13
COLEGIO VEDRUNA Curso 2012-2013 FÍSICA Y QUÍMICA 4º ESO Boletín de repaso GLOBAL SOLUCIONES 1. Indica si las siguientes afirmaciones son verdaderas o falsas, JUSTIFICANDOS TODAS las respuestas (indicar las operaciones matemáticas en los casos que sean necesarios) a) Si un coche que circula a 24m/s se detiene tras frenar durante 6s, la deceleración aplicada ha sido de -4m/s 2 Sabemos que se trata de un m.r.u.a. Con los datos que sabemos que son ciertos (vo y t) calculamos la aceleración, para comprobar si nos da el valor indicado en el enunciado: v=vo +at => a= vvo t = 024 6 = -4m/s 2 Por tanto, la frase es VERDADERA b) Si un objeto se lanza hacia abajo con una velocidad de 5m/s y tarda 4s en llegar al suelo, podemos afirmar que llega al suelo con una velocidad de 44.2m/s y que se lanzó desde 50m de altura. Se trata de una caída libre. Tenemos que calcular la altura inicial, con los datos que nos dan de velocidad inicial y tiempo (yo considero que todo lo que baja es negativo, por eso tomo la velocidad inicial y la gravedad negativas, pero lo podéis hacer al contrario, no sé cómo lo hacíais con el otro profesor). En cuanto a la velocidad final la calculamos: v=vo+at => v= -5m/s - 9.8m/s 2 ·4s=-44.2m/s Para la altura desde la que se dejó caer (yo) y= yo +vot + 1/2gt 2 => yo = y – vot -1/2gt 2 =0m +5m/s·4s -1/2 · (-9.8m/s 2 ) (4s) 2 yo= 98.4m 50 m Por tanto, la frase es FALSA c) Si un móvil se mueve durante un minuto a velocidad constante de 6m/s, se detiene durante 20s, tras los cuales comienza a acelerar con una aceleración de 2m/s 2 hasta que alcanza una velocidad final de 10m/s. Podemos afirmar que su velocidad media será de 8m/s. Tenemos que comprobar que la velocidad media coincide con la que indica el enunciado. Para ello tenemos que saber que velocidad media= espacio total/tiempo total. Por lo que tenemos que calcular el tiempo y espacio de cada tramo: Tramo I: m.r.u.; t=60s ; v=6m/s=cte; a=0m/s 2 s=so +vot = 0m + 6m/s ·60s = 360m Tramo II: t=20s ; s=0m Tramo III: m.r.u.a.; vo=0m/s; vf=10m/s; a=2m/s 2 v=vo +at => t = vvo a = 10 m / s0 m / s 2 m / s 2 = 5s

Repaso final 3º evaluación soluciones

Embed Size (px)

Citation preview

Page 1: Repaso final 3º evaluación soluciones

COLEGIO VEDRUNACurso 2012-2013

FÍSICA Y QUÍMICA 4º ESOBoletín de repaso GLOBAL

SOLUCIONES

1. Indica si las siguientes afirmaciones son verdaderas o falsas, JUSTIFICANDOS TODAS las respuestas (indicar las operaciones matemáticas en los casos que sean necesarios)a) Si un coche que circula a 24m/s se detiene tras frenar durante 6s, la deceleración aplicada ha sido de -4m/s2

Sabemos que se trata de un m.r.u.a. Con los datos que sabemos que son ciertos (vo y t) calculamos la aceleración, para comprobar si nos da el valor indicado en el enunciado:

v=vo +at => a= v−vo

t =

0−246

= -4m/s2

Por tanto, la frase es VERDADERA

b) Si un objeto se lanza hacia abajo con una velocidad de 5m/s y tarda 4s en llegar al suelo, podemos afirmar que llega al suelo con una velocidad de 44.2m/s y que se lanzó desde 50m de altura.Se trata de una caída libre. Tenemos que calcular la altura inicial, con los datos que nos dan de velocidad inicial y tiempo (yo considero que todo lo que baja es negativo, por eso tomo la velocidad inicial y la gravedad negativas, pero lo podéis hacer al contrario, no sé cómo lo hacíais con el otro profesor). En cuanto a la velocidad final la calculamos: v=vo+at => v= -5m/s - 9.8m/s2·4s=-44.2m/sPara la altura desde la que se dejó caer (yo)y= yo +vot + 1/2gt2=> yo = y – vot -1/2gt2=0m +5m/s·4s -1/2 · (-9.8m/s2)(4s) 2

