10
Instituto Tecnológico de Puebla Materia: Optoelectrónica Profesora: Rosa María Martínez Galván 2013 SALVADOR Hewlett-Packard 10/14/2013 Reporte Practica: Optoacopladores 2013 EQUIPO: LOS FOTONES LINDORO LOPEZ SERGIO CRUZ JIMENEZ BALTAZAR 10/14/2013 Reporte Practica: Optoacopladores

Practica Reporte Optoacopladores

Embed Size (px)

Citation preview

Page 1: Practica Reporte Optoacopladores

Instituto Tecnológico de Puebla

Materia: Optoelectrónica

Profesora: Rosa María Martínez Galván

SALVADOR

Hewlett-Packard

10/14/2013

2013Reporte Practica: Optoacopladores

EQUIPO: LOS FOTONES

LINDORO LOPEZ SERGIO

CRUZ JIMENEZ BALTAZAR

10/14/2013

2013Reporte Practica: Optoacopladores

Page 2: Practica Reporte Optoacopladores

Practica: Optoacopladores

Objetivos:1.- Analizar la operación de los optoacopladores.

2.- Comparar las funciones de este tipo de dispositivos con otros y medir su eficiencia y funcionamiento.

3.- Aprenderemos a nalizar al optoacoplador desde un punto de vista diferente: su función de transferencia.

Introducción: En nuestro experimento se utilizara un optoacoplador u optoaislador compuesto por un excitador IRLED y un fotodetector pero ya encapsulado osea completamente sellado que son dispositivos que ya utilizamos en la práctica anterior.

Marco teórico:

Los optoacopladores son dispositivos que contienen al menos un emisor, el cual esta acoplado ópticamente con un fotodetector a través de cierto tipo de medio aislante. Este arreglo permite el paso de información desde un circuito, que contiene al emisor, hacía el otro circuito que contiene al detector.

Debido a que esta información se pasa de manera óptica a través de una capa aislante, la transferencia es en un solo sentido; por esto el detector no puede afectar al circuito de entrada. Esto es importante porque el emisor puede controlarse con un circuito de bajo voltaje utilizando alguna unidad de procesamiento o compuertas lógicas, mientras que la salida del fotodetector puede formar parte de un circuito de alto voltaje c.d. o incluso un circuito con carga CA. El

Page 3: Practica Reporte Optoacopladores

aislamiento óptico previene la interacción o hasta el daño al circuito de entrada causado por el circuito de salida relativamente hostil.

El encapsulado más popular para un acoplador es de seis pines tipo DIP (encapsulado de doble fila de pines, por sus siglas en inglés) de propósito general. En esta configuración, los pines o terminales 1 y 2 generalmente están conectados al emisor, mientras las terminales 4, 5 y 6 están conectadas al detector. Entre emisor y detector existe un medio aislante que incorpora las características deseadas como lo son el alto voltaje de ruptura del dieléctrico, la transmitancia infrarroja, las propiedades ambientales, capacidad de fabricación y el costo.

La siguiente imagen muestra los diferentes tipos de optoacopladores:

A través de los años se han usado varios diseños geométricos para la cavidad interna de la luz, situada entre emisor y detector. Estas incluyen la geometría de terminales encontradas, la coplanar, la de tubo de luz, y los métodos de sándwich.

Un parámetro de operación importante del acoplador es la eficiencia. Este parámetro define la cantidad de la corriente de entrada (al emisor) que se requiere para obtener la salida deseada en el detector. En el caso de acopladores con salida a transistor o darlington, esta eficiencia se refiere a la “razón de transferencia de corriente” o CTR. Ésta simplemente es la corriente de salida garantizada dividida por la corriente de entrada requerida. En el caso de acopladores de tipo disparador, como alguno que tenga un disparador Schmitt (lógico), o salidas de control para SCR o triac, la eficiencia se define

Page 4: Practica Reporte Optoacopladores

como la cantidad de corriente necesaria en el emisor para disparar la salida. Esta se conoce como la “corriente de disparo”, o IFT.

