Proyecto de Mecanizacion(Ingles)

Embed Size (px)

Citation preview

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    1/91

    ESCUELA SUPERIOR POLITCNICA DEL LITORAL

    FINAL PROJECT OF MACHINIG PROCESS

    CNC-FABRICATION CYCLES

    NAME (ID number):

    JOSU GAVILANES TRIVIO (200726388)

    M.Sc. Gabriel Helguero

    PROJECT DELIVERY DATE: 28/01/2011

    II TERM YEAR 2010-2011

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    2/91

    2

    Contents1) Objectives .................................................................................................................................... 4

    2) Introduction ................................................................................................................................. 4

    3) Principles ..................................................................................................................................... 4

    3.1) Machining centers and turning centers .............................................................................. 4

    3.2) Cutting conditions ............................................................................................................... 5

    4) Process ......................................................................................................................................... 6

    5) Machining guide .......................................................................................................................... 7

    Piece 1 ............................................................................................................................................. 7

    Piece 2 ............................................................................................................................................. 9

    Piece 3 ........................................................................................................................................... 11

    Piece 4 ........................................................................................................................................... 13

    Piece 5 ........................................................................................................................................... 14

    Piece 6 ........................................................................................................................................... 16

    Piece 7 ........................................................................................................................................... 19

    Piece 8 ........................................................................................................................................... 22

    6) Results ....................................................................................................................................... 24

    7) Conclusion ................................................................................................................................. 27

    8) Recommendations ..................................................................................................................... 28

    9) Bibliography .............................................................................................................................. 28

    10) Apendix ................................................................................................................................. 29

    10.1) Material ......................................................................................................................... 29

    10.2) Tool selections ............................................................................................................... 29

    Turning process ......................................................................................................................... 29

    Milling process .......................................................................................................................... 33

    10.3) Selection of parameters ................................................................................................. 34

    10.4) Piece 1 ........................................................................................................................... 36

    10.1.1) Material selection and initial dimension ................................................................... 36

    10.1.2) Machining time calculation ....................................................................................... 37

    10.5) Piece 2 ........................................................................................................................... 40

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    3/91

    3

    10.2.1) Material selection and initial dimension ....................................................................... 40

    10.2.2) Machining time and other parameters calculation....................................................... 40

    10.6) Piece 3 ........................................................................................................................... 43

    10.3.1) Material selection and initial dimension ...................................................................... 43

    10.3.2) Machining time and other parameters calculation........................................................ 43

    10.7) Piece 4 ........................................................................................................................... 46

    10.4.1) Material selection and initial dimension ...................................................................... 46

    10.4.2) Machining time and other parameters calculation....................................................... 46

    10.8) Piece 5 ........................................................................................................................... 49

    10.5.1) Material selection and initial dimension ...................................................................... 49

    10.5.2) Machining time and other parameters calculation....................................................... 49

    10.9) Piece 6 ........................................................................................................................... 5810.6.1) Material selection and initial dimension ...................................................................... 58

    10.6.2) Machining time and other parameters calculation ..................................................... 58

    10.10) Piece 7 ........................................................................................................................... 68

    10.7.1) Material selection and initial dimension ...................................................................... 68

    10.7.2) Machining time and other parameters calculation....................................................... 68

    10.11) Piece 8 ........................................................................................................................... 76

    10.8.1) Material selection and initial dimension ...................................................................... 76

    10.8.2) Machining time and other parameters calculation....................................................... 77

    10.12) Calculation Unit Time .................................................................................................... 86

    10.13) Budget ........................................................................................................................... 88

    10.14) CNC Code ....................................................................................................................... 91

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    4/91

    4

    1)

    Objectives

    1. To elaborate a fabrication cycle for each one of the die tool pieces. This means to choosethe machine tool and cutting tools for each process. Your cutting tool selection should

    contemplate tool materials and geometries. Although it is recommended that you use on-line Sandviks catalog, you can use whichever catalog as long as you include the selectionsheets on your work.

    2.

    To generate a CNC Fabrication code for each piece of the die tool. This must be done usingINVENTORCAM Software. You should indicate which machine tool you are going to

    use for each piece.3.

    To prepare a budget for the whole process.4.

    To return a written report of all process.

    2)

    Introduction

    In this project we will detail step by step how a mechanical element is made, piece by piece. Forthat we start to draw the parts using the program Inventor. Then we choose the right material foreach of the parts, because depending on the property we need, more tenacity, endurance or highercompression, we choose the kind of steel or bronze. Once ready we will prepare parts step by stepmachining process for each, some only work on a CNC turn, other some work only in a CNC

    milling, and another piece need be work in both. But to achieve all that we need to select tools workproperly, for each process, as there are for example to make a longitudinal turning different tools

    used to make a profile turning That's why we use the Sandviks catalog. In the case of making aturning process, we must choose the proper plate holder and plates as well as choose appropriatemill to work on the milling machine. The next step is go to Ivan Bohman, where we quote both the

    materials and tools you'll use, if there is no tool that initially had planned to use, we should chooseone with similar characteristics. From here we turn to the selection of the parameters of cutting

    speed and feed on the lathe, where we have to be careful because choosing a bad combination ofthese parameters we will have a poor surface finish, I even make both the lathe and the cutterworking on a RPM which were not designed. Once we have properly chosen parameters, is just

    simply use the formulas found the book to calculate the machining time. Finally we use the programInventorCAM to generate CNC code manufacture of each piece, where we have to indicate that we

    will use parameters for each machining process of each piece. All this must be clearly detailed intables that include all processes.

