Presentacion 022.pdf

Embed Size (px)

Citation preview

  • 7/25/2019 Presentacion 022.pdf

    1/52

    GEOMECNICA APLICADA EN MINERA

    1CONCEPTOS GEOMECNICOS FUNDAMENTALES

    DETERMINACION DE LOSMODULOS ELASTICOS.

    Lambe & Whitman (1969)SOIL MECHANICS

    J. Wiley & Sons

  • 7/25/2019 Presentacion 022.pdf

    2/52

    GEOMECNICA APLICADA EN MINERA

    2CONCEPTOS GEOMECNICOS FUNDAMENTALES

    RELACIONES ENTRE LOSMODULOS ELASTICOS.

    Hunt (1984)

  • 7/25/2019 Presentacion 022.pdf

    3/52

    GEOMECNICA APLICADA EN MINERA

    3CONCEPTOS GEOMECNICOS FUNDAMENTALES

    MODULOS DINAMICOS

    Hunt (1984)

  • 7/25/2019 Presentacion 022.pdf

    4/52

    GEOMECNICA APLICADA EN MINERA

    4CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Goodman (1989)Lambe & Whitman (1969)

  • 7/25/2019 Presentacion 022.pdf

    5/52

    GEOMECNICA APLICADA EN MINERA

    5CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Calculo de las Propiedades de la Roca Intacta:

    (1) Realizar ensayos de compresinm uniaxial (5 a 10) para

    determinar UCS y los mdulos elsticos E y .

    (2) Realizar ensayos triaxiales para un mnimo de 5 presiones de

    confinamiento, y de modo que se alcance ewl 40% al 50% de

    UCS. Se recomienda repetir a lo menos una vez cada ensayo

    (o sea 2 ensayos x cada presin de confinamiento).

    (3) Utilizar estos resultados para determinar los parmetros del

    criterio de Hoek-Bown. Se recomienda emplear el software

    ROCDATA y usar el mtodo simplex. Deber verificarse que

    los resultados son razonables (e.g. mi < 36).

  • 7/25/2019 Presentacion 022.pdf

    6/52

    GEOMECNICA APLICADA EN MINERA

    6CONCEPTOS GEOMECNICOS FUNDAMENTALES

    ESTRUCTURASY SUS

    PROPIEDADES

  • 7/25/2019 Presentacion 022.pdf

    7/52

    GEOMECNICA APLICADA EN MINERA

    7CONCEPTOS GEOMECNICOS FUNDAMENTALES

    PARAMETROS GEOMETRICOS

    MANTEO

    DIRECCION DE MANTEO

    TRAZA O EXTENSINESPACIAMIENTO

    GAP

  • 7/25/2019 Presentacion 022.pdf

    8/52

    GEOMECNICA APLICADA EN MINERA

    8CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Mquina de corte directo fija en laboratorio (tomada

    de Franklin & Dusseault (1989)).

    Mquina de corte directo porttil (tipo Hoek, tomada de

    Franklin & Dusseault (1989)).

    Ensayo de corte directo in situ sobre planos de

    estratificacin, en un talud de reservorio en Grecia

    (tomada de Franklin & Dusseault 1989)). Esquema del montaje tpico de un ensayo de corte

    directo in situ (tomada de Franklin & Dusseault (1989)).

  • 7/25/2019 Presentacion 022.pdf

    9/52

    GEOMECNICA APLICADA EN MINERA

    9CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Montaje para la ejecucin

    de ensayos de cortedirecto sobre estructurascon un rea expuesta deunos 400 cm2.

  • 7/25/2019 Presentacion 022.pdf

    10/52

    GEOMECNICA APLICADA EN MINERA

    10CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Estructura despus del ensayo.Estructura antes del ensayo.

