una manera aleatoria independientemente

del tiempo que lleven funcionando.

La figura 12 de patrón de fallos E muestra como una probabilidad condicionada de fallo

constante implica una función de densidad y una función de distribución exponenciales.

Figura 12. Patrón de fallos E.

Este patrón no muestra en ningún momento un aumento significativo en la probabilidad de

fallo condicionada y por tanto no se deberían contemplar sustituciones programadas. A pesar

de que es imposible predecir cuándo va a fallar un componente que se rige según este patrón,

sí es posible calcular el tiempo medio entre fallos (MTBF), pero no existe una “vida útil”

como en el caso de otros patrones.

Page 48: Plan de mantenimiento para una máquina de inyección Negri

48

El MTBF proporciona una base para comparar la fiabilidad de dos elementos diferentes que se

rigen según este patrón de fallos. El componente que presente una mayor MTBF tendrá menos

probabilidad de fallar en un período dado.

Un ejemplo de componente cuyos fallos se presentan de una manera aleatoria son los

rodamientos de bola. En general este tipo de componentes presentan una curva P-F (Curva de

fallo potencial-funcional que se tratará más adelante) que muestra como el elemento comienza

a deteriorarse hasta el punto en el que puede detectarse (punto P) y después si no se corrige

sigue deteriorándose hasta que llega al punto correspondiente al fallo funcional (punto F). Por

tanto, al avisar antes del fallo, se podrán aplicar métodos de mantenimiento en condición para

prevenir el fallo.

Sin embargo, esto no quiere decir que el mantenimiento en condición se use solo en

componentes que fallan de manera aleatoria. También se puede aplicar a elementos que fallen

en relación a su tiempo de uso.

2.3.6 Patrón de falla “F”

Este patrón es el más común de todos y el único en el cual la probabilidad de fallo decrece con

la edad (figura 13).

Figura 13. Patrón de fallo F.

La forma del patrón de tasa de fallos “F” es tal que la probabilidad más alta de fallo ocurre

cuando el equipo está nuevo o justo después de una revisión. Este fenómeno se conoce como

“mortalidad infantil” y tiene una amplia variedad de causas.

Las tareas de mantenimiento rutinario innecesario o demasiado invasivas son responsables en

muchos casos de la mortalidad infantil de un equipo. Se debe evitar realizar tareas innecesarias

y seleccionar aquellas que menos perturban el funcionamiento de los equipos. Se debe reducir

el mantenimiento rutinario al mínimo esencial, lo que significa menos intervenciones

desestabilizadoras, sin que ello suponga la aparición de fallos que podían haber sido

anticipados o prevenidos. La premisa de “mantener lo mínimo posible” cada día toma más

importancia.

Page 49: Plan de mantenimiento para una máquina de inyección Negri

49

2.4 Evaluación del riesgo

El riesgo como la combinación de la probabilidad y la consecuencia de fallo. Una vez

establecidos los modos de fallo y los escenarios, el riesgo se puede evaluar fácilmente. Una

definición de riesgo puede ser:

Riesgo = Probabilidad del fallo (PdF) * Consecuencias del fallo (CdF)……….(9)

El riesgo se puede representar de forma gráfica mediante un diagrama de riesgo, según se

muestra en la figura 14 de diagrama de riesgos o mediante una matriz de riesgos.

Figura 14. Diagramas de riesgos.

2.4.1 Diagrama de riesgos

En un gráfico o en una matriz de riesgo las líneas de “iso-riesgo” representan un mismo nivel

de riesgo. Normalmente el riesgo representado se asocia a un tipo de consecuencias

representado en el eje horizontal. Se deben considerar consecuencias de tipo:

Salud y seguridad del personal de la planta y población exterior.

Medio ambiente (corto y largo plazo).

Efectos económicos (pérdida de producción, coste reparación).

Dependiendo de la aplicación, todos los tipos de consecuencias podrán ser englobados dentro

de una sola matriz de riesgo. Sin embargo, en la mayoría de los casos, al menos será necesario

distinguir entre consecuencias económicas y el resto de ellas (consecuencias SHE).

Page 50: Plan de mantenimiento para una máquina de inyección Negri

50

Para la utilización de la matriz de riesgo, se hace necesario definir un nivel de riesgo que sirva

como criterio de aceptación. Dicho nivel, separa las áreas de riesgo aceptable e inaceptable.

Actualmente, muy pocos países y organizaciones industriales han decidido unos valores

numéricos específicos para definir el nivel de riesgo aceptable (Ejemplo Holanda y Reino

Unido) (figura 15).

Figura 15. Criterios de aceptación de riesgos.

2.4.2 La matriz de riesgo

El diagrama de riesgo o matriz de riesgos se puede utilizar como herramienta de apoyo a la

decisión cuando se analiza el riesgo asociado a los diferentes modos de fallo.

En el diagrama de riesgo, la PdF se dibuja en el eje de ordenadas y la CdF en el eje de

abscisas. Si dividimos el diagrama de riesgo en una red mayada, se obtiene una matriz de

riesgos con niveles de frecuencias de fallos, en el eje de ordenadas y niveles de consecuencias,

en el eje de abscisas.

La escala de probabilidades abarca cinco niveles, clasificados de "Muy baja" a "Muy alta".

Dichos niveles se clasifican según dos categorías fundamentales, tiempo medio entre fallos

(MTBF) y probabilidad (f). El valor del MTBF representa la frecuencia de fallos técnicos y (f)

indica la probabilidad de que ocurra un fallo con consecuencias en la seguridad, salud o medio

ambiente. Este valor (f) se utiliza para tener en cuenta que no todos los fallos provocan

consecuencias en la seguridad, salud o medio ambiente.

La escala de severidad permite clasificar los fallos según sus consecuencias (desde las que no

tienen ninguna consecuencia más que su reparación, a las que tienen consecuencias

catastróficas). Esta escala tiene en cuenta las consecuencias de los fallos sobre cuatro aspectos

fundamentales:

Consecuencias en la Seguridad.

Consecuencias en la Salud.

Consecuencias en el Medio Ambiente.

Consecuencias Económicas.

Page 51: Plan de mantenimiento para una máquina de inyección Negri

51

2.4.3 Construcción de la matriz de riesgos

En la figura 16 se puede apreciar la construcción de una matriz de riesgos.

Consecuencia

Insignificante

Bajo

Medio

Critico

Catastrófico

Pro

ba

bil

ida

d

Casi

segu

ro

Riesgo

moderado

Riesgo

moderado

Riesgo

importante

Riesgo

intolerable

Riesgo

intolerable

Alt

am

ente

Pro

bab

le

Riesgo

moderado

Riesgo

moderado

Riesgo

importante

Riesgo

importante

Riesgo

intolerable

Med

ia

Riesgo

aceptable

Riesgo

aceptable

Riesgo

moderado

Riesgo

importante

Riesgo

importante

Poco

Pro

bab

le

Riesgo

bajo

Riesgo

aceptable

Riesgo

aceptable

Riesgo

moderado

Riesgo

moderado

Baja

Riesgo

bajo

Riesgo

bajo

Riesgo

aceptable

Riesgo

moderado

Riesgo

moderado

Figura 16. Matriz de riesgos.

Sobre la matriz de riesgos, se define el perfil de riesgos que se aceptaran, trazando una línea

que marcará el límite de aceptación. Dicho perfil quedará definido por la frontera entre las

consecuencias que se estará dispuestos a aceptar y las que no, en función de una probabilidad

determinada para su ocurrencia.

Tras haber trazado el perfil de riesgo, también se realizará el perfil formado por las líneas

inferiores de las casillas adyacentes a la línea de riesgo.

Page 52: Plan de mantenimiento para una máquina de inyección Negri

52

Con ello, la matriz de riesgo queda dividida en cinco zonas:

La zona de riesgo Intolerable (zona roja): Situada en la parte superior derecha de la

matriz. Corresponde a los fallos que tienen consecuencias inadmisibles, bien por la

severidad de las mismas o bien por la probabilidad que tengan de ocurrir. No podemos

admitir un fallo cuyo riesgo quede en esta zona, por eso esta zona es la de mayor

prioridad de actuación. Hemos de eliminar o disminuir sus consecuencias o frecuencia

de aparición.

La zona de Riesgo Importante (zona naranja): Corresponde a los fallos que tienen

consecuencias importantes o que pueden dañar al equipo o el personal, sin llegar a

tener una consecuencia catastrófica para el equipo o de peligro de muerte para el

personal, bien por la severidad de las mismas o bien por la probabilidad que tengan de

ocurrir. Hemos de eliminar o disminuir sus consecuencias o frecuencia de aparición.

La zona de Riesgo Moderado (zona amarilla): Corresponde a fallos con un riesgo no

deseable y solamente tolerable si no se puede realizar ninguna acción para reducir el

riesgo o si el costo de hacerlo es muy desproporcionado en relación a la reducción que

se conseguiría.

La zona Riesgo Aceptable (zona verde claro): Corresponde a los fallos con riesgo

aceptable. El óptimo sería que todos los fallos tuviesen sus consecuencias dentro de

esta zona, pues representa la relación óptima desde el punto de vista riesgo-costo.

La zona Riesgo Bajo (zona verde obscuro): Situada en la parte inferior izquierda de

la matriz. Esta zona corresponde a fallos con riesgo aceptable, aunque estará dispuestos

a aceptar riesgos mayores.

Realizando algún tipo de tarea de prevención para conseguir que el riesgo se sitúe en esta

zona, se planeara gastar menos en dichas tareas, dispuestos a aceptar una severidad mayor

(desplazándose hacia la derecha de la matriz), o una probabilidad de ocurrencia mayor

(desplazándose hacia arriba en la matriz de riesgo), o ambas cosas al mismo tiempo.

Esta división de la Matriz de Riesgo servirá para establecer prioridades a la hora de aplicar

metodologías de mantenimiento y para la optimización de puntos débiles (para determinar los

rediseños a realizar para eliminar consecuencias inaceptables). Se puede apreciar en la matriz

de riesgos que la situación óptima sería que todos los sucesos se situaran en la zona de riesgo

aceptable y bajo. Sin embargo, no debemos olvidar que el proceso es dinámico y que se ha de

adaptar a las circunstancias cambiantes del entorno. Por ello, cuando el entorno cambia puede

también cambiar el perfil de riesgo y desplazarse hacia un lado u otro.

Page 53: Plan de mantenimiento para una máquina de inyección Negri

53

2.4.4 Objetivos de la matriz de riesgos

La matriz de riesgos se utiliza para identificar en la fase de evaluación los equipos de alto

riesgo y realizar una evaluación detallada de los programas de inspección y mantenimiento. A

partir de ella se puede:

Obtener valoraciones de riesgo para las principales funciones y modos de falla).

Identificar los equipos más críticos, sobre los cuales, se deberán tomar acciones de

reducción de riesgos.

Determinar programas formativos que deben realizar los empleados.

Evaluar los programas actuales de inspección y mantenimiento y sugerir la

implantación de nuevos programas.

Evaluar la frecuencia con que se realizan las tareas de inspección y mantenimiento y

sugerir nuevas frecuencias.

Descubrir áreas con exceso o falta de mantenimiento.

Todo ello conduce al objetivo fundamental del RBM, conseguir una optimización del

mantenimiento. Es decir reducir el gasto en mantenimiento, de la planta y no sólo no se vea

afectada, sino que incluso sea mejorada. A partir de los resultados obtenidos en la matriz de

riesgo podemos proponer el tipo de mantenimiento que se debe aplicar al componente

asociado al modo de fallo correspondiente, según se muestra en el esquema desarrollado en la

figura 17:

Figura 17. Tipo de mantenimiento propuesto.

Page 54: Plan de mantenimiento para una máquina de inyección Negri

54

Este marco de decisión cubre tres propósitos importantes:

Asegura una evaluación sistemática de las necesidades de las actividades de

mantenimiento preventivo.

Asegura una evaluación consistente a través de todo el análisis.

Simplifica la documentación de las conclusiones alcanzadas.

El programa de inspección y mantenimiento resultante se establece para evitar fallos en los

equipos y para satisfacer requerimientos estatutarios. Sin embargo, no se dirige a los fallos

introducidos durante la operación o el mantenimiento o por factores externos

(terremotos, inundaciones).

2.5 Actividades de mantenimiento y reducción de riesgos

Un objetivo fundamental del RBM es la identificación de actividades que reduzcan los niveles

de riesgo. La reducción del riesgo se consigue mediante (figura 18):

Reducción de la probabilidad del fallo (1).

Reducción de las consecuencias del fallo (2).

Una combinación de ambas (3).

Figura 18. Formas de reducir el riesgo.

Las actividades de mantenimiento e inspección influyen fundamentalmente en la probabilidad

de fallo. Sin embargo, conseguir modificar las consecuencias del fallo normalmente implica

realizar cambios de diseño, lo cual no se consigue fácilmente en la fase operacional.

Las actividades de reducción de riesgos se basan en encontrar tareas de prevención o rediseño

que desplacen los fallos correspondientes a la zonas de “Riesgo Intolerable e importante” de

la matriz, hacia la zona de “Riesgo Moderado” o “Riesgo aceptable” (reduciendo así, su

severidad o su probabilidad).

Page 55: Plan de mantenimiento para una máquina de inyección Negri

55

Asimismo, se puede plantear reducir el gasto en las tareas correspondientes a fallos de la zona

de “Riesgo bajo”, tratando de llevarlas a la zona de “Riesgo aceptable” (dispuestos a aceptar

una probabilidad y/o un riesgo mayor).

El marco de decisión, a la hora de reducir riesgos debe tener en cuenta los siguientes factores:

Oportunidad para eliminar causas de fallo.

Riesgo del personal durante la ejecución de las actividades de inspección y

mantenimiento.

Riesgo de introducir nuevas causas de fallo.

Este marco de decisión se muestra en la figura 19.

Figura 19. Marco de decisión para reducción de riesgos.

La experiencia en la industria petroquímica demuestra que eliminando las causas de fallo, se

puede mejorar considerablemente el rendimiento de la planta. Las razones de esto, es que si se

consigue erradicar las causas de fallo también eliminas el correspondiente fallo lo que lleva a

aumentar el tiempo de disponibilidad de la planta y a disminuir el mantenimiento.

De esta forma las actividades restantes de mantenimiento se pueden realizar de manera más

eficiente y se puede aumentar la proporción de actividades de mantenimiento programado.

Si no se puede sustituir una actividad de mantenimiento por técnicas de monitorización, se

pueden tomar medidas organizativas como la formación con el fin de reducir los riesgos del

personal durante el mantenimiento y los riesgos de introducir fallos durante el mantenimiento.

Page 56: Plan de mantenimiento para una máquina de inyección Negri

56

Anteriormente a partir de los resultados obtenidos en la matriz de riesgo, podemos definir

diferentes estrategias de mantenimiento, dependiendo de la criticidad del componente o

equipo.

A continuación se analizara las diferentes estrategias que se pueden tomar:

Mantenimiento rutinario.

Prueba/Inspección regular de funcionamiento (elementos stand-by).

Mantenimiento preventivo.

2.6 Mantenimiento rutinario

El mantenimiento rutinario comprende actividades de mantenimiento rutinario que no

requieren cualificaciones, autorizaciones o herramientas especiales. El mantenimiento

rutinario puede incluir:

Limpieza.

Apretar las conexiones y revisar válvulas.

Comprobar los niveles de líquido del sistema hidráulico.

Engrase de los elementos.

Lubricación.

Observaciones visuales.

El mantenimiento rutinario es efectivo a nivel de costes y proporciona una herramienta

importante para detectar la degradación de componentes (vibración, ruido, olor, fugas).

Por tanto ayuda a evitar la ocurrencia de fallos con consecuencias graves (seguridad, salud,

medio ambiente, económicas).

Por otro lado, el hecho de interrumpir el funcionamiento de los equipos para realizar

mantenimiento rutinario puede introducir nuevos fallos en los equipos. Además, el personal

que realiza el mantenimiento rutinario también está expuesto a ciertos riesgos.

Los sistemas de seguridad y repuesto no son como los demás sistemas, ya que sus modos de

fallo más importante son los fallos ocultos. Estos sistemas por tanto, se prueban para verificar

si estarán disponibles para funcionar en el momento que se les necesite.

La disponibilidad requerida o el MFDT (Mean Fractional Dead Time) para estos sistemas de

seguridad y repuesto se basa en el cumplimiento de unos niveles de riesgo aceptables.

Page 57: Plan de mantenimiento para una máquina de inyección Negri

57

El intervalo de inspección para un sistema de este tipo viene dado por la ecuación:

𝜏 =% 𝐹𝑎𝑙𝑙𝑎𝑠 𝑡𝑜𝑡𝑎𝑙𝑒𝑠

(# 𝐹𝑎𝑙𝑙𝑎𝑠 𝑡𝑜𝑡𝑎𝑙𝑒𝑠)(𝑅𝑖𝑒𝑠𝑔𝑜)(2) (9)

Dónde:

τ es el intervalo de inspección/mantenimiento.

El intervalo de inspección/mantenimiento, se puede obtener a partir de la experiencia en la

operación o a partir de bases de datos de fallos genéricas (OREDA). Sin embargo existen

sistemas para los cuales resulta complicado obtener la tasa de fallos, como:

Botes salvavidas.

Bombas anti fuego.

Generadores de emergencia.

Resulta más sencillo obtener datos de los fallos de los siguientes componentes:

Válvulas de seguridad.

Detectores de gas.

Detectores de calor.

Con el fin de aumentar la base estadística del análisis, se deben agrupar los resultados de las

pruebas realizadas a equipos similares de la planta bajo las mismas condiciones. Por ejemplo,

se pueden agrupar todos los detectores de gas que se encuentran situados en una misma zona

de la planta. De esta forma, la tasa de fallos específica observada en la planta se calcula a

partir del número de pruebas fallidas y el número de pruebas.

Si la tasa de fallos observada implica un riesgo superior al aceptable, se deberá reducir el

intervalo de inspección. Si por el contrario la tasa de fallos observada implica un riesgo

inferior al aceptable, se podría aumentar el intervalo de inspección.

2.7 Fallos relacionados con la edad y mantenimiento preventivo

En general, los patrones de fallo que relacionan la probabilidad de fallo con la vejez del

componente se aplican a elementos muy simples o a complejos que sufren un modo de fallo

dominante. En la práctica esto suele ocurrir en condiciones de desgaste directo, es decir,

cuando el equipo está en contacto con el producto (impulsores de las bombas, superficies

interiores de tuberías, válvulas de seguridad).

Page 58: Plan de mantenimiento para una máquina de inyección Negri

58

El desgaste también puede ir asociado a la fatiga, la corrosión, oxidación y evaporación (figura

20).

Figura 20. Patrones de fallo relacionados con la edad.

La fatiga afecta a equipos que están sometidos a ciclos de carga de alta frecuencia

(normalmente metálicos). La corrosión y oxidación depende de la composición química del

equipo, de la protección que tenga y del ambiente en el que este funcionado. La evaporación

afecta a disolventes y a los productos petroquímicos ligeros.

Para reducir la incidencia de este tipo de modos de fallo, realizar dos tipos de mantenimiento

preventivo:

Tareas de revisión y re sustitución al estado inicial.

Sustitución programada.

Los modos de fallo que se pueden ajustar a los patrones de fallo de la Figura de patrones de

fallo, presentan una probabilidad alta de ocurrencia a partir del final de su “vida útil”.

En general, en este tipo de situaciones, es posible tomar alguna acción antes de que el

componente entre en la zona de “desgaste” con el objetivo de evitar el fallo o al menos las

consecuencias de este.

Las tareas de revisión y re sustitución al estado inicial son acciones cuyo objetivo es

restaurar las capacidades iníciales de un componente cuando este llega a una edad específica,

independientemente del estado aparente en el que se encuentre.

En algunos casos no es eficiente económicamente o es simplemente imposible restablecer las

capacidades iníciales de un componente, una vez éste, haya alcanzado el final de su vida útil.

En esta situación, la capacidad inicial sólo se puede restablecer sustituyéndolo por uno nuevo.

Las tareas de sustitución programada son acciones cuyo objetivo es reemplazar un

componente por uno nuevo cuando este llega a una edad específica, independientemente del

estado aparente en el que se encuentre.

Page 59: Plan de mantenimiento para una máquina de inyección Negri

59

CAPITULO III.- DESCRIPCIÓN DE LA MÁQUINA DE INYECCIÓN

NEGRI BOSSI

Page 60: Plan de mantenimiento para una máquina de inyección Negri

60

3.1 Descripción general

El propósito de la máquina inyectora de plástico es suministrar la materia prima requerida por

el usuario al molde el cual debe de tener un sistema de enfriamiento apropiado para que el

producto se encuentre en buen estado y no pierda sus propiedades y especificaciones

indicadas.

Los sistemas que componen a la máquina son sistema hidráulico, térmico, mecánico, de

enfriamiento y de control. Cuando se aplica calor a un material termoplástico para fundirlo se

dice que se plastifica. El material ya fundido plastificado por calor se fluir mediante presión y

llenar un molde donde el material solidifica y toma forma del molde. Este proceso se le

nombra moldeo por inyección.

3.1.1 Características básicas de las máquinas

Para comprender mejor todo lo que conlleva el proceso de inyección se definirán algunos

conceptos propios de las máquinas y la tecnología del moldeo por inyección.

Para esto se definen las características básicas de este tipo de máquina de inyección las cuales

son capacidad de inyección, capacidad de plastificación, presión de inyección máxima, fuerza

de cierre máxima y velocidad de inyección máxima.

Capacidad de inyección.

La capacidad de inyección es la cantidad máxima de material que una máquina es capaz de

inyectar de una sola vez en un molde a una presión determinada. La capacidad de inyección

proporciona una idea de las posibilidades de la máquina.

Los fabricantes de máquinas de inyección indican la capacidad de inyección como el peso

máximo, expresado en gramos, que puede inyectar la máquina en un solo ciclo, supuesto que

no se ha colocado ningún molde o que éste ofrece muy poca resistencia a la entrada del

polímero.

Es frecuente encontrar la capacidad de inyección referida al poliestireno, aunque en ocasiones

también viene referida a otros materiales de uso común en inyección. En ocasiones también se

expresa la capacidad de inyección de la máquina como el volumen transportado por el husillo

de inyección en su recorrido hacia adelante.

La capacidad de inyección viene determinada por el diámetro y la carrera del pistón o husillo

de inyección, así como por el tipo de molde utilizado, la temperatura que alcanza el polímero

fundido, la presión a que se inyecta y otras variables.

Cuando se emplea un molde que es difícil de llenar, la capacidad real de inyección de la

máquina es siempre algo menor que la indicada por el fabricante.

Page 61: Plan de mantenimiento para una máquina de inyección Negri

61

La unidad de inyección suele escogerse de forma que sea capaz de contener material suficiente

para dos ciclos. En otras palabras el 50% de la capacidad de inyección de un cilindro debería

vaciarse en cada ciclo. Por otra parte, la cantidad de material introducida en el molde nunca

debería ser inferior al 20% ni superior al 80% de la capacidad del cilindro, de modo que el

tiempo de permanencia del material en la cámara de plastificación no sea excesivamente largo

para evitar que el material se degrade, ni excesivamente corto para evitar que no se encuentre

plastificado.

Capacidad de plastificación.

La capacidad de plastificación es otro dato muy importante para evaluar las posibilidades de

una máquina de inyección, sin embargo no es fácil expresar numéricamente este concepto. Se

puede definir, como la cantidad máxima de material que la máquina es capaz de plastificar por

unidad de tiempo.

Para comprender mejor este criterio es preciso aclarar que por “plastificar” un polímero, este

debe entenderse como calentar este polímetro lo suficiente para que alcance una temperatura a

la que pueda ser inyectado.

Evidentemente, la capacidad de plastificación depende de la eficacia de calefacción de la

cámara de plastificación y de las propiedades térmicas del polímero que se calienta.

No hay método universalmente aceptado que indique las condiciones en que debe medirse la

capacidad de plastificación de una máquina.

Como en el caso de la capacidad de inyección, cada fabricante indica de sus máquinas la

capacidad de plastificación de éstas expresada como caudal máximo plastificado de un

material en unas condiciones de procesado determinadas, por lo general poliestireno (en kg/h o

g/s), de modo que sólo sirve como guía para hacer comparaciones aproximadas entre

máquinas de diversa procedencia.

Presión de inyección.

La presión de inyección es una característica mejor definida. Se entiende por presión de

inyección la medida en la cara delantera "a” del pistón de inyección o husillo (figura 21).

Como el husillo está actuado por un pistón hidráulico al que es solidario, la fuerza en ambas

caras "A” y “a” será la misma, y si p es la presión de la línea hidráulica y P la presión de

inyección se cumplirá:

P= p (A/a) (10)

La presión p en la línea puede leerse en un manómetro M y la relación de superficies entre las

caras de los pistones (A/a) es una característica de construcción de la máquina que debe

conocerse. Las máquinas convencionales se construyen con relaciones A/a entre 8 y 9

generalmente.

Page 62: Plan de mantenimiento para una máquina de inyección Negri

62

Esta presión de inyección P no es la misma que la máxima presión que se desarrolla en las

cavidades de moldeo, la cual es bastante menor y puede tener valores solamente del 20% de la

presión de inyección menores, dependiendo de las características del molde, de las

condiciones de moldeo y del polímero utilizado (figura 21).

Figura 21. Posición en la que se determina la presión de inyección, P y la presión del sistema hidráulico, p,

que actúa sobre el tornillo.

Velocidad de inyección.

La velocidad de inyección es el caudal de material que sale de la máquina durante el periodo

de inyección; se expresa generalmente en 𝑐𝑚3 𝑠⁄ y es una medida de la rapidez con que puede

llenarse un molde dado. La velocidad de inyección viene principalmente determinada por la

velocidad de avance del pistón o husillo, y también se puede expresar como el número de

veces por unidad de tiempo que el tornillo puede efectuar su recorrido completo de ida y

vuelta cuando la máquina funciona en vacío, es decir, sin molde y sin material de moldeo.

Naturalmente, esta característica de la máquina sólo depende de las demás características con

que ha sido construida y en especial del tipo de sistema hidráulico utilizado.

En una situación real (con material y molde en la máquina) la velocidad de inyección del

material en el molde dependerá de otros factores como la presión de inyección, la temperatura

de la cámara de calefacción, las características del material utilizado y el camino que debe

recorrer el polímero fundido hasta llegar a las cavidades de moldeo, principalmente.