    3)

    Principles

    3.1) Machining centers and turning centers

    A machining center is a highly automated machine tool capable of performing multiple machiningoperations under CNC control in one setup with minimal human attention. Typical operations arethose that use a rotating cutting tool, such as milling and drilling. The features that make a

    machining center such a productive machine includes:

    Automatic tool changing. To change from one machining operation to the next, the cutting

    tool must be changed. This is done on machining center under NC program control by an

    automatic tool-changer designed to exchange cutters between the machine tool spindle anda tool storage drum. Capacities of these drums commonly range from 16 to 18 cutting tools.

    Pallets shuttles. Some machining centers are equipped with two or more pallet shuttleswhich can be automatically transferred to the spindle to machine the workpart. With two

    shuttles, the operator can be unloading the previous part and loading the next part while ehmachine tool is engaged in machining the current part. This reduces nonproductive time on

    the machine.

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    5/91

    5

    Automatic workpart positioning. Many machining centers have more than three axes. One

    of the additional axes is often designed as a rotary table to position the part at same

    specified angle relative to the spindle. The rotary table permits the cutter to performmachining on four sides of the part in a single setup.

    3.2)

    Cutting conditions Turning

    Turning

    Rotational speed(N) Final diameter() Lineal travel rate( Machining time(Tm)

    Milling (Face milling)

    Milling

    Rotational speed(N) Lineal travel rate( Approach distance(A) a) b)

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    6/91

    6

    Machining time(Tm)

    Drilling and related operation

    Drilling and related operation

    Rotational speed(N)

    Lineal travel rate( Machining time(Tm), in a thought hole

    Machining time(Tm), in a blind hole

    4) Process

    i) Draw each of the pieces in the program Inventor.ii) With the help of Ivan Bohmans guide, we choose the material and the initial dimensions of

    each piece of work. For that we must considerer the properties that we require for each

    piece, in some cases we will need a higher toughness, or a higher ductility. Once chosen thematerial, let the tables to see the dimensions that are in stock, always trying to get thedimensions are slightly larger than the final piece, so we reduced material waste andreduced machining time.

    iii) The next step is to select the procedure to reach the final form of a single piece for examplewill be worked around, one in router, and one will be worked around in two and one on a

    wire cutter.iv) Select the tools to make operation of the lathe. For that we use Sandvik, as specified in this

    type of combination of insert and insert holder required for each operation. For example fora longitudinal turning operation require a slide insert with a position angle of 75 and asquare insert. It is recommended that each insert it chooses not to finish, and for roughing,

    but medium, to give a better versatility to our tool.

    v)

    Also we will repeat the above procedure for choosing strawberries to help us in milling. Inthis case we will choose strawberries universal.

    vi)

    We chose not to use the drilling on the mill going to perform all operations related to

    drilling, so just choose a strawberry to make the holes.vii) From here we will ask for a quote with all materials and tools we used in the machining

    process. In the case that no one tool or the size of the material we had originally planned,

    we will exchange them for others of similar characteristics.

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    7/91

    7

    viii) Once you have all the tools we select all the cutting parameters for each of the processes.

    For that too in the same guide Sandvik going to select the parameters depending on the toolthat we have chosen, the type of material we are working, and resistance quality of each

    insert. All these values were found in the tables at the end of the guide. It is recommendedthat the turning process is chosen small advances high speeds to give a better finish and inturn we are removing material.

    ix)

    With the parameters chosen, we began the machining process, calculating the machiningtime of each piece, taking into account the different processes that will be submitted each

    piece to reach its final form. The calculations are very important to take into account is thatthe maximum value of N for is around 2500RPM, and 3500RPM strawberry. If thecalculations we show a higher value than this, then we will have to repeat step 7, only this

    time we choose parameters that we fulfill this condition.x) Since we have all the values, the next step is to guide, where practically all of the above

    detail.xi) From here we will use the program InventorCAM, where we simulate the different

    processes of turning, milling and that we will execute to reach the final shape. For that wehave to put the necessary tools for each process, and the parameters for it. The program willgive us InventorCAM CNC code for machining each piece.

    5)

    Machining guide

    Piece 1

    A-B

    # Process Description Tool holderCutter conditions

    Measurer v(mm/s) N(RPM) f(mm/rev) d(mm)

    Facing turning

    Side A

    DDJNL 2020K 15Calibrator 255

    1803.75 0.11

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    8/91

    8

    Center point

    Side A

    -------------------- -------------------- 60 -------- ------- -----

    Facing turning

    Side B

    DDJNL 2020K 15 Calibrator 255 1803.75 0.1 1

    4 Center point

    Side B

    ----------------

    ----------------- 60 --------- -------- ------

    5Longitudinal

    turning

    A-B; L=188mm

    DDJNL 2020K 15Calibrator 255 1804.67 0.1 1.5

    6 Longitudinalturning

    A-B; L=167mm

    DDJNL 2020K 15 Calibrator 255 1932.6 0.1 2

    7Longitudinal

    turning

    A-B; L=135mm

    DDJNL 2020K 15 Calibrator255 2136.02 0.1 2

    8Longitudinal

    turning

    A-B; L=135mm

    DDJNL 2020K 15Calibrator

    255 2387 0.1 2

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    9/91

    9

    9Turning: Curve

    chamfering

    A-B, R=2mm

    DDJNL 2020K 15 ---------180 1909.86 0.1 -------

    10Longitudinal

    turning

    B-A, L=11 mm

    DDJNL 2020K 15

    -------- 255 1932 0.1 2

    Piece 2

    A-B

    # Process Description Tool holderCutter conditions

    Measurer v(mm/s) N(RPM) f(mm/rev) d(mm)