  • 7/25/2019 Presentacion 022.pdf

    11/52

    GEOMECNICA APLICADA EN MINERA

    11CONCEPTOS GEOMECNICOS FUNDAMENTALES

    RESIS

    TENCIA

    RESID

    UAL

    RESISTE

    NCIA

    PEAK

    cpeak

    peak

    res

    n

    CONDICION PEAK

    CONDICION RESIDUAL

    Curva carga-deformacin

    para un valor dado del es-fuerzo normal efectivo.

    u

    cres

    RESIS

    TENCIA

    RESID

    UAL

    RESISTE

    NCIA

    PEAK

    cpeak

    peak

    res

    n

    CONDICION PEAK

    CONDICION RESIDUAL

    Curva carga-deformacin

    para un valor dado del es-fuerzo normal efectivo.

    u

    cres

    RESISTENCIA

  • 7/25/2019 Presentacion 022.pdf

    12/52

    GEOMECNICA APLICADA EN MINERA

    12CONCEPTOS GEOMECNICOS FUNDAMENTALES

    MTODO DE BARTON-BANDIS:

    MAX = tan( b + JRClog(JCS/))

    MAX = tan( equiv )

    MAX RESISTENCIA AL CORTE ESFUERZO NORMAL EFECTIVOb ANGULO BASICO DE FRICCION (b r)

    JRC COEFICIENTE DE RUGOSIDADJCS RESISTENCIA EN COMPRESION UNIAXIAL

    DE LA PARED DE LA ESTRUCTURA

  • 7/25/2019 Presentacion 022.pdf

    13/52

    GEOMECNICA APLICADA EN MINERA

    13CONCEPTOS GEOMECNICOS FUNDAMENTALES

  • 7/25/2019 Presentacion 022.pdf

    14/52

    GEOMECNICA APLICADA EN MINERA

    14CONCEPTOS GEOMECNICOS FUNDAMENTALES

    MTODO DE BARTON-BANDIS:

    equiv 70

    0.01 /JCS 0.30

    ESTRUCTURAS SIN RELLENO

    ESTRUCTURAS SIN DESPLAZAMIENTO PREVIO

  • 7/25/2019 Presentacion 022.pdf

    15/52

    GEOMECNICA APLICADA EN MINERA

    15CONCEPTOS GEOMECNICOS FUNDAMENTALES

    EFECTO DE ESCALA EN LA RESISTENCIA AL CORTE DELAS ESTRUCTURAS.

  • 7/25/2019 Presentacion 022.pdf

    16/52

    GEOMECNICA APLICADA EN MINERA

    16CONCEPTOS GEOMECNICOS FUNDAMENTALES

    EL AUMENTO DE LA EXTENSIN DE LA ESTRUCTURA PRODUCE TRES EFECTOS

    PRINCIPALES: REDUCE LA RUGOSIDAD, REDUCE LA DILATANCIA, E INCREMENTA ELDESPLAZAMIENTO NECESARIO PARA MOVILIZAR LA RESISTENCIA PEAK.

  • 7/25/2019 Presentacion 022.pdf

    17/52

    GEOMECNICA APLICADA EN MINERA

    17CONCEPTOS GEOMECNICOS FUNDAMENTALES

    EFECTO DE ESCALA EN EL PARMETRO JRC

  • 7/25/2019 Presentacion 022.pdf

    18/52

    GEOMECNICA APLICADA EN MINERA

    18CONCEPTOS GEOMECNICOS FUNDAMENTALES

    EFECTO DE ESCALA EN EL PARMETRO JCS

  • 7/25/2019 Presentacion 022.pdf

    19/52

    GEOMECNICA APLICADA EN MINERA

    19CONCEPTOS GEOMECNICOS FUNDAMENTALES

    0.1 1 10 100 1000 10000 100000

    EXTENSION DE LA DISCONTINUIDAD, L (m)

    15

    20

    25

    30

    35

    40

    45

    50

    55

    ANGULOD

    E

    FRICCION

    (grados)

    LA SALBANDA ARCILLOSASE HACE MUY IMPORTANTELA SALBANDA ARCILLOSASE HACE MUY IMPORTANTE

    Efecto de escala en el valor peak del ngulo de friccin de estructuras de distinta extensin,conforme con lo valores reseados por Pusch (1997).