Fuerza de cierre.

La fuerza de cierre es aquella que mantiene unidas las dos mitades del molde mientras en la

cavidad de moldeo se desarrolla la máxima presión como consecuencia de su llenado.

La presión en la cavidad de moldeo es mucho menor que la presión de inyección, si bien se

desarrolla una fuerza que tiende a separar las dos mitades del molde y que viene dada por el

producto de la presión en la cavidad de moldeo por el área proyectada de ésta.

Page 63: Plan de mantenimiento para una máquina de inyección Negri

63

Esta fuerza interna del molde puede ser muy grande y necesita ser contrarrestada por una

fuerza de cierre que en todo momento sea superior a ella para asegurar así que el molde se

mantiene cerrado durante la inyección.

Cuanto mayor es la fuerza disponible para mantener cerrado el molde tanto mayor es el área

transversal de la pieza que puede moldearse, a igualdad de las demás condiciones.

Las máquinas de inyección convencionales empleadas hoy en día son capaces de desarrollar

fuerzas de cierre de más de 1000 toneladas.

3.1.2 Variables que intervienen en el proceso

En el proceso de inyección intervienen de forma directa o indirecta aproximadamente 200

variables diferentes. Sin embargo para simplificar, estas variables se pueden clasificar en 4

categorías; temperatura, presión, tiempo y distancia.

El único detalle es que estas variables no son independientes, y un cambio en una de ellas

afectará a las otras.

A continuación se comentan las más importantes.

Temperatura de inyección.

Es la temperatura a la que se calienta el material para introducirlo en el interior del molde.

La temperatura del material aumenta gradualmente desde que entra por la tolva hasta que se

encuentra preparado para ser inyectado.

Esta temperatura es función del tipo de material, y no debe ser superior a la temperatura a la

que comienza a descomponerse, pero debe ser suficientemente elevada para permitir que el

material fluya correctamente.

Temperatura del molde.

Es la temperatura a la que se encuentra la superficie de la cavidad de moldeo. Debe ser lo

suficientemente baja para enfriar el material fundido y conseguir que solidifique.

Esta temperatura varía a lo largo del molde y depende de varios parámetros (temperatura del

fluido refrigerante, temperatura del material, características térmicas del molde.), pero a

efectos prácticos se evalúa como el valor medio a lo largo de toda la cavidad.

La velocidad a la que se enfría el plástico es un factor muy importante puesto que va a

condicionar la morfología del material, y por tanto sus propiedades físicas, mecánicas, ópticas.

Page 64: Plan de mantenimiento para una máquina de inyección Negri

64

Presión inicial o de llenado.

Es la presión que se aplica inicialmente al material fundido y que se desarrolla como

consecuencia del movimiento hacia adelante del tornillo. Esta presión obliga a que el material

fundido fluya hacia adelante, produciendo el llenado inicial del molde. En una situación ideal

la presión inicial debe ser lo mayor posible, de modo que el llenado se produzca lo más

rápidamente posible.

Presión de mantenimiento o compactación (holding pressure).

Es la presión que se aplica al final de la inyección del material, cuando el molde se encuentra

casi completamente lleno. Se llama presión de mantenimiento o compactación, puesto que es

la presión que se aplica durante la etapa de compactación, cuando algunas partes del material

han comenzado a enfriarse y contraerse, y obliga a que el molde se acabe de llenar y se

obtenga una pieza con una densidad uniforme.

Presión posterior o de retroceso (back pressure).

Es la presión que se aplica al tornillo mientras retrocede, una vez finalizada la etapa de

compactación. Una vez que el molde está completamente lleno el tornillo comienza a girar

para plastificar más material para el siguiente ciclo.

Este material comienza a alojarse delante del tornillo, obligando a que el tornillo retroceda, sin

embargo no se permite que el tornillo retroceda libremente si no que se aplica una cierta

presión posterior para conseguir que el material se mezcle y homogenice adecuadamente.

Tiempo de inyección inicial.

El tiempo necesario para realizar la inyección depende de numerosos factores, como de cuanto

material se está inyectado, su viscosidad, las características del molde y el porcentaje de la

capacidad de inyección que se está empleando.

En la mayoría de las máquinas el tiempo de inyección se divide en dos: el tiempo de inyección

inicial y el tiempo de mantenimiento. El tiempo de inyección inicial es el tiempo necesario

para que el tornillo realice el recorrido hacia adelante, obligando a que el material se

introduzca dentro del molde. Normalmente este tiempo no es superior a 2 segundos, y rara vez

excede los 3 segundos.

Tiempo de mantenimiento o compactación.

El tiempo de mantenimiento o tiempo de compactación es el tiempo que, después de realizar la

inyección inicial del material, el tornillo permanece en posición avanzada, para mantener la

presión del material dentro del molde.

Page 65: Plan de mantenimiento para una máquina de inyección Negri

65

Este tiempo se prolonga hasta que la entrada a la cavidad de moldeo solidifica. A partir de ese

instante la cavidad de moldeo queda aislada del resto del sistema mientras continúa

enfriándose por lo que prolongar el tiempo que el pistón permanece en posición avanzada

carecería de sentido. Para una pieza de 1.5 mm de espesor el tiempo de mantenimiento no

suele exceder de 6 segundos.

Tiempo de enfriamiento.

Es una de las variables más importantes para conseguir una pieza de buena calidad. Es el

tiempo que la pieza requiere para enfriarse hasta que ha solidificado y además ha adquirido la

rigidez suficiente para poder ser extraída del molde sin que se deforme. Las partes más

externas de las piezas se enfrían a velocidad más rápidas. El tiempo de enfriamiento debe ser

suficiente para que un espesor considerable de la pieza (al menos el 95% de la pieza) se

encuentre frío para evitar que la pieza se deforme. Lógicamente cuanto mayor sea el espesor

de la pieza que se está moldeando mayor será el tiempo de enfriamiento requerido.

Como media una pieza de 1.5 mm de espesor requiere de 9 a 12 segundos para solidificar y

adquirir suficiente resistencia para poder ser extraída del molde sin deformaciones.

3.1.3 Componentes de la máquina de inyección

Considerando todo lo expuesto con anterioridad, la máquina de inyección convencional puede

considerarse constituida por dos unidades fundamentales; el sistema de cierre y la unidad de

inyección. Cuando se proyecta y construye una máquina, estas unidades pueden acoplarse de

varias formas.

En particular la manera de disponer la unidad de inyección y el sistema de cierre permite

distinguir entre máquinas con sistema de inyección vertical u horizontal, y según la dirección

en que actúa la fuerza que mantiene cerradas las dos mitades del molde, se distingue entre

máquinas de cierre vertical y horizontal.

El hecho de considerar independientes las unidades de cierre y de inyección permite la

construcción de máquinas "a medida", de acuerdo con las características de la pieza que se

desea moldear. De esta forma se aprovechan al máximo las posibilidades de ambas unidades y

se abarata el proceso tanto desde el punto de vista de los costes de operación como desde el

punto de vista de inversión en equipo.

Esto es particularmente interesante, por ejemplo, en el caso de que se desee moldear piezas de

gran sección transversal y pared delgada, por ejemplo bandejas, que pesan relativamente poco

pero que requieren grandes fuerzas de cierre.

También puede presentarse el caso inverso, cuando se pretenda moldear piezas muy

compactas, con espesores de pared gruesos y sección transversal pequeña, de modo que se

requiere de una máquina con elevada capacidad de inyección, pero no es necesaria una fuerza

de cierre elevada. Otra ventaja de las máquinas "a medida" es la de que permiten intercambiar

estas unidades cuando se precise moldear otro tipo de piezas.

Page 66: Plan de mantenimiento para una máquina de inyección Negri

66

Unidad de inyección.

La unidad de inyección consta de un sistema de alimentación (tolva), y del sistema cilindro-

tornillo (husillo), todos ellos de características muy similares a los de las máquinas de

extrusión. Sin embargo en el proceso de extrusión el material sale de la máquina por la

boquilla, que tiene un diseño condicionado por la geometría de la pieza, mientras que en el

proceso de inyección el diseño de esa parte de la máquina (tobera o boquilla) se realiza

teniendo en cuenta exclusivamente las características térmicas y de flujo del material. Otra

diferencia clara con las máquinas de extrusión reside en el movimiento hacia adelante que

realizan los tornillos de las máquinas de inyección. Para evitar el retroceso del material

durante la inyección estas máquinas están dotadas de válvulas o sistemas que impiden el

retorno del material a la unidad de inyección.

Válvulas de no retorno.

Las válvulas de no retorno de tipo anillo son las más utilizadas, y están constituidas por un

anillo que debe deslizarse sobre el cilindro con muy poca holgura sobre éste, como se muestra

en la figura 22. Mientras el tornillo gira la válvula se encuentra abierta y el material que está

siendo plastificado fluye a través del espacio entre el extremo del tornillo y el anillo. Cuando

el tornillo realiza su movimiento hacia adelante para inyectar el material en el molde, la

válvula se cierra, de modo que el tornillo queda apoyado sobre el asiento del anillo, lo que

impide el retroceso de material.

Figura 22. Válvula de no-retorno de tipo anillo.

Este tipo de válvulas sufre un gran desgaste por lo que deben reemplazarse con frecuencia y

aumentan las pérdidas de presión en la cámara de plastificación. Además pueden crear zonas

donde el material pudiera quedar estancado, por lo que en el caso de emplear materiales muy

sensibles térmicamente se suele evitar el empleo de estos mecanismos, para no provocar la

degradación del material.

Hay otros tipos de mecanismos de no retorno que se utilizan frecuentemente, como las

válvulas de asiento de bola, aunque aparecen continuamente en el mercado nuevos tipos de

sistemas de no- retorno.

Page 67: Plan de mantenimiento para una máquina de inyección Negri

67

Boquilla.

La boquilla es la pieza situada en el extremo del cilindro de inyección y que da salida al

material fundido hacia los canales del molde. El diseño de la boquilla depende mucho del tipo

de polímero con que se trabaje y del diseño del molde, y el diámetro del taladro (husillo),

suele oscilar entre 3 y 8 mm dependiendo del peso de la pieza inyectada. La boquilla debe

poder intercambiarse con facilidad, para poder emplear la más adecuada dependiendo del tipo

de polímero y de las piezas moldeadas.

Debe, además, mantener correctamente la temperatura del polímero, y evitar el goteo de

material que impediría un buen asiento entre la boquilla y bebedero (la zona del molde sobre

la que se apoya la boquilla se conoce como bebedero), y por supuesto debe tener un diseño tal

que evite caídas de presión innecesarias.

En líneas generales puede considerarse dos tipos de boquillas, dependiendo de la forma como

hacen su asiento en el molde. Estos dos tipos son la boquilla redonda y la plana, que se

presentan en la figura 23.

Como se puede apreciar el diámetro del taladro de la boquilla siempre debe ser 1 o 2 mm

menor que el del bebedero (casos a y b) para evitar retenciones del material.

Si se usa una boquilla redonda la curvatura de la punta debe ser menor que la del asiento sobre

el molde, como se aprecia en la figura 23 (caso b), pues en caso contrario se produciría la

salida del polímero fundido y no sería posible conseguir un buen asiento entre la boquilla y

bebedero (caso c).

Figura 23. Diseño de boquillas y bebedores.

En la figura 24 se ha representado diferentes tipos de boquillas. La boquilla normal o cónica

de la figura 24a es económica y fácil de fabricar, sin embargo la conicidad de su taladro

provoca pérdidas de presión innecesarias en el polímero fundido.

No se aconseja el uso de esta boquilla cuando se producen grandes pérdidas de presión en el

molde, pues para mantener la presión suficiente para llenar las cavidades sería necesario un

orificio de salida de la boquilla excesivamente grande. En la figura 24b se presenta la boquilla

de flujo libre que mantiene el diámetro del taladro principal de la boquilla relativamente

grande y muy corto el recorrido del pequeño orificio final. De este modo disminuye la

resistencia ofrecida al paso del material.

Page 68: Plan de mantenimiento para una máquina de inyección Negri

68

El diseño de esta boquilla permite la colocación de bandas de calefacción a lo largo de la

misma para mantener la temperatura del polímero, así como la prolongación (boquilla

prolongada) de la misma dentro del propio molde para así poder disminuir la longitud del

bebedero y mantener el diámetro de entrada de éste en un valor pequeño.

Figura 24. Esquema de diferentes tipos de boquillas: a) boquilla normal o cónica, b) boquilla de flujo libre, c)

boquilla de conicidad invertida.

Un problema típico que suele presentarse en materiales que tienen viscosidad muy baja del

fundido, como es el caso de las poliamidas, es que entre ciclo y ciclo salga material goteando

por la boquilla, el cual podría ensuciar la superficie exterior de la boquilla, impidiendo así un

buen asiento sobre el molde. Este problema se evita empleando boquilla s de conicidad

invertida, como es el caso de la “boquilla italiana” que se presenta en la figura 24c. El

problema del goteo de material también se puede evitar mediante el uso de los diferentes tipos

de boquilla s con válvula, como por ejemplo es el caso de la boquilla con válvula deslizante de

la figura 25. Cuando esta boquilla apoya sobre el molde, la pieza que lleva el orificio que

permite la salida del material se desliza hacia atrás, y sus taladros laterales se ponen en

comunicación con el polímero fundido que llena el cuerpo principal de la boquilla, con lo que

el material puede salir y ser inyectado (figura 25a).

Cuando el cilindro de inyección se retira y la boquilla deja de apoyar en el molde, la propia

presión del polímero fundido obliga al elemento móvil a deslizarse hacia adelante con lo que

los taladros laterales dejan de estar en comunicación con el cuerpo principal de la boquilla

(figura 25b).

Figura 25. Boquilla con válvula deslizante.

La unidad de cierre.

Un cierre perfecto del molde tiene una gran importancia sobre la calidad de la pieza moldeada

y puede hacer innecesarias operaciones secundarias de eliminación de rebabas de los artículos

producidos. Al escoger las condiciones del proceso debe darse la debida consideración a la

fuerza de cierre que, como se ha dicho con anterioridad, debe ser superior a la fuerza de

apertura.

Page 69: Plan de mantenimiento para una máquina de inyección Negri

69

Los sistemas de cierre constan generalmente de dos platos o placas fijas unidas por unas

robustas columnas de alineación, generalmente cuatro (figura 26). Entre los dos platos fijos

hay uno móvil que desliza por las columnas de alineación. A un lado de un plato fijo va

situada la unidad de inyección y al otro lado del otro plato fijo va situada la unidad de cierre,

que desplaza al plato móvil. El molde se coloca entre el plato móvil y el plato fijo situado al

lado de la unidad de inyección.

Figura 26. Esquema de sistema de cierre hidráulico.

La acción de cierre requiere la máxima eficacia y la máxima rapidez. Conviene que se haga lo

más rápidamente posible (50 m/min) hasta un instante antes de que se toquen las dos mitades

del molde, y que después el movimiento sea más lento aplicando la máxima fuerza de cierre

(5-10000 T).

De este modo se evitan golpes innecesarios sobre los moldes. Suelen distinguirse tres tipos

básicos de sistemas de cierre: sistemas mecánicos, sistemas mecánico-hidráulicos y sistemas

hidráulicos.

Sistemas mecánicos.

Estos sistemas emplean una acción mecánica para el cierre del molde y se encuentran en las

pequeñas máquinas experimentales de laboratorio. El sistema, en su forma más sencilla, puede

consistir en una palanca, piñón o manubrio. Las ventajas de los sistemas totalmente mecánicos

están en su sencillez y bajo coste, si bien consiguen fuerzas de cierre moderadas y velocidades

bajas.

Sistemas hidráulicos.

El pistón hidráulico directo como el representado en la figura 27 es el sistema de cierre

hidráulico más sencillo y el primero que se utilizó. La principal ventaja que ofrece es la

elevada fuerza de cierre que puede desarrollar, que es constante en toda la carrera del pistón de

cierre. Estos sistemas de cierre pueden llegar a desarrollar movimientos muy rápidos (50

m/min), si bien el coste para conseguirlo resulta muy elevado.

Page 70: Plan de mantenimiento para una máquina de inyección Negri

70

La situación general que plantea un sistema de cierre hidráulico de cualquier tipo es que para

mantener un tamaño razonablemente pequeño del pistón de cierre consiguiendo una fuerza de

cierre adecuada, es necesario aumentar la presión del fluido, con lo que las pérdidas de fluido

hidráulico y la deformación de tuberías y accesorios llegan a constituir un serio problema.

Las máquinas más modernas utilizan, para los movimientos rápidos de avance y retroceso del

pistón principal, otros pistones auxiliares que son de pequeño diámetro y van situados

paralelamente al pistón principal o incluidos centralmente en él. La fuerza total de cierre la da

el pistón principal mientras que los pistones auxiliares sólo sirven para conseguir movimientos

más rápidos del sistema.

En la figura 27 se representa un sistema de cierre hidráulico de este tipo, que consta de un

pistón hidráulico principal, de mayor sección, que da una elevada fuerza de cierre y que

realiza los movimientos finales, mientras que el resto del movimiento del plato móvil es

debido a un pistón secundario de menor sección, y que proporciona movimientos más rápidos.

Figura 27. Sistema de cierre de dos pistones.

Entre las principales ventajas de los sistemas hidráulicos de cierre se encuentra que la fuerza

de cierre puede ser monitorizada y cambiada en cualquier momento durante el ciclo, y lo

mismo ocurre con la velocidad a la que se mueve el pistón a lo largo de su recorrido.

Sistemas mecánico-hidráulicos.

Las máquinas con sistema de cierre mecánico-hidráulico están basadas en el uso de rodilleras

actuadas por un sistema hidráulico. Estos sistemas de cierre son muy empleados en máquinas

de pequeño y mediano tamaño.

Las ventajas de los sistemas de rodilleras estriban en la acción positiva de cierre de las

rodilleras, así como en la mayor velocidad de cierre empleando un pistón más pequeño, ya que

las rodilleras son sistemas multiplicadores de fuerza.

Además, la fuerza relativamente grande que se desarrolla al final de la carrera de cierre va

acompañada de una reducción de velocidad del mismo orden, lo que es muy conveniente para

evitar golpes cuando se cierra el molde. En la figura 28 se muestra un sistema mecánico

hidráulico de rodillera simple.

Page 71: Plan de mantenimiento para una máquina de inyección Negri

71

Cuando el molde está abierto las rodilleras se encuentran formando una V. Cuando se aplica

presión el eje que conecta las dos rodilleras obliga a éstas a mantenerse en línea recta. La

fuerza necesaria para mantener las rodilleras rectas la proporciona un pistón hidráulico. En

este caso cuando el pistón hidráulico comienza a avanzar el plato móvil se mueve en principio

lentamente, alcanzando la velocidad máxima a mitad del recorrido. Cuando las rodilleras están

casi extendidas, la velocidad vuelve a decrecer.

Figura 28. Sistema mecánico-hidráulico de cierre.

Estos sistemas presentan la desventaja de que tanto la velocidad de cierre como la fuerza son

más difíciles de controlar que con sistemas completamente hidráulicos. La principal ventaja

que presentan los sistemas mecánico-hidráulicos de cierre es el bajo coste de operación, tanto

para conseguir elevadas fuerzas de cierre como elevadas velocidades de cierre.

3.1.4 Ciclo de inyección

El ciclo comienza cuando un sistema efectúa el cierre del molde al desplazar la mitad móvil

hacia la parte fija; mientras tanto, en la parte frontal del husillo se encuentra acumulada cierta

cantidad de material plastificado, listo para ser inyectado. El proceso de obtención de una

pieza de plástico por inyección, sigue un orden de operaciones que se repite para cada una de

las piezas. Este orden, conocido como ciclo de inyección, figura 29, se puede dividir en las

siguientes etapas:

Figura 29. Ciclo de inyección de plásticos.

Page 72: Plan de mantenimiento para una máquina de inyección Negri

72

a) Cierre del molde.

Con el cierre del molde se inicia el ciclo, preparándolo para recibir la inyección del material

fundido. En esta fase se aplica la fuerza de cierre, es aquella que hace la máquina para

mantener cerrado el molde durante la inyección. Depende de la superficie proyectada de la

pieza y de la presión real (presión específica), que se tiene en la cavidad del molde (figura 30).

Figura 30. Cierre de molde.

b) Inyección: Fase de llenado y fase de mantenimiento.

Una vez que el molde está cerrado, la unidad de inyección mueve el plástico hacia la cavidad

del molde, con una velocidad y una presión determinadas por el volumen y geometría de la

pieza a inyectar (figura 31).

Figura 31. Fase de Llenado.

Cuando el material plastificado hace contacto con las paredes del molde, este comienza a

solidificarse, por lo que es importante que la velocidad de inyección sea la adecuada; no tan

rápido como para degradar el material por la fuerza cortante debida a la velocidad del flujo ni

tan pequeña como para que se solidifique antes de llenar las cavidades del molde. Ya que la

cavidad del molde ha sido llenada casi en su totalidad, de 80-95%, la presión de inyección

disminuye y da entrada a la fase de mantenimiento (figura 32).

Figura 32. Fase de solidificación.

Page 73: Plan de mantenimiento para una máquina de inyección Negri

73

Una vez dentro del molde, el material comienza a solidificarse, esta solidificación se realiza

desde las paredes de las cavidades hacia adentro de la pieza, es ahí donde la presión de

mantenimiento hace su trabajo, permitiendo que todas las contracciones que se presentan en la

pieza sean controladas al mantener una presión constante y adicionar el resto de material

necesario para llenar la pieza y compensar estas contracciones. Esta presión nos permite

controlar las características geométricas del producto inyectado.

Enfriamiento de la pieza.

La fase de mantenimiento termina una vez que el punto de inyección ha solidificado

completamente, es entonces que ya no es necesaria la presión de mantenimiento, a partir de

este punto ya no sigue entrando más material a la cavidad del molde.

Aun cuando el enfriamiento ha comenzado desde el momento que el material ha entrado a la

cavidad, el material pierde calor aun cuando ya ha solidificado, ya que el centro de la pieza

todavía no ha solidificado del todo y es necesario seguir retirando calor de la pieza aun cuando

su capa más externa esté sólida. El enfriamiento termina cuando el molde se abre (figura 33).

Figura 33. Unidad de inyección retirada de la boquilla del molde.

Retirar la pieza cuando su interior no ha solidificado trae como consecuencia que al entrar en

contacto con la temperatura ambiental, las contracciones se comiencen a hacer evidentes horas

después de que se ha retirado la pieza del molde. Los problemas más comunes que se

presentan son los rechupes y el alabeo (piezas pandeadas o torcidas) (figura 34).

Figura 34. Etapa de enfriamiento y dosificación.

Page 74: Plan de mantenimiento para una máquina de inyección Negri

74

c) Plastificación o dosificación.

Una vez que el punto de inyección ha solidificado, ya no es necesaria más presión sobre el

material, es entonces cuando la unidad de inyección comienza su proceso de plastificación o

dosificación (figura 35).

Figura 35. Fase de plastificación o dosificación.

El tornillo reciprocarte comienza su camino de regreso a su punto inicial, girando en sentido

contrario de las manecillas del reloj, con lo cual los filetes del tornillo transportan los gránulos

de material sin fundir hacia la cámara de inyección, estos gránulos se plastifican por la acción

de la fricción y de los termopares colocados al exterior del cañón de inyección. Una vez que el

tornillo ha regresado a su posición inicial, el material plastificado está en la cámara de

inyección lista para otro disparo.

d) Apertura del molde y expulsión de la pieza.

Ya que la pieza se ha enfriado adecuadamente y la cámara de inyección está preparada para

otro disparo, el molde se abre y el sistema de expulsión extrae la pieza del interior del molde,

dando por terminado el ciclo al momento en que el molde se cierra para dar paso a la siguiente

pieza (figura 36).

Figura 36. Etapa de apertura de molde.

Page 75: Plan de mantenimiento para una máquina de inyección Negri

75

3.1.5 Etapas de proceso

Para realizar el estudio de los parámetros del proceso de inyección, es necesario analizar cada

etapa del ciclo productivo, ya que durante el mismo, actúan simultáneamente varios factores

que influyen en la calidad de masa fundida o reblandecida y posteriormente en el producto

final. Las funciones que realiza el equipo de inyección son:

Cierre de la prensa.

El aceite hidráulico se dirige a los cilindros que contienen a los pistones, encargados de mover

la rodillera en un sistema mecánico o la platina móvil en cierre hidráulico directo, Para

controlar los movimientos de cierre, se emplean interruptores de límite accionados por

mecanismos instalados en la platina móvil, o potenciómetros lineales.

Protección de molde.

Una vez alcanzada cierta posición, al cierre total del molde, la presión y flujo de aceite

descienden para conseguir proteger el molde por distancia, presión y tiempo.

Alta presión de cierre.

Al finalizar la etapa de cierre, el sistema hidráulico aplica presión y volumen previamente

ajustados en el pistón que desplaza la rodillera llevándola a su posición extendidas para

asegurar el cierre. En un sistema de cierre hidráulico directo, el aceite es dirigido sobre el área

del pistón principal, aplicando la presión suficiente que permitirá dar paso a la fase de

inyección.

Inyección de plástico.

En esta etapa el aceite hidráulico se dirige al cilindro de inyección, que desplaza al husillo

hacia delante, al moverse el husillo una válvula anti-retorno en la punta del mismo debe evitar

el contra flujo del plástico y controlar el volumen de masa alojado en la cámara del cilindro de

inyección, al final de la inyección, la cavidad del molde se llena volumétrica mente.

Sostenimiento.

Después de llenar la cavidad del molde en volumen una presión sobre el material es ajustada

con la intención de compactar la pieza y evitar que pueda escapar plástico en contra flujo

mientras el producto solidifica. En esta etapa el producto adquiere el peso, propiedades y

estabilidad requeridos.

Page 76: Plan de mantenimiento para una máquina de inyección Negri

76

El ajustar este parámetro del proceso involucra tres variables.

Cambio de presión de inyección a presión de sostenimiento.

Magnitud en presión de sostenimiento.

Tiempo de presión de sostenimiento.

Plastificación.

El aceite hidráulico es dirigido hacia un motor que acciona el giro del husillo, que transporta el

material plástico expuesto a fricción, compresión y temperatura, para cruzar finalmente a la

cámara de inyección, frente a la punta del husillo.

