158
PORTAFOLIO DE ESTADÍSTICA INFERENCIAL UNIVERSIDAD POLITÉCNICA ESTATAL DEL CARCHI ESCUELA DE COMERCIO EXTERIOR Y NEGOCIACIÓN COMERCIAL INTERNACIONAL Tulcán Ecuador DOCENTE: MSC. JORGE POZO INTEGRANTES: Tamara Liceth Apráez Lima MARZO 2012- AGOSTO 2012

Portafolio Estadística Inferencial

Embed Size (px)

Citation preview

Page 1: Portafolio Estadística Inferencial

PORTAFOLIO DE ESTADÍSTICA INFERENCIAL

UNIVERSIDAD POLITÉCNICA ESTATAL DEL CARCHI

ESCUELA DE COMERCIO EXTERIOR Y NEGOCIACIÓN COMERCIAL

INTERNACIONAL

Tulcán – Ecuador

DOCENTE: MSC. JORGE POZO

INTEGRANTES:

Tamara Liceth Apráez Lima

MARZO 2012- AGOSTO 2012

Page 2: Portafolio Estadística Inferencial

1

INTRODUCCION

La estadística inferencial es necesaria cuando queremos hacer alguna

afirmación sobre más elementos de los que vamos a medir. La estadística

inferencial hace que ese salto de la parte al todo se haga de una manera

“controlada”. Aunque nunca nos ofrecerá seguridad absoluta, sí nos ofrecerá

una respuesta probabilística. Esto es importante: la estadística no decide;

sólo ofrece elementos para que el investigador o el lector decidan. En

muchos casos, distintas personas perciben diferentes conclusiones de los

mismos datos.

El proceso será siempre similar. La estadística dispone de multitud de

modelos que están a nuestra disposición. Para poder usarlos hemos de

formular, en primer lugar, una pregunta en términos estadísticos. Luego

hemos de comprobar que nuestra situación se ajusta a algún modelo (si no

se ajusta no tendría sentido usarlo). Pero si se ajusta, el modelo nos

ofrecerá una respuesta estadística a nuestra pregunta estadística. Es tarea

nuestra devolver a la psicología esa respuesta, llenándola de contenido

psicológico.

La estadística descriptiva, como indica su nombre, tiene por finalidad

describir. Así, si queremos estudiar diferentes aspectos de, por ejemplo, un

grupo de personas, la estadística descriptiva nos puede ayudar. Lo primero

será tomar medidas, en todos los miembros del grupo, de esos aspectos o

variables para, posteriormente, indagar en lo que nos interese. Sólo con

esos indicadores ya podemos hacernos una idea, podemos describir a ese

conjunto de personas.

Page 3: Portafolio Estadística Inferencial

2

OBJETIVO DE LA ESTADÍSTICA

La estadística es el conjunto de técnicas que se emplean para la

recolección, organización, análisis e interpretación de datos. Los datos

pueden ser cuantitativos, con valores expresados numéricamente, o

cualitativos, en cuyo caso se tabulan las características de las

observaciones. La estadística sirve en administración y economía para tomar

mejores decisiones a partir de la comprensión de las fuentes de variación y

de la detección de patrones y relaciones en datos económicos y

administrativos.

JUSTIFICACIÓN

El presente portafolio tiene como justificación recolectar todo el trabajo dado

en clases como portafolio de apoyo del estudiante y además ampliar mas el

contenido con investigaciones bibliográficas de libros ya que esto nos

permitirá analizar e indagar de los temas no entendidos para auto educarse

el estudiante y así despejar los dudas que se tiene con la investigación y el

análisis de cada uno de los capítulos ya que la estadística inferencial es

amplia y abarca problemas que estas relacionados con el entorno para

poder sacar nuestras propias decisiones ya que la estadística inferencial nos

ayudara a la carrera en la que estamos siguiendo como lo es comercio

exterior ampliar mas nuestros conocimientos y utilizar más el razonamiento y

sacar conclusiones adecuadas según el problema que se presente en el

entorno ay que las matemáticas y la estadística nos servirá a futuro para así

poderlos emplear a futuro .

Page 4: Portafolio Estadística Inferencial

3

CAPITULO I

EL SISTEMA INTERNACIONAL DE UNIDADES

Las unidades del sistema internacional de unidades se clasifican en

fundamentales y derivadas. Las unidades fundamentales no se pueden

reducir. Se citan las unidades fundamentales de interés en la asignatura de

ciencias e ingenierías de os materiales.

Las unidades derivadas se expanden en función de las unidades

fundamentales utilizando signos matemáticos de multiplicación y de división.

Por ejemplo las unidades de densidad del sí son el kilogramo por metro

cubico algunas unidades derivadas tienen nombres y símbolos especiales.

Unidad de masa El kilogramo (kg) es igual a la masa del prototipo

internacional del kilogramo (Diaz, 2008)

Unidad de tiempo El segundo (s) es la duración de 9 192 631 770 periodos

de la radiación correspondiente a la transición entre los dos niveles

HIPERFINOS del estado fundamental del átomo de cesio 133. (Diaz, 2008)

Unidad de intensidad de corriente eléctrica El ampere (A) es la intensidad

de una corriente constante que manteniéndose en dos conductores

paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y

Page 5: Portafolio Estadística Inferencial

4

situados a una distancia de un metro uno de otro en el vacío, produciría una

fuerza igual a 2·10-7 newton por metro de longitud. (Diaz, 2008)

Unidad de temperatura termodinámica El kelvin (K), unidad de

temperatura termodinámica, es la fracción 1/273,16 de la temperatura

termodinámica del punto triple del agua. (Diaz, 2008)

Unidad de cantidad de sustancia El mol (mol) es la cantidad de sustancia

de un sistema que contiene tantas entidades elementales como átomos hay

en 0,012 kilogramos de carbono 12. (Diaz, 2008)

Unidad de intensidad luminosa La candela (CD) es la unidad luminosa, en

una dirección dada, de una fuente que emite una radiación monocromática

de frecuencia 540·1012 HERTZ y cuya intensidad energética en dicha

dirección es 1/683 WATT por estereorradián. (Diaz, 2008)

Peso: es una magnitud derivada se considera como una unidad vectorial.

(Diaz, 2008)

Escalar: aquel que indica el número y la unidad. (Diaz, 2008)

Vector: indica número unidad dirección etc. (Diaz, 2008)

Magnitud derivada: el peso de la unidad newton es una unidad de fuerza.

(Diaz, 2008)

Gravedad: es la que permite a los cuerpos caer en perpendiculares según la

gravedad de la tierra (Diaz, 2008)

MULTIPLOS Y SUBMULTIPLOS

Múltiplo

Un múltiplo de un número es otro número que lo contiene un número entero

de veces. En otras palabras, un múltiplo de n es un número tal que, dividido

por n, da por resultado un número entero Los primeros múltiplos del uno al

diez suelen agruparse en las llamadas tablas de multiplicar. (Pineda, 2008)

Page 6: Portafolio Estadística Inferencial

5

Submúltiplo

Un número entero a es submúltiplo de otro número b si y sólo si b es múltiplo

de a, (Pineda, 2008).

COMENTARIO:

El Sistema Internacional de Unidades (SI) tiene la finalidad de: Estudiar el

establecimiento de un conjunto de reglas para las unidades de medida y

como estudiantes de comercio exterior nos ayuda muchísimo porque con el

podemos obtener los resultados al almacenar una mercancía en el

contenedor sin perder el tiempo que es valioso en la carrera, y también si

perder el espacio dentro de dicho contenedor.

El sistema internacional de unidades es estudiado para obtener datos reales

y a su vez poder dar nuestros resultados sacando conclusiones propias de la

carrera Para una comunicación científica apropiada y efectiva, es esencial

que cada unidad fundamental de magnitudes de un sistema, sea

especificada y reproducible con la mayor precisión posible.

Page 7: Portafolio Estadística Inferencial

6

ORGANIZADOR GRAFICO:

Sistema Internacional de Medidas y Unidades

Magnitudes fundamentales

Una magnitud fundamental

es aquella que se define

por sí misma y es

independiente de las

demás (masa, tiempo,

longitud, etc.).

Magnitudes derivadas

Para resolver el problema que suponga la utilización de unidades diferentes en distintos lugares del mundo, en la XI

Conferencia General de Pesos y Medidas (París, 1960) se estableció el Sistema Internacional de Unidades (SI). En el

cuadro siguiente puedes ver las magnitudes fundamentales del SI, la unidad de cada una de ellas y la abreviatura que se

emplea para representarla:

Son la que

dependen de las

magnitudes

fundamentales.

Múltiplos Submúltiplos

Un número es un

submúltiplo si otro lo

contiene varias veces

exactamente. Ej.: 2 es

un submúltiplo de 14,

ya que 14 lo contiene

7 veces.= 14 = 2 • 7

Un múltiplo de n es

un número tal que,

dividido por n, da por

resultado un número

entero

Page 8: Portafolio Estadística Inferencial

7

TRABAJO # 1

MÚLTIPLOS Y SUBMÚLTIPLOS

MÚLTIPLOS.- Se pueden obtener múltiplos de cualquier número, son

aquellos que se obtiene al sumar el mismo número varias veces o al

multiplicarlo por cualquier número. (son infinitos), (Aldape & Toral, 2005,

pág. 94).

Ejemplo:

Múltiplos de 5:

5-10-15-20-25-30-35-405-500-1000

SUBMÚLTIPLOS.- Los submúltiplos son todo lo contrario, son las divisiones

exactas de un número, (Aldape & Toral, 2005).

Por ejemplo :

Submúltiplos de 30:

6, 10, 5, 2, 3, etc.

Page 9: Portafolio Estadística Inferencial

8

MAGNITUDES FUNDAMENTALES Y DERIVADAS

LAS MAGNITUDES FUNDAMENTALES.- Una magnitud fundamental es

aquella que se define por sí misma y es independiente de las demás (masa,

tiempo, longitud, etc.).

LONGITUD: Es la medida del espacio o la distancia que hay entre

dos puntos. La longitud de un objeto es la distancia entre sus

extremos, su extensión lineal medida de principio a fin, (Serway &

Faughn, 2006).

MASA: Es la magnitud que cuantifica la cantidad de materia de un

cuerpo, (Serway & Faughn, 2006).

TIEMPO: Es la magnitud física que mide la duración o separación de

acontecimientos sujetos a cambio, de los sistemas sujetos a

observación, (Serway & Faughn, 2006).

INTENSIDAD DE CORRIENTE ELECTRICA: Se denomina

intensidad de corriente eléctrica a la cantidad de electrones que pasa

a través de una sección del conductor en la unidad de tiempo,

(Serway & Faughn, 2006).

TEMPERATURA: Es una magnitud referida a las nociones comunes

de calor o frío. Por lo general, un objeto más "caliente" tendrá una

temperatura mayor, (Serway & Faughn, 2006).

INTENSIDAD LUMINOSA: En fotometría, la intensidad luminosa se

define como la cantidad flujo luminoso, propagándose en una

dirección dada, que emerge, atraviesa o incide sobre una superficie

por unidad de ángulo solido, (Enríquez, 2002).

CANTIDAD DE SUSTANCIA: Su unidad es el mol. Surge de la

necesidad de contar partículas o entidades elementales

microscópicas indirectamente a partir de medidas macroscópicas

(como la masa o el volumen). Se utiliza para contar partículas,

(Enríquez, 2002).

Page 10: Portafolio Estadística Inferencial

9

MAGNITUDES DERIVADAS.- Son la que dependen de las magnitudes

fundamentales.

VELOCIDAD: Es la magnitud física que expresa la variación de

posición de un objeto en función del tiempo, o distancia recorrida por

un objeto en la unidad de tiempo, (Enríquez, 2002).

AREA: Área es la extensión o superficie comprendida dentro de una

figura (de dos dimensiones), expresada en unidades de medida

denominadas superficiales, (Enríquez, 2002).

VOLUMEN: Es una magnitud definida como el espacio ocupado por

un cuerpo, (Enríquez, 2002).

FUERZA: se puede definir como una magnitud vectorial capaz de

deformar los cuerpos (efecto estático), modificar su velocidad o

vencer su inercia y ponerlos en movimiento si estaban inmóviles,

(Enríquez, 2002).

TRABAJO: El trabajo, en mecánica clásica, es el producto de una

fuerza por la distancia que recorre y por el coseno del ángulo que

forman ambas magnitudes vectoriales entre sí, (Enríquez, 2002).

La unidad del trabajo es el JOULE.

ENERGIA: Es una magnitud física abstracta, ligada al estado

dinámico de un sistema y que permanece invariable con el tiempo en

los sistemas aislados. La unidad de la energía es el Joule, (Enríquez,

2002).

Page 11: Portafolio Estadística Inferencial

10

Figura Esquema Área Volumen

Cilindro

Esfera

Cono

Cubo

A = 6 a2 V = a3

Prisma

A = (perim. base •h) + 2 •

area base

V = área base

• h

Pirámid

e

Fórmulas de área y volumen de cuerpos geométricos

Page 12: Portafolio Estadística Inferencial

11

CONCLUSIONES

El sistema internacional de unidades es muy importante porque se

involucra en nuestra carrera permitiendo la relación económica con

otros países mediante comercio internacional y su negociación entre

ellos. como también la práctica de problemas del sistema

internacional de unidades nos ayudan a ver la realidad de nuestro

entorno de cómo podemos solucionar problemas al momento de

exportar una mercancía, que cantidad de materia prima,

electrodomésticos, enceres que actualmente se exporta en gran

cantidad, puede alcanzar dentro de un contenedor.

El sistema internacional de unidades nos ayudan a vincularnos en los

negocios, como realizar negociaciones en el exterior porque a través

de este sistema podemos indicar el volumen, área, del tipo de

trasporte el cual se va a exportar la mercancía, que cantidad de cajas

por ejemplo podemos enviar al exterior este sistema es muy

fundamental en la carrera de comercio exterior.

Recomendaciones

Se recomienda saber todas las medidas del sistema internacional de

unidades como también las magnitudes , longitud, masa y volumen de

las figuras geométrica para que nuestro producto o mercancía pueda

ser exportada al exterior, es necesario conocer debido a que nos

permitirá realizar una buena negociación conociendo la cantidad de

mercancía que puede introducirse en el transporte.

Es de mucha importancia, que como estudiantes de la carrera de

comercio exterior conozcamos las unidades básicas más utilizadas

que se encuentran presentes en el Sistema internacional para una

correcta aplicación en los ejercicios propuestos. La utilización de las

medidas del Sistema Internacional se presenta a nivel internacional y

por ende son aplicadas en el los negocios de Comercio Internacional

ya que permite una mejor movimiento e intercambio.