  • 7/25/2019 Presentacion 022.pdf

    20/52

    GEOMECNICA APLICADA EN MINERA

    20CONCEPTOS GEOMECNICOS FUNDAMENTALES

    PROPIEDADES TIPICAS

    JointsJoints c = 75 a 150 kPac = 75 a 150 kPa = 30= 30oo a 35a 35

    Joints en Roca ArgilizadaJoints en Roca Argilizada c = 25 a 100 kPac = 25 a 100 kPa = 22= 22oo a 30a 30

    Fallas con Salbanda ArcillosaFallas con Salbanda Arcillosa c = 0 a 50 kPac = 0 a 50 kPa = 18= 18oo a 25a 25

    Zonas de FallaZonas de Falla con Salbandacon Salbanda c = 25 a 75 kPac = 25 a 75 kPa = 20= 20oo

    a 30a 30y Rocay Roca BrechizadaBrechizada

  • 7/25/2019 Presentacion 022.pdf

    21/52

    GEOMECNICA APLICADA EN MINERA

    21CONCEPTOS GEOMECNICOS FUNDAMENTALES

    CARACTERIZACIN& PROPIEDADES

    DEL MACIZO ROCOSO

  • 7/25/2019 Presentacion 022.pdf

    22/52

    GEOMECNICA APLICADA EN MINERA

    22CONCEPTOS GEOMECNICOS FUNDAMENTALES

    EL PROBLEMA ES DEFINIR UNA CALIFICACINDE LA COMPETENCIA DEL MACIZO ROCOSO QUEPERMITA EL ESCALAMIENTO:

    Prop. Macizo Rocoso = Fact. Escala Prop. R. I.

    RQD

    FFRMR (Bieniawski)

    Factor de EscalaRMR (Laubscher)QGSI

  • 7/25/2019 Presentacion 022.pdf

    23/52

    GEOMECNICA APLICADA EN MINERA

    23CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Ejemplo 04

    Modo de Clculo del RQD(Deere (1989))

  • 7/25/2019 Presentacion 022.pdf

    24/52

    GEOMECNICA APLICADA EN MINERA

    24CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Indice RMRBieniawski (1989)

  • 7/25/2019 Presentacion 022.pdf

    25/52

    GEOMECNICA APLICADA EN MINERA

    25CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Indice RMRLaubscher (1996)

  • 7/25/2019 Presentacion 022.pdf

    26/52

    GEOMECNICA APLICADA EN MINERA

    26CONCEPTOS GEOMECNICOS FUNDAMENTALES

    GEOLOGICAL STRENGTH INDEX

    The strength of a jointed rock mass depends on the properties of theintact rock pieces and also upon the freedom of these pieces to slide

    and rotate under different stress conditions. This freedom is controlledby the geometrical shape of the intact rock pieces as well as thecondition of the surfaces separating the pieces. Angular rock pieceswith clean, rough discontinuity surfaces will result in a much strongerrock mass than one which contains rounded particles surrounded by

    weathered and altered material.

    The Geological Strength Index (GSI), introduced by Hoek (1994) andHoek et al. (1995) provides a system for estimating the reduction inrock mass strength for different geological conditions.

    This system is presented in Table 3, for blocky rock masses, and Table4 for schistose metamorphic rocks.

  • 7/25/2019 Presentacion 022.pdf

    27/52

    GEOMECNICA APLICADA EN MINERA

    27CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Table 3:Characterisation of a blocky rock masseson the basis of particle interlocking anddiscontinuity condition.After Hoek, Marinos and Benissi (1998).

  • 7/25/2019 Presentacion 022.pdf

    28/52

    GEOMECNICA APLICADA EN MINERA

    28CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Table 4:Characterisation of a schistose metamorphicrock masses on the basis of foliation anddiscontinuity condition.(After M. Truzman, 1999).