Descompresión.

Una vez que el husillo llega a un punto predeterminado durante la plastificación, empujado

por el plástico acumulado en la cámara de inyección, detiene el giro y puede desplazarse hacia

atrás cuando se dirige aceite hidráulico por el frente del pistón de inyección.

Con esto se logra evitar que el material plastificado se sometido a presión que provoque una

fuga, cuando se abre el molde o cuando se emplea la función de retirar la unidad de inyección

del contacto con el bebedero del molde.

Apertura del molde.

Transcurrido el tiempo programado de enfriamiento, el sistema de cierre separa las mitades del

moldeen varias etapas.

La primera de ellas requiere baja velocidad con el fin de lograr que la pieza sea separada de la

parte fija del molde y permanezca en la mitad móvil del molde.

La segunda fase puede desarrollarse a velocidad elevada y cuando alcanza un determinado

punto de la carrera, amortigua su llegada al punto máximo de apertura utilizando baja

velocidad, la distancia final entre las caras del molde debe ser suficiente para que el producto

pueda retirarse mediante el sistema de expulsión de la maquina en conjunto con el mecanismo

incorporado al molde.

Page 77: Plan de mantenimiento para una máquina de inyección Negri

77

3.2 Partes

Las partes básicas de la máquina de inyección son:

- Grupo de cierre.

- Grupo de inyección.

- Bancada.

- Sistema hidráulico.

La unidad de inyección o plastificación. La unidad de inyección plastifica e inyecta el

polímero fundido (figura 37).

1. Cañón de la máquina. Aquí es donde fluye el material que será inyectado a través

de la boquilla del cañón mismo al molde.

2. Tolva de alimentación de material. Aquí es donde se alimenta del material plástico

a la máquina de inyección la cual irá directamente al cañón.

3. Palanca para la sujeción y desmontaje de la tolva de alimentación de material, esto

sirve para poder dar mantenimiento a la boquilla de alimentación del cañón, pues

está a veces suele taparse.

4. Boquilla de alimentación al molde. Esta boquilla se encarga de mandar el plástico

fundido al molde.

5. Soporte de válvula de presión de cierre.

6. Válvula de presión de cierre o contrapresión. Esta válvula es usada principalmente

para purgar la máquina, ya que esta evita que el cañón cierre, permitiendo que el

husillo trabaje, permitiendo a su vez purgar la máquina.

7. Perno de sujeción del cañón. Sujeta al cañón y a la tolva con la bancada de la

máquina.

8. Cilindro de hidráulico de doble efecto para cierre o apretura del grupo de

inyección. Este cilindro permite al grupo de inyección cargar e inyectar

(retroceder y avanzar respectivamente).

9. Línea de refrigeración para la boquilla de alimentación del cañón. Permite evitar

que la boquilla de alimentación del cañón se tape.

10. Boquilla para la refrigeración del cañón.

Figura 37. Unidad de inyección.

Page 78: Plan de mantenimiento para una máquina de inyección Negri

78

Subsistema de grupo de inyección, subsistema cañón. Figura 38.

Sb 1.1

Boquilla de alimentación al molde. Esta boquilla permite que el grupo de

inyección cierre y selle la boquilla del cañón con la boquilla del molde evitando

que haiga fuga de material.

Sb 1.2

Tolva de alimentación de material. Aquí es donde se alimenta del material

plástico a la máquina de inyección la cual irá directamente al cañón.

Sb 1.3

Resistencias de control de temperatura. Estas al conducir una tensión se

calientan, haciendo que el plástico se funda y circule por el cañón.

Sb 1.4

Motor de Control de velocidad del husillo. Este motor es el encargado de hacer

girar y darle la velocidad adecuada al husillo, mediante 2 sensores de contacto

(detectan cuando debe inyectar y cargar el grupo de inyección) y 1 válvula de

ajuste para la velocidad de este.

Sb 1.5

Husillo o sistema de trasporte transversal. Este es un tornillo reciprocarte que al

girar por el accionamiento de un motor permite dirigir el flujo de plástico

fundido circule de la boquilla de alimentación del cañón a la boquilla de salida al

molde.

Figura 38. Subsistema cañón.

Page 79: Plan de mantenimiento para una máquina de inyección Negri

79

Subsistema de grupo de inyección, subsistema tiempos de inyección. Figura 39.

Sb 2.1 Indicador. Sirve para indicar la cantidad de gramos inyectados por carga al

molde.

Sb 2.2 Regla de medición de la cantidad de gramos inyectados por carga al molde.

Sb 2.3 Tabla de referencia del comportamiento de salida de boquilla del cañón

(inyección/carga). Permite aproximar.

Sb 2.4 Regulador de cantidad de gramos inyectados por carga. Permite al usuario

ajustar la cantidad óptima de gramos inyectados al molde con el fin de no

desperdiciar material.

Sb 2.5 Perilla del Regulador de cantidad de gramos inyectados por carga.

Sb 2.6 Leva Reguladora tiempo de espera de carga. Permite al usuario ajustar el

tiempo de espera que tiene la maquina entra la carga e inyección de material.

Sb 2.7 Perilla del Regulador de tiempo de carga.

Sb 2.8 Leva reguladora de cantidad de gramos inyectados por carga.

Sb 2.9 9-LS, sensor de contacto de control de inyección. Cuando este sensor se activa

manda una señal para detener el tiempo de inyección de material.

Sb

2.10

10-LS, sensor de contacto de control de tiempo de carga. Cuando este sensor se

activa manda una señal para detener el tiempo de carga y libera la presión

necesaria para la inyección.

Figura 39. Subsistemas tiempos de inyección.

Page 80: Plan de mantenimiento para una máquina de inyección Negri

80

Subsistema de grupo de inyección, subsistema límites del cañón, figura 40.

Sb 3.1 7-LS, Abre el cañón en modo automático. Distancia de despegue por recorrido a

través del cañón.

Sb 3.2 6-LS, Consentimiento de inyección una vez que el cañón pega en el molde.

Figura 40. Subsistemas límites del cañón.

- Elementos principales del sistema hidráulico.

De un depósito de aceite, no es un aceite normal, es hidráulico, tiene la composición necesaria

para aguantar presiones elevadas por ejemplo 180 bar y temperatura de hasta 60ºC y

velocidades altas por medio de una bomba/s accionadas por un motor(es) eléctrico, el aceite

del depósito y lo mandamos con una presión determinada a un circuito cerrado con retornos al

mismo depósito.

El aceite hidráulico que circula por el circuito es regulada su presión por unas reguladoras de

presión, y ajustado el caudal por unas reguladoras de caudal, este aceite llega a una serie de

electro válvulas direccionales, que como su nombre indica le dan una dirección de movimiento

al aceite hidráulico.

Así cada cilindro hidráulico tendría una válvula direccional, el embolo o pistón iría para un

lado o para otro según la posición de la válvula direccional.

Cabe decir que los sistemas hidráulicos solo son aplicables a maquinas hidráulicas. Las

máquinas eléctricas no poseen este sistema, ya que sus movimientos se realizan mediante

motores eléctricos.

- Cilindro hidráulico de cierre-apertura.

- Cilindro hidráulico de avance -retroceso expulsión.

- Cilindro hidráulico de inyección-succión.

- Cilindro hidráulico de avance-retroceso de carro.

- Motor hidráulico de carga. Aquí la presión hidráulica en vez de un movimiento lineal

como son los cilindros hidráulicos, hace girar un motor hidráulico que a su vez hace

girar el husillo para la carga, mediante unos engranajes.

Page 81: Plan de mantenimiento para una máquina de inyección Negri

81

Subsistema de grupo de cierre, subsistema protección platina móvil, figura 41.

Sb 4.1

1-LS Sensor de contacto de detección de seguridad de canasta corrediza abierta.

Este sensor manda una señal que deshabilita el sistema hidráulico, evitando que

se pueda activar el pistón hidráulico del brazo de la platina móvil, evitando así

accidentes.

Sb 4.2

20-LS Sensor de contacto de detección de seguridad de canasta corrediza

cerrad. Este sensor detecta que la canasta de seguridad corrediza está cerrada

activando el sistema hidráulico, permitiendo al pistón hidráulico del brazo de la

platina móvil cerrar y abrir.

Sb 4.3

Canasta de seguridad corrediza del brazo hidráulico de la platina móvil de

apertura y cierre (ajuste y colocación del molde en las platinas).

Sb 4.4

Canasta de seguridad de pistón hidráulico del brazo de apertura y cierre.

Figura 41.Unidad de cierre tipo rodillera.

Page 82: Plan de mantenimiento para una máquina de inyección Negri

82

Subsistema de grupo de cierre, subsistema sistema hidráulico. Figura 42.

Sb 5.1 Tornillo de bote para el molde. Este permite expulsar o botar del molde al

material plastificado, permitiendo el uso del sistema automático.

Sb 5.2 Ajustador del tornillo de bote del molde. Permite ajustar la distancia correcta

para la expulsión o bote del molde al material plastificado.

Sb 5.3 Platina móvil de sujeción del molde. En esta platina se sujetan una de las mitades

del molde. Su función es la de cerrar el molde con la platina fija y que el cañón

inyecte.

Sb 5.4 Rodillos del brazo de hidráulico de la platina corrediza.

Sb 5.5 Pistón hidráulico del brazo de platina móvil. Permite a la platina móvil el

movimiento de cierre a apertura necesario para la inyección del material y el

bote o expulsión del molde al material plastificado.

Sb 5.6 Barras de guías del brazo hidráulico de la platina corrediza. Ya que la maquina

usa un sistema mecánico - hidráulico es necesario que tenga guías que le

permitan tener un movimiento horizontal uniforme y recto.

Sb 5.7 Buje de la platina móvil. Permite a la platina seguir las barras guías para tener un

movimiento horizontal del brazo de platina móvil uniforme y recta.

Figura 42. Sistema hidráulico.

Page 83: Plan de mantenimiento para una máquina de inyección Negri

83

Subsistema de grupo de cierre, subsistema de control de protección mecánico-

eléctrico. Figura 43.

Sb 6.1

4-LS Sensor de contacto de detección de posición del pistón hidráulico del grupo

de cierre. Este sensor manda una señal que deshabilita el sistema del grupo de

inyección indicando que el pistón del sistema hidráulico del grupo de cierre se

encuentra en posición abierta indicando al grupo de inyección, que la maquina

no se encuentra preparado para una nueva inyección de material.

Sb 6.2

2-LS Sensor de contacto de detección de posición del pistón hidráulico del grupo

de cierre. Este sensor manda una señal que habilita el sistema del grupo de

inyección indicando que el pistón del sistema hidráulico del grupo de cierre se

encuentra en la posición de cierre indicando al grupo de inyección que la

maquina se encuentra preparado para una nueva inyección de material.

Sb 6.3

Paro de la placa móvil, para el adelantamiento y el pre avance.

Figura 43. Subsistema de control de protección mecánico-eléctrico.

Page 84: Plan de mantenimiento para una máquina de inyección Negri

84

Subsistema de grupo de cierre, subsistema de control de protección mecánica-eléctrica.

Figura 44.

Sb 7.1 3-LS Sensor de contacto de detección de posición del pistón hidráulico del

grupo de cierre. Este sensor manda una señal que detecta que l pistón del grupo

de cierre se encuentra en su posición de final o inicial.

Figura 44. Subsistema de control de protección mecánico-eléctrico vista lateral.

Subsistema de grupo de cierre, subsistema de control de contrapresión del sistema

hidráulico. Figura 45.

1. Selector de control de velocidad de la contrapresión del sistema hidráulica del

grupo de cierre.

Figura 45. Subsistema de control de contrapresión.

Page 85: Plan de mantenimiento para una máquina de inyección Negri

85

Subsistema de grupo de cierre, subsistema del tablero del control de activación general.

Figura 46.

1.

Botón de arranque del modo semi-automático y del modo automático.

2.

Selector de tres posiciones para la apertura, neutro o cierre del pistón o de la

platina móvil.

3.

Selector de tres posiciones para el control de inyección de la parte neutra o retorno

del husillo.

4.

Botón de apertura o cierre del cañón.

Figura 46. Subsistema de control de contrapresión.

Page 86: Plan de mantenimiento para una máquina de inyección Negri

86

Subsistema de grupo de panel de control, figura 47.

Figura 47. Control de máquina.

1. Alarma luminosa roja. Esta se activa cuando el sistema de inyección o de cierre

tiene algún fallo o anomalía menor, como por ejemplo un sensor de contacto

inactivo, fallo en la electroválvula, falta de aceite.

2. Bocina de la alarma luminosa roja. . Esta se activa cuando el sistema de inyección

o de cierre tiene algún fallo grave, como por ejemplo un solenoide pegado de la

electroválvula, fuga de aceite, temperatura elevada en el aceite, temperatura

elevada en el cañón.

3. Platina del panel de control de la máquina de inyección.

4. Pirómetros del segundo grupo de resistencias, permite ajustar la temperatura de los

grupos de resistencias o heaters mediante una perilla. (La máquina trabaja con una

temperatura de 200° a 220 ºC para este grupo de resistencias).

5. Switch selector para la activación o desactivación del pirómetro del segundo grupo

de resistencias o heaters.

6. Pirómetros del tercer grupo de resistencias, permite ajustar la temperatura de los

grupos de resistencias o heaters mediante una perilla. (la maquina trabaja con una

temperatura de 225° a 250 ºC para este grupo de resistencias)

7. Switch selector para la activación o desactivación del pirómetro del tercer grupo de

Page 87: Plan de mantenimiento para una máquina de inyección Negri

87

resistencias o heaters.

8. Timer de regulación de tiempo de inyección. Permite ajustar el tiempo de

inyección óptimo en el molde, para tener una pieza de salida de buena calidad.

9. Placa de sujeción de los controles de tiempo y de activación de modos manual

automático y semi automático.

10. Interruptor selector para la activación del modo manual semiautomático y

automático de la máquina.

Modo manual. Permite hacer pruebas y calibración tanto del

funcionamiento de la máquina, así como de la colocación del molde.

Modo semiautomático. Una vez que se checa el funcionamiento y

calibración de la máquina de forma manual se procede a hacer pruebas de

moldeado de material (ajustar tiempos y cantidad de material para la carga

e inyección, para así obtener una pieza de calidad).

Modo automático. Una vez que la maquina trabaja dentro de los valores

deseados esta se pone en modo automático para que trabaje de forma

independiente).

11. Gabinete del panel de control. Este contiene además de los elementos externos de

ajuste de la máquina, contiene el sistema de potencia y control de la misma).

12. Puerta de almacenamiento de contactares y timers de control.

13. Cerradura de seguridad.

14. Indicador de funcionamiento de los pirómetros. Permite ver si los pirómetros están

funcionando correctamente (luz encendida), de lo contrario la luz permanecerá

apagada.

15. Pirómetros del timer grupo de resistencias, permite ajustar la temperatura de los

grupos de resistencias o heaters mediante una perilla. (La máquina trabaja con una

temperatura de 180 a 200 ºC para este grupo de resistencias).

16. Interruptor selector para la activación o desactivación del pirómetro del primer

grupo de resistencias o heaters.

17. Timer de regulación de tiempo de carga. Permite ajustar el tiempo de carga óptimo

para tener una pieza de salida de buena calidad.

18. Interruptor selector para la activación o desactivación de los grupos de resistencia o

heaters.

19. Interruptor selector para darle mantenimiento o calibración del grupo de inyección

de la bancada de la máquina.

20. Interruptor selector para el arranque o paro del sistema hidráulico de la máquina.

Page 88: Plan de mantenimiento para una máquina de inyección Negri

88

3.3 Funcionamiento

El funcionamiento se dividirá en 2 subsistemas los cuales serán sistema hidráulico (anexo 1) y

sistema eléctrico-mecánico (anexo 2). Para explicar cada subsistema usaremos sus respectivos

diagramas hechos completamente por nosotros con la ayuda de un técnico, para esto se hará

referencia a las partes de cada diagrama con su debida explicación.

Primero se comenzará explicando el diagrama hidráulico ya que este sistema es el responsable

de la activación de los 2 principales sistemas en esta máquina:

El primero: Sistema cierre el cual es el responsable de la apertura y cierre de la platina

(pistón hidráulico).

El segundo: El sistema de inyección este a su vez es el encargado de 2 funciones

importantes, el recorrido del cañón (pistón hidráulico) de y de la etapa de inyección

(motor hidráulico).

Para proceder a explicar el funcionamiento de este subsistema se procederá usar el ciclo de

inyección, el cual se puede dividir en las siguientes etapas:

Encendido.

En esta etapa se energiza el motor eléctrico (identificado en el diagrama con el número 39) el

cual es el responsable de la distribución del aceite en el sistema hidráulico, el cual pasa a

través de un filtro (identificado en el diagrama con el número 37), el cual tiene una protección

de imanes para retener las posibles piezas de metal desprendidas de las tuberías por el efecto

de la fricción del aceite con la tubería, permitiendo tener un flujo de aceite limpio en el

sistema.

En esta etapa es donde se ajusta la cantidad de flujo de aceite en el sistema a través de una

válvula estranguladora la cual controla la presión en el tanque, lo a que a su vez determina la

cantidad de flujo que pasa a la línea de distribución principal del sistema. Esta etapa es

importante ya que de esta etapa depende el funcionamiento completo del sistema.

Cierre del molde.

En esta etapa se activa el elemento de distribución principal (Identificado en el diagrama con

el número 27), el cual consta de 2 conjuntos de electroválvulas las cuales son las encargadas

de las funciones de inyección-retroceso de husillo (Identificado en el diagrama con el numero

47) y cierre-apertura de la platina móvil (Identificado en el diagrama con el numero 46). En

esta etapa es donde se realiza la distribución por todo el sistema hidráulico por lo tanto debe

notarse la importancia de esta etapa pues cualquier falla en el elemento de distribución

principal afecta directamente a todo el sistema hidráulico tanto en válvulas como pistones.

Page 89: Plan de mantenimiento para una máquina de inyección Negri

89

En esta etapa se realizan 2 funciones activadas por una señal de control del sistema electro-

magnético condicionada por los sensores de contacto o micros 1-LS y 20-LS del sistema

eléctrico, la primera es el cierre de la platina móvil (en alta presión) a una posición de cierre,

la segunda es el cierre de la platina móvil (en baja presión) completando el ciclo de cierre.

Cierre de la platina móvil (en presión alta) en esta etapa es donde se efectúa el

posicionamiento de la platina móvil a una posición de cierre, para esto la válvula de

control del cierre-apertura de la platina móvil (Identificado en el diagrama con el

numero 46), se encuentra en posición de cierre, de la posición inicial de la platina

móvil, activando el pistón en posición de avance encargado del cierre-apertura de la

unidad de la platina móvil (identificado en el diagrama con el numero 21), tomando la

unidad de la platina móvil una posición de pre-cierre, esto debido a que un cierre total

en alta presión genera un desgaste mecánico elevado puesto que esta acción se apertura

y cierre de la platina se realiza innumerables veces en el proceso de producción de

piezas, razón por la cual se requiere de un cierre suave en el último instante, para esto

se detiene el cierre en alta presión (válvula de control de cierre-apertura platina móvil)

y se activa un cierre en baja presión para completar el ciclo de cierre, esta función

corresponde a la válvula de máxima presión 2P – 2T (identificado en el diagrama con

el numero 32) esta válvula realiza la función en baja presión tanto para la etapa cierre

como para la etapa de inyección, permitiendo tener en esta etapa un cierre suave, que a

su vez conlleva un desgaste mecánico bajo, conveniente para el proceso.

Avance de la unidad de inyección.

Después de que la primer etapa (cierre del molde se ha cumplido) se realiza la etapa de avance

de la unidad de inyección donde el cañón se posiciona junto a la boquilla del molde para

prepararse para la etapa de inyección de plástico.

En esta etapa se realiza la función de avance de la unidad de inyección es activada por una

señal de control del sistema electro-magnético condicionada por un sensor de contacto o micro

11-LS del sistema eléctrico. Esta es el adelantamiento de la unidad del cañón (en presión alta)

a una posición de inyección de plástico.

Adelantamiento de la unidad del cañón (en alta presión): en esta etapa es donde se

efectúa el posicionamiento del cañón con el molde, para esto la válvula de control del

avance-retroceso del cañón (Identificado en el diagrama con el numero 45), se

encuentra en posición de adelanto de la posición del cañón, activando el pistón en

posición de avance encargado del adelantamiento-retroceso de la unidad del cañón

(Identificado en el diagrama con el numero 40), tomando el cañón una posición de

inyección, esto se realiza únicamente en alta presión debido a que este proceso

posicionamiento del cañón con el molde solo se realiza solo una vez al inicio del

proceso, por tanto el desgaste mecánico producido del choque del canon con la con el

molde es mínimo.

Page 90: Plan de mantenimiento para una máquina de inyección Negri

90

Inyección de plástico.

Una vez realizada la primera y segunda etapa, cierre del molde y avance de la unidad de

inyección respectivamente se procede a la etapa de inyección de plástico en el molde, esta

etapa es importante debido a que en esta etapa es donde se realiza el moldeo del material, por

lo cual es importante determinar los parámetros necesarios para poder tener un producto de

calidad, entre los parámetros que se deben de tener en cuenta durante esta etapa se encuentran:

tiempo de inyección, cantidad de material inyectado, temperatura de material. En el sistema

hidráulico los parámetros a regular dentro de esta etapa son la cantidad de material inyectado y

la velocidad de avance del husillo.

En esta etapa se realiza la función de inyección de material condicionando 2 parámetros:

El primer parámetro cantidad de material inyectado es activado por una señal de

control del sistema electro-magnético el cual está condicionada por los sensores de

contacto o micros 8-LS y 9-LS del sistema eléctrico, estos determinan la cantidad de

material a inyectarse.

El segundo parámetro, velocidad de avance del husillo está condicionado por 2

elementos:

o La válvula de contrapresión (Identificado en el diagrama con el numero 43), la

cual determina la velocidad del husillo por efecto de una contrapresión la cual

se contrapone a la presión de inyección del motor hidráulico, causando que el

husillo tenga una velocidad mayor o menor de acuerdo al ajuste que se le dé a

esta válvula.

o El elemento controlador del motor hidráulico (Identificado en el diagrama con

el numero 35), el cual determina la velocidad del husillo por efecto del control

de la cantidad de flujo de alimentación del motor hidráulico (Identificado en el

diagrama con el numero 23), causando que el husillo tenga una velocidad

mayor o menor de acuerdo al ajuste que se le dé a esta válvula.

En esta función el motor hidráulico hace que el husillo avance (en alta presión) realizando la

inyección de material.

Inyección de material (en alta presión): en esta etapa es donde se efectúa la inyección de

material en el molde, para esto la válvula de control de inyección-plastificación en el husillo

(Identificado en el diagrama con el numero 47), se encuentra en posición de inyección,

activando el elemento de controlador de motor hidráulico (Identificado en el diagrama con el

numero 35), el que a su vez es el encargado de controlar el funcionamiento del motor

hidráulico (Identificado en el diagrama con el numero 23), este último hace que el husillo

avance (alta presión) plastificando el material e inyectándolo al molde a una velocidad y

temperatura constante.

Page 91: Plan de mantenimiento para una máquina de inyección Negri

91

Esta etapa se realiza a alta presión debido a que la fuerza necesaria para inyectar el material

plástico al molde debe de ser lo suficientemente fuerte tomando en cuenta los siguientes

parámetros:

- Poder transportar el material fundido con una viscosidad alta, alojado en el cañón al

molde.

- Tipo de polímero empleado (características físicas, químicas, mecánicas)

- Los canales que ponen en comunicación el molde con el cilindro de inyección,

mientras más canales contenga el molde o mientras mayor sea el recorrido que tenga

que recorrer el material fundido en el molde mayor será la fuerza que se necesite para

transportar el material.

Tomando en cuenta estas razones se hace notar la necesidad de tener que trabajar esta etapa de

inyección a una presión elevada para poder cumplir con los estándares necesarios expuestos

anteriormente por lo cual ha de hacerse notar que el control y monitoreo de esta etapa es de

suma importancia.

Presión de sostenimiento.

Una vez realizada la etapa de inyección, se procede a la etapa de Presión de sostenimiento

durante la cual el molde permanece cerrado y el polímero comienza a enfriarse en el molde.

Cuando el material comienza a enfriarse se contrae, por lo que para mantener la presión en el

molde durante este periodo se suele introducir lentamente algo más de material dentro de la

cavidad de moldeo, lo que compensa la contracción. Este periodo puede variar entre unos

segundos y varios minutos. El peso final de la pieza, su estabilidad dimensional y las tensiones

internas que pudieran aparecer dependen de cómo se realice esta etapa, que finaliza en el

momento en el que el material que ocupa la entrada del molde solidifica, de modo que ya no

es necesario mantener la unidad de inyección en posición avanzada para seguir manteniendo la

presión.

En esta etapa se realiza la función de Presión de sostenimiento, completando la etapa de

inyección en baja presión es activada por una señal de control del sistema electro-magnético

condicionada por los canales y forma del molde.

Presión de sostenimiento (en baja presión): en esta etapa es donde se mantiene la

presión suficiente en el husillo (baja presión), introduciendo lentamente más material

en el molde, para esto la válvula de máxima presión 2P – 2T (Identificado en el

diagrama con el numero 32) realiza la función en baja presión tanto para la etapa cierre

como para la etapa de inyección, permitiendo tener una presión de sostenimiento con la

suficiente fuerza para mantener el material en el molde cuando este se contrae y poder

inyectar lo necesario para compensar la contracción del polímero y llenar el molde por

completo, para poder regular la fuerza de esta baja presión en el husillo se tiene un

control manual (identificado en el diagrama con el numero 33), con el cual es posible

regular la presión necesaria en esta etapa, con este último ajuste el ciclo de inyección

se da por terminado.

Page 92: Plan de mantenimiento para una máquina de inyección Negri

92

Retracción del grupo de inyección y plastificación.

Una vez completada la etapa de inyección, se procede a la etapa de Retracción del grupo de

inyección y plastificación, esta etapa comienza ccuando la entrada a la cavidad del molde

solidifica, la unidad de inyección retrocede, y comienza el movimiento rotatorio del husillo

para plastificar el material para la siguiente etapa (plastificación y carga de material),

realizando esta función simultáneamente con la fase de enfriamiento, apertura del molde y

extracción de la pieza y acelerando así el tiempo total de ciclo.