El optoacoplador controlador de triac con circuito de cruce por cero se emplea cuando se

quiere, como su nombre lo indica, disparar un triac en el cruce por cero de la tensión de alimentación, de tal modo que cuando se recibe la señal de control para que el tiristor encienda, si no se encuentra la señal de CA en un cruce por cero, el circuito de detección del cruce “espera” al siguiente cruce por cero de la señal de CA y en ese instante dispara la compuerta. La figura 4 ilustra la operación de uno de estos dispositivos en un circuito básico.

Materiales a utilizar:

Dispositivos activos:1 Fototransistor de salida 4N371 Darlington 4N30

Resistencias:1 resistencia de 470Ω1 resistencia de 820Ω1 potenciometro de 1KΩ

Capacitores: 1capacitor de 47µF 1capacitor de1µF

Material de laboratorio:1 Osciloscopio1 Generador de funciones

Desarrollo de la práctica

Primera parte: fototransistor de salida:Una vez armado el circuito presentado en la siguiente imagen se procedió a realizar las mediciones y resultados:

Page 5: Practica Reporte Optoacopladores

1.- Determine el CTR del dispositivo midiendo

a) Vc.

Resultado: 2.84 V

b) Ic

Resultado: 15.3 m A

c) I f

Resultado: 10.33 mA

d) CTR

Resultado: 1.48

2.- Coloque su generador de funciones para producir a la salida un pulso de onda cuadrada positivo en 1K Hz aproximadamente. Ajuste la amplitud mientras observa Vo . No sobrecargue el sensor.

a) Anote el V 0 (p−p ) de salida.

Resultado: 1.70 V

b) Anote el V 0 (p−p ) de entrada.

Respuesta: 100 mV

c) En una hoja aparte, esquematice la forma de onda a la salida.

Page 6: Practica Reporte Optoacopladores

3.- Cambie la polaridad de, pulso a negativo y de nuevo esquematice la salida p-p y los voltajes de entrada. Incremente la frecuencia.

a) determine el punto 3-dB (donde la desviación de corte del rizo en apagado es de 0.7 tiempos a la altura máxima de la señal)

a) Anote el V 0 (p−p ) de salida.

Resultado: 5.92 V

b) Anote el V 0 (p−p ) de entrada.

Respuesta: 560 mV

c) En una hoja aparte, esquematice la forma de onda a la salida.

4.- imágenes de la práctica realizada:

NOTA:

LA FRECUENCIA SE INCREMENTO A 3KHz CAMBIANDO A PULSO NEGATIVO

Page 7: Practica Reporte Optoacopladores

Segunda parte: Darlington de salida 4N301.- Conectar el circuito como esta en la siguiente imagen

2.- Determine el CTR del dispositivo midiendo

a) Determine I f .

Page 8: Practica Reporte Optoacopladores

Resultado: 10.37 mA

b) Determine Ic.

Resultado: 19 mA

c) Calcule el CTR

Resultado: 1.83

3.- Determine si el 4N30 tiene una respuesta en frecuencia muy baja para repetir la prueba del pulso (paso 3). Use una onda senoidal 1KHz en la entrada y ajuste su nivel tal que V 0 no se

sature. En la salida (p-p) normal, mida la slida del generador (p-p) y V 0 (p−p ).

a) Mida la salida del generador, V gen

Resultado: 38mV

b) Mida V 0 (p−p ).

Respuesta: 28 mV

c) Determine el valor de la ganancia o las perdidas

Respuesta: .73 (PERDIDAS)

4.-Imágenes de la práctica realizada:

Page 9: Practica Reporte Optoacopladores

Problemas que se presentaron

En nuestra práctica casi no se nos presentaron problemas, solo con el uso adecuado del optoacoplador:

No se compró el material a tiempo. La onda del generador no era del todo efectiva

Conclusiones:

Como conclusión podemos decir que hemos aprendido el uso adecuado y sus más extensas aplicaciones del este dispositivo tan útil debido a su comportamiento.

Aprendimos también a analizar al este dispositivo a partir de su función de transferencia CTR por la relaciones de corriente.

Bibliografía:

http://www.neoteo.com/optoacopladores-electronica-basica/

Electrónica Aplicada (Antonio Hermosa Donate) Editorial trillas. (2005)