Page 13: Portafolio Estadística Inferencial

12

Page 14: Portafolio Estadística Inferencial

13

BIBLIOGRAFÍA

Aldape, A., & Toral, C. (2005). Matemáticas 2. México: PROGRESO S.A.

Altamirano, E. (2007).

Anderson, D. R. (2005). Estadística para Administración y Economía.

México: Cengage Learning.

Diaz, R. G. (2008). Unidades fundamentales .

Enríquez, H. (2002). Fundamentos de Electricidad. México: LIMUSA S.A.

Física, E. d. (1997). Brian Mckittrick. Madrid: Reverté S.A.

García, M. A. (2000). Estadística Avanzada con el Paquete Systat. Murcia:

I.S.B.N.

J.R, W. D. (20007). Ciencias e Ingenieria de las Materias .

Page 15: Portafolio Estadística Inferencial

14

Pineda, L. (2008). matematicas.

Rodrígues, M. E. (2001). Coeficientes de Asociación. México: Plaza y

Valdés.

Sabadías, A. V. (2001). Estadística Descriptiva e Inferencial . Murcia:

COMPOBELL.

Serway, R. A., & Faughn, J. S. (2006). FÍSICA para bachillerato general.

New York: THOMSON.

Weiers, R. M. (2006). Introducción a la Estadística para Negocios. México:

Learning Inc.

Willliams, T. A. (2008). Estadística para Administración y Economía. México:

Cengage Learning.

LINKOGRAFIA

http://www.sc.ehu.es/sbweb/fisica/unidades/unidades/unidades.htm

file:///K:/Tabla-de-Magnitudes-Unidades-Y-Equivalencias.htm

file:///K:/books.htm

file:///K:/volumenes/areas_f.html

file:///K:/cuerposgeoAreaVolum.htm

ANEXOS:

1.- Convertir 2593 Pies a Yardas.

Page 16: Portafolio Estadística Inferencial

15

2.- Convertir 27,356 Metros a Millas

3.- Convertir 386 Kilogramos a Libras.

4.- Convertir 2,352 Segundos a Año.

5.- Convertir 1.1 Millas/Hora a Metros/Segundo.

Page 17: Portafolio Estadística Inferencial

16

TRANSFORMACIONES

En muchas situaciones tenemos que realizar operaciones con magnitudes

que vienen expresadas en unidades que no son homogéneas. Para que los

cálculos que realicemos sean correctos, debemos transformar las unidades

de forma que se cumpla el principio de homogeneidad, (Ledanois & Ramos,

2002).

Por ejemplo, si queremos calcular el espacio recorrido por un móvil que se

mueve a velocidad constante de 72 Km/h en un trayecto que le lleva 30

segundos, debemos aplicar la sencilla ecuación S = v·t, pero tenemos el

problema de que la velocidad viene expresada en kilómetros/hora, mientras

que el tiempo viene en segundos. Esto nos obliga a transformar una de las

dos unidades, de forma que ambas sean la misma, para no violar el principio

de homogeneidad y que el cálculo sea acertado, (Ledanois & Ramos, 2002).

Para realizar la transformación utilizamos los factores de conversión.

Llamamos factor de conversión a la relación de equivalencia entre dos

unidades de la misma magnitud, es decir, un cociente que nos indica los

valores numéricos de equivalencia entre ambas unidades, (Ledanois &

Ramos, 2002).

EJERCICIOS REALIZADOS EN CLASE

Volumen 300 transformar en pulgadas 3

V= 100000

Page 18: Portafolio Estadística Inferencial

17

V= 100000

Q= 7200000

Vol. Paralelepípedo L x a x h

Vol. Cubo

Vol. Esfera

Vol. Cilindro

Vol. Pirámide

Área cuadrada

Área de un rectángulo B x h

Área de un circulo

Área de un triangulo

En una bodega tiene un largo de 60 m un ancho de 30 m cuantas cadjas de

manzana puede ubicar en esta bodega en estas cajas tiene 60cm de lado y

30 de ancho y 40 de altura.

Vol. de p bodega = l x a h = 60 x 30 x3 = 5400

Vol. De p caja = 60 x 30 x 40 = 72000

Page 19: Portafolio Estadística Inferencial

18

TRANSFORMACIÓN

X=

Un tanquero tiene una longitud de 17 m y un radio del tanque de 1.50 m.

¿Cuántos litros se puede almacenar en dicho tanque?.

RESOLUCION

VOL. CILINDRO =

VOL. CILINDRO= 3.1416 X (1.50 X (17)= 0 120.17

TRANSFORMACIÓN

120.17

Page 20: Portafolio Estadística Inferencial

19

SISTEMA INTERNACIONAL DE UNIDADES

LONGITUD

1 Km 1000 m

1 m 100 cm

1 cm 10 mm

1 milla 1609 m

1 m 1000 mm

MASA

1qq 100 lbs.

1 Kg 2.2 lbs.

1 qq 45.45 Kg

1 qq 1 arroba

1 arroba 25 lbs.

1 lb 454 g

1 lb 16 onzas

1 utm 14.8 Kg

1 stug 9.61 Kg

1 m 10 Kg

1 tonelada 907 Kg

ÁREA

100

1 10000

1 hectárea 10000

1 acre 4050

1 pie (30.48 cm

1 pie 900.29

1 10.76

Page 21: Portafolio Estadística Inferencial

20

COMENTARIO EN GRUPO:

Como comentario en grupo podemos decir que las transformaciones nos

servirá en la carrera del comercio exterior y además poder resolver

problemas que se presenten ya que al realizar ejercicios de cilindros y

tanque etc., y otras formas geométricas nos servirá para determinar cuántas

cajas o bultos, etc. que pueden alcanzar en una almacenera o en cada uno

de los contenedores esto nos servirá al realizar prácticas o al momento de

emprender nuestro conocimientos a futuro.

ORGANIZADOR GRAFICO:

Page 22: Portafolio Estadística Inferencial

21

LONGITUD

Observamos que desde los submúltiplos, en la parte inferior, hasta los

múltiplos, en la parte superior, cada unidad vale 10 veces más que la

anterior, (Riley & Sturges, 2004).

LONGITUD

1 KM 100 M

1 M 100M, 1000MM

1 MILLA 1609M

1 PIE 30,48CM, 0,3048M

1 PULGADA 2,54CM

1 AÑO LUZ 9,46X1015M

TIEMPO.

El tiempo es la magnitud física con la que medimos la duración o separación

de acontecimientos sujetos a cambio, de los sistemas sujetos a observación,

esto es, el período que transcurre entre el estado del sistema cuando éste

aparentaba un estado X y el instante en el que X registra una variación

perceptible para un observador (o aparato de medida). El tiempo ha sido

frecuentemente concebido como un flujo sucesivo de situaciones

atomizadas, (López, March, García, & Álvarez, 2004).

MEDIDAS DEL TIEMPO

1 AÑO 365 DIAS

1 MES 30 DIAS

1SEMANA 7 DIAS

1 DIA 24 HR

1 HORA 60 MIN,3600SEG

1 MINUTO 60 SEG.

MASA Y PESO.

La masa es la única unidad que tiene este patrón, además de estar en

Sevres, hay copias en otros países que cada cierto tiempo se reúnen para

ser regladas y ver si han perdido masa con respecto a la original. El

kilogramo (unidad de masa) tiene su patrón en: la masa de un cilindro

fabricado en 1880, compuesto de una aleación de platino-iridio (90 % platino

Page 23: Portafolio Estadística Inferencial

22

- 10 % iridio), creado y guardado en unas condiciones exactas, y que se

guarda en la Oficina Internacional de Pesos y Medidas en Seres, cerca de

París, (Hewitt, 2004).

PESO

De nuevo, atención a lo siguiente: la masa (la cantidad de materia) de cada

cuerpo es atraída por la fuerza de gravedad de la Tierra. Esa fuerza de

atracción hace que el cuerpo (la masa) tenga un peso, que se cuantifica con

una unidad diferente: el Newton (N), (Torre, 2007).

SISTEMA DE CONVERSION DE MASA

1 TONELADA

1000 KG

1 QQ 4 ARROBAS, 100 L

1 ARROBA 25 L

1 KG 2,2 L

1 SLUG 14,58 KG

1 UTM 9,8 KG

1 KG 1000 GR

1 L 454 GR, 16 ONZAS

Page 24: Portafolio Estadística Inferencial

23

TRABAJO # 2

Page 25: Portafolio Estadística Inferencial

24

Page 26: Portafolio Estadística Inferencial

25

Page 27: Portafolio Estadística Inferencial

26

Page 28: Portafolio Estadística Inferencial

27

Page 29: Portafolio Estadística Inferencial

28

Page 30: Portafolio Estadística Inferencial

29

Page 31: Portafolio Estadística Inferencial

30

Page 32: Portafolio Estadística Inferencial

31

Page 33: Portafolio Estadística Inferencial

32

CONCLUSIÓN:

La conversión de unidades es la transformación de una cantidad, expresada

en una cierta unidad de medida, en otra equivalente. Este proceso suele

realizarse con el uso de los factores de conversión y las tablas de

conversión del Sistema Internacional de Unidades.

Frecuentemente basta multiplicar por un factor de conversión y el resultado

es otra medida equivalente, en la que han cambiado las unidades.

Cuando el cambio de unidades implica la transformación de varias unidades

se pueden utilizar varios factores de conversión uno tras otro, de forma que

el resultado final será la medida equivalente en las unidades que buscamos.

Cuando se trabaja en la resolución de problemas, frecuentemente surge la

necesidad de convertir valores numéricos de un sistema de unidades a otro,

por lo cual es indispensable tener conocimientos sobre las equivalencias de

los diferentes sistemas de unidades que nos facilitan la conversión de una

unidad a otra, tomando en cuenta el país y la medida que se emplee en los

diferentes lugares.

RECOMENDACIÓN:

En toda actividad realizada por el ser humano, hay la necesidad de medir

"algo"; ya sea el tiempo, distancia, velocidad, temperatura, volumen,

ángulos, potencia, etc. Todo lo que sea medible, requiere de alguna unidad

con qué medirlo, ya que las personas necesitan saber qué tan lejos, qué tan

rápido, qué cantidad, cuánto pesa, en términos que se entiendan, que sean

reconocibles, y que se esté de acuerdo con ellos; debido a esto es

necesario tener conocimientos claros sobre el Sistema De Conversión De

Unidades pues mediante el entendimiento de este sistema o patrón de

referencia podremos entender y comprender con facilidad las unidades de

medida las cuales las podremos aplicar en la solución de problemas de

nuestro contexto.

Page 34: Portafolio Estadística Inferencial

33

CRONOGRAMA DE ACTIVIDADES:

MES DE MARZO-ABRIL

ACTIVIDADES M J V S D L M

Investigar sobre el Sistema Internacional de Unidades y la Áreas y volúmenes de diferentes figuras geométricas

X X

Ejecución del Formato del Trabajo X

Resumen de los textos investigados X X

Finalización del Proyecto X

Presentación del Proyecto X

BIBLIOGRAFIA

Enríquez, H. (2002). Fundamentos de Electricidad. México: LIMUSA S.A.

Física, E. d. (1997). Brian Mckittrick. Madrid: Reverté S.A.

García, M. A. (2000). Estadística Avanzada con el Paquete Systat. Murcia:

I.S.B.N.

Hewitt, P. G. (2004). Física Conceptual. México: Pearson Educación S.A.

J.R, W. D. (20007). Ciencias e Ingenieria de las Materias .

Ledanois, J. M., & Ramos, A. L. (2002). Magnitudes, Dimensiones y

Conversiones de Unidades. Caracas: EQUINOCCIO.

López, J. C., March, S. C., García, F. C., & Álvarez, J. M. (2004). Curso de

Ingeniería Química. Barcelona: REVERTÉ S.A.

Pineda, L. (2008). matematicas.

Riley, W. F., & Sturges, L. F. (2004). ESTÁTICA. Barcelona: REVERTÉ.

LINKOGRAFIA:

Page 35: Portafolio Estadística Inferencial

34

http://es.wikipedia.org/wiki/Magnitud_fundamental#Unidades_en_el_Siste

ma_Internacional_de_Unidades_.28SI.29

http://es.wikipedia.org/wiki/Superficie_%28matem%C3%A1tica%29

http://www.quimicaweb.net/ciencia/paginas/magnitudes.html

http://www.profesorenlinea.cl/geometria/VolumenCilindro.htm

http://mimosa.pntic.mec.es/clobo/geoweb/volum1.htm

http://www.sc.ehu.es/sbweb/fisica/unidades/unidades/unidades.htm

ANEXOS:

1.- Investigar las medidas de un tráiler, de una mula y de un camión sencillo,

además las medidas de las cajas de plátano, manzanas, quintales de papa y

arroz. Con esa información calcular el número de cajas y quintales que

alcanzan en cada uno de los vehículos.

TRAILER MULA CAMION SENCILLO

Largo 14.30m Largo 8.27m Largo 10.80m

Ancho 2.45m Ancho 2.50m Ancho 2.60m

Alto 2.6m Alto 1.44m. Alto 4.40m

Medidas de las cajas:

Medidas de las cajas de plátano

LARGO ANCHO ALTO

20cm 51cm 34cm

Medidas de las cajas de manzana

7.5cm 9.5cm 7.5cm

Page 36: Portafolio Estadística Inferencial

35

Desarrollo:

Page 37: Portafolio Estadística Inferencial

36

a.

1 caja de plátano-----------------911*10-05m3

X 91.09m3

b.

1 caja de manzana-----------------5.3*108m3

X 9.11*10-05m3

c.

Page 38: Portafolio Estadística Inferencial

37

1 qq de papa-----------------0.05m3

X 9.11*10-05m3

d.

1 qq de arroz-----------------0.05m3

X 9.11*10-05m3

e.

1 caja de plátano-----------------911*10-05m3

X 29.77m3

Page 39: Portafolio Estadística Inferencial

38

f.

1 caja de manzana-----------------5.3*108m3

X 29.77m3

g.

1 qq de papa-----------------0.05m3

X 29.77m3

.

h.

1 qq de arroz-----------------0.05m3

X 9.11*10-05m3

Page 40: Portafolio Estadística Inferencial

39

i.

1 caja de plátano-----------------911*10-05m3

X 123.55m3

j.

1 caja de manzana-----------------5.3*108m3

X 123.55m3

k.

1 qq de papa-----------------0.05m3

X 123.55m3

Page 41: Portafolio Estadística Inferencial

40

.

l.