En esta etapa se realiza retracción del grupo de inyección, haciendo que el husillo retroceda,

plastificando y cargando material para un nuevo ciclo de inyección.

Retracción del grupo de inyección (en presión alta) y plastificación: En esta etapa se

efectúa el retroceso del husillo, para esto la válvula de control de inyección-

plastificación en el husillo (Identificado en el diagrama con el número 47), se

encuentra en posición de retroceso, activando el elemento de controlador de motor

hidráulico (Identificado en el diagrama con el número 35), el que a su vez es el

encargado de controlar el funcionamiento del motor hidráulico (Identificado en el

diagrama con el numero 23), este último hace que el husillo retroceda (alta presión)

plastificando y cargando el material a una velocidad y temperatura constante (para no

afectar las propiedades físicas del polímero), preparándose para el siguiente ciclo de

inyección.

En esta etapa de retroceso del husillo se efectúan 2 etapas simultáneamente:

- La primera es la plastificación del polímero entendiendo que plastificar es el calentar

polímero lo suficiente para que alcance una temperatura a la que pueda ser inyectado.

- La segunda es la carga de material preparando el material requerido para un nuevo

ciclo de inyección.

Esta etapa se realiza a presión alta debido a que la fuerza necesaria para poder transportar y

hacer retroceder el material fundido con una viscosidad alta, alojado en la punta del cañón

(boquilla) hasta tener una carga de material suficiente para realizar un nuevo ciclo de

inyección, tomando en cuenta los siguientes parámetros: velocidad de retroceso del husillo y

temperatura constantes. Tomando en cuenta estas razones se hace notar la necesidad de tener

que trabajar esta etapa de inyección a una presión elevada para poder cumplir con los

estándares necesarios expuestos anteriormente por lo cual ha de hacerse notar que el control y

monitoreo de esta etapa es de suma importancia.

Page 93: Plan de mantenimiento para una máquina de inyección Negri

93

Apertura del molde para extracción.

Una vez completada la etapa de Retracción del grupo de inyección y plastificación, al igual

que el resto de las etapas, se inicia la última etapa la cual es la apertura del molde para

extracción de la pieza final, en la cual la platina móvil se abre hasta llegar a una posición en la

cual una de las caras del molde situado en la platina móvil haga contacto con el botador

situado al inicio del soporte donde se encuentra el pistón hidráulico encargado del cierre y

apertura de la platina móvil, perimiendo que el botador haga contacto con la pieza final,

ocasionando que este contacto haga que por efecto de la presión mecánica el botador separe la

pieza final moldeada del molde, terminando el ciclo.

En esta etapa se activa el elemento de distribución principal (Identificado en el diagrama con

el número 27), en el cual se encuentra la electroválvula encargada de la función del cierre-

apertura de la platina móvil (Identificado en el diagrama con el número 46). En esta etapa es

donde se realiza el cierre de la platina móvil y extracción de la pieza final moldeada del

molde.

En esta etapa se realiza la función activada por una señal de control del sistema electro-

magnético condicionada por el sensores de contacto o micro 3-LS del sistema eléctrico.

Apertura del molde para extracción (en alta presión): en esta etapa es donde se efectúa

el posicionamiento de la platina móvil a una posición de apertura en la que la cara del

molde posicionado en la platina móvil, haga contacto con el botador , para esto la

válvula de control del cierre-apertura de la platina móvil (Identificado en el diagrama

con el numero 46), se encuentra en posición de cierre, activando el pistón en posición

de apertura encargado del cierre-apertura de la unidad de la platina móvil (Identificado

en el diagrama con el numero 21), tomando la unidad de la platina móvil una posición

de apertura estando la cara del molde en contacto con el botador. Esta etapa se realiza a

alta presión debido a que la presión mecánica necesaria entre el botador y la pieza final

tiene que ser lo suficientemente alta para poder extraer la pieza del molde.

Enfriamiento.

Esta etapa es necesaria para enfriar el polímero que ocupa las cavidades del molde.

Generalmente se toma este tiempo desde que acaba la etapa de compactación hasta que se abre

el molde, sin embargo realmente el enfriamiento del material comienza tan pronto como el

polímero toca las paredes frías del molde, y finaliza cuando se extrae la pieza, por lo que el

enfriamiento tiene lugar también durante las etapas de llenado y compactación. En esta etapa

no participa directamente el sistema eléctrico-mecánico o el sistema hidráulico.

Page 94: Plan de mantenimiento para una máquina de inyección Negri

94

Secuencia operativa.

Para una comprensión más completa del funcionamiento de la máquina de inyección tipo

horizontal, se procedió a realizar una tabla de la secuencia operativa que realiza la maquina en

relación con el sistema hidráulico teniendo haciendo una relación de los accionamientos

hidráulicos (pistones hidráulicos y motor hidráulico), así como de los elementos de control de

estos (Electroválvulas).

Para esto se procederá a separar en 3 bloques los cuales corresponderán a la secuencia

operativa de cada accionamiento hidráulico, junto con un diagrama grafico que permita una

mejor expresión de la secuencia.

o Accionamiento hidráulico. Unidad de cierre-apertura de platina. Tabla 7. Secuencia operativa de la unidad de cierre apertura de platina.

En tabla 7 puede observar la secuencia operativa del pistón hidráulico encargado del cierre-

apertura de la platina móvil, consta de 4 etapas las cuales son:

Cierre del molde en alta presión: En esta etapa se activa la válvula de control del

cierre-apertura de la platina móvil en posición de 1 – A, posición encargada del cierre

de la platina en alta presión.

Cierre del molde en baja presión: Una vez realizada la etapa de cierre del molde en

alta presión, continua la etapa de cierre del molde en baja presión, se activa la válvula

de máxima presión 2P – 2T, en posición 1 – C, la cual realiza un cierre en baja presión,

permitiendo tener un cierre suave lo cual conlleva a un desgaste mecánico mínimo.

Cierre del molde en alta presión: En esta etapa se realiza de manera paralela a la

etapa de inyección, razón por la cual se realiza el cierre del molde en alta presión para

poder contrarrestar la fuerza ejercida en la etapa de inyección de material al molde.

Para esto se activa la válvula de control del cierre-apertura de la platina móvil en

posición de 1 – A, posición encargada del cierre de la platina en alta presión.

Apertura molde: Esta es la última etapa del proceso general, es en esta última etapa

donde ya se han completado todas las demás etapas y se procede a abrir el molde para

extraer la pieza y comenzar con un nuevo ciclo. Para esto se activa la válvula de

control del cierre-apertura de la platina móvil en posición de 1 – B, posición encargada

de la apertura de la platina en alta presión.

Page 95: Plan de mantenimiento para una máquina de inyección Negri

95

o Accionamiento hidráulico. Unidad de avance-retroceso del cañón.

Tabla 8. Secuencia operativa de la unidad de avance-retroceso del cañón.

En la tabla 8 se puede observar la secuencia operativa del pistón hidráulico encargado de

avance-retroceso del cañón, consta de 3 etapas las cuales son:

Acercamiento del grupo de inyección: En esta etapa se activa la válvula de control

del cierre-apertura de la platina móvil en posición de 1 – A, posición encargada del

cierre de la platina en alta presión, lo cual determina que el molde está cerrado,

permitiendo que la unidad de inyección se posicione y cumpla su función (inyección

de material), para esto se activa la válvula de control de avance-retroceso del cañón de

la unidad de inyección en posición de 3 – A, posición encargada del Avance y

posicionamiento de la unidad de inyección.

Demora parcial del grupo de inyección: Esta etapa solo se realiza cuando se requiera

retroceder el cañón, esto solo se realiza cuando el proceso así lo requiere (solo para

moldes que requieran de una plantificación rápida), para esto se activa la válvula de

control de avance-retroceso del cañón de la unidad de inyección en posición de 3 – B,

posición encargada del retroceso de la unidad de inyección.

Demora parcial del grupo de inyección (Acc. Manual): Esta etapa solo se realiza

cuando se requiera retroceder el cañón, esto solo se realiza cuando se requiere dar

mantenimiento a esta unidad, razón por la cual se realiza de manera manual, y por lo

cual se requiere la apertura de la unidad de cierre, activando la válvula de control del

cierre-apertura de la platina móvil en posición de 1 – B, posición encargada de la

apertura de la unidad de cierre.

Para esta etapa se activa la válvula de control de avance-retroceso del cañón de la unidad de

inyección en posición de 3 – B, posición encargada del retroceso de la unidad de inyección,

permitiendo dar mantenimiento a esta unidad.

Page 96: Plan de mantenimiento para una máquina de inyección Negri

96

o Accionamiento hidráulico, Unidad de Inyección (motor hidráulico).

Tabla 9. Secuencia operativa de la unidad de inyección.

En la tabla 9 puede observarse la secuencia operativa del motor hidráulico encargado de la

inyección-plastificación en el husillo del cañón, consta de 3 etapas las cuales son:

Inyección en alta presión: Para esta etapa se requieren 2 etapas previas las cuales son

el cierre del molde (se activa la válvula de control del cierre-apertura de la platina

móvil en posición de 1 – A, posición encargada del cierre de la platina en alta presión),

y el posicionamiento del cañón pegado al molde (se activa la válvula de control de

avance-retroceso del cañón de la unidad de inyección en posición de 3. A, posición

encargada del Avance y posicionamiento de la unidad de inyección), además del

accionamiento de la válvula de control encargada de la inyección-plastificación, en

posición de 2 – A, posición encargada de la inyección de material al molde en la

unidad de inyección del cañón. Como ya se mencionó el cierre del molde en esta etapa

se realiza en alta presión para poder contrarrestar la fuerza ejercida en la etapa de

inyección en alta presión de material al molde, evitando que se tenga merma de

material.

Inyección en baja presión: Una vez realizada la etapa de inyección de material al

molde en alta presión (se activa la válvula de control encargada de la inyección-

plastificación, en posición de 2 – A, posición encargada de la inyección de material al

molde en la unidad de inyección del cañón), continua la etapa de inyección al molde en

baja presión, se activa la válvula de máxima presión 2P – 2T, en posición 2 – E, la

cual realiza un inyección en baja presión, requerida debido a que al enfriarse el

material este se contrae, por lo que es necesario mantener la presión en el molde

durante este periodo, por lo cual se suele introducir lentamente algo más de material

dentro de la cavidad de moldeo, lo que compensa la contracción. Para esto se acciona

la válvula de máxima presión 2P – 2T, en posición 2 – E, encargada del cierre en baja

presión.

Retroceso del husillo: Una vez completas las 2 anteriores etapas, se continua con el

proceso de plantificación y carga de material, en el husillo del cañón, para tener el

material necesario para la próxima etapa de inyección, para esto se activa la válvula de

control encargada de la inyección-plastificación, en posición de 2 – B, posición

encargada de la plastificación y carga de material en el husillo en la unidad de

inyección del cañón.

Page 97: Plan de mantenimiento para una máquina de inyección Negri

97

CAPITULO IV.- DESARROLLO DEL PLAN DE MANTENIMIENTO

Page 98: Plan de mantenimiento para una máquina de inyección Negri

98

En este capítulo se identificaran y analizaran los puntos críticos de la máquina de inyección de

plástico NegriBossi, usando el método de análisis de riesgos " What if ? ". Se usó el método "

What if ? " debido a la facilidad y a las ventajas que presenta este método, las cuales son

brindar un control y monitoreo de los puntos críticos del sistema, para así poder identificar

posibles fallas antes de que estas causen incidentes no deseados, siendo este el principal

objetivo del proyecto.

Para la identificación y análisis de puntos críticos, al igual que la descripción del sistema se

dividirá el sistema completo en subsistemas, para una mejor identificación y análisis. Para

realizar dichas funciones de identificación y análisis de puntos críticos mediante el método "

What if ? ", se procedió a evaluar el funcionamiento del sistema antes descrito tomándose

registro de todas las fallas que surgieron en este, para esto se propuso un tiempo de muestreo

de 16 semanas.

4.1 Bitácora de mantenimiento

Para la identificación de puntos críticos se tomaron en cuenta los siguientes parámetros:

Identificación completa del sistema, subsistema, así como de cada uno de sus

elementos, esto se realizó en el capítulo 3, en el cual se analizó el sistema, los

subsistemas y los elementos de estos.

Una vez analizado el sistema, la identificación de los puntos críticos resulto más

sencilla, pues al tener el conocimiento del funcionamiento de la máquina de inyección,

se identificaron los principales puntos para el correcto funcionamiento del sistema así

como de las protecciones propias del sistema, esto nos dio la pauta para una

identificación de los puntos críticos, así como la ponderación de estos debido a fallos

(esta evaluación se hizo en base a parámetros obtenidos de catálogos).

Se recolectaron datos con ayuda de un operador de máquinas de inyección con

experiencia y un técnico encargado del mantenimiento de estas.

Con la ayuda de estas dos personas y su experiencia se obtuvieron datos del funcionamiento

de máquina, los elementos que principalmente fallan y las causas de estos fallos, con esto se

pudieron completar la identificación y el análisis de los puntos críticos.

Para esto se usaron técnicas como la identificación visual y monitoreo de los elementos y de

las líneas de distribución hidráulicas y eléctricas, con herramientas tales como multímetros

digitales y de gancho, obteniendo la continuidad entra líneas de conexión y elementos,

midiendo la tensión y corriente en cada elemento eléctrico: tanto de la máquina (sensores,

micros, accionamiento, heaters, electroválvulas), como del tablero (relevadores, timers,

pirómetros), además de los elementos hidráulicos en línea (válvulas, filtro, motor,

intercambiador, reguladores de velocidad, tanque), haciendo uso de elementos tales como

manómetros y válvulas estranguladoras incorporados en la máquina, para determinar el

funcionamiento del sistema hidráulico.

Page 99: Plan de mantenimiento para una máquina de inyección Negri

99

De las tablas 10 al 25 se registran día, veces de fallas al día, así como de los elementos que

fallaron.

Tabla 10. Registro de fallas semana 1.

Semana 1.

Día. Falla en Elementos. Fallos al día.

Lunes. Micro 1- LS. 1

Martes. Bomba de distribución de agua. 1

Miércoles. Boquilla del cañón. 1

Jueves. Boquilla de tolva de alimentación. 1

Viernes. Timer de regulación de tiempo de inyección.

Bomba de distribución de agua.

1

1

Sábado.

Total. 6

Tabla 11. Registro de fallas semana 2.

Semana 2.

Día. Falla en Elementos. Fallos al día.

Lunes. Boquilla del cañón. 1

Martes.

Miércoles. Timer de regulación de tiempo de carga.

Bomba de distribución de agua.

1

1

Jueves. Boquilla del cañón.

Boquilla de tolva de alimentación.

1

1

Viernes.

Sábado. Boquilla de tolva de alimentación. 1

Total. 6

Page 100: Plan de mantenimiento para una máquina de inyección Negri

100

Tabla 12. Registro de fallas semana 3.

Semana 3.

Día. Falla en Elementos. Fallos al día.

Lunes. Boquilla del cañón. 1

Martes. Boquilla de tolva de alimentación. 1

Miércoles. Boquilla del cañón. 1

Jueves.

Viernes. Bomba de distribución de agua.

Boquilla del cañón.

1

1

Sábado. Boquilla de tolva de alimentación.

Timer de regulación de tiempo de inyección.

1

1

Total. 7

Tabla 13. Registro de fallas semana 4.

Semana 4.

Día. Falla en Elementos. Fallos al día.

Lunes. Boquilla de tolva de alimentación. 1

Martes. Micro 1 – LS. 1

Miércoles.

Jueves. Boquilla del cañón.

Micro 9 – LS.

1

1

Viernes. Micro 15 – LS. 1

Sábado. Bomba de distribución de agua. 1

Total. 6

Page 101: Plan de mantenimiento para una máquina de inyección Negri

101

Tabla 14. Registro de fallas semana 5.

Semana 5.

Día. Falla en Elementos. Fallos al día.

Lunes. Boquilla de tolva de alimentación. 1

Martes. Micro 15 – LS. 1

Miércoles. Micro 10 – LS.

Boquilla del cañón.

1

1

Jueves. Boquilla del cañón.

Pirómetros del segundo grupo de

resistencias.

1

1

Viernes. Boquilla del cañón. 1

Sábado. Boquilla de tolva de alimentación.

Timer de regulación de tiempo de inyección.

1

1

Total. 9

Tabla 15. Registro de fallas semana 6.

Semana 6.

Día. Falla en Elementos. Fallos al día.

Lunes. Timer de regulación de tiempo de inyección. 1

Martes. Boquilla del cañón. 1

Miércoles. Timer de regulación de tiempo de carga. 1

Jueves.

Viernes. Boquilla del cañón. 1

Sábado.

Total. 4

Page 102: Plan de mantenimiento para una máquina de inyección Negri

102

Tabla 16. Registro de fallas semana 7.

Semana 7.

Día. Falla en Elementos. Fallos al día.

Lunes.

Martes. Micro 1 – LS. 1

Miércoles. Boquilla del cañón. 1

Jueves. Bomba de distribución de agua.

Boquilla de tolva de alimentación.

1

1

Viernes. Timer de regulación de tiempo de inyección.

Bomba de distribución de agua.

1

1

Sábado.

Total. 6

Tabla 17. Registro de fallas semana 8.

Semana 8.

Día. Falla en Elementos. Fallos al día.

Lunes. Boquilla del cañón. 1

Martes. Boquilla de tolva de alimentación. 1

Miércoles. Timer de regulación de tiempo de carga. 1

Jueves.

Viernes. Boquilla de tolva de alimentación. 1

Sábado. Boquilla del cañón. 1

Total. 5

Page 103: Plan de mantenimiento para una máquina de inyección Negri

103

Tabla 18. Registro de fallas semana 9.

Semana 9.

Día. Falla en Elementos. Fallos al día.

Lunes. Boquilla del cañón. 1

Martes.

Miércoles.

Jueves. Boquilla de tolva de alimentación. 1

Viernes. Timer de regulación de tiempo de inyección. 1

Sábado. Bomba de distribución de agua. 1

Total. 4

Tabla 19. Registro de fallas semana 10.

Semana 10.

Día. Falla en Elementos. Fallos al día.

Lunes. Boquilla de tolva de alimentación. 1

Martes. Timer de regulación de tiempo de inyección. 1

Miércoles. Boquilla del cañón. 1

Jueves. Boquilla de tolva de alimentación. 1

Viernes. Bomba de distribución de agua

Micro 1 – LS.

1

1

Sábado. Bomba de distribución de agua. 1

Total. 7

Page 104: Plan de mantenimiento para una máquina de inyección Negri

104

Tabla 20. Registro de fallas semana 11.

Semana 11.

Día. Falla en Elementos. Fallos al día.

Lunes. Boquilla del cañón.

Boquilla de tolva de alimentación.

1

1

Martes. Micro 1 – LS.

Bomba de distribución de agua.

1

1

Miércoles.

Jueves.

Viernes. Timer de regulación de tiempo de inyección. 1

Sábado. Boquilla de tolva de alimentación.

Bomba de distribución de agua.

1

1

Total. 7

Tabla 21. Registro de fallas semana 12.

Semana 12.

Día. Falla en Elementos. Fallos al día.

Lunes.

Martes. Micro 1 – LS.

Boquilla de tolva de alimentación.

1

1

Miércoles. Boquilla de tolva de alimentación. 1

Jueves.

Viernes. Bomba de distribución de agua. 1

Sábado. Timer de regulación de tiempo de inyección. 1

Total. 5

Page 105: Plan de mantenimiento para una máquina de inyección Negri

105

Tabla 22. Registro de fallas semana 13.

Semana 13.

Día. Falla en Elementos. Fallos al día.

Lunes. Boquilla del cañón.

Boquilla de tolva de alimentación.

1

1

Martes. Micro 1 – LS.

Timer de regulación de tiempo de inyección.

1

1

Miércoles. Boquilla del cañón. 1

Jueves. Bomba de distribución de agua.

Boquilla de tolva de alimentación.

1

1

Viernes. Timer de regulación de tiempo de inyección.

Bomba de distribución de agua.

1

1

Sábado. Micro 1 – LS. 1

Total. 10

Tabla 23. Registro de fallas semana 14.

Semana 14.

Día. Falla en Elementos. Fallos al día.

Lunes.

Martes. Bomba de distribución de agua. 1

Miércoles. Boquilla del cañón. 1

Jueves.

Viernes. Timer de regulación de tiempo de inyección.

Micro 9 – LS.

1

1

Sábado. Micro 15 – LS.

Micro 1 – LS.

1

1

Total. 6

Page 106: Plan de mantenimiento para una máquina de inyección Negri

106

Tabla 24. Registro de fallas semana 15.

Semana 15.

Día. Falla en Elementos. Fallos al día.

Lunes. Boquilla del cañón. 1

Martes. Micro 15 – LS. 1

Miércoles. Boquilla del cañón. 1

Jueves.

Viernes. Bomba de distribución de agua.

Micro 1 – LS.

1

1

Sábado. Timer de regulación de tiempo de inyección. 1

Total. 6

Tabla 25. Registro de fallas semana 16.

Semana 16.

Día. Falla en Elementos. Fallos al día.

Lunes.

Martes. Micro 1 – LS. 1

Miércoles. Boquilla del cañón. 1

Jueves. Bomba de distribución de agua.

Boquilla de tolva de alimentación.

1

1

Viernes.

Sábado. Micro 1 – LS. 1

Total. 5

Fallas totales en las 16 semanas. 99

Page 107: Plan de mantenimiento para una máquina de inyección Negri

107

4.2 Análisis de riesgos

4.2.1 Método what if? Para la determinación de riesgos en la industria

Esta técnica es un método inductivo que utiliza información específica de un proceso para

generar una serie de preguntas que son pertinentes durante el tiempo de vida de una

instalación, así como cuando se introducen cambios al proceso o a los procedimientos de

operación. Consiste en definir tendencias, formular preguntas, desarrollar respuestas y

evaluarlas, incluyendo la más amplia gama de consecuencias posibles. No requiere métodos

cuantitativos especiales o una planeación extensiva.

El método utiliza información específica de un proceso como los DFP´s (Diagramas de

Proceso), DTI´s (Diagramas de Tubería e Instrumentación) para generar una especie de

preguntas de lista de verificación. Un equipo especial realiza una lista de planteamientos

empleando las preguntas ¿Qué pasa sí?, las cuales son contestadas colectivamente por el grupo

de trabajo y resumidas en forma tabular.

Esta técnica es ampliamente utilizada durante las etapas de diseño del proceso, así como

durante el tiempo de vida o de operación de una instalación, así mismo cuando se introducen

cambios al proceso o a los procedimientos de operación.

El propósito del método What if? tiene tres aspectos:

1. Identificar las condiciones y situaciones peligrosas posibles que pueden resultar de

barreras y controles inadecuados.

2. Identificar eventos que pudieran provocar accidentes mayores.

3. Recomendar las situaciones requeridas para iniciar el proceso de reducir el riesgo de

una instalación así como para mejorar la operatividad de la misma.

El análisis What if?, que se realizó para determinar riesgos en la máquina de inyección de

plástico, estuvo enfocado a 2 sistemas, el eléctrico y el hidráulico, para esto se procedió a

dividir la maquina en 3 subsistemas:

Subsistema 1: Sistema del grupo de cierre de platina.

Subsistema 2: sistema del grupo de inyección.

Subsistema 3: Sistema del grupo de control.

Page 108: Plan de mantenimiento para una máquina de inyección Negri

108

4.2.2 Análisis de fallas

De acuerdo al capítulo 4.1 se procedió a obtener la tasa de falla de cada una de las fallas en

cada elemento, identificados en la bitácora de mantenimiento. Para esto se realizaron en 2

tablas un registró de fallas de manera semanal y mensual para su posterior a análisis, donde se

analizara cada elemento para la obtención de la tasa de fallo.

De las tablas 26 a la 27 se registraron las fallas totales para cada elemento de manera semanal

y mensual.

Tabla 26. Fallas semanales.

Tabla 27. Fallas mensuales.

Page 109: Plan de mantenimiento para una máquina de inyección Negri

109

4.2.3 Funciones para la obtención de tasa de fallas semanalmente para cada elemento

Para obtener la tasa de fallos de cada elemento se procede a tabular las fallas de cada elemento

con una frecuencia acumulada de los fallos, para después graficar y obtener la función que

describa el crecimiento de los fallos, mediante líneas de tendencia. Para esto se tomó el tiempo

de muestreo de 16 semanas de la bitácora de mantenimiento. Tablas 29-37. Tabla 28. Fallas micro 1.LS.

Semana. Fallas

micro 1 LS.

1 1

2 1

3 1

4 2

5 2

6 2

7 3

8 3

9 3

10 4

11 5

12 6

13 8

14 9

15 10

16 12

Tabla 29. Fallas micro 9 LS.

Semana. Fallas

micro 9 LS.

1 0

2 0

3 0

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1

13 1

14 2

15 2

16 2

y = 0.0578x2 - 0.291x + 1.5714R² = 0.9864

0

2

4

6

8

10

12

14

0 5 10 15 20

FALL

AS

SEMANAS

Fallas micro 1 LS.Fallas micro 1 LS.Polinómica (Fallas micro 1 LS.)

y = 0.1147x + 0.025R² = 0.7456

-0.5

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18

FALL

AS

SEMANAS

Fallas micro 9 LS.Fallas micro 9 LS.Lineal (Fallas micro 9 LS.)

Page 110: Plan de mantenimiento para una máquina de inyección Negri

110

Tabla 30. Fallas micro 10 LS.

Semana

Fallas micro 10

LS.

1 0

2 0

3 0

4 0

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1

13 1

14 1

15 1

16 1

Tabla 31. Fallas micro 15 LS.

Semana

Fallas micro 15

LS.

1 0

2 0

3 0

4 1

5 2

6 2

7 2

8 2

9 2

10 2

11 2

12 2

13 2

14 3

15 4

16 4

y = 0.0706x + 0.15R² = 0.5647

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18

FALL

AS

SEMANAS

Fallas micro 10 LS.Fallas micro 10 LS.

Lineal (Fallas micro 10 LS.)

y = -0.0014x2 + 0.2503x - 0.1214R² = 0.8023

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20

FALL

AS

SEMANAS

Fallas micro 15 LS.Fallas micro 15 LS.

Polinómica (Fallas micro 15 LS.)