yo= 98.4m ≠50mPor tanto, la frase es FALSA

c) Si un móvil se mueve durante un minuto a velocidad constante de 6m/s, se detiene durante 20s, tras los cuales comienza a acelerar con una aceleración de 2m/s2 hasta que alcanza una velocidad final de 10m/s. Podemos afirmar que su velocidad media será de 8m/s.Tenemos que comprobar que la velocidad media coincide con la que indica el enunciado. Para ello tenemos que saber que velocidad media= espacio total/tiempo total. Por lo que tenemos que calcular el tiempo y espacio de cada tramo:Tramo I: m.r.u.; t=60s ; v=6m/s=cte; a=0m/s2

s=so +vot = 0m + 6m/s ·60s = 360mTramo II: t=20s ; s=0mTramo III: m.r.u.a.; vo=0m/s; vf=10m/s; a=2m/s2

v=vo +at => t = v−vo

a =

10m /s−0m /s2m / s2

= 5s

s=so +vot+1/2at2= ½ · 2m/s2·(5s) 2= 25m

En consecuencia: Stotal= 360m + 25m =385mTiempo total= 60s + 20s + 5s =85s Vmedia= 385m/85s = 4.53m/s ≠ 8m/sPor tanto, la frase es FALSA

d) Si el neumático de un coche de 55cm de diámetro gira a razón de 800rpm, podemos afirmar que el coche lleva una velocidad lineal de 83km/h.d= 55cm= 0.55mr=d/2= 0.275m

w= 800revoluciones

minuto

2π rd1revoluci ó n

1minuto60 s

= 83.78rd/s

Sabiendo que v= wR = 83.78rd/s · 0.275m = 23m/s 1km

1000m3600 s

1h= 83km/h

Page 2: Repaso final 3º evaluación soluciones

Por tanto, la frase es VERDADERA

e) Si un gas ocupa 175L a una presión de 101kPa, si aumentamos la presión hasta los 140kPa pasará a ocupar un volumen de 126.3L. En un gas el volumen y la presión son inversamente proporcionales, es decir: P1V1=P2V2 => V2= P1V1/P2=175L·101kPa/140kPa=126.3kPa.Por tanto, la frase es VERDADERA

f) El bromuro de calcio es un compuesto insoluble en agua que conduce la electricidad en estado sólido, al igual que el dióxido de carbono.La frase es FALSA, pues el bromuro de calcio es un compuesto iónico por estar formado por la unión de un metal y un no metal; por tanto, será un compuesto sólido, soluble en agua que conduce la electricidad fundido o disuelto, pero no en estado sólido. En cuanto al metano, es un compuesto covalente, por estar formado por dos no metales, por lo que sí es cierto que es insoluble en agua, sin embargo no conduce la corriente eléctrica en ningún estado de agregación.

g) Si un muelle de 15cm de longitud se le cuelga una masa de 400g se alarga 20cm, por lo que podemos afirmar que su constante de elasticidad será de 196N/m.Teniendo en cuenta que F=K(xf-xi) => K= F/(xf-xi)= mg/(xf-xi)K=0.4kg·9.8m/s2/(0.20m-0.15m)=78.4N/m.Por tanto, la afirmación es FALSA.

h) En todos los choques se conserva la energía cinética, pero solo en los inelásticos se conserva la cantidad de movimientoFALSA, en todos los choques se conserva el momento lineal (o cantidad de movimiento), y solo en los elásticos se conserva la energía cinética, ya que en los choques inelásticos parte de la energía se pierde en forma de calor o de energía de deformación.