    Facing turning

    Side A

    DDJNL 2020K 15Calibrator 255

    1159.55 0.11

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    10/91

    10

    Center point

    Side A

    -------------------- -------------------- 60 -------- ------- -----

    Facing turning

    Side B

    DDJNL 2020K 15 Calibrator 255 1159.55 0.1 1

    4 Center point

    Side B

    ----------------

    ----------------- 60 --------- -------- ------

    5Longitudinal

    turning

    A-B; L=35mm

    DDJNL 2020K 15Calibrator 255 1159.55 0.1 1

    6 Longitudinalturning

    A-B; L=25mm

    DDJNL 2020K 15 Calibrator 255 1193.66 0.1 3

    Milling: End

    Milling

    ap=15mm

    R216.33-15030-AC26P

    Dc=15mm

    Calibrator100 2122.06

    0.054

    mm/tee1

    Milling: End

    Milling

    ap=20mm

    R216.33-06030-Ak22P

    Dc=6mm

    Calibrator50 2652.58

    0.014

    mm/tee1

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    11/91

    11

    Wire-EDM

    ap=20mm

    ------Calibrator

    365(Job/s) ------ ----- -----

    Piece 3

    A-B

    # Process Description Tool holderCutter conditions

    Measurer v(mm/s) N(RPM) f(mm/rev) d(mm

    Facing turning

    Side A

    DDJNL 2020K 15

    Calibrator 180 2046.27 0.1 1

    Center point

    Side A

    -------------------- -------------------- ------- -------- ------- -----

    Facing turningSide B

    DDJNL 2020K 15 Calibrator 180 2046.27 0.1 1

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    12/91

    12

    4 Center point

    Side B

    --------------------------------- ------ --------- -------- ------

    5Longitudinal

    turning

    A-B; L=85mm

    DDJNL 2020K 15Calibrator 180 2046.28 0.1 1.5

    6Longitudinal

    turning

    A-B; L=79mm

    DDJNL 2020K 15Calibrator

    180 2291.83 0.1 2.5

    7 Contour turning

    A-B; L=40.23mm

    DDJNL 2020K 15 Calibrator180 2228.16 0.1 1

    8 Contour turning

    A-B; L=48.96mm

    DDJNL 2020K 15Calibrator

    180 2228.16 0.1 1

    9 Contour turning

    A-B; L=48.96mm

    DDJNL 2020K 15 Calibrator180 2228.16 0.1 2

    10Peripheral

    Milling: Slab

    milling

    ap=35mm

    R216.34-20050-AK38P

    Calibrator

    100 1591.55 0.078 1

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    13/91

    13

    Piece 4

    # Process Description Tool holderCutter conditions

    Measurer v(mm/s) N(RPM) f(mm/rev) d(mm

    Facing turning

    Side A

    SDJCL 2020K 11Calibrator 120

    830.37 0.151

    Facing turning

    Side B

    SDJCL 2020K 11Calibrator 120 830.37 0.15 1

    3Longitudinal

    turning

    A-B; L=44mm

    SDJCL 2020K 11Calibrator 120 830.37 0.15 1

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    14/91

    14

    4Longitudinal

    turning

    A-B; L=22mm

    SDJCL 2020K 11 Calibrator120 868.12 0.15 2

    Longitudinal

    turning

    B-A; L=12mm

    SDJCL 2020K 11 Calibrator120 868.12 0.15 2

    Longitudinal

    turning

    (internal)

    B-A; L=44mm

    SDJCL 2020K 11Calibrator

    120 1123.45 0.1 2

    Piece 5

    # Process Description Tool holderCutter conditions

    Measurer v(mm/s) N(RPM) f(mm/tee) d(mm

    Partial and

    End milling

    Side A(Up)

    Side B(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1.5

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    15/91

    15

    2Partial and

    End milling

    Side B(Up)

    Side A(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1.5

    Partial and

    End milling

    Side C(up)

    Side D(down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1

    Partial and

    End milling

    Side D(up)

    Side C(down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1

    5Partial and

    End milling

    Side F(Up)

    Side G(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=84mm

    Calibrator 1001591.54 0.078

    Ap1=6m

    Ap2=6m

    Ap3=6m

    Ap4=7m

    6Partial and

    End milling

    Side G(Up)

    Side F(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=84mm

    Calibrator 1001591.54 0.078

    Ap1=6m

    Ap2=6m

    Ap3=6m

    Ap4=7m

    7Pocket

    milling

    Side A(Up), =8mm

    R216.33-08030-AK28P

    Dc=8mmCalibrator

    80 3183.09 0.02

    Ap1=8m

    Ap2=8m

    Ap3=6m

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    16/91

    16

    8Pocket

    milling

    Side A(Up), =20mm

    R216.24-20050IAK38P

    Dc=20mmCalibrator

    100 2652.58 0.036

    Ap1=8m

    Ap2=8m

    Ap3=6m

    9Pocket

    milling

    Side A(Up), =40mm

    R216.24-20050IAK38P

    Dc=20mmCalibrator 100

    1591.54 0.078

    Ap1=8m

    Ap2=8m

    Ap3=6m

    0 Tapping

    Side A(up), =8mm

    T110M8 -------------- 60 ----- ------ 22

    Piece 6

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    17/91

    17

    # Process Description Tool holderCutter conditions

    Measurer v(mm/s) N(RPM) f(mm/tee) d(mm

    Partial and

    End milling

    Side A(Up)

    Side B(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1.5

    2Partial and

    End milling

    Side B(Up)

    Side A(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1.5

    Partial and

    End milling

    Side C(up)

    Side D(down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1

    Partial and

    End milling

    Side D(up)

    Side C(down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    18/91

    18

    5Partial and

    End milling

    Side F(Up)

    Side G(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=84mm

    Calibrator 1001591.54 0.078

    Ap1=6m

    Ap2=6m

    Ap3=6m

    Ap4=7m

    6Partial and

    End milling

    Side G(Up)