  • 7/25/2019 Presentacion 022.pdf

    29/52

    GEOMECNICA APLICADA EN MINERA

    29CONCEPTOS GEOMECNICOS FUNDAMENTALES

    AL CALIFICAR LA COMPETENAL CALIFICAR LA COMPETEN--

    CIA DEL MACIZO ROCOSO ESCIA DEL MACIZO ROCOSO ESPRECISO CONSIDERAR UNPRECISO CONSIDERAR UN RANRAN--GOGO DE VALORES, YA QUEDE VALORES, YA QUE DIFIDIFI--CILMENTECILMENTE ESTAESTA CORRESPONCORRESPON--DERADERA A UN SOLO VALOR.A UN SOLO VALOR.

  • 7/25/2019 Presentacion 022.pdf

    30/52

    GEOMECNICA APLICADA EN MINERA

    30CONCEPTOS GEOMECNICOS FUNDAMENTALES

    GENERALIZED HOEK-BROWN CRITERION

    , are the maximum and minimum efective stresses atfailure

    is the value of the Hoek-Brown parameter m for therock mass

    , are constants which depend upon the rock mass cha-

    racteristics

    is the uniaxial compressive strength of the intact rockpieces

    a

    ci

    bci sm

    ++=

    ''' 331

    '1

    '3

    ci

    bm

    a s

    (1)

  • 7/25/2019 Presentacion 022.pdf

    31/52

    GEOMECNICA APLICADA EN MINERA

    31CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Eq. (1) can be used to generate a series of triaxial test values,simulating full-scale field tests, and a curve fitting process can be usedto derive an equivalent Mohr envelope given by:

    , are material constants

    is the normal effective stress

    is the tensile strength of the rock mass

    '

    n

    tm

    A B

    B

    ci

    tmn

    ciA

    =

    '(2)

  • 7/25/2019 Presentacion 022.pdf

    32/52

    GEOMECNICA APLICADA EN MINERA

    32CONCEPTOS GEOMECNICOS FUNDAMENTALES

    In order to use the Hoek-Brown criterion for estimating the strength ofjointed rock masses, three properties of the rock mass have to beestimated:

    (1) The uniaxial compressive strength of the intact rockpieces

    (2) The value of the Hoek-Brown constant for these intactrock pieces

    (3) The value of the Geological Strength Index GSI for therock mass

    ci

    im

  • 7/25/2019 Presentacion 022.pdf

    33/52

    GEOMECNICA APLICADA EN MINERA

    33CONCEPTOS GEOMECNICOS FUNDAMENTALES

    The Hoek-Brown failure criterion, which assumes isotropic rock androck mass behaviour, should only be applied to those rock masses inwhich there are a sufficient number of closely spaced discontinuities,with similar surface characteristics, that isotropic behaviour involving

    failure on multiple discontinuities can be assumed. When the structurebeing analysed is large and the block size small in comparison, therock mass can be treated as a Hoek-Brown material.

    Where the block size is of the same order as that of the structure being

    analysed or when one of the discontinuity sets is significantly weakerthan the others, the Hoek-Brown criterion should not be used.

    In these cases, the stability of the structure should be analysed byconsidering failure mechanisms involving the sliding or rotation of

    blocks and wedges defined by intersecting structural features. Figure2 summarises these statements in a graphical form.

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    34/52

    GEOMECNICA APLICADA EN MINERA

    34CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Intact RockSpecimensUSE EQ. 3

    One Joint Set

    DO NOT USEHB CRITERION

    Many JointsUSE EQ. 1

    WITH CAUTION

    Heavily Jointed Rock MassUSE EQ. 1

    Two Joint Sets

    DO NOT USEHB CRITERION

    Figure 2:Idealised diagram showing thetransition from intact to a heavily

    jointed rock mass with increasingsample size.