1 qq de arroz-----------------0.05m3

X 123.55m3

.

Page 42: Portafolio Estadística Inferencial

41

CRONOGRAMA DE ACTIVIDADES DEL PRIMER CAPÍTULO:

Tiempo Actividades

MARZO ABRIL MAYO

SEMANAS SEMANAS SEMANAS

1 2 3 4 1 2 3 4 1 2 3 4

PRIMERA CLASE

Competencia especifica (27-Marzo-2012)

X

Introducción de la Materia (27-Marzo-2012)

x

SEGUNDA CLASE

Sistema Internacional de Unidades (03-Abril-2012)

X

Tarea Sistema Internacional de Unidades. Entregar el 10 de abril del

2012

X

TERCERA CLASE

Aplicación de transformaciones (17 de abril del 2012)

X

Tarea Ejercicios de aplicación acerca del Sistema Internacional de unidades según las transformaciones (24 de abril del 2012)

X

CUARTA CLASE

Evaluación primer capitulo (03 de Mayo del 2012)

x

Page 43: Portafolio Estadística Inferencial

42

Page 44: Portafolio Estadística Inferencial

43

Page 45: Portafolio Estadística Inferencial

44

CAPITULO II

MARCO TEORICO:

COEFICIENTE DE CORRELACIÓN Y REGRESIÓN LINEAL

La correlación estadística determina la relación o dependencia que existe entre las

dos variables que intervienen en una distribución bidimensional. Es decir,

determinar si los cambios en una de las variables influyen en los cambios de la

otra. En caso de que suceda, diremos que las variables están correlacionadas o

que hay correlación entre ellas.

Una medida estadística ampliamente utilizada que mide el grado de

relación lineal entre dos variables aleatorias. El coeficiente de correlación

debe situarse en la banda de -1 a +1. El coeficiente de correlación se

calcula dividiendo la covarianza de las dos variables aleatorias por el

producto de las desviaciones típicas individuales de las dos variables

aleatorias. Las correlaciones desempeñan un papel vital en la creación de

carteras y la gestión de riesgos, (Weiers, 2006).

Comentario:

A una correlación se la puede apreciar con un grupo de técnicas

estadísticas empleadas para medir la intensidad de dicha relación entre dos

variables, en donde se deben identificar la variable dependiente y la

independiente.

DIAGRAMA DE DISPERSIÓN

Representación gráfica del grado de relación entre dos variables cuantitativas.

Page 46: Portafolio Estadística Inferencial

45

Características principales

A continuación se comentan una serie de características que ayudan a

comprender la naturaleza de la herramienta.

Impacto visual

Un Diagrama de Dispersión muestra la posibilidad de la existencia de correlación

entre dos variables de un vistazo.

Comunicación

Simplifica el análisis de situaciones numéricas complejas.

Guía en la investigación

El análisis de datos mediante esta herramienta proporciona mayor información que

el simple análisis matemático de correlación, sugiriendo posibilidades y

alternativas de estudio, basadas en la necesidad de conjugar datos y procesos en

su utilización, (García, 2000).

Comentario:

El diagrama de dispersión sirve para una representación gráfica más fácil y

útil cuando se quiere describir el comportamiento de un conjunto de dos

variables, en donde aparece representado como un punto en el plano

cartesiano.

COEFICIENTE DE CORRELACIÓN RECTILINEA DE PEARSON

En estadística, el coeficiente de correlación de Pearson es un índice que mide la

relación lineal entre dos variables aleatorias cuantitativas. A diferencia de la

covarianza, la correlación de Pearson es independiente de la escala de medida de

las variables.

Page 47: Portafolio Estadística Inferencial

46

De manera menos formal, podemos definir el coeficiente de correlación de

Pearson como un índice que puede utilizarse para medir el grado de relación de

dos variables siempre y cuando ambas sean cuantitativas.

El coeficiente de correlación es una medida de asociación entre dos

variables y se simboliza con la literal r; los valores de la correlación van de

+ 1 a - 1, pasando por el cero, el cual corresponde a ausencia de

correlación. Los primeros dan a entender que existe una correlación

directamente proporcional e inversamente proporcional, respectivamente,

(Willliams, 2008).

Comentario:

El coeficiente de correlación de Pearson nos da una idea de que tan

relacionadas están dos variables, este número varía entre 0 y 1; si el

coeficiente es > 0.9, entonces es una buena correlación y cuando un

coeficiente es < 0.3 indica que las variables no están correlacionadas entre

ellas y por lo que el 1 representa una correlación perfecta.

INTERPRETACIÓN DE UN COEFICIENTE DE CORRELACIÓN

El coeficiente de correlación como previamente se indicó oscila entre –1 y +1

encontrándose en medio el valor 0 que indica que no existe asociación lineal entre

las dos variables a estudio. Un coeficiente de valor reducido no indica

necesariamente que no exista correlación ya que las variables pueden presentar

una relación no lineal como puede ser el peso del recién nacido y el tiempo de

gestación. En este caso el r infraestima la asociación al medirse linealmente. Los

métodos no paramétrico estarían mejor utilizados en este caso para mostrar si las

variables tienden a elevarse conjuntamente o a moverse en direcciones diferentes.

Como ya se ha planteado el grado de correlación mide la intensidad de

relación lineal, ya sea directa, inversa o inexistente entre dos variables, se

Page 48: Portafolio Estadística Inferencial

47

dice que es directa si tiene signo positivo, inversa de signo negativo y nula

cuando el valor sea aproximadamente igual a cero, (Anderson, 2005).

Comentario:

El coeficiente de correlación mide solo la relación con una línea recta, dos

variables pueden tener una relación curvilínea fuerte, a pesar de que su

correlación sea pequeña; por lo tanto cuando analicemos las relaciones

entre dos variables debemos representarlas gráficamente y posteriormente

calcular el coeficiente de correlación para un mejor entendimiento.

FORMULA

REGRESIÓN LINEAL SIMPLE

Elegida una de las variables independientes y representadas los valores de la

variable bidimensional, si observamos que la función que mejor se adapta a la

forma de la nube de puntos es una recta, tendremos un problema de regresión

lineal. Si hemos elegido el carácter X como variable independiente, tendremos a la

recta de regresión de Y sobre X. Si elegimos Y como variable independiente, se

obtendrá la recta de regresión de X sobre Y.

Regresión Lineal Simple.- suponga que tenemos una única variable respuesta

cuantitativa Y, y una única variable predictora cuantitativa X. Para estudiar la

relación entre estas dos variables examinaremos la distribución condicionales de Y

dado X=x para ver si varían cuando varia x. (MORER, 2004)

Page 49: Portafolio Estadística Inferencial

48

COMENTARIO:

Podemos concluir diciendo que una de las variables independientes y

representadas los valores que mejor se adapta a la forma de la nube de

puntos es una recta, tendremos un problema de regresión lineal. A demás

el hecho de entender de que se trata una regresión lineal y saberla aplicar

relacionando dos variables nos será de mucha ayuda en nuestro futuro ya

que nos permitirá aplicar lo aprendido en problemas reales que se nos

presenten en nuestra vida profesional como por ejemplo el saber que tan

buena resulta una relación entre exportaciones e importaciones que el

Ecuador ha realizado y así con esto poder tomar decisiones.

CORRELACIÓN POR RANGOS

Cuando se obtienen datos en parejas, tales como observaciones de dos variables

para un mismo individuo, deseamos conocer si las dos variables están

relacionadas o no y de estarlo, el grado de asociación entre ellas.

Correlación Por Rangos.- Este coeficiente de Sperman, es muy utilizado en

investigaciones de mercado, especialmente cuando no se deben aplicar medidas

cuantitativas para ciertas características cualitativas, en aquellos casos , en donde

se pueden aplicar ambos coeficientes de correlación, encontraremos que sus

resultados son bastante aproximados. (BENCARDINO, 2006)

COMENTARIO:

Son datos en pareja para poder conocer la relación que existe entre ellas

para un solo individuo en común, y medir el grado de asociación entre ellas.

Esto es muy interesante ya que en un futuro nos ayudara en lo que nos

vamos a desarrollar que es un ambiente de negocios, ya que podemos

aplicar esta técnica estadística aprendida, y así poder solucionar problemas

que se nos presenten comúnmente y saber que tan buena es la relación

Page 50: Portafolio Estadística Inferencial

49

entre las dos variables propuestas es decir nos ayudara mucho ya que nos

dará una idea de que tan relacionadas linealmente están dos variables y si

su relación es positiva o negativa.

RANGO

La diferencia entre el menor y el mayor valor. En {4, 6, 9, 3, 7} el menor valor es 3,

y el mayor es 9, entonces el rango es 9-3 igual a 6. Rango puede significar

también todos los valores de resultado de una función.

Rango.- es una categoría que puede aplicarse a una persona en función de su

situación profesional o de su status social. Por ejemplo: “Tenemos que respetar el

rango del superior a la hora de realizar algún pedido”, “Diríjase a mi sin olvidar su

rango o será sancionado. (MORER, 2004)

COMENTARIO:

Rango es el valor que se diferencia entre el menor y el mayor valor. Rango

puede significar también todos los valores de resultado de una función, y se

puede así relacionar y correlacionar a dos variables para obtener resultados

que nos ayudan a la toma de decisiones. A demás un rango es importante

ya que nos permite la obtención de datos más exactos y pues con esto

nuestro trabajo se entonara de forma más real y sobre todo de forma más

precisa, y por ende tomaremos decisiones más acertadas.

COMENTARIO GENERAL:

La correlación y regresión lineal están estrechamente relacionadas entre si las

cuales nos ayudan a comprender el análisis de los datos muéstrales para saber

qué es y cómo se relacionan entre sí dos o más variables en una población que

deseemos estudiar para así poder determinar posibles resultados que nos darán

Page 51: Portafolio Estadística Inferencial

50

en un estudio de mercado por ejemplo ya que nuestra carrera de comercio exterior

está muy relacionada con ese ámbito.

La regresión lineal por otro lado nos permitirá graficar las dos variables a estudiar

determinando su situación y si es conveniente o no desarrollar lo propuesto o

investigado. La finalidad de una ecuación de regresión seria estimar los valores de

una variable con base en los valores conocidos de la otra.

Es decir en resumen que nos permitirá tomar decisiones acertadas dentro de un

estudio ya sea en una población que determinara el éxito o fracaso entre dos

variables a estudiar, y facilitara la recolección de información.

ORGANIZADOR GRAFICO:

Page 52: Portafolio Estadística Inferencial

51

TRABAJO #3

CORRELACION Y REGRESION

LINEAL

ayuda a la toma de decisiones segun lo

resultante en la aplicacion de estos

grupodetécnicasestadísticasusadasparamedirlafuerzadelaasociaciónentredosvaria

bles

se ocupa de establecer si existe

una relación así como de determinar su

magnitud y dirección mientras que la

regresión se encarga principalmente de

utilizar a la relación para efectuar una

predicción. determinar posibles resultados como por ejemplo del exito en

un estudi de mercado

permite evaluar decisiones que se

tomen en una poblacion

herramienta basica para estudios y

analisis que pueden determinar el exito o

fracaso entre dos opciones

Page 53: Portafolio Estadística Inferencial

52

Page 54: Portafolio Estadística Inferencial

53

Page 55: Portafolio Estadística Inferencial

54

Page 56: Portafolio Estadística Inferencial

55

Page 57: Portafolio Estadística Inferencial

56

Page 58: Portafolio Estadística Inferencial

57

Page 59: Portafolio Estadística Inferencial

58

Page 60: Portafolio Estadística Inferencial

59

Page 61: Portafolio Estadística Inferencial

60

Page 62: Portafolio Estadística Inferencial

61

Page 63: Portafolio Estadística Inferencial

62

Page 64: Portafolio Estadística Inferencial

63

Page 65: Portafolio Estadística Inferencial

64

Page 66: Portafolio Estadística Inferencial

65

Page 67: Portafolio Estadística Inferencial

66

Page 68: Portafolio Estadística Inferencial

67

Page 69: Portafolio Estadística Inferencial

68

Page 70: Portafolio Estadística Inferencial

69

Page 71: Portafolio Estadística Inferencial

70

Page 72: Portafolio Estadística Inferencial

71

Page 73: Portafolio Estadística Inferencial

72

Page 74: Portafolio Estadística Inferencial

73

Page 75: Portafolio Estadística Inferencial

74

Page 76: Portafolio Estadística Inferencial

75

Page 77: Portafolio Estadística Inferencial

76

Page 78: Portafolio Estadística Inferencial

77

Page 79: Portafolio Estadística Inferencial

78

Page 80: Portafolio Estadística Inferencial

79

Page 81: Portafolio Estadística Inferencial

80

Page 82: Portafolio Estadística Inferencial

81

Page 83: Portafolio Estadística Inferencial

82

CRONOGRAMA DE ACTIVIDADES:

Actividad

Días

Responsable

Mar, 08 Mié, 09 Jue, 10 Vie,11 Sáb,12 Dom,13 Lun,14 Mar,15 Mié,16 Jue,17

Copias Tamara

Apraez, Diana

Coral, Diana

García, Tania

Herrera.,

Janeth Reina

Iniciar con

los

ejercicios

Tamara

Apraez, Diana

Coral, Diana

Garcia, Tania

Herrera.,

Janeth Reina

Terminar los

ejercicios

Tamara

Aprez, Diana

Coral, Diana

García, Tania

Herrera.,

Janeth Reina

Prueba Tamara

Aprez, Diana

Coral, Diana

Garcia, Tania

Herrera.,

Janeth Reina

Page 84: Portafolio Estadística Inferencial

83

ANEXOS:

Ejemplo 1:

La siguiente tabla representa las puntuaciones de 7 sujetos en dos variables X e

Y.

X: 6 3 7 5 4 2 1

Y: 7 6 2 6 5 7 2

Calcule:

a. El coeficiente de correlación de Pearson entre X e Y

b. La recta de regresión de Y sobre X en puntuaciones directas

c. La varianza de Y ( ), la varianza de las puntuaciones pronosticadas ( )

y la varianza error (

a)

X Y XY X2 Y2

6 3 7 5 4 2 1

7 6 2 6 5 7 2

42 18 14 30 20 14 2

36 9

49 25 16 4 1

49 36 4

36 25 49 4

28 35 140 140 203

Page 85: Portafolio Estadística Inferencial

84

b)

c)

Ejemplo 2:

Se tienen los datos conjuntos de dos variables, X e Y, con los valores que se

muestran en la tabla:

X: 1; 3; 5; 7; 9; 11; 13

Y: 1; 4; 6; 6; 7; 8; 10

a. Si utilizamos la variable X como predictora de la variable Y, ¿qué porcentaje

de variabilidad de Y no puede ser explicada por la variabilidad de X?.

b. ¿Qué valor pronosticaríamos en la variable Y, si en la variable X obtenemos

un valor de 10?

c. Suponiendo que no dispusiéramos de la información relativa a la variable X,

¿qué valor pronosticaríamos para la variable Y? (Razone su respuesta).