    Side F(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=84mm

    Calibrator 1001591.54 0.078

    Ap1=6m

    Ap2=6m

    Ap3=6m

    Ap4=7m

    7Pocket

    milling

    6 hole: =8mm

    Side A(Up)

    R216.33-08030-AK28P

    Dc=8mmCalibrator

    80 3183.09 0.02Ap1=5m

    Ap2=5m

    8Pocket

    milling

    6 hole: =11mm

    Side B(Up)

    R216.33-11030-AC22P

    Dc=11mmCalibrator 100

    2893.3 0.036

    Ap1=5m

    Ap2=5m

    Ap3=2m

    Pocket

    milling

    1 hole: =12mm

    Side A(Up)

    R216.24-08050EAK19P

    Dc=12mmCalibrator 100

    2652.58 0.036

    Ap1=8m

    Ap2=8m

    Ap3=6m

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    19/91

    19

    10Pocket

    milling

    1 hole: =40

    Side A(Up)

    R216.24-20050IAK38P

    Dc=20mmCalibrator 100

    1591.54 0.078

    Ap1=5m

    Ap2=5m

    Ap3=2m

    11Pocket

    milling

    1 hole: =44

    Side B(Up)

    R216.24-20050IAK38P

    Dc=20mmCalibrator 100

    1591.54 0.078Ap1=5m

    Ap2=5m

    2 Tapping

    Side A(up): =12

    T110M12 -------- 60 ---- ---- 22

    Piece 7

    # Process Description Tool holderCutter conditions

    Measurer v(mm/s) N(RPM) f(mm/tee) d(mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    20/91

    20

    Partial and

    End milling

    Side A(Up)

    Side B(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1

    2Partial and

    End milling

    Side B(Up)

    Side A(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1

    Partial and

    End milling

    Side C(up)

    Side D(down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1

    Partial and

    End milling

    Side D(up)

    Side C(down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1

    5Partial and

    End milling

    Side F(Up)

    Side G(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=130mm

    Calibrator 1001591.54 0.078

    Ap1=6m

    Ap2=6m

    Ap3=6m

    Ap4=5m

    6Partial and

    End milling

    Side G(Up)

    Side F(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=130mm

    Calibrator 1001591.54 0.078

    Ap1=6m

    Ap2=6m

    Ap3=6m

    Ap4=5m

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    21/91

    21

    7 Pocket milling

    6 hole

    Side A(Up), =12mm

    R216.24-12050-GAK26P

    Dc=12mmCalibrator

    100 2652.58 0.036

    Ap1=8m

    Ap2=8m

    Ap3=7m

    8 Pocket milling

    Side A(Up), =38mm

    R216.24-20050IAK38P

    Dc=20mmCalibrator

    100 1591.54 0.078

    Ap1=8m

    Ap2=8m

    Ap3=7m

    9 Pocket milling

    Side A(Up), =62mm

    R216.24-20050IAK38P

    Dc=20mm

    Calibrator 1001591.54 0.078

    Ap1=8m

    Ap2=8m

    Ap3=7m

    0 Tapping

    Side A(up), =12mm

    T110M12 -------------- 60 ----- ------ 22

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    22/91

    22

    Piece 8

    # Process Description Tool holder Cutter conditions

    Measurer v(mm/s) N(RPM) f(mm/tee) d(mm

    Partial and

    End milling

    Side A(Up)

    Side B(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1

    Partial and

    End milling

    Side B(Up)

    Side A(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1

    Partial and

    End milling

    Side C(up)

    Side D(down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    23/91

    23

    4Partial and

    End milling

    Side D(up)

    Side C(down)

    R216.24-20050IAK38P

    Dc=20mm

    L=250mm

    Calibrator 1001591.54 0.078

    1

    5Partial and

    End milling

    Side F(Up)

    Side G(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=130mm

    Calibrator 1001591.54 0.078

    Ap1=6m

    Ap2=6m

    Ap3=6m

    Ap4=5m

    6Partial and

    End milling

    Side G(Up)

    Side F(Down)

    R216.24-20050IAK38P

    Dc=20mm

    L=130mm

    Calibrator 1001591.54 0.078

    Ap1=6m

    Ap2=6m

    Ap3=6m

    Ap4=5m

    7

    Pocket

    milling

    6 hole

    Side A(Up), =12mm

    R216.24-12050-GAK26P

    Dc=12mm

    Calibrator

    80 3183.09 0.02

    Ap1=6m

    Ap2=6m

    Ap3=6m

    Ap4=5m

    8Pocket

    milling

    2 hole: =38mm

    Side A(Up)

    R216.24-20050IAK38P

    Dc=20mmCalibrator 100

    1591.54 0.078

    Ap1=5m

    Ap2=5m

    Ap3=3m

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    24/91

    24

    Pocket

    milling

    2 hole: =42mm

    Side B(Up)

    R216.24-20050IAK38P

    Dc=20mm

    Calibrator 1001591.54 0.078

    Ap1=5m

    Ap2=5m

    10Pocket

    milling

    1 hole: =15mm

    Side A(Up)

    R216.33-15030-AC26P

    Dc=15mmCalibrator

    100 2122.060.054

    Ap1=5m

    Ap2=5m

    Ap3=3m

    1Pocket

    milling

    1 hole: =68mm

    Side B(Up)

    R216.24-20050IAK38P

    Dc=20mm

    Calibrator 1001591.54 0.078

    Ap1=5m

    Ap2=5m

    6)

    ResultsPiece 1

    Process Tf(min) Taux(min) Trl(min) Ts/n(min) Tu c/p(min)