Page 111: Plan de mantenimiento para una máquina de inyección Negri

111

Tabla 32. Fallas boquilla del cañón.

Semana

Fallas boquilla del

cañón

1 1

2 3

3 6

4 7

5 10

6 12

7 13

8 15

9 16

10 17

11 18

12 18

13 20

14 21

15 23

16 24

Tabla 33. Fallas bomba de distribución de agua.

Semana

Fallas bomba de

distribución de agua.

1 2

2 3

3 4

4 5

5 5

6 5

7 7

8 7

9 8

10 10

11 12

12 14

13 15

14 16

15 17

16 18

y = -0.0501x2 + 2.3012x - 0.8786R² = 0.9907

0

5

10

15

20

25

30

0 5 10 15 20

FALL

AS

SEMANAS

Fallas boquilla del cañón.Fallas boquilla del cañón.

Polinómica (Fallas boquilla del cañón.)

y = 0.0378x2 + 0.463x + 1.7786R² = 0.9837

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

FALL

AS

SEMANAS

Fallas bomba de distribución de agua.

Fallas bomba de distribución de agua.

Polinómica (Fallas bomba de distribuciónde agua. )

Page 112: Plan de mantenimiento para una máquina de inyección Negri

112

Tabla 34. Fallas boquilla de tolva de alimentación.

Semana

Fallas boquilla de

tolva de alimentació

n

1 1

2 3

3 5

4 6

5 8

6 8

7 9

8 11

9 12

10 14

11 16

12 18

13 20

14 20

15 20

16 21 Tabla 35. Fallas timer de regulación de tiempo de carga.

Semana

Fallas timer de regulación de tiempo de

carga

1 0

2 1

3 1

4 1

5 1

6 2

7 2

8 3

9 3

10 3

11 3

12 3

13 3

14 3

15 3

16 3

y = -0.0109x2 + 1.5639x - 0.2786R² = 0.9842

0

5

10

15

20

25

0 5 10 15 20

FALL

AS

SEMANAS

Fallas boquilla de tolva de alimentación.

Fallas boquilla de tolva de alimentación.

Polinómica (Fallas boquilla de tolva dealimentación.)

y = 0.1956x + 0.525R² = 0.7913

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20

FALL

AS

SEMANAS

Fallas timer de regulación de tiempo de carga.

Fallas timer de regulación de tiempo de carga.

Lineal (Fallas timer de regulación de tiempo decarga.)

Page 113: Plan de mantenimiento para una máquina de inyección Negri

113

Tabla 36. Fallas timer de regulación de tiempo de inyección.

Semana

Fallas timer de regulación de

tiempo de inyección

1 1

2 1

3 2

4 2

5 3

6 4

7 5

8 5

9 6

10 7

11 8

12 9

13 11

14 12

15 13

16 13

Tabla 37. Fallas pirómetros del segundo grupo de resistencias.

Semana

Fallas pirómetros del segundo

grupo de resistencias

1 0

2 0

3 0

4 0

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1

13 1

14 1

15 1

16 1

y = 0.0263x2 + 0.43x + 0.2643R² = 0.9902

0

2

4

6

8

10

12

14

16

0 5 10 15 20

FALL

AS

SEMANAS

Fallas timer de regulación de tiempo de inyección.

Fallas timer de regulación de tiempo deinyección.

Polinómica (Fallas timer de regulación detiempo de inyección.)

y = 0.0706x + 0.15R² = 0.5647

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

FALL

AS

SEMANAS

Fallas pirómetros del segundo grupo de resistencias.

Fallas pirómetros del segundo grupo de resistencias.

Lineal (Fallas pirómetros del segundo grupo deresistencias.)

Page 114: Plan de mantenimiento para una máquina de inyección Negri

114

4.2.4 Total de fallas mensuales para cada elemento

Tabla 38. Fallas mensuales para cada elemento de fallo.

Mensual Micro 1 LS.

Micro 9 LS.

Micro 10 LS.

Micro 15 LS.

Boquilla del

cañón

Bomba de distribución

de agua.

Bomba de tolva de

alimentación

Timer de regulación de tiempo de carga

Timer de regulación de tiempo

de inyección.

Pirómetros del

segundo grupo de

resistencias

1 2 1 0 1 7 5 6 1 2 0

2 3 1 1 2 15 7 11 3 5 1

3 6 1 1 2 18 13 18 3 9 1

4 12 2 1 4 24 18 21 3 13 1

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

FALL

AS

MESES

FALLAS MENSUALESMicro 1 LS. Micro 9 LS.

Micro 10 LS. Micro 15 LS.

Boquilla del cañón. Bomba de distribucion de agua.

Bomba de tolva de alimentación. Timer de regulación de tiempo de carga.

Timer de regulación de tiempo de inyección. Pirómetros del segundo grupo de resistencias.

Page 115: Plan de mantenimiento para una máquina de inyección Negri

115

4.2.5 Cálculo de la tasa de falla para cada elemento

Para calcular la tasa de fallos de cada elemento se hace uso de las funciones “y”, obtenidas del

apartado 4.2.3. A partir de las funciones “y”, obtenidas por cada elemento se procede a

calcular la tasa de fallos para cada elemento, tomando como tiempos de fallo el periodo

mínimo entre cada fallo. Finalmente se tabulan las tasas de fallos de cada elemento con un

tiempo de A a B mínimo.

La tasa de fallos o tasa de riesgo f (t) se define como la probabilidad que tiene un

componente de fallar en el instante siguiente al dado, si éste ha sobrevivido desde el instante 0

hasta el tiempo t. Es una medida de lo propenso que resulta un componente a fallar en función

de su edad.

Tabla 39. Tasa de fallo.

Elemento. f(t)

a, b para el intervalo de tiempo

mínimo semanal Tasa de fallo (P)

Micro 1 – LS 0.2403x2 - 1.2079x

+ 6.5339 a=0, b=1 6.01005

Micro 9 – LS 0.0001x2 + 0.4758x

+ 0.1068 a=0, b=4 4.235733

Micro 10 – LS 0.0706x + 0.15 a=0, b=5 1.6325

Micro 15 – LS -0.0058x2 + 1.0424x

- 0.5066 a=0, b=4 9.241866

Boquilla del cañón -0.2086x2 + 9.5865x

- 3.6585 a=0, b=1 1.6521

Bomba de distribución de agua

0.164x2 + 1.7741x + 7.8471 a=0, b=1 8.7888

Boquilla de tolva de alimentación

-0.0452x2 + 6.5127x - 1.1566 a=0, b=1 2.0846

Timer de regulación de tiempo de carga 0.1956x + 0.525 a=0, b=2 1.4412

Timer de regulación de tiempo de inyección

0.1091x2 + 1.7925x + 1.0977 a=0, b=1 2.0303

Pirómetros del segundo grupo de resistencias 0.0706x + 0.15 a=0, b=5 1.6325

Page 116: Plan de mantenimiento para una máquina de inyección Negri

116

4.2.6 Tasa de fallas - patrón de fallo “A”, curva tipo bañera

Para determinar el comportamiento de los componentes antes definidos como puntos críticos,

con ayuda de la bitácora de mantenimiento, se procede a graficar estos valores a partir de los

datos obtenidos de la tabla 39. Esto es para determinar el comportamiento de los

componentes, de acuerdo a su tasa de fallos.

Tabla 40. Patrón de fallo “A”, curva tipo bañera.

Elemento intervalo de tiempo mínimo semanal

Tasa de Fallos

Micro 1 – LS 1 6.01005

Micro 9 – LS 4 1.78481

Micro 10 – LS 5 2.97837

Micro 15 – LS 4 1.0561

Boquilla del cañón 1 1.652

Bomba de distribución de agua 1 8.7888

Boquilla de tolva de alimentación 1 2.0846

Timer de regulación de tiempo de carga 2 12.6468

Timer de regulación de tiempo de inyección 1 2.0303

Pirómetros del segundo grupo de resistencias

5 3.18752

Curva Tipo bañera

Page 117: Plan de mantenimiento para una máquina de inyección Negri

117

Tradicionalmente se ha considerado que la tasa de fallos tenía forma de bañera. Cuando se

inicia la vida del equipo, la tasa de fallos resulta ser relativamente alta (“mortalidad infantil”);

una vez que todos los componentes se han acoplado, la tasa de fallos es relativamente

constante y baja (etapa de “vida útil”); posteriormente, tras un tiempo de funcionamiento la

tasa de fallos comienza a aumentar (periodo de “envejecimiento”) hasta que llega un momento

en el que todos los elementos habrán fallado.

Al graficar la tasa de fallos – tiempo, con un Patrón de fallo “A”, curva tipo bañera, nos

damos cuenta el comportamiento de cada elemento, para así determinar cuál es la mejor

manera de proceder, para brindar la solución más adecuada para cada componente. Ya que el

patrón de fallo “A”, curva tipo bañera, " relaciona la proporción de fallas al tiempo de

operación. De esta manera Si esta curva es aplicable a las máquinas, y si la forma de la curva

es conocida, se podría usar el mantenimiento preventivo de manera ventajosa. El

mantenimiento preventivo también incluye actividades como el cambio del aceite y de los

filtros y la limpieza e inspección periódica. La actividad de mantenimiento se puede planificar

en base al tiempo del calendario o a horas de operación de la máquina y cantidad de partes

producidas.

Tabla 41. Evaluación de las tasa de fallos usando el Patrón de fallo “A”, curva tipo bañera.

Elemento. Sección del Patrón de fallo

“A”, Curva Tipo bañera.

Acciones a tomar.

Micro 1 – LS. Periodo infantil

Arriba de la curva.

Mantenimiento preventivo urgente

y posible mantenimiento correctivo

Micro 9 – LS. Etapa vida útil

Arriba de la curva.

Mantenimiento preventivo urgente

y posible mantenimiento correctivo

Micro 10 – LS. Periodo de desgaste

Arriba de la curva.

Mantenimiento preventivo urgente

y posible mantenimiento correctivo

Micro 15 – LS. Etapa vida útil

Debajo de la curva.

Mantenimiento preventivo regular

Boquilla del cañón. Periodo infantil

Debajo de la curva.

Mantenimiento preventivo urgente

Bomba de distribución de agua.

Periodo infantil

Arriba de la curva.

Mantenimiento preventivo urgente

y posible mantenimiento correctivo

Boquilla de tolva de alimentación.

Periodo infantil

Debajo de la curva.

Mantenimiento preventivo urgente

Timer de regulación de tiempo de carga.

Etapa vida útil

Debajo de la curva.

Mantenimiento preventivo regular

Timer de regulación de tiempo de inyección.

Periodo infantil

Debajo de la curva.

Mantenimiento preventivo urgente

Pirómetros del segundo grupo de resistencias.

Periodo de desgaste

Arriba de la curva.

Mantenimiento preventivo regular

y posible mantenimiento correctivo

Page 118: Plan de mantenimiento para una máquina de inyección Negri

118

4.3 Matriz de riesgos Para poder construir la matriz de riesgos se usaran los datos obtenidos a partir de la bitácora de

fallas, la cual abarco un periodo de 16 semanas (tabla 26).

Para identificar los grados de riesgos de las situaciones que pueden ocurrir, se clasificaran las

estimaciones de riesgo y estimaciones de consecuencias en tablas, para el posterior análisis de

riesgos.

Tabla 42. Estimación de la Probabilidad.

Rango de

Probabilidad.

Promedio para el

cálculo.

Denominación.

Valor

Numérico.

de 1% a 10% 4 % Baja. 1

de 11 % a 25% 18 % Poco Probable. 2

de 26% a 55% 40 % Media. 3

de 56% a 80% 68 % Altamente Probable. 4

de 81% a 99% 90 % Casi seguro. 5

Tabla 43. Estimación de las Consecuencias.

Para el presente análisis se empleará la escala de medición subjetiva expresada en la siguiente

tabla.

Consecuencia. Retraso de proceso en caso de falla. Valor numérico asignado.

Insignificante. De 1 a 2 horas. 1

Bajo. De 3 horas a 1 día. 2

Medio. De 2 días a 4 días. 3

Crítico. De 1 a 3 semanas. 4

Catastrófico. De 1 mes o más. 5

Page 119: Plan de mantenimiento para una máquina de inyección Negri

119

4.3.1 Análisis de riesgos

Usando la información de la tabla 42 y 43 se evaluara el riesgo.

Tabla 44. Estimación de la probabilidad.

Elemento. Tasa de fallo total

%.

Rango de

probabilidad.

Valor numérico.

Micro 1 – LS. 50 de 26% a 55% 3

Micro 9 – LS. 8.333 de 1% a 10% 1

Micro 10 – LS. 4.166 de 1% a 10% 1

Micro 15 – LS. 16.66 de 11 % a 25% 2

Boquilla del cañón. 100 de 81% a 99% 5

Bomba de

distribución de agua.

75 de 56% a 80% 4

Boquilla de tolva de

alimentación. 87.5 de 81% a 99% 5

Timer de regulación

de tiempo de carga.

12.5 de 11 % a 25% 2

Timer de regulación

de tiempo de

inyección.

54.16 de 26% a 55% 3

Pirómetros del

segundo grupo de

resistencias.

4.166 de 1% a 10% 1

Tabla 45. Estimación de las consecuencias.

Elemento. Consecuencia. Valor numérico.

Micro 1 – LS. Crítico. 4

Micro 9 – LS. Insignificante. 1

Micro 10 – LS. Bajo. 2

Micro 15 – LS. Bajo. 2

Boquilla del cañón. Bajo. 2

Bomba de distribución de

agua.

Medio. 3

Boquilla de tolva de

alimentación.

Bajo.

2

Timer de regulación de

tiempo de carga.

Bajo.

2

Timer de regulación de

tiempo de inyección.

Bajo.

2

Pirómetros del segundo

grupo de resistencias.

Medio.

3

Page 120: Plan de mantenimiento para una máquina de inyección Negri

120

4.3.2 Evaluación matemática de riesgo

Se define el riesgo, como la esperanza matemática de la pérdida. Si un suceso con una

probabilidad de ocurrencia “P” y un daño o consecuencia “C”, el riesgo vendrá definido por el

producto de esta probabilidad por el efecto o magnitud del daño.

Riesgo = P x C Siendo 0≤P≤1

Basándose en la formula anterior evaluaremos el riesgo que existe para cada uno de nuestros

elementos, con los datos obtenidos de las tablas se puede obtener la siguiente tabla de

resultados:

Tabla 46. Evaluación de riesgos.

Riesgo = P x C

Elemento.

Riesgo.

Probabilidad.

Consecuencia.

Riesgo.

Micro 1 – LS. Falla en la detección de

canastilla de seguridad,

pudiendo causar accidentes al

operario.

50 %

4

2

Micro 9 – LS. No se tendría un control de la

cantidad de material inyectado y

siempre habría fugas y pérdidas

de material.

8.333 %

1

0.083

Micro 10 – LS. No permite que se realice la

carga de plástico para su

dosificación, parando a la

máquina.

4.166 %

2

0.083

Micro 15 – LS. No permite que la platina móvil

se active durante el avance o pre

adelantamiento.

16.66 %

2

0.333

Boquilla del cañón. Mala inyección del plástico

dosificado al molde en donde es

inyectado el plástico.

100 %

2

2

Bomba de

distribución de agua.

Falla la refrigeración en el

intercambiador de calor, con lo

cual no se regularía la

temperatura del aceite, causando

accidentes.

75 %

3

2.25

Boquilla de tolva de

alimentación.

Mala dosificado de material al

cañón, causando una mala

inyección de plástico al molde.

87.5 %

2

1.75

Timer de regulación

de tiempo de carga.

No se podría moldear ni se

podría tener una pieza plástica

final completa.

12.5 %

2

0.25

Timer de regulación

de tiempo de

inyección.

No se podría moldear ni se

podría tener una pieza plástica

final completa.

54.16 %

2

1.083

Pirómetros del

segundo grupo de

resistencias.

No calentaría el material

adecuadamente causando

solidificación en el cañón,

causando daños al husillo.

4.166 %

3

12.49

Page 121: Plan de mantenimiento para una máquina de inyección Negri

121

Tabla 47. Estimación de la probabilidad y estimación de consecuencia.

Elemento.

Probabilidad.

Consecuencia.

Micro 1 – LS. Media. Crítico.

Micro 9 – LS. Baja. Insignificante.

Micro 10 – LS. Baja. Bajo.

Micro 15 – LS. Poco probable. Bajo.

Boquilla del cañón. Casi seguro. Bajo.

Bomba de distribución de

agua.

Altamente probable. Medio.

Boquilla de tolva de

alimentación.

Casi seguro. Bajo.

Timer de regulación de

tiempo de carga.

Poco probable. Bajo.

Timer de regulación de

tiempo de inyección.

Media. Bajo.

Pirómetros del segundo

grupo de resistencias.

Baja. Medio.

Estimación de riesgos máximo y mínimo.

Tomando como máximo riesgo un valor de 4.5 debido a las tablas de estimación de la

probabilidad y de estimación de las consecuencias, se toman los valores máximos y se

multiplican:

𝑅𝑖𝑒𝑠𝑔𝑜/𝑚á𝑥𝑖𝑚𝑜 = 𝑣𝑎𝑙𝑜𝑟𝑚𝑎𝑥𝑖𝑚𝑜𝑑𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑐𝑖𝑜𝑛𝑑𝑒𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑑𝑎𝑑 ∗ 𝑣𝑎𝑙𝑜𝑟𝑚𝑎𝑥𝑖𝑚𝑜𝑑𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑐𝑖𝑜𝑛𝑑𝑒𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑒𝑛𝑐𝑖𝑎𝑠

𝑅𝑖𝑒𝑠𝑔𝑜 𝑚𝑎𝑥𝑖𝑚𝑜 = 90 %

100∗ 5

𝑅𝑖𝑒𝑠𝑔𝑜 𝑚𝑎𝑥𝑖𝑚𝑜 = 4.5 (11)

𝑅𝑖𝑒𝑠𝑔𝑜/𝑚í𝑛𝑖𝑚𝑜 = 𝑣𝑎𝑙𝑜𝑟𝑚𝑖𝑛𝑖𝑚𝑜𝑑𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑐𝑖𝑜𝑛𝑑𝑒𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑑𝑎𝑑∗ 𝑣𝑎𝑙𝑜𝑟𝑚𝑖𝑛𝑖𝑚𝑜𝑑𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑐𝑖𝑜𝑛𝑑𝑒𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑒𝑛𝑐𝑖𝑎𝑠

𝑅𝑖𝑒𝑠𝑔𝑜 𝑚𝑎𝑥𝑖𝑚𝑜 = 4 %

100∗ 1

𝑅𝑖𝑒𝑠𝑔𝑜 𝑚𝑎𝑥𝑖𝑚𝑜 = 0.04 (12)

Page 122: Plan de mantenimiento para una máquina de inyección Negri

122

Tabla 48. Estimación de riesgos máximo y mínimo.

Rango de

riesgo.

Denominación.

Descripción.

Valor

numérico.

0.04 a 1.5

Riesgo bajo

El riesgo será sufrido solo por el equipo,

siendo el daño a este muy bajo, sin la

necesidad de un mantenimiento inmediato.

1

1.51 a 1.9

Riesgo aceptable

Este riesgo solo afecta al equipo,

requiriendo de un mantenimiento no

inmediato pero si lo más pronto posible.

2

2 a 3

Riesgo medio

Este riesgo afecta tanto al equipo como al

operador. Este riesgo requiere de un

mantenimiento inmediato para el equipo.

3

3.01 a 3.75

Riesgo alto

Este riesgo presenta un nivel de riesgo alto

tanto para el equipo como para el

operador.

El equipo requerirá de un mantenimiento

inmediato, en tanto que el operador puede

sufrir lesiones que van de daños bajos a

daños moderados.

4

3.751 a 4.5

Riesgo muy alto

Este riesgo presenta un nivel de riesgo alto

tanto para el equipo como para el

operador.

El equipo requerirá de un mantenimiento

inmediato ya que el equipo sufrió daños

severos, en tanto que el operador podría

requerir atención médica inmediata,

puesto que los daños podrían ser severos o

incluso hasta mortales.

5

Page 123: Plan de mantenimiento para una máquina de inyección Negri

123

4.3.3 Matriz de riesgo a partir de cada elemento que presentó fallas, identificados en la

bitácora de mantenimiento.

Se visualiza la figura 48 la cual nos representa la matriz de riesgo de los principales elementos

a los que se da seguimiento para el funcionamiento óptimo de la máquina.

Consecuencia

Insignificante

Bajo

Medio

Critico

Catastrófico

Pro

ba

bil

ida

d

Casi

segu

ro

Boquilla del

cañón

Boquilla de

tolva de

alimentación

Alt

am

ente

Pro

bab

le

Bomba de

distribución

de agua

Med

ia

Timer de

regulación

de tiempo de

inyección

Micro 1 – LS

Poco

Pro

bab

le

Micro 15 –

LS

Timer de

regulación

de tiempo de

carga

Baja

Micro 9 – LS

Micro 10 –

LS

Pirómetros

del segundo

grupo de

resistencias

Figura 48. Representación de la matriz de riesgo.

Page 124: Plan de mantenimiento para una máquina de inyección Negri

124

4.3.4 Riesgos potenciales de accidentes

Los principales factores que podrían causar un evento considerado peligroso en el área de

trabajo de la máquina de inyección serían:

Fuga: Este, evento puede presentarse en 2 sistemas:

1. Fuga en el sistema de distribución hidráulico: Se presentaría como consecuencia de

un mal mantenimiento tanto en el tanque como en la tubería de distribución, además

este evento puede presentarse debido al mal manejo de elementos tales como las

válvulas estranguladoras o el calentamiento del aceite debido a fallas en el

intercambiador o en el sistema de refrigeración . La fuga de aceite puede causar

accidentes al operador, incendio o explosión dependiendo de la dimensión de la fuga,

de la posibilidad de encontrar alguna fuente de ignición y de las características del

medio (velocidad del viento, humedad, etc.).

2. Fuga en el sistema de enfriamiento: Se presentaría como consecuencia de un mal

mantenimiento tanto en la bomba de distribución de agua como en el sistema de

distribución, además este evento puede presentarse debido al mal manejo de elementos

tales como las válvulas estranguladoras.

Incendio: La zona en la que se encuentra la maquina puede incendiarse debido a una fuga de

aceite, ya que este tiene un grado alto de flamabilidad, las principales causas de derrame de

aceite en la maquina serian debido a 2 factores:

1. Aumento de presión en tubería debido a un manejo inadecuado de elementos de

control en la distribución de aceite, tales como válvulas de control, válvulas de

contrapresión o válvulas estranguladoras.

2. Falla en el sistema de enfriamiento debido principalmente a fallas en la bomba, en las

válvulas estranguladoras o debido a alguna obstrucción en el intercambiador de calor.

Explosión: Al presentarse una sobrepresión en la tubería de distribución, debido a un manejo

inadecuado de elementos de control en la distribución de aceite, tales como válvulas de

control, válvulas de contrapresión o válvulas estranguladoras, causando lesiones tanto al

operador como a la maquina misma.

Page 125: Plan de mantenimiento para una máquina de inyección Negri

125

4.3.5 Identificación de las situaciones de alto riesgo en cada subsistema

Para que un evento sea catalogado como una situación de alto riesgo debe cubrir dos

características principales:

Debe tener una severidad por lo menos de S2.

Debe tener una ocurrencia al menos dos.

Subsistema 1: Sistema de cierre de la platina.

En este subsistema se obtuvieron dos eventos de alto riesgo respondiendo las siguientes

preguntas:

1. ¿Qué pasaría si un componente (tubos, válvulas, etc.) se rompe?

Existiría un derrame y/o fuga de aceite y en consecuencia ocurriría un incendio o explosión.

2. ¿Qué pasaría si el sistema de enfriamiento falla?

Causaría una elevación en la temperatura del aceite, reduciendo la viscosidad de este, lo que a

su vez podría causar derrames de aceite.

3. ¿Qué pasaría si el control de protección de cierre de los micros 1-LS y 20-LS

falla?

Podría causar lesiones graves al operador.

Subsistema 2: Sistema del grupo de inyección.

En este subsistema se obtuvieron cuatro eventos de alto riesgo con las siguientes preguntas:

1. ¿Qué pasaría si un componente (tubos, válvulas, etc.) se rompe?

Existiría un derrame y/o fuga de aceite y en consecuencia ocurriría un incendio o explosión.

2. ¿Qué pasaría si el sistema de enfriamiento falla?

Causaría una elevación en la temperatura del aceite, reduciendo la viscosidad de este, lo que a

su vez podría causar derrames de aceite.

3. ¿Qué pasaría si hay una falla en el sistema de resistencias eléctricas (heaters)?

Se formarían grumos de plástico alrededor del husillo, lo cual a su vez podría romper o

desbalancear el mismo.

Page 126: Plan de mantenimiento para una máquina de inyección Negri

126

4. ¿Qué pasaría si se cierra una válvula de alimentación?

Aumentaría la presión, lo cual podría causar una posible explosión, que a su vez podría causar

lesiones tanto al operador como a la maquina misma.

Subsistema 3: Sistema del grupo de control

De este subsistema se obtuvo un evento de alto riesgo:

1. ¿Qué pasaría si el control electromagnético del motor trifásico falla o se

sobrealimenta?

Podría causar una sobrecarga en la tubería de distribución, causando efectos de cavitación en

la tubería y elementos de control lo que a su vez aumentaría la presión, lo cual podría causar

una posible explosión, que a su vez podría causar lesiones tanto al operador como a la

maquina misma.

Al tener contemplados todos los eventos de alto riesgo posibles en la zona más importante del

proceso, se pueden recomendar las salvaguardas y procedimientos en caso de emergencias

requeridos. Estas salvaguardas y procedimientos también pueden ser empleados si el evento

ocurre en los tanques de almacenamiento de aceite.

Salvaguardas para evitar el evento de alto riesgo.

Según la norma NOM-002-STPS-2000 la planta tiene un grado de riesgo de incendio alto por

lo que las salvaguardas y recomendaciones se guían en la esta norma y en la Ley General de

Equilibrio Ecológico y Protección al Ambiente (LGEEPA) para así cumplir con la

normatividad requerida por la federación y evitar sanciones en caso de alguna auditoria.

Salvaguardas.

Medidas de seguridad del área que comprende al sistema del grupo de cierre de la platina y

del Sistema del grupo de inyección.

Los pisos deberán contar con trincheras o canaletas que conduzcan los derrames.