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    35/52

    GEOMECNICA APLICADA EN MINERA

    35CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Once the Geological Strength Index has been estimated, theparameters that describe the rock mass strength characteristics, arecalculated as follows:

    = 2814

    100

    exp a

    GSI

    mm ib

    = 96

    100

    expo0 a

    GSI

    s

    200

    65.0o0.5

    GSI

    a =

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    36/52

    GEOMECNICA APLICADA EN MINERA

    36CONCEPTOS GEOMECNICOS FUNDAMENTALES

    For better quality rock masses (GSI > 25), the value of GSI can beestimated directly from the 1976 version of Bieniawskis RMR, with the

    groundwater rating set to 10 (dry) and the adjustment for joint orientationset to 0 (very favourable). If the 1989 version of Bieniawskis classificationis used, then GSI = RMR89 - 5 where RMR89 has the groundwater rating setto 15 and the adjustment for joint orientation set to zero.

    For very poor quality rock masses the value of RMR is very difficult toestimate and the balance between the ratings no longer gives a reliablebasis for estimating rock mass strength. Consequently, Bieniawskis RMRclassification should not be used for estimating the GSI values for poor

    quality rock masses (RMR < 25) and the GSI charts should be useddirectly.

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    37/52

    GEOMECNICA APLICADA EN MINERA

    37CONCEPTOS GEOMECNICOS FUNDAMENTALES

    DEFORMATION MODULUSSerafim and Pereira (1983) proposed a relationship between the in situmodulus of deformation and Bieniawskis RMR. This relationship is basedupon back analysis of dam foundation deformations and it has been found

    to work well for better quality rocks. However, for many of the poor qualityrocks it appears to predict deformation modulus values that are too high.

    Based upon practical observations and back analysis of excavationbehaviour in poor quality rock masses, the following modification to

    Serafim and Pereiras equation is proposed for:

    = 40

    10

    10100

    GSI

    ci

    mE

    (12)

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    38/52

    GEOMECNICA APLICADA EN MINERA

    38CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Figure 5: Deformation modulus versus Geological Strength Index GSI.

    Geological Strength Index GSI

    0 10 20 30 40 50 60 70 80 90 100

    DeformationmodulusE-GPa

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180 ci = 100 MPa

    ci = 50 MPa

    ci = 30MPa

    ci = 15 MPa

    ci = 10 MPa

    ci = 5 MPa

    ci = 1MPa

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    39/52

    39CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Note that GSI has been substituted for RMR in this equation and that themodulus E

    mis reduced progressively as the value of falls below 100.

    This reduction is based upon the reasoning that the deformation of betterquality rock masses is controlled by the discontinuities while, for poorerquality rock masses, the deformation of the intact rock pieces contributesto the overall deformation process.

    Based upon measured deformations, eq. 12 appears to work reasonablywell in those cases where it has been applied. However, as more fieldevidence is gathered it may be necessary to modify this relationship.

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    40/52

    40CONCEPTOS GEOMECNICOS FUNDAMENTALES

    MODULO DE DEFORMABILIDAD:

    E = ESEISMIC (Deere et al. (1967)).

    E = 2RMR 100 (RMR > 50, Bieniawski (1978)

    E = 10((RMR 10)/40) (Serafim & Pereira (1983))

    EMIN = 10log(Q)

    EMEAN = 25log(Q) (Barton (1983))

    EMAX = 40log(Q)

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    41/52

    41CONCEPTOS GEOMECNICOS FUNDAMENTALES

    1.0

    0.8

    0.6

    0.4

    0.2

    0.01.00.80.60.40.20.0

    VFIELD/ VLAB , RQD

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    42/52

    42CONCEPTOS GEOMECNICOS FUNDAMENTALES

    STRESS RELAXATIONWhen the rock mass adjacent to a tunnel wall or a slope is excavated, arelaxation of the confining stresses occurs and the remaining materialis allowed to expand in volume or to dilate.