    1 0,125 0,01875 0,03125 6 6,175

    3 0,125 0,01875 0,03125 6 6,175

    5 1,04 0,156 0,26 6 7,456

    6 0,865 0,12975 0,21625 0 1,211

    7 0,635 0,09525 0,15875 0 0,889

    8 0,55 0,0825 0,1375 0 0,77

    9 0,0164 0,00246 0,0041 0 0,02296

    10 0,055 0,00825 0,01375 6 6,077Tu total 28,77596

    Piece 2

    Process Tf(min) Taux(min) Trl(min) Ts/n(min) Tu c/p(min)

    1 0,301 0,04515 0,07525 6 6,4214

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    25/91

    25

    3 0,301 0,04515 0,07525 6 6,4214

    5 0,301 0,04515 0,07525 6 6,4214

    6 0,209 0,03135 0,05225 0 0,2926

    7 0,0436 0,00654 0,0109 6 6,06104

    8 0,179 0,02685 0,04475 6 6,2506

    Tu total 31,86844

    Piece 3

    Process Tf(min) Taux(min) Trl(min) Ts/n(min) Tu c/p(min)

    1 0,068 0,0102 0,017 6 6,0952

    3 0,068 0,0102 0,017 6 6,0952

    5 0,41 0,0615 0,1025 6 6,574

    6 0,34 0,051 0,085 0 0,476

    7 0,18 0,027 0,045 0 0,252

    8 0,219 0,03285 0,05475 0 0,30669 0,22 0,033 0,055 0 0,308

    10 0,0208 0,00312 0,0052 6 6,02912

    Tu total 26,13612

    Piece4

    Process Tf(min) Taux(min) Trl(min) Ts/n(min) Tu c/p(min)

    1 0,048 0,0072 0,012 6 6,0672

    3 0,048 0,0072 0,012 6 6,0672

    5 0,353 0,05295 0,08825 6 6,49426 0,169 0,02535 0,04225 0 0,2366

    7 0,0291 0,004365 0,007275 6 6,04074

    8 0,261 0,03915 0,06525 0 0,3654

    Tu total 25,27134

    Piece 5

    Process Tf(min) Taux(min) Trl(min) Ts/n(min) Tu c/p(min)

    1 1,078 0,1617 0,2695 6 7,5092

    2 1,078 0,1617 0,2695 6 7,5092

    3 1,078 0,1617 0,2695 6 7,5092

    4 1,078 0,1617 0,2695 6 7,5092

    5 1,596 0,2394 0,399 6 8,2344

    6 1,596 0,2394 0,399 6 8,2344

    7 0,516 0,0774 0,129 6 6,7224

    8 0,057 0,00855 0,01425 0 0,0798

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    26/91

    26

    9 2,038 0,3057 0,5095 0 2,8532

    Tu total 56,161

    Piece 6

    Process Tf(min) Taux(min) Trl(min) Ts/n(min) Tu c/p(min)

    1 1,078 0,1617 0,2695 6 7,5092

    2 1,078 0,1617 0,2695 6 7,5092

    3 1,078 0,1617 0,2695 6 7,5092

    4 1,078 0,1617 0,2695 6 7,5092

    5 1,596 0,2394 0,399 6 8,2344

    6 1,596 0,2394 0,399 6 8,2344

    7 0,236 0,0354 0,059 6 6,3304

    8 0,18 0,027 0,045 6 6,2529 0,057 0,00855 0,01425 6 6,0798

    10 1,504 0,2256 0,376 0 2,1056

    11 1,65 0,2475 0,4125 6 8,31

    Tu total 75,5834

    Piece 7

    Process Tf(min) Taux(min) Trl(min) Ts/n(min) Tu c/p(min)

    1 1,078 0,1617 0,2695 6 7,5092

    2 1,078 0,1617 0,2695 6 7,5092

    3 1,078 0,1617 0,2695 6 7,5092

    4 1,078 0,1617 0,2695 6 7,5092

    5 2,4 0,36 0,6 6 9,36

    6 2,4 0,36 0,6 6 9,36

    7 0,36 0,054 0,09 6 6,504

    8 1,36 0,204 0,34 0 1,904

    9 1,12 0,168 0,28 0 1,568

    Tu Total 58,7328

    Piece 8

    Process Tf(min) Taux(min) Trl(min) Ts/n(min) Tu c/p(min)

    1 1,078 0,1617 0,2695 6 7,5092

    2 1,078 0,1617 0,2695 6 7,5092

    3 1,078 0,1617 0,2695 6 7,5092

    4 1,078 0,1617 0,2695 6 7,5092

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    27/91

    27

    5 2,4 0,36 0,6 6 9,36

    6 2,4 0,36 0,6 6 9,36

    7 0,36 0,054 0,09 6 6,504

    8 1,32 0,198 0,33 6 7,848

    9 0,935 0,14025 0,23375 6 7,309

    10 0,037 0,00555 0,00925 6 6,0518

    11 1,07 0,1605 0,2675 6 7,498

    Tu total 83,9676

    7) Conclusion

    The manufacture of a simple plate of steel or other material is a simple process that is

    simple dresses, but as we demonstrated in this project is the result of a complex process that

    starts from the choice of material of the piece, after by the size of it. Later is one of the most

    important parts of the process, choosing the tools that help to give me the way I want.

    Because if I choose a tool not suitable for that material or geometry of the workpiece at

    work I can create the piece is not head out on surface finish or desire to directly influence

    the machining time, making it take longer than expected and causing economic losses.

    This value of time that leaves us to manufacture all the parts is worth more than if you had

    made on a lathe and milling machine manual. But the difference is that for a massproduction process CNC lathe and CNC milling machine is the best solution, because Ioffered almost equal parts with each other, so we are ensuring a quality product to our

    buyers.