Cisterna de contención de fugas en el tanque de almacenamiento de agua, del sistema

de enfriamiento

Paredes contra fuego.

Paredes contra explosiones.

Detectores de incendios.

Sistema de control de incendios por medio de espumas.

Contar con la señalización de acuerdo a lo establecido en la NOM-026-STPS-1998 de

la localización del equipo contra incendio, ruta de evacuación y salidas de emergencia.

Se deberá proporcionar capacitación y adiestramiento a todos los trabajadores para el

uso y manejo de extintores y para la evacuación de emergencia.

Realizar simulacros al menos una vez cada doce meses.

Page 127: Plan de mantenimiento para una máquina de inyección Negri

127

Contar con pasillos lo suficientemente amplios, que permitan el tránsito de

montacargas mecánicos, electrónicos o manuales, así como el movimiento de los

grupos de seguridad y bomberos en casos de emergencia.

Por cada nivel de la planta, por cada 200 m2 del área de riesgo se debe instalar al

menos un extintor.

Los hidrantes deberán mantener una presión mínima de 6 kg/cm2 durante 15 minutos.

Las áreas de almacenamiento cerradas deberán cumplir con las siguientes condiciones:

No deben existir conexiones con drenajes en el piso, válvulas de drenaje, juntas de

expansión, albañales o cualquier otro tipo de apertura que pudieran permitir que los

líquidos fluyan fuera del área protegida.

Contar con ventilación natural o forzada. En los casos de ventilación forzada debe

tener una capacidad de recepción de por lo menos seis cambios de aire por hora.

Estar cubiertas y protegidas de la intemperie y, en su caso, contar con ventilación

suficiente para evitar acumulación de vapores peligrosos y con iluminación a prueba de

explosión.

Las áreas de almacenamiento abiertas deberán cumplir con las siguientes condiciones:

No estar localizadas en sitios por debajo del nivel de agua alcanzado en la mayor

tormenta registrada en la zona, más un factor de seguridad de 1.5.

Los pisos deben ser lisos y de material impermeable en la zona donde se guarden los

residuos y de material anti-derrapante en los pasillos.

Contar con pararrayos.

Las medidas de seguridad tanto del grupo de cierre como en el grupo de inyección que deben

ser instaladas en caso de no existir y deben estar en constante mantenimiento son las

siguientes tomando en cuenta que las variables críticas son: Presión y Temperatura.

Válvula de seguridad en elementos de control y tuberías (válvula de alivio).

Control automático de presión y temperatura en el tanque y tuberías de distribución.

Válvula check en los reguladores de velocidad del grupo de cierre.

Alarma de sobrepresión en el tanque.

Dispositivo de bloqueo de la fuente de calentamiento la resistencia eléctrica (heatres)

del grupo de inyección.

Page 128: Plan de mantenimiento para una máquina de inyección Negri

128

Procedimiento en caso de emergencia.

Con base a la Norma Oficial Mexicana NOM-002-STPS-2000 se estableció el siguiente

procedimiento en caso de emergencias, ya que como ya se ha dicho antes el aceite usado por la

máquina de inyección es considerado un químico inflamable.

En caso de que exista fuego a causa del aceite:

Se debe usar como medio para controlar el fuego: espumas de alcohol o dióxido de

carbono.

Se debe usar agua solo para esparcir el aceite a otros lugares o para diluir la

concentración de aceite.

Cuando se presenten fugas de aceite.

Contener y recuperar el líquido cuando sea posible.

Usar herramientas y equipo que no provoquen chispas.

Colectar el líquido con material inerte como: tierra o arena.

En Caso de Explosión.

Se deberá atacar el fuego con los extintores disponibles y simultáneamente se hará:

- Paralización total de las actividades de la recarga.

- Cierre de todas las válvulas de las cañerías que entran y salen del tanque.

- Retirar la totalidad de los vehículos estacionados o que estén en espera.

Posteriormente se procederá a una revisión de las partes afectadas por la explosión, efectuando

los cambios y ajustes necesarios para la nueva puesta en marcha de las instalaciones.

Medidas preventivas

Se deberán llevar a cabo mantenimientos preventivos y correctivos.

Mantenimiento preventivo. Se deberá tener un plan de mantenimiento programado

por frecuencias o lecturas en las áreas de lubricación, limpieza y refacciones, así como

la instrumentación, siguiendo las rutinas y los métodos programados en el sistema.

Mantenimiento correctivo. Realizar solo cuando el personal de producción,

mantenimiento e ingeniería sean enterados del estado de los equipos así se tomarán

medidas correctivas.

Page 129: Plan de mantenimiento para una máquina de inyección Negri

129

4.4 Identificación de puntos críticos

En el siguiente capítulo se procedió a realizar el análisis de la bitácora de mantenimiento,

incluyendo a su vez la nomenclatura usada en el capítulo 4.1 (análisis de riesgos), para

determinar los grados de riesgo y ocurrencia. Para tener un mejor entendimiento del sistema se

procederá a agrupar en tablas los datos obtenidos. Para poder estructurar la tabla de

identificación y análisis de puntos críticos del subsistema de inyección se procedió a tomar en

cuenta los siguientes parámetros, punto crítico, descripción de este, que pasa si este punto

crítico llega a fallar, frecuencia de ocurrencia y severidad.

El subsistema de inyección en la figura 49.

Se identificó con indicaciones en rojo los puntos críticos de este subsistema, para un mejor

entendimiento y reconocimiento de los mismos.

Figura 49. Boquillas de alimentación.

Tabla 49. Identificación y análisis de puntos críticos del subsistema de inyección.

Subsistema del cañón.

Punto

crítico.

Descripción. ¿Qué pasa si Falla?

Probabilida

d de fallo.

Riesgo.

Boquilla de

alimentación

del cañón al

molde (5).

Esta es la encargada de la

correcta inyección del

plástico dosificado al

molde en donde es

inyectado el plástico.

Sus fallas más comunes son

que no se trabaje con a la

temperatura adecuada y no se

consiga la correcta inyección.

5

Casi

seguro

4

Medio.

Al manejar plástico reciclado

la boquilla suele taparse por

desperfectos en el plástico y

en consecuencia se forcé el

husillo y el motor del

hidráulico.

5

Casi

seguro

4

Medio.

Boquilla de

la Tolva de

alimentación

(2).

Donde se alimenta de

material plástico a la

máquina de inyección la

cual va directamente al

cañón.

No llegaría el material plástico

al cañón, por lo tanto no se

podría inyectar material

plástico al molde.

5

Casi

seguro

3

Aceptable

Page 130: Plan de mantenimiento para una máquina de inyección Negri

130

El subsistema de inyección de control de tiempos de carga en la figura 50.

Donde se identificó los puntos críticos en indicadores de color rojo.

Al igual que en la tabla anterior para este sistema también se tomaron los datos y

consideraciones obtenidas por los técnicos, dado que se mencionó que ciertos elementos

tienden a fallar y necesitan inspeccionarse por lo menos cada 6 meses, este es el caso de los

micros.

Figura 50. Control de tiempos de carga.

Tabla 50. Identificación y análisis de puntos críticos del subsistema de inyección, control de tiempos de

inyección.

Subsistema de micros de control de inyección.

Punto crítico.

Descripción.

¿Qué pasa si Falla?

Probabilidad

de fallo.

Riesgo.

P.C 2.1. Micro 9-LS encargado

de activar y manda una

señal para detener el

tiempo de inyección de

material.

Si este Micro falla no se

podría tener un control

de la cantidad de

material inyectado y

siempre habría fugas y

pérdidas de material.

1

Baja.

1

Bajo.

P.C. 2.2. Micro 10-LS de control

de tiempo de carga.

Cuando este sensor se

activa manda una señal

para detener el tiempo

de carga y libera la

presión necesaria para

la inyección.

Si el Micro falla no

permite que se realice la

carga de plástico para

su dosificación y para a

la máquina.

1

Baja.

1

Bajo.

Page 131: Plan de mantenimiento para una máquina de inyección Negri

131

Subsistema de cierre, protecciones físicas, figura 51.

Este sistema de protección es particularmente importante ya que este sistema contiene

protecciones físicas como eléctricas, teniendo como protecciones eléctricas a los micros y las

físicas las canastillas de protección. Por tanto tiene que considerarse una inspección continua

en estos elementos.

Figura 51. Subsistema de protección al operario.

Tabla 51. Identificación y Análisis de puntos críticos del subsistema de Inyección, sistema de protección.

Subsistema de Protección

Punto crítico.

Descripción.

¿Qué pasa si Falla?

Probabilidad

de fallo.

Riesgo.

P.C. 4.1 Micro 1-LS de control de

cierre. Detección de

seguridad de canasta

corrediza abierta. Este

sensor manda una señal

que deshabilita el sistema

hidráulico, evitando que

se pueda activar el pistón

hidráulico del brazo de la

platina móvil, evitando así

accidentes.

Si este micro no

funciona el sistema

no detectaría si está

abierta o cerrada la

canasta corrediza,

haciendo que funcione

el sistema hidráulico,

cuando la canasta

corrediza está abierta,

pudiendo causar

accidentes al operario.

3

Medio.

4

Medio.

Page 132: Plan de mantenimiento para una máquina de inyección Negri

132

Subsistema de cierre, subsistema de control de protección mecánico eléctrico

figura 52.

Figura 52. Subsistema de control de protección mecánico-eléctrico.

Tabla 52. Identificación y análisis de puntos críticos del subsistema de control de protección

mecánico-eléctrico.

Subsistema de control de protección mecánica-eléctrico.

Punto crítico.

Descripción.

¿Qué pasa si Falla?

Probabilidad

de fallo.

Riesgo.

P.C. 6.3 Micro 15-LS.Paro de la

platina móvil para

adelantamiento y pre-

avance.

No permite que la

platina móvil se active

durante el avance o pre

adelantamiento, según

se seleccione.

2

Poco

probable.

1

Bajo.

Page 133: Plan de mantenimiento para una máquina de inyección Negri

133

Subsistema del panel de control figura 53.

El subsistema del Panel de Control es el elemento que permite tener el control y monitoreo del

proceso realizado por la máquina de inyección, por tanto este es un sistema de suma

importancia pus permite a la maquina realizar el moldeo y ajuste de los parámetros en la

realización de las piezas de plástico, así como del monitoreo y control de los subsistema de

inyección y cierre.

Figura 53 .Panel de control.

Page 134: Plan de mantenimiento para una máquina de inyección Negri

134

Tabla 53.Identificación y análisis de puntos crítico, del subsistema de panel de control.

Tabla de puntos críticos del Subsistema de panel de control

Punto crítico.

Descripción.

¿Qué pasa si Falla?

Probabilidad

de fallo.

Riesgo

Pirómetros del

segundo grupo

de resistencias.

Elemento que permite

ajustar la temperatura en

los grupos de resistencias

o heaters mediante una

perilla (la máquina trabaja

con una temperatura de

200 a 220 ºC para este

grupo de resistencias).

Si los pirómetros no

funcionan, el grupo de

resistencias no calentaría el

material adecuadamente

causando solidificación en el

cañón y posiblemente

dañaría o rompería al

husillo.

1

Baja.

1

Bajo.

Timer de

regulación de

tiempo de

inyección.

Permite ajustar el tiempo

de inyección óptimo en el

molde, para tener una

pieza de salida de buena

calidad.

Si los pirómetros no

funcionan, el grupo de

resistencias no calentaría el

material adecuadamente

causando solidificación en el

cañón y posiblemente

dañaría o rompería al

husillo.

3

Medio.

2

Bajo.

Timer de

regulación de

tiempo de

carga.

Permite ajustar el tiempo

de carga óptimo para

tener una pieza de salida

de buena calidad.

Si no funciona no se podría

moldear ni se podría tener

una pieza plástica final

completa.

2

Poco

probable.

1

Bajo.

Bomba de

distribución de

agua del sistema

de refrigeración.

Este elemento permite la

distribución del agua a

todos los elementos de la

máquina de inyección, los

elementos a los que

distribuye agua son al

intercambiador de calor

del sistema hidráulico, la

refrigeración hacia el

molde y la refrigeración

hacia la alimentación del

cañón, este elemento es

un bomba monofásica de

½ hp.

Si este elemento falla la

refrigeración en el

intercambiador de calor tipo

serpentín no estaría regulada

causando que el aceite del

sistema hidráulico se

caliente, causando que este

se aligere debido al calor y

se fugue por los empaques

del sistema hidráulico

causando accidentes.

4

Altamente

probable.

4

Medio.

Si este elemento falla la

refrigeración en el molde

haría que el producto no se

enfriara adecuadamente

causando deformaciones

debido al calor.

4

Altamente

probable.

4

Medio.

Page 135: Plan de mantenimiento para una máquina de inyección Negri

135

4.5 Niveles de riesgo de los puntos críticos del sistema

Se identificara cada punto crítico de acuerdo a su nivel riesgo, asignándoles determinaciones

de salvaguardas para la protección tanto de la máquina así como de los operarios y para la

prevención de eventos no deseados, además de proponer tanto propuestas como tipo de

mantenimiento para cada punto crítico.

Tabla 54.Tabla de niveles de riesgo de los puntos críticos muy graves de la máquina NegriBossi.

Tabla de ponderaciones puntos críticos muy graves.

Nivel de

riesgo.

Punto crítico. Determinación

salvaguarda.

Propuestas de

mantenimiento.

Tipo de

mantenimiento.

4

Medio

Micro 1 - LS

de control de

cierre.

Alarmas.

Indicadores.

Protecciones físicas.

Protecciones

electromagnéticas.

Paros de emergencia

en tablero y máquina.

Inspección periódica

de este elemento de

por lo menos cada

mes.

Llevar una bitácora de

cada falla de estos

elementos.

Mantenimiento

preventivo y

mantenimiento

correctivo (solo

como última

opción).

4

Medio

Bomba de

distribución

de agua del

sistema de

refrigeración.

Alarmas.

Indicadores en tanque

de aceite

(termómetros).

Protecciones

electromagnéticas.

Paros de emergencia

en tablero y máquina.

Inspección periódica

de este elemento de

por lo menos cada

mes.

Llevar una bitácora de

cada falla de estos

elementos.

Trabajar la bomba

dentro de los

estándares

establecidos.

Mantenimiento

Preventivo y

mantenimiento

correctivo (solo

como última

opción).

4

Medio

Boquilla de

alimentación

del cañón al

molde

Indicadores de

presión.

Paros de emergencia

en tablero y máquina.

Inspección periódica

de este elemento todos

los días.

Llevar una bitácora de

cada falla de estos

elementos.

Inspección periódica

de presión por lo

menos una vez al día.

Mantenimiento

preventivo y

mantenimiento

correctivo (solo

como última

opción).

Page 136: Plan de mantenimiento para una máquina de inyección Negri

136

Tabla 55.Tabla de niveles de riesgo de los puntos críticos graves de la máquina NegriBossi.

Tabla de ponderaciones puntos críticos graves.

Ponderación Punto crítico Determinación

salvaguarda.

Propuestas de mantenimiento. Tipo de

mantenimiento.

3

Aceptable

Boquilla de

alimentación

de la tolva.

Indicadores de

presión

Paros de emergencia

en tablero y máquina.

Inspección periódica de este

elemento todos los días.

Llevar una bitácora de cada

falla de estos elementos.

Inspección periódica de

presión todos los días.

Mantenimiento

preventivo y

mantenimiento

correctivo (solo

como última

opción).

1

Bajo

Pirómetros

del segundo

grupo de

resistencias

Indicadores

(pirómetros

analógicos)

Protecciones

electromagnéticas

Limitadores de

voltaje.

Inspección periódica de este

elemento de por lo menos cada

mes.

Llevar una bitácora de cada

falla de estos elementos.

Medición periódica de los

voltajes de los termopares para

comprobar que se los voltajes

están dentro de los parámetros

adecuados.

Mantenimiento

preventivo y

mantenimiento

correctivo (solo

como última

opción).

1

Bajo

Micro 15 -

LS de control

de cierre.

Indicadores.

Protecciones físicas.

Protecciones

electromagnéticas.

Inspección periódica de este

elemento de por lo menos cada

mes.

Llevar un bitácora de cada

falla de estos elementos

Mantenimiento

preventivo y

mantenimiento

correctivo (solo

como última

opción).

1

Bajo

Micro 9 - LS

de control de

inyección.

Indicadores.

Protecciones físicas.

Protecciones

electromagnéticas.

Inspección periódica de este

elemento de por lo menos cada

mes.

Llevar una bitácora de cada

falla de estos elementos.

Mantenimiento

preventivo y

mantenimiento

correctivo (solo

como última

opción).

Micro 10 -

LS de control

de tiempo de

carga.

Indicadores.

Protecciones físicas.

Protecciones

electromagnéticas.

Inspección periódica de este

elemento de por lo menos cada

mes.

Llevar una bitácora de cada

falla de estos elementos.

Mantenimiento

preventivo y

mantenimiento

correctivo (solo

como última

opción).

1

Bajo

Timer de

regulación de

tiempo de

carga.

Indicadores de

presión.

Protecciones

electromagnéticas.

Inspección periódica de este

elemento de por lo menos cada

mes.

Llevar una bitácora de cada

falla de estos elementos.

Mantenimiento

preventivo y

mantenimiento

correctivo (solo

como última

opción).

Page 137: Plan de mantenimiento para una máquina de inyección Negri

137

4.6 Elección del programa

Existen diferentes métodos de programación aplicables a la industria. El equipo de trabajo

define algunos programas como sugerencia para la maquina inyectora NegriBossi.

Método de programación de mantenimiento:

- Programa Diario.

- Programa Semanal.

Es de vital importancia trabajar bajo un programa de mantenimiento ya que las consecuencias

económicas por la ineficiencia del mantenimiento pueden ser desastrosas como lo son:

- Disminución de calidad del producto.

- Interrupciones en el proceso de producción con su costo económico.

- Desgaste de las máquinas.

- Costos de capital por equipos improductivos.

- Pagos de salarios por mano de obra inactiva.

Todos los puntos anteriores son una gran pérdida para la empresa, y se puede evitar esto

obteniendo mejores resultados.

Es decir que el mantenimiento afecta en:

a) La eficiencia.

b) Costos.

c) Calidad.

d) Confiabilidad (entregas a tiempo).

El programa de mantenimiento preventivo propuesto involucra los siguientes puntos:

- Manejo de formatos a fin de integrar un historial de mantenimiento.

- Desarrollo de una estructura organizacional, para la asignación de funciones y

responsabilidades.

- Procedimientos de mantenimiento preventivo para los sectores que más afectan a las

maquinas vitales dentro de la empresa.

Estos puntos se desarrollaron en el capítulo 4.

Para tener un buen mantenimiento se debe contar con un registro de la maquinaria y equipo

que la empresa posee, colocando la información más importante y que nos pueda servir como

referencia.

Page 138: Plan de mantenimiento para una máquina de inyección Negri

138

Se realizara el llenado de fichas y formatos de control los cuales permanecerán en el

departamento de mantenimiento de los cuales se proponen los siguientes:

Tabla 56. Registro de maquinaria y equipo.

De esta forma será mucho más fácil, poder diagnosticar si las fallas son reales o está

sucediendo alguna acción ajena a la maquinaria, sin olvidar mencionar es parte del archivo del

lugar de trabajo.

Se propone el siguiente formato para control del mantenimiento preventivo:

Tabla 57.Formato para el control del mantenimiento preventivo.

De esta forma se puede evaluar si el mantenimiento se hizo en la fecha y hora precisa, si el

tiempo estimado conforme a la revisión es real o excede o bien cuál fue el motivo del tiempo

fue mayor.

Una vez analizados las posibles causas, y detectar las maquinas que requieren del

mantenimiento, el departamento de mantenimiento tendrá que realizar un formato único para

la evaluación de las tablas anteriores, de información ya recabada. De esta forma, se tendrá

una visión más amplia de los sucesos reales, a su vez, poder diagnosticar, programar y actuar.

Page 139: Plan de mantenimiento para una máquina de inyección Negri

139

Después de a ver desarrollado el análisis de riesgo y de identificar los grados de riesgos en la

máquina se procedió a analizar tres puntos:

- Severidad.

- Ocurrencia mensual.

- Niveles de riesgo.

Con lo cual se llegó a la conclusión que los principales elementos de la máquina de inyección

que presentan una mayor severidad y nivel de riesgo son el motor trifásico y el sistema de

enfriamiento (bomba de distribución de agua e intercambiador), que se verá desglosado a

continuación.

Procedimiento para dar mantenimiento preventivo al motor trifásico y sistema de

enfriamiento.

1. Solicitar información.

a. Bitácora de funcionamiento del motor trifásico, así como sistema de enfriamiento

(bomba de distribución de agua e intercambiador).

2. Análisis general del motor y sistema de enfriamiento.

a. Consultar el manual del motor trifásico, así como de la bomba de distribución del agua

e intercambiador.

b. Observación detallada de muestras.

c. Enlistar problemas y establecer estimaciones de posibles fallas.

d. Deseable experiencia en mantenimiento de motores trifásicos y bombas centrifugas e

intercambiadores.

3. Verificaciones al sistema eléctrico.

a. Identificar interruptores de pastilla y fusibles

b. Verificar su número secuencial.

c. Registrar el estado motor.

4. Limpieza de la bomba de distribución de agua e intercambiador.

a. Uso de aire comprimido para extraer toda la suciedad y polvo acumulado.

b. Limpiar los conductos, sopleteando en sentido contrario a la circulación tanto en la

bomba como en el intercambiador.

c. Limpiar los filtros con productos disolventes y reemplazarlos si es preciso tanto en la

bomba como en el intercambiador.

d. Purgar el sistema hidráulico.

Page 140: Plan de mantenimiento para una máquina de inyección Negri

140

5. Verificación en sistema hidráulico.

a. El estado de la unidad de servicio.

b. Las juntas en las conexiones.

c. Salidas de aceite.

d. Buen funcionamiento de las válvulas de purga automática.

6. Observaciones preventivas.

a. Verificar que no existan falsos contactos.

b. Que los fusibles no se encuentren flameados o presenten algún daño.

c. Revisar amarres y cableado, encintar aquellos que se encuentren en mal estado.

7. Alternativas de reparación.

a. Posible reparación.

- Cambiar piezas.

Verificar existencia de refacciones en el almacén.

Generar requisición.

- Ajuste mecánico.

b. Solicitar servicios.

Taller mecánico.

Taller eléctrico.

8. Historial de mantenimiento de la bomba de distribución general.

a. Datos generales del molde (nombre, número, cavidades, etc.).

b. Estado del molde en producción (inicio de producción, piezas producidas y fin de

producción).

c. Mecánicos participantes en el mantenimiento.

d. Resumen claro y conciso de problemas, causas y soluciones.

e. Material empleado (requisiciones).

f. Aspectos importantes para el próximo mantenimiento.

Con el propósito de desarrollar un programa de mantenimiento bien planificado, debe contener

todos aquellos elementos a los cuales se les debe realizar algún trabajo de preservación, por lo

cual se propone la siguiente programación.

Page 141: Plan de mantenimiento para una máquina de inyección Negri

141

Método.

- Inspección de calidad: La inspección de calidad es vital, ya que se cuida la calidad del

productos y la satisfacción de los clientes, en forma de acuerdo en cada proceso

existente debe existir un inspector, su función bien sabida, es mantener los estándares

requeridos para la elaboración de la inyección de plásticos, esta persona, será la

adecuada para tomar una muestra realizar PND respectivas y PD al producto,

visualizando la conformación del pedido, de esta forma se mantendrá un orden y la

calidad deseada. Las características de un producto o servicio determinan el nivel de

satisfacción del cliente. La necesidad consecutiva de estas inspecciones, estas pruebas

se realizaran 3 veces por turno.

Máquina.

- Cavidades incompletas: Este apartado se debe a la falta de mantenimiento de en

moldes, ya que están compuestas con placas con diferentes cavidades para la inyección

de los productos, si uno se desgasta este se retira de la placa y sigue funcionando pero

la producción va a bajar, y cada vez que se encuentra este detalle se prefiere retirar la

cavidad defectuosa, esto se puede contrarrestar con el mantenimiento preventivo

semanal, de esta forma se evitaran placas al 70% u 80% de su capacidad aumentado la

productividad. Evitando esta capacidad incompleta se revisaran cada tercer día las

placas.

- Fuga de agua y Piezas sucias de grasa: Estos diversos problemas se mantienen en

solución con el mantenimiento preventivo, que serán detectados en el momento

adecuado y exacto, para su reparación y excelente funcionamiento de la empresa, las

piezas sucias, es parte de una disciplina que será impuesta a los operarios, muchas

veces por pereza se dejan pasar este tipo de detalles, pero es importante resaltar, el

mantener limpio el área de trabajo de cada persona, de esta forma mantendremos

limpio el lugar de trabajo, se estará aplicando 5s, que es beneficio para todos.

- Paros constantes por fallas: Estos paros constantes ya fueron analizados en el

apartado III de la tesis, evaluando las principales fallas, destacando las importantes,

vitales y triviales, se pretende reducir estos paros con la propuesta, programa de

mantenimiento, evitando horas extras y tiempo muerto.

- Fractura de tornillos: Con el mantenimiento preventivo se harán un chequeo general

de la máquina y así evitar este tipo de defectos, como fracturas, piezas desgastadas,

entre otros, como ya se mencionó anteriormente este mantenimiento ataca diferentes

áreas de la empresa. Se tiene un inventario de tornillos necesarios y cuáles son los que

tienen más problemas, por si alguna falla externa ocasiona un mantenimiento

correctivo, inmediatamente poner reposición y seguir con la producción.

Page 142: Plan de mantenimiento para una máquina de inyección Negri

142

Elemento.

% Fallas totales

(16 semanas).

# Fallas Totales

(16 semanas). Riesgo. X(2)

Tiempo recomendado

para mantenimeinto.