Page 86: Portafolio Estadística Inferencial

85

a) Completamos la siguiente tabla:

X Y XY X2 Y2

1 1 1 1 1

3 4 12 9 16

5 6 30 25 36

7 6 42 49 36

9 7 63 81 49

11 8 88 121 64

13 10 130 169 100

49 42 366 455 302

El cuadrado del coeficiente de correlación (coeficiente de determinación) se

interpreta como proporción de varianza de la variable Y que se explica por las

variaciones de la variable X. Por tanto: es la proporción de varianza no

explicada. Esta proporción multiplicada por 100 es el tanto por ciento o porcentaje.

b) Aplicamos la ecuación de regresión de Y sobre X: Y= b.X + a. Siendo b la

pendiente y ala ordenada cuyas expresiones aparecen entre paréntesis.

Page 87: Portafolio Estadística Inferencial

86

c) Le pronosticaríamos la media, porque no disponiendo información de la variable

X es con el que cometemos menos error de pronóstico.

Ejemplo 3:

Elección de la prueba estadística para medir la asociación o correlación. Las

edades en días están en escala de tipo intervalo, tenemos dos variables, entonces

aplicamos esta prueba.

Objetivo: Conocer qué grado de asociación existe entre la edad y peso corporal de

niños de edades desde el nacimiento hasta los 6 meses.

Hipótesis.

Entre las observaciones de edad de los niños y peso corporal existe correlación

significativa.

Ho. Entre las observaciones de edad de los niños y pero corporal no existe

correlación significativa.

Page 88: Portafolio Estadística Inferencial

87

Ejemplo 4:

Se ha evaluado a 7 sujetos su inteligencia espacial (variable X) y sus

puntuaciones fueron: 13, 9, 17, 25, 21, 33, 29. Además se les pidió a los sujetos

que reconocieran un conjunto de figuras imposibles (variable Y). Después de

calcular la ecuación de regresión para pronosticar Y a partir de X, se sabe que

Page 89: Portafolio Estadística Inferencial

88

para una puntuación típica de 1,2 en X se pronosticaría una puntuación típica de

0,888 en Y. También se sabe que la desviación típica de las puntuaciones

pronosticadas para Y es 11,1. Con estos datos calcular:

a. El coeficiente de correlación de Pearson entre X e Y

Sujeto Xi

1 13 169

2 9 81

3 17 289

4 25 625

5 21 441

6 33 1089

7 29 841

Sumatorio 147 3535

a. La ecuación de regresión en puntuaciones diferenciales para pronosticar Y

a partir de X

Page 90: Portafolio Estadística Inferencial

89

a. La varianza de los errores del pronóstico.

Ejemplo 5:

De dos variables X e Y, y para un grupo de 5 sujetos, se saben los siguientes

datos que se muestran en la tabla:

Calcular:

a) Recta de regresión de Y sobre X en puntuaciones directas.

Page 91: Portafolio Estadística Inferencial

90

b) Coeficiente de correlación de Pearson entre X e Y

c) La varianza de las puntuaciones pronosticadas.

EJEMPLO 6:

Se desea importar desde el país de Colombia transformadores eléctricos. El

Ecuador tiene las cotizaciones de cinco empresa diferentes, y se hace el análisis

de cual empresa es la más conveniente, y las unidades que se va a vender en el

país de importación.

Empresas

Valor de los transformadores

x

Unidades posibles a vender

y

X2

Y2

XY

1

2

3

4

5

1800

1500

1200

900

850

100

98

80

62

58

3.240.000

2.250.000

1.440.000

810.000

722.500

10.000

9.604

6.400

3.844

3.364

180.000

147.000

96.000

55.800

49.300

∑x = 6.250 ∑y = 398 ∑x2=8.462.500 ∑y2=33.212 ∑xy=

528.100

Fórmula:

Page 92: Portafolio Estadística Inferencial

91

Análisis: si se obtiene ese porcentaje se puede lograr una venta exitosa para la

empresa importadora.

EJEMPLO 7:

Se desea importar desde el país de Colombia transformadores eléctricos. El

Ecuador tiene las cotizaciones de cinco empresa diferentes, y se hace el análisis

de cual empresa es la más conveniente, y las unidades que se va a vender en el

país de importación.

Page 93: Portafolio Estadística Inferencial

92

Empresas

Valor de los transformadores

x

Unidades posibles a vender

y

X2

Y2

XY

1

2

3

4

5

1800

1500

1200

900

850

100

98

80

62

58

3.240.000

2.250.000

1.440.000

810.000

722.500

10.000

9.604

6.400

3.844

3.364

180.000

147.000

96.000

55.800

49.300

∑x = 6.250 ∑y = 398 ∑x2=8.462.500 ∑y2=33.212 ∑xy=

528.100

Fórmula:

Análisis: si se obtiene ese porcentaje se puede lograr una venta exitosa para la

empresa importadora.

Page 94: Portafolio Estadística Inferencial

93

EJEMPLO 8:

La empresa MIDECAR ha clasificado como mercancías de mayor responsabilidad

las mercancías peligrosas y frágiles obteniendo así los siguientes datos

mensuales sobre las toneladas de mercancías que ingresan sobre este tipo:

MESES Mercancías

Peligrosas

Mercancías

Frágiles

x y x^2 y^2 xy

Enero 189 85 35721 7225 16065,00

Febrero 105 96 11025 9216 10080,00

Marzo 125 78 15625 6084 9750,00

Abril 116 48 13456 2304 5568,00

Mayo 124 98 15376 9604 12152,00

659 405 91203 34433 53615

Page 95: Portafolio Estadística Inferencial

94

Page 96: Portafolio Estadística Inferencial

95

La relación que existe dentro de las mercancías frágiles y peligrosas tiende a

positiva como lo demuestra el resultado numérico coma la formula y al grafica

respecto al eje x y eje y.

EJEMPLO 9:

3. De una determinada empresa Exportadora de Plátano se conocen los

siguientes datos, referidos al volumen de ventas (en millones de dólares) y al

gasto en publicidad ( en miles de dólares) de los últimos 6 años:

a) ¿Existe relación lineal entre las ventas de la empresa y sus gastos en

publicidad?

Page 97: Portafolio Estadística Inferencial

96

ANALISIS: En este caso r es 0.304 por tanto existe correlación ordinal positiva y

es imperfecta, es decir a mayor gasto en publicidad mayor volumen de ventas.

EJEMPLO 10:

La empresa FERRERO desea importar nueces desde Colombia por lo cual no

está seguro que empresa de transporte contratar para la mercancía de acuerdo a

esto esta empresa decide verificar los rendimientos que han tenido estas

empresas en el transporte por lo cual ha hecho una investigación de mercado y a

obtenido los siguientes resultados.

Page 98: Portafolio Estadística Inferencial

97

EMPRESAS DE

TRANSPORTE

CALIDAD DE

SERVICIO (X)

RENDIMIENTO

(Y)

XY

TRANSCOMERINTER

TRANSURGIN

TRANSBOLIVARIANA

SERVICARGAS

19

17

16

14

46

44

40

30

361

289

256

196

2116

1936

1600

900

874

748

640

420

66 160 1102 6552 2682

r

r=

r= 0,038

Es una relación positiva pero se podría decir que la empresa no podrá depender

de las dos variables ya que no son muy dependientes el uno del otro.

Page 99: Portafolio Estadística Inferencial

98

EJEMPLO 11:

Se está efectuando un proyecto de investigación en una empresa para determinar

si existe relación entre los años de servicio y la eficiencia de un empleado. El

objetivo de estudio fue predecir la eficiencia de un empleado con base en los años

de servicio. Los resultados de la muestra son:

0

1

2

3

4

5

6

7

0 5 10 15 20 25

Empleados

Años de Servicio

“X”

Puntuación de eficiencia

“Y”

XY

X2

Y2 Y` A 1 6 6 1 36 3.23 B 20 5 100 400 25 4.64 C 6 3 18 36 9 3.61 D 8 5 40 64 25 3.77

E 2 2 4 4 4 3.31

F 1 2 2 1 4 3.23 G 15 4 60 225 16 4.30 H 8 3 24 64 9 3.77

61 30 254 795 128

Page 100: Portafolio Estadística Inferencial

99

r = .3531

DESVIACIÓN ESTÁNDAR

b = 202 = .0765

2639

a = 3.75 - .0765 (7.625) = 3.16

( y - y )2 ( y - y´ )2

5.0625 7.6729

1.5625 0.0961

0.5625 0.3721

1.5625 1.5129

3.0625 1.7161

3.0625 1.5129

Page 101: Portafolio Estadística Inferencial

100

0.0625 0.09

0.5625 0.5929

r2 = 15.5 - 13.5659 = 0.1247 = 0.1247

EJEMPLO 12:

Un analista de operaciones de comercio exterior realiza un estudio para analizar la

relación entre la producción y costos de fabricación de la industria electrónica. Se

toma una muestra de 10 empresas seleccionadas de la industria y se dan los

siguientes datos:

EMPRESA MILES DE

UNIDADES x MILES DE

$ y XY X2 Y2

A 40 150 6000 1600 22500

B 42 140 5880 1764 19600

C 48 160 7680 2304 25600

D 55 170 9350 3025 28900

E 65 150 9750 4225 22500

F 79 162 12798 6241 26244

G 88 185 16280 7744 34225

H 100 165 16500 10000 27225

I 120 190 22800 14400 36100

J 140 185 25900 19600 34225

Σx 777 Σy 1657 Fxy 132938 Σx2 70903 Σy 2 277119

Page 102: Portafolio Estadística Inferencial

101

r = 1´329,380 - 1´287,489 =

[709030 - 603729][2771190 - 2745949]

r = ___41891 = r= _41891__ = 0.8078

(105301) (25541) 51860.32

DESVIACION ESTANDAR

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160

Page 103: Portafolio Estadística Inferencial

102

Syx = (277119) - 134.7909 (1657) - (.3978) (132.938)

10 - 2

Syx = 10.53

MARCO TEORICO:

CORRELACIÓN Y REGRESIÓN LINEAL

La correlación y la regresión están muy relacionadas entre sí. Ambas implican la

relación entre dos o más variables. La correlación se ocupa principalmente. De

establecer si existe una relación, así como de determinar su magnitud y dirección,

mientras que la regresión se encarga principalmente de utilizar a la relación. En

este capítulo analizaremos la correlación y más adelante la regresión lineal

Relaciones;

La correlación se ocupa de establecer la magnitud y la dirección de las relaciones.

Analizaremos algunas características importantes generales de estas con las que

comprenderemos mejor este tema.

Relaciones lineales:

Veamos una relación lineal entre dos variable. La siguiente tabla nos muestra el

salario mensual que percibieron cinco agentes de ventas y el valor en dólares de

las mercancías vendidas por cada uno de ellos en ese mes.

Page 104: Portafolio Estadística Inferencial

103

Agente variable X mercancía vendida ($) Y variable salario ($)

1 0 500

2 1000 900

3 2000 1300

4 3000 1700

5 4000 2100

Podemos analizar mejor la relación entre estas variables. Si trazamos una grafica

trazamos los valores XyY, para cada agente de ventas, como los puntos de dicha

grafica. Sería una grafica de dispersión o de dispersigrama.

La grafica de dispersión para los datos de los agentes de ventas aparece en el

cuadro.

Una relación lineal.- entre dos variables, es aquella que puede representarse con

la mejor exactitud mediante una línea recta.

Problema de que ambos tienen escalas muy diferentes. Como mencionamos

anteriormente podemos resolver esta dificultad al convertir cada calificación en su

valor Z transformado, lo cual colocaría a ambas variables en la misma escala, en

la escala Z.

Para apreciar la utilidad de los puntajes Z en la determinación de la correlación,

consideremos el siguiente ejemplo. Supongamos que el supermercado de su

barrio está vendiendo naranjas, las cuales ya están empacadas; cada bolsa tiene

marcado el precio total. Ud. quiere saber si existe una relación entre el peso de las

naranjas de cada bolsa y su costo. Como Ud. Es investigador nato, elige al azar

seis bolsas y la pesa, de hecho están relacionadas estas variables. Existe una

correlación positiva perfecta entre el costo y el peso de las naranjas. Asi el

coeficiente de correlación debe ser igual a + 1.

Para utilizar esta ecuación primero hay que convertir cada puntaje en bruto en su

valor transformado. Esto puede tardar mucho tiempo y crear errores de redondeo

Page 105: Portafolio Estadística Inferencial

104

con alguna algebra, esta ecuación se puede transformar en una ecuación de

cálculo que utilice datos en bruto:

Ecuación para el cálculo de la r de pearson

r

Donde es la suma de los productos de cada pareja XyY

también se llama la suma de los productos cruzados.

Datos hipotéticos a partir de cinco sujetos:

SUBJETIVO X Y X2 Y2 XY

A 1 2 1 4 2

B 3 5 9 25 15

C 4 3 16 9 12

D 6 7 36 49 42

E 7 5 49 25 35

TOTAL 21 22 111 112 106

Page 106: Portafolio Estadística Inferencial

105

r

r

PROBLEMA DE PRÁCTICA:

Tenemos una relación lineal imperfecta y estamos interesados en calcular la

magnitud y dirección de la magnitud y dirección de la relación mediante la r

Pearson.

# de

estudiantes

IQ

(promedio de

calificaciones)

Promedio

de datos

Y

X2 Y2 XY

1 2 3 4 5 6 7 8 9

10 11 12

TOTAL

110 112 118 119 122 125 127 130 132 134 136 138

1503

1.0 1.6 1.2 2.1 2.6 1.8 2.6 2.0 3.2 2.6 3.0 3.6

27.3

12.100 12.544 13.924 14.161 14.884 15.625 16.129 16.900 17.424 17.956 18.496 19.044

189.187

1.00 2.56 1.44 4.41 6.76 3.24 6.76 4.00

10.24 6.76 9.00

12.96 69.13

110.0 179.2 141.6 249.9 317.2 225.0 330.2 260.0 422.4 384.4 408.0 496.8

3488.0

Page 107: Portafolio Estadística Inferencial

106

r

r

Una segunda interpretación de la r de pearson es que también se puede

interpretar en términos de la variabilidad de Y explicada por medio de X. este

punto de vista produce más información importante acerca de r y la relación entre

X y Y en este ejemplo la variable X representa una competencia de ortografía y la

variable Y la habilidad de la escritura de seis estudiantes de tercer grado. Suponga

que queremos que queremos predecir la calificación de la escritura de Esteban, el

estudiante cuya calificación en ortografía es de 88.