    This has a profound influence on the strength of the rock mass since,in jointed rocks, this strength is strongly dependent upon theinterlocking between the intact rock particles that make up the rockmass.

    As far as the authors are aware, there is very little research evidencerelating the amount of dilation to the strength of a rock mass. One setof observations that gives an indication of the loss of strengthassociated with dilation is derived from the support required to

    stabilize tunnels. Sakurai (1983) suggested that tunnels in which thestrain, defined as the ratio of tunnel closure to tunnel diameter,exceeds 1% are likely to suffer significant instability unless adequatelysupported.

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    43/52

    43CONCEPTOS GEOMECNICOS FUNDAMENTALES

    This suggestion was confirmed in observations by Chern et al. (1998)who recorded the behavior of a number of tunnels excavated inTaiwan.

    They found that all of those tunnels that exhibited strains of greaterthan 1 to 2% required significant support. Tunnels exhibiting strainsas high as 10% were successfully stabilized but the amount of effortrequired to achieve this stability increased in proportion to the amountof strain.

    While it is not possible to derive a direct relationship between rockmass strength and dilation from these observations, it is possible toconclude that the strength loss is significant.

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    44/52

    44CONCEPTOS GEOMECNICOS FUNDAMENTALES

    An unconfined surface that has deformed more than 1 or 2% (basedupon Sakurais definition of strain) has probably reached residualstrength in which all of the effective cohesive strength of the rockmass has been lost.

    While there are no similar observations for rock slopes, it is reasonableto assume that a similar loss of strength occurs as a result of dilation.

    Hence, a 100 m high slope which has suffered a total crest displace-

    ment of more than 1 m (i.e. more than 1% strain) may start to exhibitsignificant signs of instability as a result of loss of strength of the rockmass.

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    45/52

    45CONCEPTOS GEOMECNICOS FUNDAMENTALES

    BLAST DAMAGE

    Blast damage results in a loss of rock mass strength due to thecreation of new fractures and the wedging open of existing fractures by

    the penetration of explosive gasses.

    In the case of very large open pit mine blasts, this damage can extendas much as 100 m behind the final row of blast holes.

    In contrast to the strength loss due to stress relaxation or dilation,discussed in the previous section, it is possible to arrive at anapproximate quantification of the strength loss due to blast damage.

    This is because the blast is designed to achieve a specific purpose

    which is generally to produce a fractured rock mass that can beexcavated by means of a given piece of equipment.

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    46/52

    46CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Figure 6 presents a plot of 23 case histories of excavation by digging,ripping and blasting published by Abdullatif and Cruden (1983). Thesecase histories are summarised in Table 5. The values of GSI areestimated from the data contained in the paper by Abdullatif and

    Cruden while the rock mass strength values were calculated assumingan average slope height of 15 m.

    These examples shows that rock masses can be dug, obviously withincreasing difficulty, up to GSI values of about 40 and rock mass

    strength values of about 1 MPa.

    Ripping can be used up to GSI values of about 60 and rock massstrength values of about 10 MPa, with two exceptions where heavyequipment was used to rip strong rock masses.

    Blasting was used for GSI values of more than 60 and rock massstrengths of more than about 15 MPa.

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    47/52

    47CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Blasting8685

    Blasting11785

    Blasting6477

    Blasting13577Blasting8477

    Blasting5476

    Blasting3571

    Blasting1569

    Blasting1768

    Blasting3068

    Ripping by D9L bulldozer4267Ripping by D9L bulldozer3367

    Ripping by track loader2.458

    Ripping by 977L track loader9.557

    Ripping by track loader0.851

    Digging by 977L track loader1.242

    Digging by wheel loader0.540 Digging by hydraulic face shovel0.534

    Digging by 977L track loader0.325

    Digging by wheel loader0.225

    Digging by hydraulic backhoe0.224

    Digging by D9 bulldozer0.119

    Digging by 977L track loader0.119

    Excavation MethodRock Mass Strength, CM

    ( MPa )GSI

    Table 5:Summary of methods used to excavate rock masses with a range of uniaxial compressive strength values,based on data published by Abdullatif and Cruden (1983).