Micro 1 – LS 50 12 2 2 1.0417

Micro 9 – LS 8.333 2 0.0833 2 25.0090

Micro 10 – LS 4.166 1 0.0833 2 25.0060

Micro 15 – LS 16.66 4 0.333 2 6.2538

Boquilla del cañón 100 24 2 2 1.0417

Bomba de distribución de

agua 75 18 2.25 2 0.9259

Boquilla de tolva de

alimentación 87.5 21 1.75 2 1.1905

Timer de regulación de

tiempo de carga 12.5 3 0.25 2 8.3333

Timer de regulación de

tiempo de inyección 54.16 13 1.083 2 1.9234

Pirómetros del segundo

grupo de resistencias 4.1666 1 0.1248 2 16.6931

Τ=%

(# )( )( )

4.7 Cálculo del tiempo recomendado de mantenimiento para cada

elemento

A continuación obtendremos el tiempo recomendado para aplicar el mantenimiento de cada

uno de los elementos falla que hemos detectado para esto aplicaremos la siguiente fórmula:

𝝉 =% 𝑭 𝒎 𝒏

(# 𝑭 𝒎 𝒏 )(𝑹 )( ) (13)

% Fallas totales datos obtenidos de la tabla 12485 del capítulo 4.

# Fallas totales datos obtenidos de la tabla 12485 del capítulo 4.

Riesgo datos obtenidos de la tabla 12485 del capítulo 4.

La tabla 58 muestra el tiempo recomendado para la aplicación del mantenimiento para cada

uno de los elementos de falla.

Tabla 58. Tiempo recomendado de mantenimiento.

Elemento.

% Fallas

totales (16

semanas)

# Fallas

Totales (16

semanas) Riesgo X(2)

Tiempo

recomendado para

mantenimiento

Micro 1 – LS 50 12 2 2 1.0417

Micro 9 – LS 8.333 2 0.0833 2 25.0090

Micro 10 – LS 4.166 1 0.0833 2 25.0060

Micro 15 – LS 16.66 4 0.333 2 6.2538

Boquilla del cañón 100 24 2 2 1.0417

Bomba de

distribución de agua 75 18 2.25 2 0.9259

Boquilla de tolva de

alimentación 87.5 21 1.75 2 1.1905

Timer de regulación

de tiempo de carga 12.5 3 0.25 2 8.3333

Timer de regulación

de tiempo de

inyección 54.16 13 1.083 2 1.9234

Pirómetros del

segundo grupo de

resistencias 4.1666 1 0.1248 2 16.6931

Page 143: Plan de mantenimiento para una máquina de inyección Negri

143

4.7.1 Periodo recomendado de mantenimiento

La tabla 59.1 y 59.2 se realizó a partir de los datos recopilado al tener trabajando la máquina

de inyección Negri Bossi y analizar sus tiempos en que cada parte analizada con qué

frecuencia falla y se encontró, en la tabla 59 en donde se describen los elementos y los tiempos

en que es necesario dar mantenimiento para su correcto funcionamiento y en consecuencia una

mejor producción:

Tabla 59.1. Formato de mantenimiento recomendado.

Elemento. Actividad. Responsable. Herramienta. Tiempos.

Pirómetros. Checar que haga la

correcta activación

de la fuerza eléctrica

del contactor para

la activación de las

resistencias.

Técnico en

turno.

Desarmadores

Termopar.

Fuente de calor.

Multímetro.

Cada 2

semanas

Boquilla

Del cañón.

Quitar la boquilla

del cañón e

inspeccionar que no

esté tapada con

residuos sólidos.

Técnico en

turno.

Llave española de

2'.

Soplete.

Espátula.

Cepillo de alambre.

Guantes.

Diario.

Boquilla

De la Tolva

de

alimentación.

Quitar la boquilla

del cañón e

inspeccionar que no

esté tapada con

residuos sólidos.

Técnico en

turno.

Llave española de

2'.

Soplete.

Espátula.

Cepillo de alambre.

Guantes.

Diario.

Bomba de

agua.

Verificar que la

bomba funcione

correctamente para

que haga una

correcta circulación

del agua por el

sistema de

refrigeración de la

máquina y el molde.

Técnico en

turno.

Desarmadores.

Lleves diferentes

medidas.

Baleros.

Lubricantes.

Diario

Page 144: Plan de mantenimiento para una máquina de inyección Negri

144

Tabla 59.2. Formato de mantenimiento recomendado.

Elemento. Actividad. Responsable. Herramienta. Tiempos.

Timer de

regulación de

tiempo de carga

Checar que haga la

correcta activación

de la fuerza eléctrica

del contactor para la

activación de las de

las electroválvulas.

Técnico en

turno.

Desarmadores.

Multímetro.

Platinos de

repuesto.

Equipo de

limpieza.

Una vez a

la semana

Timer de

regulación de

tiempo de carga

Checar que haga la

correcta activación

de la fuerza eléctrica

del contactor para la

activación de las de

las electroválvulas.

Técnico en

turno.

Desarmadores.

Multímetro.

Platinos de

repuesto.

Equipo de

limpieza.

Cada 2

días

Micro-1 LS Abrir el micro

switch y checar el

desgaste de los

platinos que dan

continuidad a la

energía eléctrica y

si es necesario

cambiar el micro

switch.

Técnico en

turno

Multímetro digital.

Desarmadores de

cruz.

Desarmadores

planos.

Llaves de

diferentes medidas.

Diario

Micro-15 LS Abrir el micro

switch y checar el

desgaste de los

platinos que dan

continuidad a la

energía eléctrica y

si es necesario

cambiar el micro

switch.

Técnico en

turno

Multímetro digital.

Desarmadores de

cruz.

Desarmadores

planos.

Llaves de

diferentes medidas.

1 vez a la

semana

Micro-9 LS

Micro-10 LS

Abrir el micro

switch y checar el

desgaste de los

platinos que dan

continuidad a la

energía eléctrica y

si es necesario

cambiar el micro

switch.

Técnico en

turno

Multímetro digital.

Desarmadores de

cruz.

Desarmadores

planos.

Llaves de

diferentes medidas.

Cada 3

semanas

Page 145: Plan de mantenimiento para una máquina de inyección Negri

145

4.7.2 Calendario de fechas sugerido para el mantenimiento periódico de los

elementos identificados como puntos críticos

Page 146: Plan de mantenimiento para una máquina de inyección Negri

146

Page 147: Plan de mantenimiento para una máquina de inyección Negri

147

CAPITULO V.-IMPLEMENTACION DEL PLAN DE

MANTENIMIENTO

Page 148: Plan de mantenimiento para una máquina de inyección Negri

148

En este capítulo se implementa el programa de mantenimiento que se ha desarrollado, esto se

hará mediante un historial en donde se lleva a cabo la recopilación de las fallas que ha tenido

la máquina Negri Bossi, mediante un conjunto de tablas, estas son llenadas por el técnico en

turno o el personal que se encuentre presente al momento de la falla.

Para esto se utilizaron dos formatos en donde se registraron los datos que se obtenían de la

máquina, el primer formato será para el mantenimiento correctivo y el segundo será para el

mantenimiento preventivo que se ha programado para la máquina. Este registro se ha llevado

desde el mes de marzo del presente año. A continuación se presenta el registro que se obtuvo

de estos formatos.

5.1 Mantenimiento correctivo

Para el mantenimiento correctivo que se le está dando a la máquina, se utiliza una tabla en la

cual se llevara el registro de la fecha, hora de las fallas que se presenten, así como un breve

análisis del técnico del motivo de la falla y una breve descripción de la acción que tomo para

solucionar dichas fallas y el tiempo que le tomo solucionar el problema (figura 54).

Informe de Tiempo Perdido debido a Fallas de la Máquina Negri Bossi. Periodo de inspección __________ 2013.

N. de

Falla.

Fecha y

Hora.

Descripción de

la falla.

Tiempo perdido

por

interrupción.

Causa de la

interrupción.

Acción

tomada.

1

2

3

4

5

6

7

8

9

10

Figura 54. Tabla de registro de las fallas de la máquina Negri Bossi.

Page 149: Plan de mantenimiento para una máquina de inyección Negri

149

A continuación se presentan las tablas de agosto a noviembre del año 2013, aplicando el

MBR.

Tabla 60. Fallas de máquina Negri Bossi del mes de agosto.

Informe de Tiempo Perdido debido a Fallas de la Máquina Negri Bossi. Periodo de inspección Agosto 2013.

N. de falla. Fecha y hora.

Descripción de la

falla.

Tiempo perdido

por

interrupción.

Causa de la

interrupción. Acción tomada.

1

07/08/2013

13:00

Bloqueo de la

boquilla de la

tolva de

alimentación. 25 minutos. Exceso de material.

Paro de la máquina y

desbloqueo de la

boquilla.

2

12/08/2013

14:00

Falla en bomba de

distribución de

agua. 1 día. Desgaste mecánico.

Cambio de la bomba de

distribución.

3

20/08/2013

12:00

Bloqueo de la

boquilla del

cañón. 20 minutos.

Plastificación del

polímero.

Paro de la máquina y

desbloqueo de la

boquilla.

4

26/08/2013

15:30

Bloqueo de la

boquilla del

cañón. 20 minutos.

Plastificación del

polímero.

Paro de la máquina y

desbloqueo de la

boquilla.

5

28/08/2013

13:40

Fallo del micro

1LS. 2 horas.

Fallo en platinas y

accionamientos

mecánicos.

Se para la máquina se

identifica el fallo y se

repara o cambia el

platino.

6

29/08/2013

17:15

Bloqueo de la

boquilla de la

tolva de

alimentación. 25 minutos. Exceso de material.

Paro de la máquina y

desbloqueo de la

boquilla.

7

31/08/2013

16:00

Bloqueo de la

boquilla del

cañón. 20 minutos.

Plastificación del

polímero.

Paro de la máquina y

desbloqueo de la

boquilla.

8

9

10

Page 150: Plan de mantenimiento para una máquina de inyección Negri

150

Tabla 61. Fallas de máquina Negri Bossi del mes de septiembre.

Informe de Tiempo Perdido debido a Fallas de la Máquina Negri Bossi. Periodo de inspección Septiembre 2013.

N. de

falla. Fecha y hora.

Descripción de la

falla.

Tiempo perdido

por

interrupción.

Causa de la

interrupción. Acción tomada.

1

05/09/2013

15:00

Timer de regulación

de tiempo de

inyección. 3 horas. Falla eléctrica. Cambio de la pieza.

2

09/09/2013

10:00

Falla en bomba de

distribución de agua. 1 día. Desgaste mecánico.

Cambio de la bomba de

distribución.

3

09/09/2013

17:30

Bloqueo de la

boquilla del cañón. 20 minutos.

Plastificación del

polímero.

Paro de la máquina y

desbloqueo de la

boquilla.

4

12/09/2013

10:45 Fallo de micro 1LS. 2 horas.

Fallo en las platinas

o accionamientos

mecánicos.

Paro de la máquina y

reparación de los

accionamientos.

5

14/09/2013

11:00

Falla en bomba de

distribución de agua. 1 día. Desgaste mecánico.

Cambio de la bomba de

distribución.

6

17/09/2013

12:00

Bloqueo de la

boquilla de la tolva

de alimentación. 25 minutos. Exceso de material.

Paro de la máquina y

desbloqueo de la

boquilla.

7

18/09/2013

13:00

Bloqueo de la

boquilla del cañón. 20 minutos.

Plastificación del

polímero.

Paro de la máquina y

desbloqueo de la

boquilla.

8

18/09/2013

15:30

Bloqueo de la

boquilla de la tolva

de alimentación. 25 minutos. Exceso de material.

Paro de la máquina y

desbloqueo de la

boquilla.

9

20/09/2013

17:00 Fallo de micro 15LS 2 horas. Fallo eléctrico. Cambio del micro.

10

24/09/2013

16:00

Bloqueo de la

boquilla del cañón. 20 minutos.

Plastificación del

polímero.

Paro de la máquina y

desbloqueo de la

boquilla.

11 26/09/2013

Timer de regulación

de tiempo de

inyección. 3 horas. Falla eléctrica. Cambio de la pieza.

Page 151: Plan de mantenimiento para una máquina de inyección Negri

151

Tabla 62. Fallas de máquina Negri Bossi del mes de octubre.

Informe de Tiempo Perdido debido a Fallas de la Máquina Negri Bossi. Periodo de inspección Octubre 2013.

N. de

falla. Fecha y hora.

Descripción de la

falla.

Tiempo perdido

por

interrupción.

Causa de la

interrupción. Acción tomada.

1

07/10/2013

11:00

Falla en bomba de

distribución de agua. 1 día. Desgaste mecánico.

Cambio de la bomba de

distribución.

2

09/10/2013

17:00

Bloqueo de la

boquilla del cañón. 20 minutos.

Plastificación del

polímero.

Paro de la máquina y

desbloqueo de la

boquilla.

3

14/10/2013

13:00

Bloqueo de la

boquilla del cañón. 20 minutos.

Plastificación del

polímero.

Paro de la máquina y

desbloqueo de la

boquilla.

4

16/10/2013

11:30 Fallo de micro 1LS. 2 horas.

Fallo en las platinas

o accionamientos

mecánicos.

Paro de la máquina y

reparación de los

accionamientos.

5

17/10/2013

12:00 Fallo de micro 1LS. 2 horas.

Fallo en las platinas

o accionamientos

mecánicos.

Paro de la máquina y

reparación de los

accionamientos.

6

19/10/2013

17:00

Bloqueo de la

boquilla de la tolva

de alimentación. 25 minutos. Exceso de material.

Paro de la máquina y

desbloqueo de la

boquilla.

7

23/10/2013

19:00

Bloqueo de la

boquilla de la tolva

de alimentación. 25 minutos. Exceso de material.

Paro de la máquina y

desbloqueo de la

boquilla.

8

24/10/2013

12:00

Falla en bomba de

distribución de agua. 1 día. Desgaste mecánico.

Cambio de la bomba de

distribución.

9

26/10/2013

17:00

Timer de regulación

de tiempo de

inyección. 3 horas. Falla eléctrica. Cambio de la pieza.

10

30/10/2013

19:00 Fallo de micro 10-LS 2 horas.

Falla mecánica y

eléctrica. Cambio de la pieza.

Page 152: Plan de mantenimiento para una máquina de inyección Negri

152

Tabla 63. Fallas de máquina Negri Bossi del mes de noviembre.

Informe de Tiempo Perdido debido a Fallas de la Máquina Negri Bossi. Periodo de inspección Noviembre 2013.

N. de

falla. Fecha y hora.

Descripción de la

falla.

Tiempo perdido

por

interrupción.

Causa de la

interrupción. Acción tomada.

1

06/11/2013

14:50

Fallo del timer de

regulación de tiempo

de carga. 2 horas.

Falla eléctrica o

desgaste de la pieza. Cambio de pieza.

2

12/11/2013

15:40 Fallo de micro 9LS 2 horas.

Falla mecánica o

eléctrica. Cambio de pieza.

3

12/11/2013

14:40

Timer de regulación

de tiempo de

inyección. 3 horas. Falla eléctrica. Cambio de la pieza.

4

14/11/2013

10:00

Falla en bomba de

distribución de agua. 1 día. Desgaste mecánico.

Cambio de la bomba de

distribución.

5

16/11/2013

19:00

Bloqueo de la

boquilla de la tolva

de alimentación. 25 minutos. Exceso de material.

Paro de la máquina y

desbloqueo de la

boquilla.

6

20/11/2013

14:00 Fallo de micro 1LS. 2 horas.

Fallo en las platinas

o accionamientos

mecánicos.

Paro de la máquina y

reparación de los

accionamientos.

7

26/11/2013

14:40

Bloqueo de la

boquilla del cañón. 20 minutos.

Plastificación del

polímero.

Paro de la máquina y

desbloqueo de la

boquilla.

8

26/11/2013

10:00 Fallo de micro 15LS 2 horas. Fallo eléctrico. Cambio del micro.

9

28/11/2013

19:00

Bloqueo de la

boquilla de la tolva

de alimentación. 25 minutos. Exceso de material.

Paro de la máquina y

desbloqueo de la

boquilla.

10

29/11/2013

14:00

Falla en bomba de

distribución de agua. 1 día. Desgaste mecánico.

Cambio de la bomba de

distribución.

Page 153: Plan de mantenimiento para una máquina de inyección Negri

153

5.2 Mantenimiento preventivo

Para el mantenimiento preventivo que se le está dando a la máquina, se utiliza en las tablas 60

a la 63, aplicando el MBR de este capítulo, en este se lleva el registro del mantenimiento

general que se le da a la máquina de manera periódica aquí se incluyen las fechas en la que se

le tiene que dar el mantenimiento así como el tiempo que se le debe de dedicar para esta tarea,

así como espacios correspondientes para el técnico ponga los tiempos reales que le tomo

realizar esta tarea (figura 55).

El mantenimiento general que se le da a la máquina Negri Bossi consta del seguimiento y

mantener en su punto óptimo los puntos críticos analizados.

Mantenimiento de la Máquina Negri Bossi. Periodo de inspección.

Semana Mantenimiento.

Fecha

programada.

Fecha de

ejecución.

Tiempo

programado. Tiempo real.

1

2

3

4

Figura 55. Tabla de inspección de la máquina Negri Bossi.

A continuación se presentan las tablas de agosto a noviembre del año 2013.

Tabla 64. Mantenimiento preventivo de la máquina Negri Bossi del mes de agosto.

Mantenimiento de la Máquina Negri Bossi. Periodo de inspección agosto 2013.

Semana Mantenimiento.

Fecha

programada.

Fecha de

ejecución.

Tiempo

programado. Tiempo real.

1

Preventivo

general. 03/08/2013 03/08/2013 8 hrs. 10 hrs.

2

Preventivo

general. 10/08/2013 10/08/2013 8 hrs. 8 hrs.

3

Preventivo

general. 17/08/2013 17/08/2013 8 hrs. 8 hrs.

4

Preventivo

general. 24/08/2013 24/08/2013 8 hrs. 7 hrs.

5

Preventivo

general. 31/08/2013 31/08/2013 8 hrs. 9 hrs.

Page 154: Plan de mantenimiento para una máquina de inyección Negri

154

Tabla 65. Mantenimiento preventivo de la máquina Negri Bossi del mes de septiembre.

Mantenimiento de la Máquina Negri Bossi. Periodo de inspección septiembre 2013.

Semana Mantenimiento.

Fecha

programada.

Fecha de

ejecución.

Tiempo

programado. Tiempo real.

1

Preventivo

general. 07/09/2013

8 hrs. 6 hrs.

2

Preventivo

general. 14/09/2013

8 hrs. 5hrs.

3

Preventivo

general. 21/09/2013

8 hrs. 8 hrs.

4

Preventivo

general. 28/09/2013

8 hrs. 7 hrs.

Tabla 66. Mantenimiento preventivo de la máquina Negri Bossi del mes de octubre.

Mantenimiento de la Máquina Negri Bossi. Periodo de inspección octubre 2013.

Semana Mantenimiento.

Fecha

programada.

Fecha de

ejecución.

Tiempo

programado. Tiempo real.

1

Preventivo

general. 05/10/2013

8 hrs. 6 hrs.

2

Preventivo

general. 12/10/2013

8 hrs. 5hrs.

3

Preventivo

general. 19/10/2013

8 hrs. 8 hrs.

4

Preventivo

general. 26/10/2013

8 hrs. 7 hrs.

Tabla 67. Mantenimiento preventivo de la máquina Negri Bossi del mes de noviembre.

Mantenimiento de la Máquina Negri Bossi. Periodo de inspección noviembre 2013.

Semana Mantenimiento.

Fecha

programada.

Fecha de

ejecución.

Tiempo

programado. Tiempo real.

1

Preventivo

general. 09/11/2013

8 hrs. 7 hrs.

2

Preventivo

general. 16/11/2013

8 hrs. 6 hrs.

3

Preventivo

general. 23/11/2013

8 hrs. 7 hrs.

4

Preventivo

general. 30/11/2013

8 hrs. 5 hrs.

Page 155: Plan de mantenimiento para una máquina de inyección Negri

155

5.3 Resultados

5.3.1 Registro de fallas después de la aplicación del plan de mantenimiento

Bitácora de fallas, después de la aplicación del plan de mantenimiento la cual abarco un

periodo de 16 semanas.

De las tablas tal al tal se registraron las fallas totales para cada elemento de manera semanal y

mensual.

Tabla 68. Muestra de fallas semanal.

Tabla 69. Muestra de fallas mensual.

Page 156: Plan de mantenimiento para una máquina de inyección Negri

156

5.3.2 Funciones para la obtención de tasa de fallos semanalmente para cada elemento

después de la aplicación del MBR.

Para obtener una comparación de cada elemento, antes y después de la aplicación del plan de

mantenimiento, se procede a tabular las fallas de cada elemento con una frecuencia acumulada

de los fallos, para después graficar y obtener la función que describa el crecimiento de los

fallos. Tabla 70. Fallos micro 1 LS.

Semana.

Fallas

micro 1

LS.

1 0

2 0

3 0

4 1

5 1

6 2

7 2

8 2

9 2

10 2

11 4

12 4

13 4

14 4

15 5

16 5

Tabla 71. Fallos micro 9 LS.

Semana

Fallas

micro 9

LS.

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 1

15 1

16 1

y = 0.0028x2 + 0.3083x - 0.5071R² = 0.9422

-1

0

1

2

3

4

5

6

0 5 10 15 20

FALL

AS

SEMANAS

Fallas micro 1 LS.Fallas micro 1 LS.Polinómica (Fallas micro 1 LS.)

y = 0.0574x - 0.3R² = 0.4588

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

FALL

AS

SEMANAS

Fallas micro 9 LS.Fallas micro 9 LS.Lineal (Fallas micro 9 LS.)

Page 157: Plan de mantenimiento para una máquina de inyección Negri

157

Tabla 72. Fallos micro 10 LS.

Semana.

Fallas micro 10

LS.

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 1

13 1

14 1

15 1

16 1 Tabla 73. Fallos micro 15 LS.

Semana.

Fallas micro 15

LS.

1 0

2 0

3 0

4 0

5 0

6 0

7 1

8 1

9 1

10 1

11 1

12 1

13 1

14 1

15 1

16 2

y = 0.0809x - 0.375R² = 0.6471

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

FALL

AS

SEMANAS

Fallas micro 10 LS.Fallas micro 10 LS. Lineal (Fallas micro 10 LS.)

y = -0.0009x2 + 0.1252x - 0.2946R² = 0.7615

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20

FALL

AS

SEMANAS

Fallas micro 15 LS.Fallas micro 15 LS.Polinómica (Fallas micro 15 LS.)

Page 158: Plan de mantenimiento para una máquina de inyección Negri

158

Tabla 74. Fallos boquilla del cañón.

Semana.

Fallas boquilla

del cañón.

1 0

2 0

3 1

4 3

5 3

6 4

7 5

8 6

9 6

10 7

11 8

12 8

13 8

14 8

15 8

16 9

Tabla 75. Fallos bomba de distribución de agua.

Semana.

Fallas bomba de

distribución de agua.

1 0

2 1

3 1

4 1

5 1

6 3

7 3

8 3

9 3

10 4

11 4

12 5

13 5

14 6

15 6

16 7

y = -0.0361x2 + 1.2337x - 1.8643R² = 0.9814

-2

0

2

4

6

8

10

0 5 10 15 20

FALL

AS

SEMANAS

Fallas boquilla del cañón.Fallas boquilla del cañón.Polinómica (Fallas boquilla del cañón.)

y = 0.0054x2 + 0.3445x - 0.1232R² = 0.9643

0

1

2

3

4

5

6

7

8

0 5 10 15 20

FALL

AS

SEMANAS

Fallas bomba de distribución de agua.

Fallas bomba de distribución de agua.

Polinómica (Fallas bomba dedistribución de agua. )

Page 159: Plan de mantenimiento para una máquina de inyección Negri

159

Tabla 76. Fallos boquilla de tolva de alimentación.

Semana.

Fallas boquilla de

tolva de alimentació

n.

1 1

2 1

3 1

4 2

5 2

6 2

7 4

8 4

9 4

10 4

11 5

12 6

13 6

14 7

15 7

16 8 Tabla 77. Fallos timer de regulación de tiempo de carga.

Semana.

Fallas timer de

regulación de tiempo de carga.

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 1

14 1

15 1

16 1

y = 0.0088x2 + 0.3335x + 0.3464R² = 0.97

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20

FALL

AS

SEMANAS

Fallas boquilla de tolva de alimentación.

Fallas boquilla de tolva dealimentación.Polinómica (Fallas boquilla de tolva dealimentación.)

y = 0.0706x - 0.35R² = 0.5647

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

FALL

AS

SEMANAS

Fallas timer de regulación de tiempo de carga.

Fallas timer de regulación de tiempo de carga.

Lineal (Fallas timer de regulación de tiempo de carga.)

Page 160: Plan de mantenimiento para una máquina de inyección Negri

160

Tabla 78. Fallos timer de regulación de tiempo de inyección.

Semana.

Fallas timer de

regulación de tiempo de

inyección.

1 0

2 0

3 0

4 0

5 1

6 1

7 1

8 2

9 2

10 2

11 2

12 3

13 3

14 4

15 4

16 4 Tabla 79. Fallos pirómetros del segundo grupo de resistencias.

Semana.

Fallas pirómetros del segundo

grupo de resistencias.

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

15 0

16 0

y = 0.0061x2 + 0.1973x - 0.4375R² = 0.9592

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20

FALL

AS

SEMANAS

Fallas timer de regulación de tiempo de inyección.

Fallas timer de regulación de tiempo deinyección.

Polinómica (Fallas timer de regulación detiempo de inyección.)

y = 0R² = #N/A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

FALL

AS

SEMANAS

Fallas pirómetros del segundo grupo de

resistencias.Fallas pirómetros del segundo grupo deresistencias.

Lineal (Fallas pirómetros del segundo grupo deresistencias.)

Page 161: Plan de mantenimiento para una máquina de inyección Negri

161

Tabla 80. Fallas totales de cada elemento.

Mensual.

Micro

1 LS.

Micro

9 LS.

Micro

10 LS.

Micro

15 LS.

Boquilla

del

cañón.

Bomba de

distribucion

de agua.

Boquilla de

tolva de

alimentación.

Timer de

regulación

de tiempo

de carga.

Timer de

regulación

de tiempo

de

inyección.

Pirómetros

del segundo

grupo de

resistencias.