Para calcular la r de Pearson para cada conjunto. Observe que en el conjunto B,

donde la correlación es menor, a algunos de los valores

r=

Son positivos y otros son negativos. Estos tienden a cancelarse entre si, lo

cual hace que r tenga una menor magnitud. Sin embargo, en los conjuntos A y C

todos los productos tienen el mismo signo, haciendo que la magnitud de r

aumente. Cuando las parejas de datos ocupan las mismas u opuestas posiciones

Page 108: Portafolio Estadística Inferencial

107

dentro de sus propias distribuciones, los productos tienen el mismo signo, la

cual produce una mayor magnitud de r

Calculando r utilizando para el conjunto B, utilizando la ecuación para los datos en bruto

¿Qué quiere utilizar la ecuación de los datos en bruto o la los puntajes z?

Sume la constante 5 de los datos X en el conjunto A y calcule r de nuevo, mediante la

ecuación de datos en bruto ¿ha cambiado el valor?

Construya una grafica de dispersión para las parejas de datos.

Sería justo decir que este es un examen confiable

Un grupo de investigadores a diseñado un cuestionario sobre la tensión, consistente en

quince sucesos. Ellos están interesados en determinar si existe una coincidencia entre

dos culturas acerca de la cantidad relativa de ajustes que acarrea cada suceso. El

cuestionario se aplica a 300 estadounidenses y 300 italianos. Cada individuo debe utilizar

el evento “matrimonio” como estándar y juzgar los demás eventos en relación con el

ajuste necesario para el matrimonio recibe un valor arbitrario de 50 puntos. Si se

considera un evento requiere de más ajustes que el matrimonio, el evento debe recibir

más de 50 puntos. el número de puntos excedentes depende de la cantidad de ajustes

requeridos. Después de cada sujeto de cada cultura ha asignado de puntos a todos los

eventos, se promedian los puntos de cada evento. Los resultados aparecen en la

siguiente tabla.

EVENTOS

ESTADOUNIDENSES

ITALIANOS

Muerte de la esposa 100 80

Divorcio 73 95

Separación de la pareja 65 85

Temporada en prisión 63 52

Lesiones personales 53 72

Matrimonio 50 50

Page 109: Portafolio Estadística Inferencial

108

Despedido del trabajo 47 40

Jubilación 45 30

Embarazo 40 28

Dificultades sexuales 39 42

Reajustes económicos 39 36

Problemas con la

familia política

29 41

Problemas con el jefe 23 35

Vacaciones 13 16

Navidad 12 10

a. Suponga que los datos tienen al menos una escala de intervalo y calcule la

correlación entre los datos de los estadounidenses y la de los italianos

b. Suponga que los datos solo tienen una escala ordinal y calcule la correlación entre

los datos de ambas culturas

INDIVIDUO EXAMEN CON

LÁPIZ Y PAPEL

PSIQUIATRA

A

PSIQUIATRA

B

1 48 12 9

2 37 11 12

3 30 4 5

4 45 7 8

5 31 10 11

6 24 8 7

7 28 3 4

Page 110: Portafolio Estadística Inferencial

109

8 18 1 1

9 35 9 6

10 15 2 2

11 42 6 10

12 22 5 3

un Psicólogo ha construido un examen lápiz-papel, a fin de medir la depresión. Para

comparar los datos de los exámenes con los datos de los expertos, 12 individuos “con

perturbaciones emocionales” realizan el examen lápiz-papel. Los individuos son

calificados de manera independiente por los dos psiquiatras, de acuerdo con el grado de

depresión determinado para cada uno como resultado de las entrevistas detalladas. Los

datos aparecen a continuación.

Los datos mayores corresponden a una mayor depresión.

a. ¿Cuál es la correlación de los datos de los dos psiquiatras?

b. ¿Cuál es la correlación sobre las calificaciones del examen de lápiz y papel de

cada psiquiatra?

Para este problema, suponga que Ud. Es un psicólogo que labora en el departamento de

recursos humanos de una gran corporación. El presidente de la compañía acaba de

hablar con Ud. Acerca de la importancia de contratar personal productivo en la sección de

manufactura de la empresa y le ha pedido que ayude a mejorar la capacidad de la

institución para hacer esto. Existen 300 empleados en esta sección y cada obrero fabrica

el mismo artículo. Hasta ahora la corporación solo ha recurrido a entrevistas para elegir a

estos empleados. Ud. Busca bibliografía y descubre dos pruebas de desempeño lápiz y

papel, bien estandarizadas y piensa que podrían estar relacionadas con los requisitos de

desempeño de esta sección. Para determinar si alguna de ellas se puede usar como

dispositivo de selección elige a 10 empleados representativos de la sección de la

manufactura, garantizando que una amplio rango de desempeño quede representado en

Page 111: Portafolio Estadística Inferencial

110

la muestra y realiza las dos pruebas con cada empleado por semana, promediando

durante los últimos seis meses.

Desempeño

en el

trabajo

Examen 1

Examen 2

1

50

10

25

2

74

19

35

3

62

20

40

4

90

20

49

5

98

21

50

6

52

14

29

7

68

10

32

8

80

24

44

9

88

16

46

10

76

14

35

CORRELACIÓN

4.1.1. TÉCNICAS DE CORRELACIÓN

En los capítulos anteriores, ustedes estudiaron las distribuciones de una sola

variable. A continuación abordaremos el estudio de dos variables y no solamente

de una. Particularmente estudiaremos qué sentido tiene afirmar que dos variables

están relacionadas linealmente entre si y cómo podemos medir esta relación

lineal.

4.1.2. RELACIONES LINEALES ENTRE VARIABLES

Supongamos que disponemos de dos pruebas siendo una de ellas una prueba de

habilidad mental y otra una prueba de ingreso a la Universidad. Seleccionemos

cinco estudiantes y presentemos en la tabla Nº 4.1.1 los puntajes obtenidos en

estas dos pruebas.

Page 112: Portafolio Estadística Inferencial

111

Tabla Nº 4.1.1

Estudiantes X

Prueba de habilidad

mental

Y

Examen de Admisión

María 18 82

Olga 15 68

Susana 12 60

Aldo 9 32

Juan 3 18

La tabla nos dice que si podemos hacer tal suposición ya que los estudiantes con

puntajes altos en la prueba de habilidad mental tienen también un puntaje alto en

el examen de admisión y los estudiantes con puntaje bajo en la prueba de

habilidad mental. Tienen también bajo puntajes en el examen de admisión. En

circunstancia como la presente (cuando los puntajes altos de una variable están

relacionados con los puntajes altos de la otra variable y los puntajes) afirmaríamos

que hay una relación lineal positiva entre las variables, entonces podemos definir

una relación lineal positiva entre ese conjunto de pares valores X y Y, tal la

muestra la tabla N º 4.1.1

Supongamos que en lugar de los resultados de la tabla Nº 4.1.1, hubiéramos

obtenido los puntajes que se muestran en la tabla Nº 4.1.2 ¿podríamos afirmar

que en esta situación los puntajes de la prueba de habilidad mental pueden usarse

para pronosticar los puntajes del examen de admisión? También, aunque en este

caso mostramos una relación contraria a la que ocurre en la realidad ya que los

sujetos con puntajes altos en el test de habilidad mental aparecen con puntajes

bajos en el examen de admisión y los sujetos con puntajes bajos en el test de

habilidad mental presentan los puntajes altos en el examen de admisión, entonces

Page 113: Portafolio Estadística Inferencial

112

podemos definir una relación lineal negativa entre un conjunto de pares valores X

y Y (tal como en la tabla Nº 4.1.2) es decir, los puntajes altos de X están

apareados con los puntajes bajos de Y y los puntajes bajos de X están apareados

con los puntajes de Y.

Tabla Nº 4.1.2

Estudiantes X Prueba de habilidad

mental

Y Examen de Admisión

María 18 18

Olga 15 32

Susana 12 60

Aldo 9 68

Juan 3 82

Tabla Nº 4.1.3

Estudiantes X Prueba de habilidad

mental

Y Examen de Admisión

María 18 18

Olga 15 82

Susana 12 68

Aldo 9 60

Juan 3 32

Examinemos ahora la tabla Nº 4.1.3. En este casi ya no podemos afirmar que los

puntajes de la prueba de habilidad mental sirvan para pronosticar los puntajes del

examen de admisión, ya que unos puntajes bajos del examen de admisión y

algunos puntajes bajos del test de habilidad mental están apareados con otros

Page 114: Portafolio Estadística Inferencial

113

puntajes altos del examen de admisión, entonces en este caso, decimos que no

existe una relación lineal entre las variables X y Y.

4.1.3. DIAGRAMA DE DISPERSIÓN

En las situaciones que se presentan en la vida real no tenemos solamente cinco

parejas de valores para ambas variables, sino muchísimas parejas. Otra forma

alternativa de ver si existe o no relación lineal entre dos variables seria hacer una

grafica de los valores X y Y en un sistema de coordenadas rectangulares, este tipo

de gráfica es conocido con el nombre de diagrama de dispersión, gráfico de

dispersión o nube de puntos. Dibujemos el diagrama que corresponde a la Tabla N

º 4.1.1. Lo haremos haciendo corresponder a cada valor de la variable

independiente X, un valor de la variable dependiente Y, es decir, para la alumna

Susana haremos corresponder du puntaje en la prueba de habilidad mental (12)

con su puntaje de la prueba de admisión (60); al alumno Juan le hacemos

corresponder su puntaje del test de habilidad mental (3) con su puntaje del

examen de admisión (18). Luego ubicaremos los cinco pares de puntajes en el

sistema de ejes rectangulares y obtendremos los gráficos Nº 4.1.1 y Nº 4.1.2

Observemos en el gráfico Nª 4.1.1 que la tabla Nª 4.1.1. Es descrita por el

diagrama de dispersión. Vemos en este gráfico que los cinco puntos dan la

sensación de ascender en línea recta de izquierda a derecha. Esto es

característico en datos en los que existe una relación lineal positiva. Aunque estos

cinco datos no configuren una línea recta en forma perfecta. Se puede trazar una

línea recta que describa que estos puntos en forma bastante aproximada

conforme se ve en el gráfico Nª 4.1.2 y por esto decimos que la relación es lineal.

Si ocurre que todos los puntos de la gráfica de dispersión están incluidos en una

sola línea en forma exacta afirmamos que la relación lineal es perfecta. El grado

en que se separan los puntos de una sola línea recta nos da el grado en que la

relación lineal no es perfecta. Así cuando menos puntos se encuentran en una

Page 115: Portafolio Estadística Inferencial

114

sola línea decimos que la relación lineal no es perfecta. Así cuando menos puntos

se encuentran en una sola línea decimos que la relación lineal entre las dos

variables es menos fuerte y cuando más puntos queden incluidos en una línea

recta afirmamos que la relación lineal es más fuerte.

GRÁFICO Nª 4.1.1.

Page 116: Portafolio Estadística Inferencial

115

Usando los datos de una tabla Nº 4.1.2 y utilizando la misma forma de razonar

empleada hasta ahora podemos construir el correspondiente gráfico de dispersión,

tal como se muestra en el gráfico Nº 4.1.3.

Podemos observar en el gráfico Nº 4.1.4. que la nube de puntos de la gráfica

pueden delinearse bien por una línea recta, lo que nos indica que hay una relación

lineal entre las dos variables X y Y Vemos también que la línea desciende de

izquierda a derecha (tienen pendiente negativa) por lo que decimos que la relación

lineal entre las dos variables es negativa.

Si tenemos en cuenta la tabla Nº 4.1.3 podemos obtener una figura como se

muestra en la gráfica Nº 4.1.5 Notamos, en esta situación, que resultará inútil

cualquier línea recta que trate describir adecuadamente este diagrama de

dispersión.

Diagrama de Dispersión

Y

80

70

60

50

40

30

20

10

2 4 6 8 10 12 14 16 18 20 X

Page 117: Portafolio Estadística Inferencial

116

GRÁFICO Nº 4.1.4.

Diagrama de Dispersión aproximado por una línea recta

4.1.4 COEFICIENTE DE CORRELACIONE RECTILINEA DE PEARSON

Con ayuda de las gráficas nos podemos formar una idea si la nube de puntos, o

diagrama de dispersión, representa una reacción lineal y si esta relación lineal es

positiva o negativa, pero con la sola observación de la gráfica no podemos

cuantificar la fuerza de la relación, lo que si conseguiremos haciendo uso del

coeficiente r de Pearson.

El coeficiente de correlación r de Pearson, toma valores comprendidos entre 1 y +

pasando por 0. El número -1 corresponde a una correlación negativa perfecta (los

puntos del diagrama de dispersión deben encontrarse formando perfectamente

una línea recta). El numero +1 corresponde a una correlación positiva perfecta.

(los puntos del diagrama de dispersión deben encontrarse formando

perfectamente una línea recta). El coeficiente de correlación r=0 se obtiene

80

70

60

50

40

30

20

10

2 4 6 8 10 12 14 16 18 20 X

Page 118: Portafolio Estadística Inferencial

117

cuando no existe ninguna correlación entre las variables. Los valores negativos

mayores que -1 indican una correlación negativa y los valores positivos menores

que 1 indican una correlación positiva.

Referente a la magnitud de r podemos decir que independientemente del signo,

cuando el valor absoluto de r esté más cercana de 1, mayor es la fuerza de la

correlación, es así que -0,20 y +0.20 son iguales en fuerza (ambos son dos

valores débiles) los valores -0.93 y +0.93 también son iguales en fuerza (ambos

son dos valores fuertes).

Cálculo del Coeficiente r de Pearson utilizando una máquina calculadora

cuando los datos no son muy numerosos.

Dadas dos variables X y Y con sus respectivos valores. En la Tabla podemos

calcular el coeficiente de Pearson con una máquina calculadora mediante la

siguiente fórmula.

Tabla Auxiliar 4.1.4.