i) En un recipiente de 6 litros de capacidad tenemos una mezcla de 175 mM de nitrógeno, 46 mM de oxígeno y 15 mM de agua a 37ºC, por lo que podemos afirmar que la presión parcial de oxígeno es de 0.064atm.La presión parcial se calcula con la ley de Dalton: Poxígeno =Pt· XoxígenoCalculemos la Pt con PV=nRT. Tenemos que meter el número de moles totales:Moles N2= 0.175M * 6L=1.05Moles O2= 0.046M * 6L=0.276Moles H2 O = 0.015M * 6L= 0.09Moles totales= 1.05+0.276+0.09=1.416 molesP=nRT/V => P= 1.416moles ·0.082atmL/(molK)·310K/6L= 6atmPoxígeno= 6atm· 0.276moles oxígeno/1.416moles totals= 1.17atm.Por tanto es FALSA

2. Para las moléculas de ácido fluorhídrico, cloruro de sodio y nitrógeno:Las moléculas son HF, NaCl y N2

a) Escribe la configuración electrónica de cada uno de los átomos que las forman y, en base a ella, justifica su posición en la tabla periódica y el ión que tiende a formar cada uno.H (Z=1):1s1 => periodo 1, grupo 1 (alcalinos)F (Z=9): 1s22s22p5 => periodo 2, grupo 17 o 7 (halógenos)Na (Z=11): 1s22s22p63s1=> periodo 3, grupo 1 (alcalinos)Cl (Z=17): 1s22s22p63s23p5=> periodo 1, grupo 17 o 7 (halógenos)N (Z=7): 1s22s22p3 => periodo 2, grupo 15 o 5 (nitrogenoides)

b) Ordena dichos átomos según su tamaño, su energía de ionización y su afinidad electrónica.Los átomos aumentan de tamaño a medida que bajamos en un grupo en el sistema periódico ya que aumenta el número de capas o niveles de energía ocupados. Sin embargo, el radio disminuye a medida que avanzamos hacia la derecha en un período, pues no cambia el número de capas ocupadas pero aumenta el número de protones por lo que los electrones se verán más fuertemente atraídos por el núcleo, disminuyendo así el tamaño. En los átomos del ejercicio quedarían ordenados de menor a mayor radio: H < F < N < Cl< Na

Page 3: Repaso final 3º evaluación soluciones

La energía de ionización es la energía que tenemos que suministrar a un átomo en su configuración fundamental y estado gaseoso para arrancarle un electrón de la última capa. Cuanto más pequeño sea el átomo, más fuertemente estará el electrón atraído por el núcleo, por lo que habrá que aplicar más energía para arrancarlo. Es decir, cuanto menor radio mayor será la energía de ionización. En consecuencia, cuanto más arriba en un grupo y más a la derecha en un periodo mayor será la energía de ionización. Por tanto, ordenados de menor a mayor potencial de ionización quedarán: Na< Cl<N<F<H

La afinidad electrónica es la energía que se pone de manifiesto cuando un átomo en estado fundamental y gaseoso gana un electrón en su último nivel. Cuanto más pequeño sea el átomo más fácil será ganar el electrón, pues más cerca estará del núcleo. Por tanto, el orden será el mismo que par la energía de ionización: Na< Cl<N<F<H

b) Dibuja sus estructuras de Lewis y justifica el tipo de enlace que presenta cada una.

HF: Se trata de un enlace covalente pues se unen dos no metales. El hidrógeno tiene un electrón en us último nivel, por lo que quiere ganar otro para completar su último nivel. En el caso del fluor, tiene 7 electrones en la última capa, por lo que necesita ganar un electrón para completar su nivel. Es decir, compartirán un electrón

NaCl: se une un metal (el sodio) con un no metal (el cloro). El sodio tiene tendencia a perder el electrón de su último nivel para quedarse con la capa anterior completa, mientras que el cloro tiene tendencia a ganar un electrón pues tiene 7 en su última capa y ganando uno cumple la regla del octeto. Es decir, el sodio le cede un electrón al cloro, se forma el catión sodio y el anión cloruro, que se atraen electrostáticamente, formando el enlace iónico.

N2: el nitrógeno tiene siete electrones en su última capa y necesita 8 para completar dicho nivel, por lo que cada nitrógeno tiene que compartir tres electrones.

c) Explica las características químicas de cada molécula en base a su enlace químico.Tanto el HF como el nitrógeno son compuestos covalentes moleculares, por lo que serán moléculas gaseosas o líquidas a temperatura ambiente, insolubles en agua, con bajos puntos de fusión y ebullición y malos conductores de la electricidad.