1 1 0 0 0 3 1 2 0 0 0

2 2 0 0 1 6 3 4 0 2 0

3 4 0 1 1 8 5 6 0 3 0

4 5 1 1 2 9 7 8 1 4 0

-1

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

FALL

AS

MESES

FALLAS MENSUALES

Micro 1 LS con MBR Micro 9 LS con MBR

Micro 10 LS con MBR Micro 15 LS con MBR

Boquilla del cañón con MBR Bomba de distribucion de agua con MBR

Boquilla de tolva de alimentación con MBR Timer de regulación de tiempo de carga con MBR

Timer de regulación de tiempo de inyección con MBR Pirómetros del segundo grupo de resistencias con MBR

Page 162: Plan de mantenimiento para una máquina de inyección Negri

162

5.3.3 Calculo de la tasa de fallo para cada elemento con MBR

Para calcular la tasa de fallos de cada elemento se hace uso de las funciones “t”, obtenidas del

apartado 5.2.1. A partir de las funciones “t”, obtenidas por cada elemento se procede a calcular

la tasa de fallos para cada elemento, tomando como tiempos de fallo el periodo mínimo entre

cada fallo. Finalmente se tabulan las tasas de fallos de cada elemento con un tiempo de A a B

mínimo.

La tasa de fallos o tasa de riesgo h (t) se define como la probabilidad que tiene un

componente de fallar en el instante siguiente al dado, si éste ha sobrevivido desde el instante 0

hasta el tiempo t. Es una medida de lo propenso que resulta un componente a fallar en función

de su edad.

Tabla 81. Tasa de fallos.

Elemento con MBR. f(t). a, b para el

intervalo mínimo. Tasa de fallo (P)

con MBR.

Micro 1 – LS. 0.002x2 + 0.308x -

0.5707 a=0, b=2 0.3926

Micro 9 – LS. 0.057x – 0.3 a=0, b=14 0.9165

Micro 10 – LS. 0.08x – 0.375 a=0, b=11 0.715

Micro 15 – LS. -0.00x2 + 0.125x –

0.294 a=0, b=6 0.486

Boquilla del cañón. -0.036x2 + 1.233x –

1.864 a=0, b=2 1.358

Bomba de distribución de agua.

0.005x2 + 0.344x – 0.123 a=0, b=1 0.0506

Boquilla de tolva de alimentación.

-0.008x2 + 0.333x –+0.346 a=0, b=1 0.5098

Timer de regulación de tiempo de carga. 0.07x – 0.35 a=0, b=12 0.792

Timer de regulación de tiempo de inyección.

0.006x2 + 0.197x -0.437 a=0, b=3 0.4785

Pirómetros del segundo grupo de resistencias. 0 a=0, b=0 0

Page 163: Plan de mantenimiento para una máquina de inyección Negri

163

5.3.4 Tasa de fallos - patrón de fallo “A”, curva tipo bañera

Para determinar el comportamiento de los componentes antes definidos como puntos críticos,

con ayuda de la bitácora de mantenimiento, se procede a graficar estos valores a partir de los

datos obtenidos de la tabla 81. Esto es para determinar el comportamiento de los

componentes, de acuerdo a su tasa de fallos.

Tabla 82. Patrón de fallo “A”, curva tipo bañera.

Elemento con MBR. Intervalo de tiempo mínimo semanal.

Tasa de Fallos Con MBR.

Micro 1 – LS. 2 0.3926

Micro 9 – LS. 14 0.9165

Micro 10 – LS. 11 0.715

Micro 15 – LS. 6 0.486

Boquilla del cañón. 2 1.358

Bomba de distribución de agua. 1 0.0506

Boquilla de tolva de alimentación. 1 0.5098

Timer de regulación de tiempo de carga. 12 0.792

Timer de regulación de tiempo de inyección. 3 0.4785

Pirómetros del segundo grupo de resistencias. 0 0

Page 164: Plan de mantenimiento para una máquina de inyección Negri

164

Tabla 83 Evaluación de las tasa de fallos usando el patrón de fallo “A”, curva tipo bañera.

Elemento. Sección del Patrón de fallo

“A”, Curva Tipo bañera.

Acciones a tomar.

Micro 1 – LS. Periodo infantil

Debajo de la curva.

Mantenimiento preventivo regular.

Micro 9 – LS. Periodo de desgaste Debajo de la curva.

Mantenimiento preventivo

regular.

Micro 10 – LS. Periodo de vida útil Debajo de la curva.

Mantenimiento preventivo

regular.

Micro 15 – LS. Periodo de vida útil Debajo de la curva.

Mantenimiento preventivo

regular.

Boquilla del cañón. Periodo infantil Debajo de la curva.

Mantenimiento preventivo

regular.

Bomba de distribución de agua.

Periodo infantil Debajo de la curva.

Mantenimiento preventivo

regular.

Boquilla de tolva de alimentación.

Periodo de vida útil Debajo de la curva.

Mantenimiento preventivo

regular.

Timer de regulación de tiempo de carga.

Periodo infantil Debajo de la curva.

Mantenimiento preventivo

regular.

Timer de regulación de tiempo de inyección.

Periodo de desgaste Debajo de la curva.

Mantenimiento preventivo

regular.

Pirómetros del segundo ggrupo de resistencias.

Periodo infantil Debajo de la curva.

Mantenimiento preventivo

regular.

Tabla 84. Comparación de tasas de fallos antes y después del mantenimiento basado en riesgos (MBR).

Elemento con MBR. Tasa de fallo (P).

Tasa de fallo (P) con MBR.

Micro 1 – LS. 6.01005 0.3926

Micro 9 – LS. 1.78481 0.9165

Micro 10 – LS. 2.97837 0.715

Micro 15 – LS. 1.0561 0.486

Boquilla del cañón. 1.652 1.358 Bomba de distribución de agua.

8.7888 0.0506

Boquilla de tolva de alimentación.

2.0846 0.5098

Timer de regulación de tiempo de carga.

12.6468 0.792

Timer de regulación de tiempo de inyección.

2.0303 0.4785

Pirómetros del segundo grupo de resistencias.

3.18752 0

Page 165: Plan de mantenimiento para una máquina de inyección Negri

165

5.3.5 Comparación de fallas antes y después del mantenimiento basado en riesgos

(MBR)

Usando la información obtenida de las tablas de la sección 4.2.3 Funciones para la obtención

de tasa de fallos semanalmente para cada elemento y de la sección 5.3.2 funciones para la

obtención de tasa de fallos semanalmente para cada elemento después de la aplicación del

MBR, se procede a comparar el número de fallas para cada elemento antes y después del

mantenimiento basado en riesgos. Tabla 85. Comparación de fallos antes y después del MBR para el micro 1 LS.

Semana. Fallas

micro 1 LS Fallas micro 1 LS con MBR.

1 1 0

2 1 0

3 1 0

4 2 1

5 2 1

6 2 2

7 3 2

8 3 2

9 3 2

10 4 2

11 5 4

12 6 4

13 8 4

14 9 4

15 10 5

16 12 5

Tabla 86. Comparación de fallos antes y después del MBR para el micro 9 LS.

Semana. Fallas micro

9 LS.

Fallas micro 9 LS con

MBR.

1 0 0

2 0 0

3 0 0

4 1 0

5 1 0

6 1 0

7 1 0

8 1 0

9 1 0

10 1 0

11 1 0

12 1 0

13 1 0

14 2 1

15 2 1

16 2 1

0

2

4

6

8

10

12

14

0 5 10 15 20

Comparación de fallos con y sin MBR.

Fallas micro 1 LS Fallas micro 1 LS con MBR

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Comparación de fallos con y sin MBR.

Fallas micro 9 LS. Fallas micro 9 LS con MBR

Page 166: Plan de mantenimiento para una máquina de inyección Negri

166

Tabla 87. Comparación de fallos antes y después del MBR para el micro 10 LS.

Semana. Fallas micro

10 LS.

Fallas micro 10 LS con

MBR.

1 0 0

2 0 0

3 0 0

4 0 0

5 1 0

6 1 0

7 1 0

8 1 0

9 1 0

10 1 0

11 1 0

12 1 1

13 1 1

14 1 1

15 1 1

16 1 1 Tabla 88. Comparación de fallos antes y después del MBR para el micro 15 LS.

Semana. Fallas micro

15 LS.

Fallas micro 15 LS con

MBR.

1 0 0

2 0 0

3 0 0

4 1 0

5 2 0

6 2 0

7 2 1

8 2 1

9 2 1

10 2 1

11 2 1

12 2 1

13 2 1

14 3 1

15 4 1

16 4 2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

Comparación de fallos con y sin MBR.Fallas micro 10 LS.

Fallas micro 10 LS con MBR

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20

Comparación de fallos con y sin MBR.

Fallas micro 15 LS. Fallas micro 15 LS con MBR

Page 167: Plan de mantenimiento para una máquina de inyección Negri

167

Tabla 89. Comparación de fallos antes y después del MBR para la boquilla del cañón.

Semana.

Fallas boquilla del

cañón.

Fallas boquilla del cañón con

MBR.

1 1 0

2 3 0

3 6 1

4 7 3

5 10 3

6 12 4

7 13 5

8 15 6

9 16 6

10 17 7

11 18 8

12 18 8

13 20 8

14 21 8

15 23 8

16 24 9 Tabla 90. Comparación de fallos antes y después del MBR para la bomba de distribución de agua.

Semana.

Fallas bomba de

distribución de agua.

Fallas bomba de

distribución de agua con

MBR.

1 2 0

2 3 1

3 4 1

4 5 1

5 5 1

6 5 3

7 7 3

8 7 3

9 8 3

10 10 4

11 12 4

12 14 5

13 15 5

14 16 6

15 17 6

16 18 7

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

Comparación de fallos con y sin MBR.

Fallas bomba de distribución de agua.

Fallas bomba de distribución de agua con MBR

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

Comparación de fallos con y sin MBR.

Fallas bomba de distribución de agua.

Fallas bomba de distribución de agua con MBR

Page 168: Plan de mantenimiento para una máquina de inyección Negri

168

Tabla 91. Comparación de fallos antes y después del MBR para la boquilla de tolva de alimentación.

Semana.

Fallas boquilla de

tolva de alimentació

n.

Fallas boquilla de tolva de

alimentación con MBR.

1 1 1

2 3 1

3 5 1

4 6 2

5 8 2

6 8 2

7 9 4

8 11 4

9 12 4

10 14 4

11 16 5

12 18 6

13 20 6

14 20 7

15 20 7

16 21 8

Tabla 92. Comparación de fallos antes y después del MBR para el timer de regulación de tiempo de carga.

Semana.

Fallas timer de

regulación de tiempo de carga.

Fallas timer de

regulación de tiempo

de carga con MBR.

1 0 0

2 1 0

3 1 0

4 1 0

5 1 0

6 2 0

7 2 0

8 3 0

9 3 0

10 3 0

11 3 0

12 3 0

13 3 1

14 3 1

15 3 1

16 3 1

0

5

10

15

20

25

0 5 10 15 20

Comparación de fallos con y sin MBR.

Fallas boquilla de tolva de alimentación.

Fallas boquilla de tolva de alimentación con MBR

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20

Comparación de fallos con y sin MBR.

Fallas timer de regulación de tiempo de carga.

Fallas timer de regulación de tiempo de carga con MBR

Page 169: Plan de mantenimiento para una máquina de inyección Negri

169

Tabla 93. Comparación de fallos antes y después del MBR para el timer de regulación de tiempo de inyección.

Semana.

Fallas timer de

regulación de tiempo

de inyección.

Fallas timer de

regulación de tiempo

de inyección con MBR.

1 1 0

2 1 0

3 2 0

4 2 0

5 3 1

6 4 1

7 5 1

8 5 2

9 6 2

10 7 2

11 8 2

12 9 3

13 11 3

14 12 4

15 13 4

16 13 4 Tabla 94. Comparación de fallos antes y después del MBR para los pirómetros del segundo grupo de

resistencias.

Semana.

Fallas pirómetros del segundo

grupo de resistencias.

Fallas pirómetros del segundo

grupo de resistencias con MBR.

1 0 0

2 0 0

3 0 0

4 0 0

5 1 0

6 1 0

7 1 0

8 1 0

9 1 0

10 1 0

11 1 0

12 1 0

13 1 0

14 1 0

15 1 0

16 1 0

0

2

4

6

8

10

12

14

0 5 10 15 20

Comparación de fallos con y sin MBR.

Fallas timer de regulación de tiempo de inyección.

Fallas timer de regulación de tiempo de inyección con MBR

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

Comparación de fallos con y sin MBR.

Fallas pirómetros del segundo grupo de resistencias.

Fallas pirómetros del segundo grupo de resistencias con MBR

Page 170: Plan de mantenimiento para una máquina de inyección Negri

170

5.4 Análisis de resultados

5.4.1 Análisis de fallas antes y después del mantenimiento basado en riesgos

Usando las tablas 84 a la 95 se procede a graficar mediante un gráfico de columnas, para que

se aprecie de mejor manera la reducción en el número de fallas en cada elemento, después del

mantenimiento basado en riesgos.

Tabla 95. Comparativa de fallas antes y después del mantenimiento basado en riesgos (MBR).

En el gráfico de reducción de fallas con MBR visualizamos que el número de fallas a lo largo

de un periodo de 16 semanas, disminuyo dando como resultado una mejora en los tiempos de

producción y disminución en tiempos muertos los cuales causan principalmente retardos en la

producción y pérdidas económicas.

Al analizar estos resultados observamos que programa de mantenimiento implantado está

funcionando dado que se visualiza una disminución en las fallas mes a mes.

Page 171: Plan de mantenimiento para una máquina de inyección Negri

171

5.4.2 Análisis del % fallas antes y después del mantenimiento basado en riesgos

Usando las tablas de fallas obtenidas de la sección 3.3.5 Comparación de fallas antes y

después del mantenimiento basado en riesgos (MBR), se procede a obtener el % de reducción

de la tasa de fallos, para posteriormente representar gráficamente la reducción de % de tasa de

fallos mediante un gráfico de columnas, para que se aprecie de mejor manera la reducción en

el % de fallas en cada elemento, después del mantenimiento basado en riesgos.

Tabla 96. Comparativa de % de reducción de fallas antes y después de aplicar el mantenimiento basado en

riesgos (MBR).

# 𝑭 𝑴𝑩𝑹 ∗ 𝟏𝟎𝟎

# 𝑭

(# 𝑭 − # 𝑭 𝑴𝑩𝑹)

# 𝑭 ∗ 𝟏𝟎𝟎

Elemento.

Numero de

Fallas.

Numero de

Fallas con

MBR.

% de Fallas con MBR.

Reducción en porcentaje de fallas.

Micro 1 – LS. 12 5 41.6666 58.3333 Micro 9 – LS. 2 1 50 50 Micro 10 – LS. 1 1 1 100 Micro 15 – LS. 4 2 50 50

Boquilla del cañón. 24 9 37.5 62.5 Bomba de

distribución de

agua.

18

7

38.8888

61.1111

Boquilla de tolva

de alimentación.

21 8 38.0952 61.9047

Timer de

regulación de

tiempo de carga.

3

1

33.3333

66.6666

Timer de

regulación de

tiempo de

inyección.

13

4

30.7692

69.2307

Pirómetros del

segundo grupo de

resistencias.

1

0

0

100

Promedio de reducción de % de fallos. 61.176353

Se puede observar la efectividad del plan de mantenimiento basado en rasgos al observar una

diminución en porcentaje de fallos de un 61.176353, lo cual refleja una disminución muy

importante en el número de fallas, con lo cual se reducen no solo los riesgos tanto para la

máquina de inyección como para los operarios, además de mejorar los tiempos de producción

y disminución en tiempos muertos los cuales causan principalmente retardos en la producción

y pérdidas económicas.

Page 172: Plan de mantenimiento para una máquina de inyección Negri

172

Tabla 97. Comparativa de reducción de % fallas antes y después del mantenimiento basado en riesgos (MBR).

Con el grafico de reducción de % fallas antes y después del mantenimiento basado en riesgos

(MBR), visualizamos la reducción de los tiempos que se le ha dedicado al mantenimiento.

Esto debido a que los técnicos, se familiarizan con la máquina, además de que ciertas tareas de

mantenimiento empiezan a no ser necesarias o no se realizan con la misma frecuencia como al

inicio del programa, debido a que la implementación del programa de mantenimiento prevé un

seguimiento a los fallos más comunes, con esto reducimos las fallas y por ende dejar de lado al

mantenimiento correctivo.

Nos percatamos de la disminución en los tiempos en el caso del mantenimiento preventivo y

una disminución en los fallos en el caso del mantenimiento correctivo, con ello se visualiza

que este programa está sirviendo a su propósito.

Cabe señalar que cualquier maquinaria tiende a presentar averías inesperadas en las que se

presentan fallos en la maquinaria, es por ello la implementación de este programa ayudar a

evitar estas averías inesperadas, aunque no deberemos sorprendernos, si en algún momento se

llegara a presentar una de estas averías inesperadas.

Page 173: Plan de mantenimiento para una máquina de inyección Negri

173

5.4.3 Análisis del % de tasa de fallos antes y después del mantenimiento basado en

riesgos

Usando la tabla de tasa de fallas obtenidas de la sección 5.3.4 tabla comparativa de tasas de

fallos antes y después del mantenimiento basado en riesgos (MBR), se procede a obtener el %

de reducción de la tasa de fallos, para posteriormente representar gráficamente la reducción

de % de tasa de fallos, usando un gráfico de columnas, para que se aprecie de mejor manera la

reducción en el % de tasa fallos en cada elemento, después del mantenimiento basado en

riesgos.

Tabla 98. Comparativa del % de la tasa de fallos antes y después del MBR.

𝑻 𝑭 𝑴𝑩𝑹 ∗ 𝟏𝟎𝟎

𝑻 𝑭

(𝑻 − 𝑻 𝑭 𝑴𝑩𝑹)

𝑻 ∗ 𝟏𝟎𝟎

Elemento con MBR.

Tasa de Fallos

(P).

Tasa de fallos (P)

con MBR.

% de Tasa de Fallos con

MBR.

Reducción en porcentaje de tasa de fallos.

Micro 1 – LS. 6.01005 0.3926 6.532391 93.467608

Micro 9 – LS. 1.78481 0.9165 48.649996 51.350003

Micro 10 – LS. 2.97837 0.715 24.006419 75.993580

Micro 15 – LS. 1.0561 0.486 46.018369 53.981630

Boquilla del cañón. 1.652 1.358 17.796610 82.203389

Bomba de distribución de agua.

8.7888 0.0506

0.575732

99.424267

Boquilla de tolva de alimentación.

2.0846 0.5098

24.455531

75.544468

Timer de regulación de tiempo de carga.

12.6468 0.792

6.262453

93.737546

Timer de regulación de tiempo de inyección.

2.0303 0.4785

23.567945

76.432054

Pirómetros del segundo grupo de resistencias.

3.18752 0

0

100

Promedio de reducción de % de fallos. 80.2134545

Se observa la efectividad del plan de mantenimiento basado en riesgo al observar una

diminución en porcentaje de la tasa de fallos de un 80.2134545, lo cual refleja una

disminución muy importante en el número de fallas, con lo cual se reducen no solo los riesgos

tanto para la máquina de inyección como para los operarios, además de mejorar los tiempos de

producción y disminución en tiempos muertos los cuales causan principalmente retardos en la

producción y pérdidas económicas.

Page 174: Plan de mantenimiento para una máquina de inyección Negri

174

Tabla 99. Comparativa de reducción de % de tasa de fallos antes y después del mantenimiento basado en

riesgos (MBR).

Con el grafico de reducción de % de reducción en tasa de fallos antes y después del

mantenimiento basado en riesgos (MBR).

Se observa la reducción en la tasa de fallos lo cual nos indica que el comportamiento de los

elementos estarán por debajo de la gráfica de curva de bañera, con esto podemos suponer que

el mantenimiento que se necesitan en estos componentes solo será un mantenimiento

preventivo regular, sin la necesidad de tener que tener un mantenimiento correctivo urgente.

Esto brinda seguridad tanto para los operarios como para la máquina como para los operarios,

siendo este el principal objetivo.

Page 175: Plan de mantenimiento para una máquina de inyección Negri

175

CONCLUSIONES

Page 176: Plan de mantenimiento para una máquina de inyección Negri

176

Durante el desarrollo de este trabajo se trató la parte técnica y teórica del proceso de inyección

de plásticos, así como la reducción en el riesgo debido a fallas, por la falta de control en el

mantenimiento, por ende se visualizó el panorama en un antes y en un inicio de la

implementación del plan y con ello se pudo visualizar de manera más clara las mejoras,

además de encontrar las principales causas que producen fallos. Para esto se optó por un

método que nos facilitara una implementación rápida, pero a su vez lo más fiable posible. Es

por esta razón que se procedió a documentarse para buscar el plan de mantenimiento que nos

brindara la mejor opción, una vez documentándonos, se llegó a la conclusión de que el plan de

mantenimiento basado en riesgos usando el método What if?, era el que mejor se adaptaba a

nuestros objetivos y recursos.

Se detectó un importante problema que aunado a nuestro objetivo, la reducción de riesgos

debido a fallas, está sumamente ligado al mantenimiento, ya que existen atrasos de pedidos

por fallas en la maquinaria. En un inicio la máquina solo contaba con mantenimiento

correctivo, que da como resultado pago de mano de obra inactiva y horas extras y lo más grave

un índice elevado de riesgos potenciales.

Por ende en este trabajo se propuso un programa de mantenimiento, que permita mantener

permanentemente el equipo y su instalación en su estado óptimo, evitando los tiempos de

parada que aumentan los costos, aumentando la utilidad de la empresa, y prolongando la vida

útil de los equipos.

Al final de este trabajo se pudo comprobar la importancia y simplicidad que tiene el

mantenimiento basado en riesgos así como de la utilidad tiene para poder realizar un análisis

de riesgos para un posterior desarrollo de un plan de mantenimiento. El principal factor a

resaltar del mantenimiento basado en riesgos, fue que nos permitió cotejar la problemática,

además de permitirnos tener un enfoque mucho más concreto a una identificación de fallas, lo

cual facilito el desarrollo e implementación del plan de mantenimiento basado en riesgos.

Otro tema a resaltar es la utilidad que presentó usar el análisis de riesgos, enfocándonos en el

método What if?, esto debido a las cualidades y simplicidad que presenta a la hora de su

implementación. El desarrollo de este análisis de riesgos permitió no solo enfocarnos en las

fallas que presentaba la máquina, sino que además nos permitió determinar, las salvaguardas

necesarias, con las cuales se reduciría tanto el tiempo en paros debido a fallas (con la

implementación de un mantenimiento), además del riesgo tanto para el operador como para la

máquina, reduciendo posibles pérdidas económicas.

A lo largo de este proyecto se describió el funcionamiento y características de las máquinas de

inyección, esto fue de ayuda para el desarrollo DTI, esta información era un requisito

necesario para la implementación de un análisis de riesgos, dando un panorama amplio para su

comprensión, lo cual a su vez permitió evaluar la mejor solución para el plan de

mantenimiento. Delimitado y enfocado a los problemas primordiales, asociando la parte

técnica con la teórica de la máquina fue posible proponer una solución afirmativa y

fundamentada que nos traerá beneficios en un lapso de tiempo corto.

Page 177: Plan de mantenimiento para una máquina de inyección Negri

177

La propuesta dada en este trabajo sirvió para brindar una solución a la problemática que a la

reducción de riesgos, a partir de 2 enfoques, el primero fue la reducción en el número de

fallas, la segunda fue la implementación de salvaguardas en la máquina, buscando una

solución a largo plazo. Esto tiene como finalidad reducir los costos de reparaciones y los

costos por improductividades debidos a tiempos muertos, además de eliminar la necesidad de

contar con inventarios de productos en proceso y terminados destinados a servir de “colchón”

ante las averías producidas. Con esta finalidad se elaboró el programa de mantenimiento

calendarizado un lapso de tiempo, de esta forma se mantendría el buen funcionamiento de la

empresa, sin tener que pasar por los problemas ya descartados después de esta propuesta.

Finalmente con la implementación y apoyado de diversas tablas para el control e inspección de

los productos elaborados y las herramientas involucradas en ello, se pudo establecer un

procedimiento para la ejecución del plan de mantenimiento en las diferentes secciones de las

máquinas de inyección, además de ser un programa flexible que nos permite atacar desde

puntos precisos, hasta lo más general, además de servir como un plantilla para desarrollar este

plan de mantenimiento basado en riesgos a otro tipo de máquina de inyección.

Page 178: Plan de mantenimiento para una máquina de inyección Negri

178

BIBLIOGRAFÍA.

Page 179: Plan de mantenimiento para una máquina de inyección Negri

179

1. Hernandez Sampieri, Roberto. METODOLOGIA DE LA INVESTIGACION, Editorial

Mc Graw Hill, Tercera Edición 2003.

2. Dounce Villanueva, Enrique. UN ENFOQUE DEL MANTENIMIENTO

INDUSTRIAL. Editorial CECSA. Primera edición 2006.

3. Madrigal, Manuel; Rosales, Sergio; Mises, Roberto. MANTENIMIENTO

INDUSTRIAL. UPIICSA. Reimpresión Julio 2007.

4. Dounce Villanueva, Enrique. LA PRODUCTIVIDAD EN EL MANTENIMIENTO

INDUSTRIAL. Editorial CECSA. Tercera edición 2004.

5. Gonzales, Roberto. MANUAL DE INYECCIÓN, México, INPLAX S.A. DE C.V.

Marzo 2008.

6. González Francisco Javier. TEORÍA Y PRÁCTICA DEL MANTENIMIENTO

INDUSTRIAL AVANZADO. 2ª Edición Fundación Confe Metal Editorial.

7. http://www.definiciones.com.mx/definicion/P/plastico/

8. http://www.eie.fceia.unr.edu.ar/ftp/Gestion%20de%20la%20calidad/Mantenimiento%

20industrial.pdf

9. http://catarina.udlap.mx/u_dl_a/tales/documentos/lii/arias_s_ll/capitulo2.pdf

10. http://www.elprisma.com/apuntes/ingenieria_industrial/mantenimientoindustrialnocion

es

11. http://www.acercar.org.co/industria/biblioteca/eventos/docs/14082003/industrial.pdf

12. http://www.redhucyt.oas.org/OcyT/OEA_GTZ/LIBROS/Manten_medida/mantenimien

to.htm

13. http://www.conamype.gob.sv/cajadeherramientas/mipymes/como_admin/mantenimien

to.htm

Page 180: Plan de mantenimiento para una máquina de inyección Negri

180

ANEXOS.

Page 181: Plan de mantenimiento para una máquina de inyección Negri

181

Page 182: Plan de mantenimiento para una máquina de inyección Negri

182