(1) x

(2) Y

(3) X^2

(4) Y^2

(5) XY

18 82 324 6724 1476

15 68 225 4624 1020

12 60 144 3600 720

9 32 81 1024 288

3 18 9 324 54

∑X = 57 ∑Y = 260 ∑X2 =783 ∑Y

2 =16296 ∑XY =3558

En las columnas (1) y (2) se han escrito los valores de X y Y. En la columna (3) se

han elevado al cuadrado los valores de X. En la columna (4) se han elevado al

Page 119: Portafolio Estadística Inferencial

118

cuadrado los valores de Y. En la columna (5) se ha efectuado el producto de cada

pareja de valores X y Y. Aplicando los datos en la fórmula 4.1.1., se tiene:

INTERPRETACIONES DE UN COEFICIENTE DE CORRELACIÓN

¿Qué tan elevado es un coeficiente de correlación dado? Tofo coeficiente de

correlación que no sea cero indica cierto grado de relación entre dos variables.

Pero es necesario examinar más esta materia, porque el grado de intensidad de

relación se puede considerar desde varios puntos de vista. No se puede decir que

un r de 0,50 indique una relación dos veces más fuerte que la indicada por un r de

0, 25. Ni se puede decir tampoco que un aumento en la correlación de r = 0,40 a r

= 0,60 equivalga a un aumento de r = 0,70 a r = 0,90. Es de observar que una

correlación de 0,60 indica una relación tan estrecha como una correlación de +

0,60. La relación difiere solamente en la dirección.

Siempre que éste establecido fuera de toda duda razonable una relación entre dos

variables, el que el coeficiente de correlación sea pequeño puede significar

únicamente que la situación medida está contaminada por algún factor o factores

no controlados. Es fácil concebir una situación experimental en la cual, si se han

mantenido constantes todos los factores que o sean pertinentes, el r podría haber

sido 1 en lugar de 0,20. Por ejemplos: generalmente la correlación entre la

Page 120: Portafolio Estadística Inferencial

119

puntuación de aptitud y el aprovechamiento académico es 0,50 puesto que ambos

se miden en una población cuyo aprovechamiento académico también es

influenciable por el esfuerzo, las actitudes, las peculiaridades de calificación de los

profesores, etc. Si se mantuvieran constantes todos os demás factores

determinantes del aprovechamiento y se midieran exactamente la aptitud y las

notas, el r seria 1 en vez de 0,50.

Una conclusión práctica respecto a la correlación es que ésta es siempre relativa a

la situación dentro de la cual se obtiene y su magnitud no representa ningún

hecho natural absoluto. El coeficiente de correlación es siempre algo puramente

relativo a las circunstancias en que se ha obtenido y se ha de interpretar a la luz

de esas circunstancias y sólo muy rara vez en algún sentido absoluto.

Además podemos agregar que la interpretación de un coeficiente de correlación

como de medida del grado de relación lineal entre dos variables es una

interpretación matemática pura y está completamente desprovista de

implicaciones de causa y efecto. El hecho de que dos variables tiendan a

aumentar o disminuir al mismo tiempo no implica que obligadamente una tenga

algún efecto directo o indirecto sobre la otra.

A continuación calcularemos con la fórmula antes indicada el coeficiente de

PEARSON de la relación presentada en la tabla.

Cuadro Auxiliar 4.1.5.

(1) x

(2) Y

(3) X^2

(4) Y^2

(5) XY

18 18 324 324 324

15 32 225 1024 480

12 60 144 3600 720

9 68 81 4624 612

3 82 9 6724 246

∑X = 57 ∑Y = 260 ∑X2 =783 ∑Y

2 =16296 ∑XY =2382

Page 121: Portafolio Estadística Inferencial

120

Vemos que la correlación es fuerte y negativa.

Ahora calculemos con la misma fórmula de Pearson Nº 4.1.1. El Coeficiente de

Correlación lineal con los datos de la tabla nº 4.1.3.

Cuadro Auxiliar Nº 4.1.6

(1) x

(2) Y

(3) X^2

(4) Y^2

(5) XY

18 18 324 324 324

15 82 225 6724 1230

12 68 144 4624 816

9 60 81 3600 540

3 32 9 1024 96

∑X=57 ∑Y=260 ∑X2=783 ∑Y2=16296 ∑XY=3006

La correlación es muy débil y positiva.

Page 122: Portafolio Estadística Inferencial

121

CORRELACIÓN ENTRE DOS CONJUNTOS DE DATOS AGRUPADOS EN

CLASES

El presente tema nos conduce a calcular el coeficiente de correlación r, que nos

proporciona información de la fuerza de la relación que existe entre dos

conjuntos.

Ejemplo: calcular el grado de correlación entre las puntuaciones obtenidas en

inventario de hábitos de estudio y los puntajes obtenidos de un examen

matemático, aplicados a un total de 134 alumnos de un colegio de la localidad.

^-^X Hábitos de Y ^\esiudio

Matemáticas^

20 - 30 30 - 40 40 - 50 50 - 60 Total fy

70 -* 80 3 2 2 7

60 -> 70 1 0 4 5 10

50 ~» 60 2 6 16 3 27

40 50 4 14 19 10 47

30 >-'■» 40 7 15 6 0 28

20 M 30 8 2 0 1 t 1

10 20 1 1 2 4

Total f. 23 40 48 23 134

Podemos notar que el problema no es tan simple, como el casa anterior, dado,

que ahora los datos se han clasificado en una tabla de doble entrada N" 4.1.7.

Este): cuadro muestra, en la primera columna del lado izquierdo los intervalos de

clase 0» la variable Y, los que cubren todos los posibles datos acerca de las

puntuaciones! alcanzadas por los estudiantes en la prueba de Matemática.

Nótese que los in te rva los los crecen de abajo hacia arriba. En la fila superior

se presentan les intervalos <%

Page 123: Portafolio Estadística Inferencial

122

Dentro del cuadro en los casilleros interiores o celdas de la tabla, se encuentran

las frecuencias de celda que correspondan a puntajes que pertenecen tanto a un

intervalo de la variable Y como un intervalo de la variable X.

La fórmula que utilizaremos es la siguiente

Para obtener los datos que deben aplicarse en la formula vamos a construir el

cuadro auxiliar al mismo tiempo que se explica el significado de los símbolos de

esa formula

Lo primero que hacemos es reemplazar los intervalos horizontales y verticales por

sus respectivas marcas de clase a continuación adicionalmente al cuadro N4.1.7

cinco columnas por el lado derecho, cuyos encabezamientos son : f para la

primera.

1) Para determinar las frecuencias marginales que se deben colocar en la

columna f sumamos las frecuencias de las celdas que están en la misma

fila de la marca de clase 75, obtenemos 3+2+2=7, numero que se escribe

en el primer casillero o celda de la columna f. en la fila de la marca de

clase 65 sumamos 1+4+5=10 numero que se escribe debajo del 7.

2) Ahora vamos a determinar las frecuencias marginales de la variable x: en

la columna encabezada con la marca de clase 25 sumemos verticalmente

las frecuencias 1+2+4+7+8+1=23

3) Centremos nuestra atención en la columna encabezada u, este signo

significa desviación estándar y procedemos a la misma forma en las tablas.

Recuerden que las desviaciones unitarias positivas: +1+2 y negativas : -1-2

y -3 corresponden a los intervalos menores.

4) Luego vamos a determinar las desviaciones unitarias horizontales de la

variable X. el origen de trabajo es la marca de clase 45 que se halla en la

fila superior del cuadro , por esa razón , escribimos cero debajo de la

frecuencia marginal 48.

Page 124: Portafolio Estadística Inferencial

123

5) A continuación vamos a determinar los valores que deben colocarse en la

columna encabezada. Para obtener los valores de la cuarta columna

encabezada debemos tomar en cuenta que por lo tanto basta multiplicar

cada valor de la segunda columna por su correspondiente valor de la

tercera columna así se obtiene el respectivo valor de la cuarta columna. En

efecto:

(3)(21)=63 (20)(20)=40(+1)(27)=27; 00*00=0; (-1)(-28)=28; (-2)(-22)=44 y (-

3)(-12)=36

La suma 63+40+27+28+44+36=238

Ahora nos fijamos horizontalmente en la tercera fila. Tenemos que (f)(u)=fu

por consiguiente basta multiplicar verticalmente un valor de la primera fila por

su correspondiente valor de la primera fila por su correspondiente valor de la

segunda fila para obtener el respectivo valor de la tercera fila.

(23)(-2)=-46; (40)(-1)=-40; (48)(0)=0 y (23)(+1)=23

Sumando horizontalmente:

(-46)+ (-40)+ (23)=-86+23=-63

Vamos por la cuarta fila vemos que u (fu)= Fu2 luego basta multiplicar cada

elemento de la segunda fila por su correspondiente elemento de la tercera fila

por su correspondiente elemento de la tercera fila para obtener el respectivo

elemento de la cuarta fila así:

(-2)(-46)=9; (-1)(-40)=40; 0*0=0y (+1)(23)=23

Para obtener valores de la quinta columna observamos que hay tres factores

el 1 es la frecuencia f de la celda o casillero que se está considerando el

segundo factor es la desviación unitaria u, el tercer factor es la desviación

unitaria, por lo tanto el procedimiento será el siguiente: tomemos el número 3

que es la frecuencia de la celda determinada por el cruce de los intervalos que

tienen la marcha de la clase 75 horizontalmente y 35 verticalmente.

Page 125: Portafolio Estadística Inferencial

124

Para ubicar el tercer factor corremos la vista del numero 3 hacia su derecha

hasta llegar a la columna de las desviaciones unitarias u y ubicamos el

numero +3 formemos el producto de estos tres números: (3)(--1)(+3)=-9

encerrado de un semicírculo lo escribimos en la celda elegida

En la misma fila tomamos la celda siguiente: (2) (0)(+)

Continuando hacia la derecha (2) (+1)(+3)=6

X hábitos estudio Y matemática 25 35 45 55 Fy Uy FyUy FyU^2y

suma de los # en semicírculos

75 2 3 2 2 7 3 21 63 -3

65 1 0 4 5 10 2 20 40 6

55 2 6 16 3 27 1 27 27 -7

45 4 14 19 10 47 0 0 0 0

35 7 15 6 0 28 -1 -28 23 29

25 8 2 0 1 11 -2 -22 44 34

15 1 0 1 2 4 -3 -12 36 0

∑FxUx = 6

∑FxUx^2= 238

∑FxyUxUy= 59

Fx 23 40 48 23 134 Ux -2 -1 0 1 FxUx -46 -40 0 23 ∑FxUx=-63 FxUx^2 92 40 0 23 ∑FxUx^2=155

La fórmula del paso (9) lleva el signo ∑para indicar que se deben sumar

horizontalmente los números que están encerrados en los semicírculos de esa

primera fila elegida así: -9+0+6. Este número se escribe en la quita columna.

Trabajemos con la segunda fila: (1) (-2)(+2)= -4 se encierra en un semicírculo.

(0)(-1)(+2)= 0

(4)(0)(+2)= 0

(5)(+1)(+2)= 10

Page 126: Portafolio Estadística Inferencial

125

Sumando 0 + 0 + 10 = 10

Ahora con la tercera fila:

(2)(-2)(+1)= -4

(6)(-1)(+1)= -6

(16)(0)(+1)= 0

(0)(+1)(+1)= 3

Sumando: (-4) + (-6) + 0 + 3 = -7

Cuarta fila

(-4) + (-2) + 0 = 0 todos los productos vales cero, luego la suma = 0

Quinta fila

(7)(-2)(-1)= 14

(15)(-1)(-1)= 15

(6)(0)(-1)= 0

(0)(+1)(-1)= 0

La suma es: 14+15= 29

(8)(-2)(-2)= 32

(2)(-1)(-2)= 4

(0)(0)(-2)= 0

(1)(+1)(-2)= -2

La suma es: 32 + 4 -2 = 34

Séptima fila:

Page 127: Portafolio Estadística Inferencial

126

(1)(-2)(-3)= 6

(1)(0)(-3)= 0

(2)(1)(-3)= -6

Sumando: 6 + 0 – 6 = 0

Sumando los valores de la columna quinta.

Reuniendo los resultados anteriores, se tienen los datos para aplicar en la formula

n= 134

∑ = 59

∑ = -63

∑ = 6

∑ = 155

∑ = 238

r=

r=

r= 0,358

Page 128: Portafolio Estadística Inferencial

127

Ejercicio Resuelto N° 2 de Cálculo de Coeficiente de Correlación Entre

Conjuntos de Datos Agrupados

Calcular el coeficiente de correlación lineal de las puntuaciones en matemáticas y

físicas de 100 estudiantes de la Facultad de Ciencias de la Universidad MN

X Puntuación matemáticas Y Puntuación fisica 40 - 50 50 - 60 60 - 70 70 - 80 80 - 90 90 - 100 TOTAL

90 - 100 0 0 0 2 5 5 12

80 - 90 0 0 1 3 6 5 15

70 - 80 0 1 2 11 9 2 25

60 - 70 2 3 10 3 1 0 19

50 - 60 4 7 6 1 0 0 18

40 - 50 4 4 4 0 0 0 11

TOTAL 10 15 22 20 21 12 100

Page 129: Portafolio Estadística Inferencial

128

PUNTACIÓN EN MATEMÁTICA

SUMA DE LOS NÚMEROS

ENCERRADOS EN SEMICÍRCULOS EN

CADA FILA

45 55 65 75 85 95 Fy Uy Fy Uy Fy U2y

PU

NT

UA

CIO

N E

NF

ISIS

CA

Y

95 2 5 5 12 2 24 48 54

85 1 3 6 5 15 1 15 15 30

75 1 2 11 9 2 25 0 0 0 0

65 2 3 10 3 1 19 -1 -19 19 2

55 4 7 6 1 18 -2 -36 72 28

45 4 4 3 11 -3 -33 99 36

fx 10 15 22 20 21 12 100 -3 -49 253 150

Ux -2 -1 0 1 2 3 3 Σfy Uy Σfy U2y Σ fxy Ux Uy

FxUx -20 -15 0 20 42 36 63 Σfx Ux

Fx U2

x 40 15 0 20 84 10

8

267 Σfx U2x

Page 130: Portafolio Estadística Inferencial

129

En este problema tenemos que calcular el confidente de correlación lineal r para

dos conjuntos de datos constituidos por los calificativos en una escala de 0 a 100,

en matemáticas y en física para 100 estudiantes de la facultad de Ciencias de

cierta universidad

Los datos se muestran en el cuadro N° 4.1.9 Notemos que a lo largo de la línea

horizontal superior se encuentran los intervalos que contienen los calificativos de

matemáticas desde 40 hasta 100.

Igualmente en la primera columna vertical izquierda, se encuentran los calificativos

para física de los mismos estudiantes, desde el calificativo 40 hasta 100. Notese

que en la columna de los calificativos de física los datos crecen de abajo hacia

arriba y para la fila horizontal superior vemos que los calificativos en matemáticas

crecen izquierda a derecha.