    It is very important to take steps to develop the process of turning and milling in an

    appropriate way to better efficiency for the transformation of the piece.

    By using the program InventorCAM we realize that times that comes with running the

    program with the times that we come to calculate the formulas are different, one could say

    that up to 50% error. That's because of two reasons, first is that the program calculates the

    time InventorCAM both when working on the board, and the time that the tool is moved to

    another job. In contrast to the formulas to calculate and add all those days we only take into

    account the time working on the piece. And the second is because in some calculations as in

    the holes, to calculate the perimeter of the spiral only use approximations, which lead to

    errors in calculations.

    The proper selection of parts is a fundamental relationship with the machining time, but thisis hardly reflected in the economic part. This is because we can make a tool confronted with

    a diameter 15 and compared with the time it takes to make it confronted a 20 in diameter.

    No doubt the diameter 20 is going to take longer, and simple inspection would be the best

    tool for the job, seeing it from the standpoint of expediency, but now is about the

    economics and to buy a cutter 20 is much more expensive than buying a 15, and if the job

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    28/91

    28

    does not require much use of that Strawberry would have to choose the bit that takes longer

    but will eventually be economically viable for us.

    8)

    Recommendations

    When choosing the inserts to work on the lathe, it is preferable to choose carries negative

    inserts for machining a slide outside and positive inserts to work internally. When choosing cutting tools for turning process, it is preferable to choose a tool that allows

    me to rough while giving a surface finish to the workpiece.

    By choosing an appropriate combination of port inserts and inserts in the process of turning,

    always choose to give us a better versatility, some processes to work with our tool.

    For the milling, it is preferable to choose a universal cutter; with this we are giving you

    more versatility to various types of milling work.

    It is very important to read the guide machining of each part follow the instructions on the

    slides to be turning and milling in an appropriate way the relevant part.

    By choosing the parameters of speed and progress in the case of the lathe to give a better

    finish and also remove material, it is necessary to choose a high speed and a small advance. While we are the milling process is important that although the ap is high, not giving more

    ago to 8 mm and that would decrease the lifetime of the tool.

    When choosing the parameters of cutting speed, it is important to note whether the value of

    N exceeds the case around the 2500 RPM and in the case of the router 3500 RPM, if this

    happens it is necessary to choose a lower speed value.

    To choose appropriate setting time, Ts, it is necessary to ask several operators as the

    estimated time of placing a piece for each operation, for our calculations we choose a value

    of 6 minutes.

    To select the appropriate number of tools to buy, we need to look at the time of using it,

    since the catalog is based on a life of 15 min. To spend this time this tool no longer works,

    so we would have to use another.

    When we make a hole in the plates with the dams is necessary to go down in a few passes

    to get to the depth of cut.

    When choose the mill to work in the milling machine is better to choose those that have

    four teeth because it can ensure a quicker and better work surface finish.

    9)

    Bibliography

    http://www.unibague.edu.co/sitios/imecanica/index.php?option=com_content&view=article&id=72:f

    abricacion-de-piezas-i&catid=6:semestre-vi&Itemid=17

    https://www.serina.es/empresas/cede_muestra/301/TEMA%20MUESTRA.pdf

    http://www2.coromant.sandvik.com/coromant/downloads/catalogue/ENG/MC_2009_Klick_ENG_A

    .pdf

    http://centraltrust.net/ivanbohman/productopdf/acero%20al%20carbono%20para%20maquinarioa.pd

    f

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    29/91

    29

    10)

    Apendix

    10.1)Material

    AISI 4340

    We chose this material in this piece because we need to have a great resistance to fatigue.In turn, this material combines high strength with good toughness. This material is use in

    the piece 1.

    AISI 4140

    We chose this material in this piece because it has a high resistance for parts that are small,

    in turn also has good resistance to fatigue, abrasion and impact. This material is use in the

    piece 2,3.

    SAE 40

    Bronze was chosen because this is going to be a part of the sacrifice of our array, whichwill wear and it is best to wear the most expensive. Although it has good mechanical

    strength and is used for parts that are subjected to high loads. This material is use in thepiece 4.

    AISI 1045

    Carbon steel unalloyed careful manufacturing, with good toughness. Feature is its highuniformity performance. Can supply used condition or treatment thermal quenching and

    tempering. This material is used in the piece 5, 6, 7 and 8.

    10.2)Tool selections

    Turning process

    In the piece that required longitudinal turning exterior we use the next port insert and insert

    recommendation, this is following the instructions of the Sandviks Guide.

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    30/91

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    31/91

    31

    I nserts

    We go to the part of the catalog where the inserts are. We choose a negative insert, with a

    rhombic 55. And choose an insert that will help us to finish and rough, so we chose a

    middle ground, Medium. The size must be the same that the sizes in the port insert. In this

    case is 15.

    Now, when we do a longitudinal turning internal, we need change the tool:In this case we must

    choose a port insert that can be utilized in a longitudinal turning external and internal. The

    kind of tool CoroTurn 107 may work in both.

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    32/91

    32

    In both cases the best combination between port insert and insert is a holder with a rhombic

    55 insert and a 93 entering angle.

    Port i nsert

    I nsert

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    33/91

    33

    Milling process

    In the case of milling, select the correct mill; first go to the Sandviks catalog, to choose anappropriate mill for this process.

    Like we need more kind of method for work with our mill, the best cutter is the first, with a helix

    angle 50, in the case that there is not any mill whit 50 we can chose another whit a helix angle

    different. For the process of milling, we will use mill of 6, 8,11,12, ,15 and 20 mm of diameter.

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    34/91

    34

    The process for select another mill whit different helix angle is the same.