En cuanto al NaCl es un compuesto iónico y, en consecuencia, sólido a temperatura ambiente, con alto punto de fusión y ebullición, duro, frágil, soluble en agua y conductor de la electricidad fundido o disuelto, pero no en estado sólido.

3. a) ¿Cuánto tiempo ha actuado una fuerza de 118N sobre un cuerpo de 20kg, inicialmente en reposo, que ahora tiene una velocidad de 10m/s, sabiendo que =0.3? μ

Hagamos balance:F-Froz = ma => F- N =ma => F- mg=ma => μ μ118N -0.3·20kg·9.8m/s2=20kg·a => a=2.96m/s2

Como se describe un m.r.u.a. y sabemos la aceleración y las velocidades podemos calcular el tiempo:v=vo+at => t= (v-vo)/a = 10m/s : 2.96m/s2= 3.38s

b) ¿Qué fuerza hay que aplicar para que la velocidad sea la misma, pero el tiempo que actúe la fuerza sea la mitad?

Page 4: Repaso final 3º evaluación soluciones

Queremos que la velocidad final siga siendo 10m/s y que el tiempo sea la mitad de 3.38s, es decir, queremos que t=1.69s, por lo que podemos calcular la aceleración v=vo+at => a= (v-vo)/t = 10m/s : 1.69s= 5.92m/s2

Por tanto, en el balance de las fuerzas ahora conocemos la “a” pero la F es nuestra incógnita:F-Froz = ma => F- N =ma => F- mg=ma => F= mg+maμ μ μF= 0.3·20kg·9.8m/s2+20kg·5.91m/s2=> F=177.2N

4. La etiqueta de una botella de ácido nítrico indica 15,5 M y densidad 1,41 g/cm3 .a) Calcular su riqueza (porcentaje en masa)Como la concentración no cambia independientemente de la cantidad de disolución, podemos tomar como base de cálculo 1L de disolución. Como es 15.5M, si cogemos 1L de disolución tendremos 15.5moles de ácido nítrico.

Nos piden la riqueza o concentración centesimal:Riqueza = masa soluto / masa disolución ·100

Como tenemos 15.5moles de HNO3 podemos calcular los moles:

15.5moles de HNO363 gde HNO31mol de HNO3

= 976.5g HNO3 (soluto)

Necesitamos la masa de disolución, que la podemos calcular a partir del volumen, 1L (1000cm 3), y su densidad:d=m/v => m= d·v = 1.41 g/cm3 ·1000cm3= 1410g disolución

Por tanto, ya podemos calcular la riqueza: Riqueza= 976.5g/1410g ·100= 69.26%

b) ¿Qué volumen de dicha disolución comercial deberíamos coger para preparar 100mL de una disolución nítrica 2M? Describe cómo lo harías en el laboratorio;

0.1L disolución2moles de HNO3

1 Ldisolución= 0.2moles HNO3 necesitamos. Los tendremos que coger de

nuestra disolución comercial:M= moles nítrico/volumen disolución => Volumen disolución= moles nítrico/M=0.2moles HNO3

/15.5M => V= 0.0129L =12.9mL

c) Si se hace reaccionar 10mL de dicha disolución 2M con 10g de cadmio se obtienen 1.5g de nitrato de cadmio, ¿cuál ha sido el rendimiento de la reacción?;

2HNO3 + Cd → Cd(NO3)2 + H2

Como nos dan información de los dos reactivos, debemos calcular el reactivo limitante.

0.01L disolución2moles de HNO3

1 Ldisolución1moldeCd (NO 3 ) 22molesde HNO3

236.4 gde Cd (NO3 ) 21moldeCd (NO3 )2 = 2.364g de

Cd(NO3)2

10g Cd 1mol Cd112.4 gCd

1molde Cd (NO3 ) 21molCd

236.4 gdeCd (NO3 ) 21moldeCd (NO 3 ) 2 = 21g de Cd(NO3)2

El reactivo limitante será la disolución de ácido nítrico, por lo que podemos calcular el reactivo limitante:Rendimiento= masa nitrato cadmio real / masa nitrato cadmio teórica ·100= 1.5g / 2.364g ·100Rendimiento= 63.45%

d) Si el rendimiento hubiera sido del 75%, ¿qué volumen de gas medido a 800mmHg y 100ºC se obtendrá?La cantidad de reactivos no ha cambiado, por lo que podemos calcular los moles de hidrógeno obtenidos, usando evidentemente para ello el reactivo limitante:

0.01L disolución2moles de HNO3

1 Ldisolución1molde H 2

2molesde HNO3=¿0.01moles H2

Sin embargo, estos serían los moles teóricos, pero lo que nos piden es el volumen real, por lo que debemos calcular los moles de hidrógeno reales:

Page 5: Repaso final 3º evaluación soluciones

Rendimiento= moles hidrógeno reales/ moles hidrógeno teóricos ·100 => moles reales= rendimiento · moles teóricos /100= 75 · 0.01/1000= 0.0075moles de hidrógeno se obtendrán realmente

Por tanto: V= nRT/P =

0.0075moles ·0.082atmL

molK373K

800mmHg·1atm

760mmHg

= 0.218L de hidrógeno

5. a) Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30º. a) Altura máxima se cumple que vy=0m/svy= voy+gt => 0m/s = vosen30 - 9.8m/s2t y= yo + voyt+1/2gt2=> 100m= vosen30t – 4.9m/s2t2

Tenemos un sistema de dos ecuaciones y dos incógnitas (vo y t). Al resolverlo se obtiene que t=4.52s y vo= 88.54m/s

6. Un arquero quiere efectuar un tiro parabólico entre dos acantilados tal y como indica la figura. El acantilado de la izquierda se halla 4 m por arriba con respecto al de la derecha. Si el arquero solo puede disparar con un ángulo de 30 y quiere⁰ lanzar las fechas a 5 m del acantilado de la derecha, calcula con qué velocidad mínima ha de lanzarlas. Calcula el tiempo de vuelo. Se trata de un tiro parabólico. Queremos que el alcance sea 25m+5m=30m. Consideramos que yo=4m y que en el segundo acantilado la altura es 0m.x= xo+voxt => 30m= vocos30tAdemás en el alcance y=0my= yo + voyt+1/2gt2=> 0m=4m+vosen30t-4.9m/s2t2=

Tenemos dos ecuaciones con dos incógnitas (vo y t) 50m= vocos30t => vo=30/(cos30t)4 + 30sen30/cos30 – 4.9t2=0 => t2=(4 +30tan30):4.9 => t=2.09s (tiempo de vuelo)

Por lo que vo= 30: (cos30·2.09)=> vo=16.6m/s

7. Una rueda, puesta en movimiento por un motor, ha girado 0.5 radianes durante el primer segundo. ¿Cuántas vueltas dará la rueda en los 10 primeros segundos, suponiendo que la aceleración angular es constante durante ese tiempo? ¿Cuál será en ese instante la velocidad lineal de un punto de la llanta, si el radio de la rueda es de 50 cm? ¿Qué valor tendría la aceleración negativa de frenado, si el motor dejase de funcionar cuando la rueda gira a razón de 120 vueltas porsegundo y ésta tardase 6 minutos en pararse?

Solución:

Page 6: Repaso final 3º evaluación soluciones

8. Se deja caer una pelota desde 90 metros de altura. Un segundo más tarde una segunda pelota se lanza desde el suelo verticalmente hacia arriba con una velocidad inicial de 30 m/s. a)Determinar el tiempo transcurrido hasta que se encuentran la dos pelotas y a qué altura lo hacen. b)Que velocidad tendrá cada una en ese momento?a) Se trata de caída libre o tiro vertical por lo que la fórmula a emplear será: y= yo + voyt+1/2gt2

Pelota 1: y1= 90m -4.9m/s2t2

Pelota 2: Como se lanza un segundo más tarde siempre llevará recorrido un segundo menos que la primera, es decir t2=t-1. Por tanto: y2=30m/s (t-1) -4.9m/s2(t-1)2

Cuando se crucen los dos espacios serán iguales, es decir, tendremos que igualar las dos ecuaciones:

30m/s (t-1) -4.9m/s2(t-1)2 = 90m -4.9m/s2t2

La única incógnita es t, por lo que despejando obtenemos t=3.14s.Como ya tenemos el tiempo, sustituyendo en cualquiera de las dos ecuaciones originales sacamos la altura: y= 90m -4.9m/s2(3.14s)2=> y= 41.69m

b) Calculamos para cada una la velocidad sabiendo el tiempov1= vo +gt => v1= 0m/s -9.8m/s2· 3.14s = -30.77m/s (la velocidad es negativa porque la pelota cae)v1= vo +g(t-1) => v2= 30m/s -9.8 m/s2· (3.14-1)s =9.03m/s

Page 7: Repaso final 3º evaluación soluciones

9. La explosión de la pólvora en un fusil, origina una fuerza constante que actúa sobre el proyectil de 15 g de masa. El cañón del fusil tiene una longitud de 60 cm y la velocidad de salida del proyectil es de 200 m/s. Calcula: a) La variación de energía cinética del proyectil. b) El trabajo mecánico realizado por la explosión de la pólvora. c) La fuerza que actúa sobre el proyectil.d) Explica qué has utilizado para resolver el problema.a) Como inicialmente el proyectil está en reposo, la energía cinética inicial es 0 J, la variación de

energía cinética coincide con el valor de ésta a la salida del arma.

ΔEc=Ec f−Eci=12mv

f2=

12

15⋅10−3kg⋅(200m

s)2

=3⋅10−2 J

b) El trabajo mecánico realizado es igual a la variación de la energía cinética:

W=ΔEc=3⋅102J

c) De acuerdo con la definición de trabajo, la fuerza que actúa es la siguiente:

W=F⋅d⋅cosα ; en este caso, la fuerza y el desplazamiento tienen la misma dirección y

sentido ( =0º), por lo tanto:α

F=Wx

=3⋅102 J0,6 m

=5⋅102 N

d) Hemos aplicado el teorema de las fuerzas vivas, que nos dice que el trabajo realizado por una

fuerza sobre un objeto, es igual a la variación de energía cinética del mismo.

10. Una masa se desliza a lo largo de una superficie horizontal con una velocidad de 4 m/s y se encuentra a 2 m con una rampa inclinada que forma un ángulo de 30 º con la horizontal. ¿Hasta qué altura del plano inclinado subirá la masa, si el coeficiente de rozamiento en todo el trayecto es de 0,2?Este problema lo podemos plantear desde dos puntos de vista: empleando cinemática/dinámica o a través de criterios ennergéticos:A) Con cinemática y dinámica: Aparece resuelto en el siguiente vídeo (os copio y pego pantallazos para que lo tengáis accesible )

Page 8: Repaso final 3º evaluación soluciones

B) Como hay fuerza de rozamiento no podemos aplicar el principio de la conservación de la energía mecánica. Además tenemos que calcular un paso intermedio, pues el trabajo de rozamiento cambia de la superficie horizontal al plano inclinado, pues varía la normal. Es decir, tendremos que trabajar con tres puntos o posiciones: A punto inicial: B: cuando la caja está en la base del plano inclinado; C en el punto más alto del plano inclinado al que llega la caja.

Ema +Wroz = EMb => 1/2mva2 +mgha + mg∆xcos180= 1/2mvμ b2 +mghb

Las masas se simplifican, las alturas son 0. Por tanto,½(4m/s)2 - 0.2·2m·9.8m/s2 = 1/2vb

2 => vb=2.86m/s

Ahora podemos calcular la altura en C teniendo en cuenta que la velocidad en C, porque la masa se para al llegar al punto más alto (nuevamente las m se pueden simplificar y ahora N=Py)Emb +Wroz = EMc => 1/2mvb

2 +mghb + mg·∆x·sen30·cos180= 1/2mvμ C2 +mghc

Por trigonometria podemos relacionar ∆x con la altura: ½(2.86m/s)2 +0.2·9.8m/s2 sen30·cos180 = 9.8m/s2 hc