A continuación procederemos a calcular el confidente de correlación r para estos

datos aplicando el mismo método que utilizaremos en el problema anterior.

1) Traslademos los datos del cuadro N° 4.1.9. Llamaremos xy a cualquiera de

las frecuencias de los casilleros interiores del cuadro N° 4.1.9. En el cuadro

N° 4.1.10. podemos observar que se han agregado cinco columnas por el

lado derecho y cuatro filas por la parte interior

Observemos en el cuadro N° 4.1.10 que los intervalos para la puntuación en

matemáticas y para la puntación en física se han remplazado por las marcas de

clase correspondientes. Así en la fila horizontal superior se han remplazado el

primer intervalo 40 50 por su marca de clase45, el segundo intervalo 50 60

por su marca de clase 55 y de esta manera se han remplazado los demás

intervalos por sus marcas de clases en el cuadro N° 4.1.10.

De igual forma para la columna primera de la izquierda vemos que los intervalos

se han remplazado por sus respectivas marcas de clase así para la puntuación en

física el primer intervalo superior 90 100 se han remplazado por su marca de

clase 95, el segundo intervalo superior 80 90 se ha remplazado por su marca

Page 131: Portafolio Estadística Inferencial

130

de clase 85 y así sucesivamente hasta llegar al intervalo inferior 40 50 que se

ha remplazado por su marca de clase 45.

Ahora vamos a realizar los pasos siguientes

1) Para las frecuencia marginales fy sumemos todos los valores fxy de la

primera fila que tiene la marca de clase 95. De esta forma tenemos: 2+5+5=

12 Para la segunda fila que corresponde a la marca de clase 85

obtenemos: 1+3+6+5= 15 que escribimos en el segundo casillero de fy.

2) Dediquemos nuestra atención a las frecuencias marginales fx. el primer

resultado de fx lo obtenemos sumando las frecuencias fxy para la colunia que

tiene la marca de clase 45, de esta forma tenemos: 2+4= 10 que se escribe

en el primer casillero de fx para el segundo casillero tenemos el número 15

que se obtiene verticalmente de las frecuencias fxy de la columna que tiene

de marca de clase 55. Continuando con las sumas de las f de las demás

columnas llenamos las frecuencias marginales fx.

3) Atendamos la columna Uy la columna Uy tiene en total 6 casilleros

arbitrariamente escogemos uno de estos casilleros como origen de trabajo

y le asignamos el numero 0. Aquí hemos escogido el tercer casillero

contando de arriba hacia abajo. Observamos ahora la primera columna de

la izquierda en donde están las marcas de clase de los puntajes de física.

Aquí observamos que las marcas de clase crecen de abajo hacia arriba

entonces las desviaciones unitarias en la columna Uy crecerán de abajo

hacia arriba entonces del 0 hacia abajo, las desviaciones unitarias son

números negativos que van decreciendo hacia abajo.

Desde el 0 hacia arriba las desviaciones serán positivas y crecientes.

De manera que podemos observar que la columna Uy está conformada por

los siguientes números que crecen del 0 hacia arriba: 1,2 y desde el 0 hacia

abajo decrece: -1,-2,-3.

4) Veamos la fila Ux

Page 132: Portafolio Estadística Inferencial

131

Notamos que el fila horizontal superior las marcas de clase crecen de

izquierda a derecha de igual forma las desviaciones unitarias crecerán de

izquierda a derecha. Elegiremos como origen de trabajo arbitrariamente uno

del casillero Ux el tercero contando de izquierda a derecha, y vamos

asignando números positivos crecientes hacia la derecha del 0, así

tenemos 1, 2,3 ya hacia la izquierda, a partir del cero, tendremos:-1y-2.

5) Expliquemos la columna fy Uy. Multipliquemos cada valor de fy por su

correspondiente valor de Uy y se obtiene un valor Fy Uy. Por ejemplo el

numero 24 se obtiene multiplicando la frecuencia marginal fy = 12 por su

correspondiente desviación unitaria Uy = 2esto es, 12*2= 24. Para el

segundo casillero multiplicamos 15*1=15; para el tercero 25*0=, así hasta

terminar con 11*(-3)= -33.

6) Observemos la columna Fy U2y. L primera celda de esta columna tiene el

número 48 que se obtiene de multiplicando el valor Uy =2 de la segunda

columna por su correspondiente valor Fy Uy = 24 de la tercera columna, es

decir, 2*24= 48. Para el segundo casillero de la columna fy U2y , tenemos 15

que es igual a 1 por 15. De esta forma continuamos llenando los demás

valores de la columna Fy U2y.

7) Veamos ahora la fila fx ux. El número -20 del primer casillero de esta fila se

obtiene multiplicando la frecuencia marginal fx = 10 por su correspondiente

desviación unitaria Ux = -2 es decir: 10 (-2)= -20.

Para el segundo casillero de FX UX, multiplicamos (-1)*(-15)= 15 y así

sucesivamente 12*3= 36.

8) Veamos Fx U2

x. El primer casillero de esta fila es 40 y es el resultado de

multiplicar -2 del primer casillero de la fila Fx Ux por menos 20 de su

correspondiente primer casillero de la fila Ux esto es, (-2)* (-20)= 40. Para

el segundo casillero de fx U2

x multiplicamos -1 del segundo casillero de Ux

por -15 de su correspondiente segundo casillero de FX UX, luego obtenemos

(-1) *(-15)=15 .Así continuamos multiplicando los valores de los casilleros

Page 133: Portafolio Estadística Inferencial

132

Ux por sus correspondientes valores de la fila Fx Ux hasta llegar a (3) (36)=

108.

9) Interesa ahora obtener los números encerrados en semicírculo, por ejemplo

ahora, el numero 4, que corresponde a la marca de clase 75 para la

puntuación en matemáticas y a la marca de clase 95 de la puntuación en

física.

10) Para saber cómo se obtiene este numero 4, corramos nuestra vista hacia

la derecha dirigiéndonos hacia la columna UY y obtenemos el numero 2.

Del numero 4, encerrado en semicírculo, bajemos la vista con dirección a la

fila Ux y obtenemos 1. La frecuencia del casillero donde esta el 4, encerrado

en semicírculo, es fxy = 2. Multiplicando estos 3 factores tendremos fxy Ux Uy

= (2) (1) (2) = 4.

Podemos anunciar la siguiente regla:

Para obtener los valores encerrados en semicírculos en los casilleros interiores del

cuadro N°4..1.10 multiplicamos el valor de la frecuencia fxy del casillero para el

cual estamos haciendo el cálculo, por los valores de las desviaciones unitarias Uy y

Ux , obtenidas corriendo la vista hacia la derecha hasta columna Uy y también

hacia abajo hasta legar a la fila Ux.

Así por ejemplo, para el casillero que corresponde a las marcas de clase 75 en

matemática y 85 en física, tenemos la frecuencia de la celda Fxy = 3, los otros dos

factores son: Uy =1 y Ux = 1.

Luego (3) x (1) x (1) = 3 que es el valor encerrado en semicírculo.

Para el casillero correspondiente a la marca de clase 55 en matemáticas marca de

clase 45 en física, tenemos:

Page 134: Portafolio Estadística Inferencial

133

fxy = 4, Uy = -3, Ux = -1

fxy Ux Uy = (4) (-3) (-1) = 12 que es el valor encerrado en semicírculo. Así podemos

proceder para obtener todos los demás valores encerrados en semicírculos.

Sumando las frecuencias marginales de la columna fy, se tiene ∑ fy =100.

Sumando los valores de la tercera columna se obtiene ∑fy Uy = - 49. Sumando los

valores de la cuarta columna, tenemos ∑fy U^2y = 253. La suma de los valores de

la quinta columna:

∑fxy Ux Uy = 150

Para todas las filas, en el último casillero de la derecha se tiene la suma de los

valores de la fila. Así, por ejemplo, ∑fx = 100; ∑fy = 100.

Para la tercera fila: ∑fx Ux = 63

Para la cuarta fila: ∑fx U^2x = 267

Estos totales de filas y columnas reemplazaremos en la fórmula.

Vemos que el coeficiente de correlación en este caso es 0.79.

Page 135: Portafolio Estadística Inferencial

134

Ejercicio Propuesto Nº 1 del Cálculo del Coeficiente de Correlación entre dos

Conjuntos Agrupados de Datos.

Supongamos que tenemos 30 sujetos a los que hemos aplicado una prueba de

conocimientos de Psicología General (variable x) y un test de inteligencia (variable

y).

Aplicando los datos tomados del Cuadro Auxiliar en la fórmula tenemos:

Resultado:

Ejemplo propuesto N°2 del cálculo del coeficiente de correlación entre dos

conjunto de datos agrupados. Supongamos que se tienen 50 vendedores de cierta

compañía. Estos vendedores durante un año 1985 han realizado ventas tal como

lo muestra el cuadro N°4.1.13, el que también muestra el número de años de

experiencia que tiene como vendedores.

Para dicho cuando, se pide calcular el coeficiente de correlación lineal r.

Page 136: Portafolio Estadística Inferencial

135

0 2

2 4

4 6

6 8

8 10

TOTAL

15 18 1 1

12 15 2 3 4 9

9 12 7 3 2 12

6 9 6 9 4 19

3 6 5 2 7

1 3 2 2

TOTAL 2 11 18 12 7 50

Tomando los datos obtenidos n el cuadro Auxiliar N°4.1.14 apliquemos en la

formula N° 4.1.12, se tiene.

Años de

experiencia

X

Monto de

ventas Y

Page 137: Portafolio Estadística Inferencial

136

Page 138: Portafolio Estadística Inferencial

137

Progresiones lineales simples

4.2.1. Regresión lineal simple

Al comenzar a estudiar las técnicas de correlación afirmamos que

estudiaríamos dos variables y no solamente una. Llamamos a esa ocasión X

a una de las variables Y a la otra. En el tema que nos ocuparemos ahora,

estudiaremos la forma de predecir v valores de Y conociendo primero los

valores de X. Es así que viendo la tabla N 4.2.1, similar a la que utilizamos

cuando estudiamos correlación, conociendo el puntaje en la prueba de

habilidad mental (variable X) para un alumno determinado, podemos

anticipar el puntaje del examen de admisión (variable Y) del mismo alumno.

Consideraremos la relación lineal expresada por el cuadro N4.2.1 si

dibujamos esa relación, obtenemos el grafico N4.2.1. Como podemos

observar todos los puntos se alinean exactamente. En una sola línea recta,

la que recibe el nombre de línea de regresión. Teniendo en cuenta esta

línea, podemos predecir cualquiera d los valores de Y conociendo el valor de

X; para X=25, según la recta, correspondiente de Y=35, para X=20

corresponde Y=30. Etc. En este caso se trata de una correlación positiva

perfecta cuyo coeficiente de correlación es +1.

Prueba de habilidad

mental X

Examen de Admisión

Y

SUSANA 5 15

IVAN 10 20

LOURDES 15 25

ALDO 20 30

JUAN 25 35

MARIA 30 40

Page 139: Portafolio Estadística Inferencial

138

CESAR 35 45

OLGA 40 50

Recordemos ahora el grafico N 4.1.2 que dibujamos cuando estudiamos

correlación, en este grafico observamos el diagrama de dispersión

aproximado por una línea recta, la recta que mejor se ajuste a los puntos del

diagrama de dispersión, es decir, en la mejor medida procure dejar igual

número de puntos del diagrama de dispersión por encima de ella que igual

número de puntos debajo, se llama línea de regresión.

ECUACION DE LA REGRESION RECTILINEA

La ecuación que describe la línea de regresión es:

GRÁFICO

Serie 1

f(x)=1*x+10; R²=1

-5 5 10 15 20 25 30 35 40 45

-5

5

10

15

20

25

30

35

40

45

x

y

r = 1,00

Page 140: Portafolio Estadística Inferencial

139

= media de la variable X en la muestra.

X = un valor de la variable X

r = coeficiente de Pearson, de la correlación lineal entre las variables X y Y.

SY = desviación estándar de Y en la muestra.

SX = desviación estándar de X en la muestra.

Yr = Valor Y resultado del cálculo de la fórmula.

Veamos cómo podemos predecir los valore de Y a partir de los valores de X.

como el gráfico de este cuadro es una línea recta ascendente sabemos que

su coeficiente de correlación de Pearson r = +1. Además tenemos los

siguientes resultados:

X = 22,5 SX = 11,46 Y= 32,5 SY = 11,46

Estos resultados se pueden calcular a partir de los datos del cuadro.

Apliquemos estos datos a la fórmula, obtenemos la siguiente expresión:

Simplificando términos obtenemos:

Escojamos cualquier valor de X, por ejemplo para María x = 30,

reemplazando este valor en (b).

Vemos en le cuadro el valor que corresponde a María efectivamente es 40,

es decir podemos usar la ecuación para predecir los valores de Y

conociendo los valores de X.

Page 141: Portafolio Estadística Inferencial

140

Esta fórmula de regresión se puede aplicar par dos variables X y Y, entre las

cuales no es obligatorio que exista una correlación lineal perfecta, es decir,

no es obligatorio que el r para la correlación entre X y Y sea siempre igual a

1. Este valor de r para otras aplicaciones de la regresión, puede tomar

cualquier valor distinto de 1.

Ejercicios Resueltos de Regresión Lineal Simple

Al aplicar un test de inteligencia a una muestra representativa constituida por

800 alumnos, se obtuvo la puntuación media de 30,4 puntos, con la

desviación estándar de 12,6 puntos.

La edad media de la muestra fue de 14,5 años, con la desviación estándar

de 3,2 años.

El coeficiente de correlación lineal de Pearson entre la variable Y, edad de

los sujetos estudiados y la variable X, rendimiento mental de los mismos

sujetos, fue r = 0,89.

Con estos datos se pide determinar la ecuación de regresión rectilínea de

edad en base del puntaje del rendimiento mental.

¿Qué edad corresponde a los sujetos que alcanzan puntuaciones de:

X1 = 18 Puntos X4 = 50 Puntos

X2 = 25 Puntos X5 = 60 Puntos

X3 = 45 Puntos X6 = 80 Puntos

Datos:

= 14,5 SY = 3,2 r = 0, 89

= 30,4 SX = 12,6

Aplicando estos datos en la fórmula se tiene:

Page 142: Portafolio Estadística Inferencial

141

Es la ecuación de regresión buscada.