    10.3)

    Selection of parameters

    Turning process

    For choose the correct parameters, is necessary use the following table (this table is in function of

    the resistance of the insert). These are in the final of the Sandviks guide. The cutting speed and

    feed rate are in function of the grade for general turning and the depth of cut that we chose must be

    between the value that are specified in the table.

    This table change with work with another kind of material:

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    35/91

    35

    Exist other table, this table tell us the maximum and minimum ap that we can work in each

    process.

    Milling process

    In the last part of the Sandviks guide we can find the correct parameters necessary for the milling

    process. By general the product between the ap and ae always is more than the diameter of the mill.The following parameters are in function of the diameter of the mill (Dc), the hardness of the work

    material, ap and ae.

    Tapping process

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    36/91

    36

    10.4) Piece 1

    10.1.1)

    Material selection and initial dimension

    Piece 1Material Weight

    AISI 4340(705) 2.812 Kg

    We chose this material in this piece because we need to have a great resistance to fatigue. In turn,this material combines high strength with good toughness.

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    37/91

    37

    10.1.2)

    Machining time calculation

    Process #1: Facing (face A)

    Process #3: Facing (face B)

    Process #5: Longitudinal turning

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    38/91

    38

    Process #6: Longitudinal turning

    Process #7: Longitudinal turning (first pass)

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    39/91

    39

    Process #8: Longitudinal turning (second pass)

    Process #9: Turning: Curve chamfering

    Process #10: Longitudinal turning

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    40/91

    40

    10.5) Piece 2

    10.2.1) Material selection and initial dimension

    Piece 2Material Weight

    Steel AISI 4140(709) 1.1174 Kg

    We chose this material in this piece because it has a high resistance for parts that are small, in turn

    also has good resistance to fatigue, abrasion and impact.

    10.2.2) Machining time and other parameters calculation

    Process #1: Facing (face A)

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    41/91

    41

    Process #3: Facing (face B)

    Process #5: Longitudinal turning

    Process #6: Longitudinal turning

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    42/91

    42

    Process #7: Pocket milling

    Process #8: Pocket milling

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    43/91

    43

    10.6)

    Piece 3

    10.3.1) Material selection and initial dimension

    Piece 3Material Weight

    Steel AISI 4140(709) 0.4176 Kg

    10.3.2) Machining time and other parameters calculation

    Process #1: Facing (face A)

    Process #3: Facing (face B)

    Process #5: Longitudinal turning

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    44/91

    44

    Process #6: Longitudinal turning

    Process #7: Contour turning (first pass)

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    45/91

    45

    ( )

    Process #8: Contour turning (second pass)

    ( )

    Process #9: Contour turning (third pass)

    ( )

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    46/91

    46

    Process #10: Slab Milling

    10.7) Piece 4

    10.4.1) Material selection and initial dimensionPiece 4 Material Weight

    Bronze SAE 40 0.51 Kg

    10.4.2) Machining time and other parameters calculation

    Process #1: Facing (face A)

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    47/91

    47

    Process #3: Facing (face B)

    Process #5: Longitudinal turning

    Process #6: Longitudinal turning

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    48/91

    48

    Process #7: Longitudinal turning

    Process #8: Longitudinal turning (internal)

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    49/91

    49

    10.8)Piece 5

    10.5.1) Material selection and initial dimension

    Piece 4 Material Weight

    AISI 1045 4.22 Kg

    10.5.2) Machining time and other parameters calculation

    Process #1: Partial and end milling

    Side A (Up)

    Side B (Down)

    End milling:

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    50/91

    50

    Partial milling, w=4mm

    Process #2: End and partial milling

    Side B (Up)

    Side A (Down)

    End milling:

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    51/91

    51

    Partial milling, w=4mm

    Process #3: Partial and end milling

    Side C (up)

    Side D (down)

    End milling:

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    52/91

    52

    Partial milling, w=5mm

    Process #4: Partial and end milling

    Side D (up)

    Side C (down)

    End milling:

    Partial milling, w=5mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    53/91

    53

    Process #5: Partial and end milling

    Side F(Up)

    Side G(Down)

    End milling:

    Partial milling, w=2mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    54/91

    54

    Process #6: Partial and end milling

    Side G(Up)

    Side H(Down)

    End milling:

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    55/91

    55

    Partial milling, w=2mm

    Process #7: Pocket milling

    6 hole: =8mm

    Side A(Up)

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    56/91

    56

    Process #8: Pocket milling

    1 hole: =20mmSide A(Up)

    Process #9: Pocket milling

    1 hole: =40

    Side A(Up)

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    57/91

    57

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    58/91

    58

    10.9)

    Piece 6

    10.6.1) Material selection and initial dimension

    Piece 4 Material Weight

    AISI 1045 4.22 Kg

    10.6.2) Machining time and other parameters calculation

    Process #1: Partial and end milling

    Side A (Up)

    Side B (Down)

    End milling:

    Partial milling, w=4mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    59/91

    59

    Process #2: End and partial milling

    Side B (Up)

    Side A (Down)

    End milling:

    Partial milling, w=4mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    60/91

    60

    Process #3: Partial and end milling

    Side C (up)

    Side D (down)

    End milling:

    Partial milling, w=5mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    61/91

    61

    Process #4: Partial and end milling

    Side D (up)

    Side C (down)

    End milling:

    Partial milling, w=5mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    62/91

    62

    Process #5: Partial and end milling

    Side F(Up)

    Side G(Down)

    End milling:

    Partial milling, w=2mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    63/91

    63

    Process #6: Partial and end milling

    Side G(Up)

    Side H(Down)

    End milling:

    Partial milling, w=2mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    64/91

    64

    Process #7: Pocket milling

    Side A(Up)

    6 hole: =8mm

    Process #8: Pocket milling

    Side B(Up)