=> hc=0.32m

11. a) Si M1=M3=2kg y M2=6kg, siendo el coeficiente de rozamiento de 0.5, calcular la aceleración del sistema y las tensiones de las cuerdas. b) Si M3 recorre un metro sobre la mesa en 10s, calcula el trabajo que realiza la fuerza de rozamiento y el trabajo que realiza la fuerza de tensión sobre M1.a) Hacemos balance a cada uno de los cuerpos teniendo en cuenta que suponemos que el sistema se mueve hacia la derecha: Cuerpo 1: T1-P1 =m1a => T1 – m1g = m1a Cuerpo 3: T2-T1-Froz=m3a => T2-T1- mμ 3g=m3a Cuerpo 2: P2-T2=m2a=> m2g-T2=m2a

Tenemos 3 ecuaciones y 3 incógnitas la a y las dos tensiones, por lo que simplemente tenemso que resolver el sistema. Por ejemplo, aplicamos la reducción a las dos primeras:T2 - mμ 3g– m1g = m1a+ m3am2g-T2=m2a

Aplicamos nuevamente la reducción: m2g -μm3g– m1g = m1a+ m3a+ m2aPor tanto a=2.94m/s2

Sustituyendo en las demás se obtiene que T2=41.16N y T1=25.48N

C

BA

Page 9: Repaso final 3º evaluación soluciones

b) Wroz= Froz ∆x cos180= - mμ 3g∆x= -0.5·2kg ·9.85m/s2·1m= -9.8JWT1= T1∆x cos0= 41.16N·1m =41.16J

12. Tenemos un motor que consume 1 kg de gasolina con un poder calorífico de 500 kcal/kg. Sabemos que ese motor es capaz de subir 4000 litros de agua hasta una altura de 40 metros (dagua= 1000 g/L). a) ¿Cuál es el rendimiento de la máquina? b) ¿Por qué el rendimiento no es del 100%?

a) El rendimiento lo podemos conocer mediante la fórmula:

Rendimiento=

W realizado

W consumido

⋅100

En este problema conocemos el trabajo realizado (subir 4000 L de

agua a 40 m de altura)

Wrealizado=F·d·cosα; la fuerza es la del peso, y fuerza y

desplazamiento tienen la misma dirección y sentido, α=0º y cos

0º=1.

Wrealizado=F·d=P·d=m·g·d=4000kg·10m/s2·40m=2,09·106J

El trabajo consumido es la energía que el motor necesita para

funcionar:

Wconsumido=Econsumida=1kg·500·103cal/kg·4,18J/cal=1,6·106J

Y el rendimiento será:

R=

W realizado

W consumido

⋅100=

1,6 ·106 J2 ,09⋅106 J ·100=76,55%

b) Siempre se pierde parte de la energía consumida en forma de

calor (degradación de la energía)

14. En un calorímetro hay 200 g de hielo a -20ºC. Se hace entrar vapor de agua a 100ºC y presión normal en cantidad suficiente para que la mezcla alcance el equilibrio a la temperatura de 40ºC. Calcula la cantidad de vapor que entra en el calorímetro. DATOS: Ce (hielo) = 2,09·103 J/kgºC; Ce (agua líquida) = 4,18·103J/kgºC; Calor de fusión del hielo= 333,6 kJ/kg; Calor de vaporización del agua= 2,257103 kJ/kg.

Calor absorbido por el hielo al convertirse en agua líquida a 40ºC:

Qa=Q1+Q2+Q3

Q1=paso del hielo de –20ºC a 0ºC= m·Ce·ΔT= 0,200

kg·2,09·103J/kgºC·(0ºC-(-20ºC))

Q2=cambio de estado (fusión del hielo)=m·Lf=0,200 kg·336,6 J/kg

Page 10: Repaso final 3º evaluación soluciones

Q1=paso del agua de 0ºC a 40ºC= m·Ce·ΔT= 0,200

kg·4,18·103J/kgºC·(40ºC-0ºC)

Q1+Q2+Q3=1,09·105J

Calor cedido por el vapor al convertirse en agua líquida a 40ºC:

Qc=Q4+Q5

Q4=cambio de estado (condensación del vapor)=m·LV=m·2,257·106

J/kg

Q1=paso del agua de 100ºC a 40ºC= m·Ce·ΔT=

m·4,18·103J/kgºC·(100ºC-40ºC)

Qc=Q4+Q5=2,51 m J/kg

Igualando ambos calores: m =0,0434 kg = 43,4 g