Respuesta de la 1ra. Pregunta

X1 = 18

YR = 7,63 + 0,226 (18) = 7,63 + 4,07

YR = 11,7 años

Segunda pregunta

X2 = 25

YR = 7,63 + 0,226 (25) = 7,63 + 5,65

YR = 13,28 años

Tercera pregunta

X3 = 45

YR = 7,63 + 0,226 (45) = 7,63 + 10,17

YR = 17,8 años

Cuarta pregunta

X4 = 50

YR = 7,63 + 0,226 (50) = 7,63 + 11,3

YR = 18,93 años

Quinta pregunta

X5 = 60

YR = 7,63 + 0,226 (60) = 7,63 + 13,56

YR = 21,19 años

Page 143: Portafolio Estadística Inferencial

142

Sexta pregunta

X6 = 80

YR = 7,63 + 0,226 (80) = 7,63 + 18,08

YR = 25,71 años

Este cuadro contiene la primera columna los nombres de los alumnos, en la

segunda están los rangos de esos alumnos en la variable, en la tercera se

hallan los rangos de los alumnos en la variable Y. En la cuarta columna

están las diferencias de los rangos correspondientes de las variables X y Y.

en la quinta columna se colocan las cuadros de las diferencias, ya

calculadas.

CUADRO AUXILIAR Nº 4.3.4

ALUMNOS RENGO DE

X

RANGO DE

Y

D=

DIFERENCIA

Rodríguez 3 3 0 0

Fernández 4 5 -1 1

Córdova 2 1 1 1

Flores 1 2 -1 1

Lema 5 4 1 1

APLICANDO LOS DATOS EN LA FORMULA Nº 4.3.1, SE TIENE

P= 0.08

Es una correlación positiva. Su valor es muy alto y poco común puesto que

la práctica enseña que en la correlación de la inteligencia con el rendimiento

escolar en las asignaturas, casi siempre se alcanza un valor próximo a 0.5.

Page 144: Portafolio Estadística Inferencial

143

EJEMPLO 2

Supongamos el siguiente cuadro nº 4.3.5. Queremos calcular el coeficiente

de correlación por rangos.

CUADRO Nº 4.3.5

EXAMINADOS PRUEBA DE

HABILIDAD MENTAL

X

APTITUD ACADÉMICA

Y

Susana 49 55

Iván 46 50

Lourdes 45 53

Aldo 42 35

Juan 39 48

maría 37 46

cesar 20 29

Olga 15 32

Observamos que los examinados están ordenados con respecto a la prueba

de habilidad mental de mayor a menor; podemos afirmar que la posición o

rango que se podría asignar a Susana es el primero, a Iván le

correspondería el segundo, para Lourdes el tercero tal como se muestra en

el cuadro Nº4.3.6.

De igual forma podríamos ordenar la posición o rango de los postulantes

según los resultados de la prueba de aptitud académica Y del examen de

admisión, lo que se muestra en el cuadro Nº4.3.6 es así como Susana

también ocupa el número de orden o rango primero y Lourdes ocupa el

segundo lugar o rango dos en esa prueba, así podemos continuar

ordenando los alumnos según su rango en la pruebe de aptitud académica y

terminaremos con cesar que ocupa el rango 8 en tal prueba.

Page 145: Portafolio Estadística Inferencial

144

CORRELACIÓN POR RANGOS

Es el orden que posee o se asignan a cada miembro de un conjunto de de

elementos de acuerdo a una escala ordinal dada. El rango ubica el elemento

en un punto de esa escala.

Por ejemplo: podemos establecer un ordenamiento de los alumnos de

acuerdo a los puntajes alcanzados en un examen. Así tenemos en el cuadro

Nº 4.3.1 que sigue:

CUADRO Nº 4.3.1

ALUMNOS García león Pérez Ruíz Lazo Lora

PUNTAJES 40 65 52 70 76 56

Ordenándolos de acuerdo a la magnitud del puntaje, establecemos los

rangos siguientes en el cuadro Nº 4.3.1.

CUADRO Nº 4.3.2

ALUMNOS García león Pérez Ruíz Lazo Lora

RANGOS 6 3 5 2 1 4

4.3.2 COEFICIENTE DE CORRELACIÓN POR RANGOS

La correlación por rangos se refiere a la correspondencia en el ordenamiento

de los elementos de dos conjuntos dados. La fuerza de la correlación se

mide por medio del coeficiente por rangos de spearman, cuya fórmula es:

En donde.

Page 146: Portafolio Estadística Inferencial

145

P= letra griega rho, designa el coeficiente de correlación por rangos.

D= diferencias de rangos correspondientes entre si pertenecientes a dos

variables X y Y. Por ejemplo d=

n= numero de pares correspondientes.

EJEMPLOS Nº 1

En la primera columna de la izquierda del cuadro Nº 4.3.3 se presenta un

grupo de 5 estudiantes; en la segunda columna están sus niveles mentales

que se consideran como categorías de la variable X, en la tercera columna

se indican los resultados de una prueba de matemáticas aplicadas al grupo,

cuyas puntuaciones son valores de la variable Y.

CUADRO Nº 4.3.3

ALUMNOS NIVEL MENTAL

X

MATEMÁTICAS

Y

Rodríguez medio 35

Fernández interior al promedio 17

Córdova superior al promedio 48

flores muy superior al

promedio

42

lema muy inferior al promedio 20

Calcular el coeficiente de correlación por rangos.

ESTUDIANTES CLASIFICACION

DE LOS RANGOS

CLASIFICACION DE

LOS RANGOS

D= DIF D2

Page 147: Portafolio Estadística Inferencial

146

RANGO X RANGO Y

SUSANA 1 1 0 0

ESTEBAN 2 3 -1 1

LOURDES 3 2 1 1

ALDO 4 6 -2 4

JUAN 5 4 1 1

MARIA 6 5 1 1

CESAR 7 8 -1 1

OLGA 8 7 1 1

∑D2 = 10

En la descripción de este cuadro la columna X corresponde a los rangos en

las pruebas de habilidad mental, la columna Y corresponde a los rangos de

las pruebas de los estudiantes de actitud académica. La columna D

corresponde a la diferencia del rango de un elemento de la columna X

menos el rango de su correspondiente elemento en la columna Y. en la

columna D2 se halla el cuadrado de la diferencia anotada en la columna D.

Ahora para medir la correlación entre los resultados de la prueba de

habilidad mental y del examen de admisión, tomamos los datos del cuadro

anterior en el que los datos están transformados en rangos.

Conforme ya mencionamos en el ejemplo 1 la fuerza de la correlación en

este tipo de problemas, se determina por el coeficiente p (rho) de correlación

de rangos de spearman. Aplicamos la formula N° 4,3,1 en donde

N= 8 pares

∑D2 = 10, este número es el resultado de la suma de los números D

elevados al cuadrado que figuran la columna D2.

Page 148: Portafolio Estadística Inferencial

147

Vemos que existe una correlación positiva fuerte entre las puntuaciones de

la prueba de la habilidad mental y los puntajes de la actitud académica del

examen de admisión.

Caso de rangos empatados o repetidos

Examinemos el caso N° 4.3.7 y supongamos que en el examen de admisión

de Susana y Esteban obtuvieron el mismo puntaje 55 y por lo tanto a

cualquiera de los dos le corresponde los rangos primero o segundo para

romper esta indeterminación, convenimos en asignar a cada uno de ellos el

promedio de ambos

Rangos, o sea

= 1.5 entonces tanto Susana como esteban tendrán el

rango

Tratemos ahora los rangos del VI Ciclo vemos que los profesores L Y P

están empleados o igualados en puntaje por lo que a cualquiera de los dos

le corresponde el rango 5 o el rango 6.el rango que le asignemos serán el

resultado de promedio 5 y 6 que son los dos rangos empatados, luego (5+6)

/ 2 =5.5 será el número que le asignamos como rango.

Los profesores Fy Z tienen en el VI ciclo los rangos 3 y 4 a cualquiera de

estos dos les corresponde el tercer o cuarto lugar. El número que les

asignaremos será (3+4) /2 = 3.5.

Luego elaboramos una columna para los nuevos rangos Y en donde a los

profesores L y P les asignaremos el rango 5.5 y a los profesores F Y Z les

asignaremos el rango 3 Y 5. los profesores J Y K seguirán con los rangos 1 y

2 respectivamente.

En La Columna D se colocan las diferencias X – Y

Nos ocuparemos ahora de la columna D2. En esta columna se encuentran

valores de la columna D elevados al cuadrado, luego sumamos los valores

de la columna D2 y obtenemos = 17.

Ahora aplicaremos la formula número 4.3.1.

Page 149: Portafolio Estadística Inferencial

148

Aquí = 17.

N= 6

P= 1- = 0.5

Luego la correlación entre los puntajes asignados a los 6 pro0fesores por el

V ciclo y los puntajes asignados por el VI ciclo es positiva, pero su magnitud

no es ni muy fuerte ni muy débil.

2º EJERCICIO

Cinco niños se someten a una pruebe de habilidad mental y los resultados

de estas se ordenan por rangos en la columna X. también se muestran en la

columna Y los rangos de estos mismos 5 niños respecto al tiempo que

gastan al mirar la tv.? (Ver cuadro Nº 4.3.1)

¿Existe correlación entre el rendimiento mental de los niños y el tiempo que

gastan mirando tv.?

Calculando los nuevos rangos para la columna Y teniendo en cuenta rangos

igualados obtenemos:

ALUMNOS x Y

A 1 4 o 5

B 2 4 o 5

C 3 2 o 3

D 4 1

E 5 2 o 3

¿Existe correlación entre el rendimiento mental de los niños y el tiempo que

gastan mirando tv.?

6 (17) 6 (36 -1)

6 (36 – 1)

Page 150: Portafolio Estadística Inferencial

149

Calculando los nuevos rangos para la columna Y. teniendo en cuenta los

rangos iguales obtenemos:

X Y D X - Y

D2

A 1 4.5 -3.5 12.25

B 2 4.5 -2.5 6.25

C 3 2.5 0.5 0.25

D 4 1 3 9

E 5 2.5 2.5 6.25

2 = 34.00

Para Obtener Los Rangos Correspondientes A Los Niños A Y B Hemos

Sumado Los Lugares Que Podrían Ocupar Cualquiera De Los Dos Y Que

Son 5 Y 4 Y Luego Esta Suma La Dividimos Entre El Numero De Rango

Igualados Que Son Dos, Esto Es: (4+5)/ 2= 4.5 Luego Rango Que Les

Corresponda A A Y B Es 4.5

DE IGUAL FORMA PROCEDEMOS PARA LOS RANGO C Y E obteniendo

para ellos como nuevo rango 2.5.

Ahora añadiremos una nueva columna D, en esta columna escribiremos

diferencia entre uno de los rangos de x menos el correspondiente rango de

Y.

Elevamos al cuadrado cada valor de y y escribimos cada resultado en la

columna del cuadrado. Luego sumamos los valores de la columna de D2 y

obtenemos 2 =34.00

P= 1 – 1.7=+0.7

Luego obtenemos una correlación negativa cuya magnitud es 0.7 que es un

valor fuerte para este tipo de situación.

Page 151: Portafolio Estadística Inferencial

150

EJERCICIO PROPUESTO DE CÁLCULO DE COEFICIENTE DE

SPEARMAN

La tabla muestra siete estudiantes que ordenados alfabéticamente

obtuvieron su número de orden según sus calificaciones en teoría y práctica

académica en un curso de lenguaje. Calcular el coeficiente de correlación de

SPEARMAN.

ALUMNOS PRACTICA X TEORIA Y

A 7 6

B 4 7

C 6 5

D 3 2

E 5 1

F 2 4

G 1 3

2º EJERCICIO

El cuadro muestra las correspondientes alturas en centímetros de grupo de

padres y de sus hijos primogénitos.

1) calcular el coeficiente de correlación de espermas

2) calcular también el coeficiente de Pearson

3) son parecidos?

ALTURA PADRE X ALTURA HIJOS Y

172 178

164 154

180 180

190 184

164 166

164 166

165 166

180 175

RESPUESTA 1 p= 0.89

3º EJERCICIO

Page 152: Portafolio Estadística Inferencial

151

En la tabla los cinco siguientes individuos se han colocado por rangos de 1 a

5 sobre X e Y. calcular el coeficiente de correlación.

X Y

A 2 3

B 1 2

C 3 1

D 5 5

E 4 4

RESPUESTA 1 p= 0.7

EJERCICIO

El gerente del personal una empresa agroindustrial estudia la relación entre

la variable dependiente Y y la variable independiente X de su personal

obrero. Recoge una muestra aleatoria de 10 trabajadores y se obtuvieron los

datos en dólares por semana.

a) Determinar el diagrama de dispersión

b) De su comentario sobre el valor de la pendiente

La relación es positiva e imperfecta porque al pasar la recta no cruza

por todos los puntos, sin embargo el valor de la pendiente se

aproxima a uno.

Page 153: Portafolio Estadística Inferencial

152

c) Estime el gasto que correspondería a un salario semanal de

90USD.

Salario (x)

Gasto (y)

X2 Y

2 XY (xi -Ẋ) (xi - Ẋ)^2 (Yi -Ῡ) (Yi -Ῡ)^2

28 25 784 625 700 -17,8 316,84 -13,4 179,56

25 20 625 400 500 25 625 20 400

35 32 1225 1024 1120 35 1225 32 1024

40 37 1600 1369 1480 40 1600 37 1369

45 40 2025 1600 1800 45 2025 40 1600

50 40 2500 1600 2000 50 2500 40 1600

50 45 2500 2025 2250 50 2500 45 2025

35 30 1225 900 1050 35 1225 30 900

70 55 4900 3025 3850 70 4900 55 3025

80 60 6400 3600 4800 80 6400 60 3600

ƩX=458 ƩY=384 ƩX2=23784 ƩY

2=16168 ƩXY=19550 Ʃ(xi -Ẋ)

=412,2 Ʃ(xi - Ẋ)^2=

23316,84

Ʃ(Yi -Ῡ) =345,6

Ʃ(Yi-Ῡ)^2= 15722,56

Desviación Estándar (X)

Page 154: Portafolio Estadística Inferencial

153

Sx =

Sx =

= 48,28

Ẋ =

Sy =

= 39, 65

Ῡ =

+

+

+

+

+ = 73, 54 gasto de un salario semanal

Page 155: Portafolio Estadística Inferencial

154

r = -0.005

COMENTARIO.- Vemos que los vehículos de 20 toneladas no tienen relación con los

de 40 toneladas, ya que a los de 20 se los utiliza más para las importaciones que los

de 40 debido a que son más ligeros al transportar las mercancías.

Page 156: Portafolio Estadística Inferencial

155

Page 157: Portafolio Estadística Inferencial

156

Page 158: Portafolio Estadística Inferencial

157