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    65/91

    65

    6 hole: =11mm

    Process #9: Pocket milling

    Side A(Up)

    1 hole: =12mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    66/91

    66

    Process #10: Pocket milling

    Side A(Up)

    1 hole: =40

    Process #11: Pocket milling

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    67/91

    67

    Side B(Up)

    1 hole: =44

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    68/91

    68

    10.10)

    Piece 7

    10.7.1) Material selection and initial dimension

    Piece 4 Material WeightAISI 1045 6.38 Kg

    10.7.2) Machining time and other parameters calculation

    Process #1: Partial and end milling

    Side A (Up)

    Side B (Down)

    End milling:

    Partial milling, w=4mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    69/91

    69

    Process #2: End and partial milling

    Side B (Up)

    Side A (Down)

    End milling:

    Partial milling, w=4mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    70/91

    70

    Process #3: Partial and end milling

    Side C (up)

    Side D (down)

    End milling:

    Partial milling, w=5mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    71/91

    71

    Process #4: Partial and end milling

    Side D (up)

    Side C (down)

    End milling:

    Partial milling, w=5mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    72/91

    72

    Process #5: Partial and end milling

    Side F(Up)

    Side G(Down)

    End milling:

    Partial milling, w=2mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    73/91

    73

    Process #6: Partial and end milling

    Side G(Up)

    Side H(Down)

    End milling:

    Partial milling, w=2mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    74/91

    74

    Process #7: Pocket milling

    6 hole: =12mm

    Side A(Up)

    Process #8: Pocket milling

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    75/91

    75

    1 hole: =38

    Side A(Up)

    Process #9: Pocket milling

    1 hole: =62mm

    Side A(Up)

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    76/91

    76

    10.11) Piece 8

    10.8.1) Material selection and initial dimension

    Piece 4 Material Weight

    AISI 1045 6.38 Kg

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    77/91

    77

    10.8.2) Machining time and other parameters calculation

    Process #1: Partial and end milling

    Side A (Up)

    Side B (Down)

    End milling:

    Partial milling, w=4mm

    Process #2: End and partial milling

    Side B (Up)

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    78/91

    78

    Side A (Down)

    End milling:

    Partial milling, w=4mm

    Process #3: Partial and end milling

    Side C (up)

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    79/91

    79

    Side D (down)

    End milling:

    Partial milling, w=5mm

    Process #4: Partial and end milling

    Side D (up)

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    80/91

    80

    Side C (down)

    End milling:

    Partial milling, w=5mm

    Process #5: Partial and end milling

    Side F(Up)

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    81/91

    81

    Side G(Down)

    End milling:

    Partial milling, w=2mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    82/91

    82

    Process #6: Partial and end milling

    Side G(Up)

    Side H(Down)

    End milling:

    Partial milling, w=2mm

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    83/91

    83

    Process #7: Pocket milling

    6 hole: =12mm

    Side A(Up)

    Process #8: Pocket milling

    1 hole: =38

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    84/91

    84

    Side A(Up)

    Process #9: Pocket milling

    1 hole: =42

    Side B (Up)

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    85/91

    85

    Process #10: Pocket milling

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    86/91

    86

    Process #11: Pocket milling

    1 hole: =68

    Side B (Up)

    10.12) Calculation Unit Time

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    87/91

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    88/91

    88

    After we have to calculate the , this time is a average, we chose 6 minute, that is the time in putthe piece in the correct position for do the each process. For example if in the process 2 I need to

    change the position of the workpiece the is:

    But in the process 3, I dont move the workpiece the

    is:

    Process Ts(min)

    1 6

    3 6

    5 6

    6 0

    7 6

    8 6

    After we add the Ts, Taux, Tm and Ts for each process:

    Process Ts(min)

    1 6,4214

    3 6,4214

    5 6,4214

    6 0,29267 6,06104

    8 6,2506

    Finally add all the unit time for obtain the unit time what we use for give the final shape of each

    piece:

    Piece 1: Tu=31, 87 min

    10.13)

    Budget

    Tool

    Quantity Code Description Unit price Total price

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    89/91

    89

    1 DDJNL 2020K 15 $100 $100

    1 SDJCL 2020k 11 $110 $110

    1 DNMG 150412-PM $13 $18

    1 DCET 11T304-UM $18 $18

    5

    R216.24-

    20050IAK38P $620 $3100

    1

    R216.33-15030-

    AC26P $275 $275

    1

    R216.24-

    12050GAK26P $247 $247

    1

    R216.33-11030-

    AC22P $170 $170

    1

    R216.33-06030-

    Ak22P $82 $82

    1T110M8

    $352 $352

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    90/91

    90

    1T110M12

    $638 $638

    Total $5110

    Amoun

    t

    Material Kind Unit

    Price

    Total

    Price

    1 Acero AISI 4340(705) Redondo(=46mm) 14,06 14,06

    1 Acero AISI 4140(709) Redondo(=70mm) 3.91 3.91

    1 Acero AISI 4140(709) Redondo(=28mm) 1.65 1.65

    1 Bronce SAE 40 (Calidad BS 1400 LG-

    2)

    Barra perforada (46 x

    34)mm

    6,21 6,21

    2 Acero AISI 1045(760) Platina (25 x 250) mm 27.76 55.52

    2 Acero AISI 1045(760) Platina (25 x 250) mm 18.36 36,72

    Total $117.97

    Cost of labor

    Total Hour Cost per hour Cost

    6.44 $3.75/h $24.15

    Rental machine

    Total Hour Cost per hour Cost6.44 $30/h* $193.2

    *This price contains the rental of turning machine and milling machine.

  • 8/11/2019 Proyecto de Mecanizacion(Ingles)

    91/91

    10.14)

    CNC Code