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    48/52

    48CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Figure 6: Plot of rock mass strength versus GSI for different excavation methods, afterAbdullatif and Cruden (1983).

    Geological Strength Index GSI

    0 10 20 30 40 50 60 70 80 90 100

    Rockmassstrength

    ci-MPa

    0.1

    1

    10

    100

    Excavation method

    Dig

    Rip

    Blast

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    49/52

    49CONCEPTOS GEOMECNICOS FUNDAMENTALES

    Figure 7 summarizes the conditions for a muckpile that can be dug

    efficiently and the blast damaged rock mass that lies between thedigging limit and the in situ rock mass. The properties of this blastdamaged rock mass will control the stability of the slope that remainsafter digging of the muckpile has been completed.

    Figure 7: Diagrammatic representation of the transition between the in siturock mass and blasted rock that is suitable for digging.

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    50/52

    50CONCEPTOS GEOMECNICOS FUNDAMENTALES

    The thickness D of the blast damaged zone will depend upon the designof the blast. Based upon experience, the authors suggest that thefollowing approximate relationships can be used as a starting point in

    judging the extent of the blast damaged zone resulting from open pitmine production blasting:

    D = 0.3 to 0.5 H Carefully controlled poduction blast with a free face

    D = 0.5 to 1.0 H Production blast with some control, e.g. one or more buffer rows,

    and blasting to a free face

    D = 1.0 to 1.2 H Production blast, confined but with some control, e.g. one or morebuffer rows

    D = 1.0 to 1.5 H Production blast with control but blasting to a free face

    D = 2.0 to 2.5 H Large production blast, confined and with litle or no control

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    51/52

    51CONCEPTOS GEOMECNICOS FUNDAMENTALES

    EN LA PRACTICA SE ESTA UTILIZANDO CADA VEZ MAS EL MTODO DEHOEK & BROWN, CON LAS CONSIDERACIONES SIGUIENTES:

    SE DETERMINAN LOS PARAMETROS mi Y ci EN BASE A UNACUIDADOSA INTERPRETACION DE LOS RESULTADOS DE ENSAYOS

    TRIAXIALES SOBRE TESTIGOS DE ROCA INTACTA (USUALMENTEUTILIZANDO ROCKDATA).

    SE DETERMINA EL RANGO DE VALORES PROBABLES PARA EL INDICEGSI (USUALMENTE 15 A 20 PUNTOS).

    SE DETERMINA EL RANGO DE PRESIONES DE CONFINAMIENTO Y SI SETRATA DE UN MACIZO BIEN TRABADO O NO.

    SE ESTIMA LA INCERTEZA ASOCIADA A CADA PARAMETRO Y SUPOSIBLE FUNCION DE DISTRIBUCION.

    SE EVALUAN LAS PROPIEDADES DEL MACIZO ROCOSO UTILIZANDO LAMETODOLOGIA PROPUESTA POR HOEK (1998,99).

    GEOMECNICA APLICADA EN MINERA

  • 7/25/2019 Presentacion 022.pdf

    52/52

    52CONCEPTOS GEOMECNICOS FUNDAMENTALES

    PROBLEMAS :

    EL METODO NO SIEMPRE ES APLICABLE.

    SE DEFINE UNA RESISTENCIA ISOTROPICA.

    PARA MACIZOS MASIVOS Y COMPETENTES EL METODODEBE APLICARSE EN FORMA FLEXIBLE.

    PARA MACIZOS DE MALA CALIDAD GEOTECNICA, POBRE-MENTE TRABADOS Y POCO CONFINADOS EL METODOPUEDE SOBREVALUAR LA RESISTENCIA.

    EN EL CASO DE ROCAS ESQUISTOSAS O FOLIADAS EL

    METODO DEBE APLICARSE MUY CUIDADOSAMENTE.