136
7/17/2019 Sismo Vertical http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 1/136  Universidad Austral de Chile Facultad de Ciencias de la Ingeniería Escuela de Ingeniería Civil en Obras Civiles "   ANÁLISIS DE LOS EFECTOS DE LA ACCIÓN SÍSMICA  VERTICAL EN EDIFICIO DE ACERO, EN ZONA DE SISMICIDAD ALTA." Tesis para optar al Título de: Ingeniero Civil en Obras Civiles Profesor Patrocinante: Sr. Sr. José Soto Miranda. Ingeniero Civil, M. Sc. en Ing. Civil. Mención Ingeniería Sísmica Comisión Evaluadora: Sr. Adolfo Castro Bustamante. Ingeniero Civil. M. Sc. en Ingeniería Civil Especialidad Estructuras. Sr. Galo Valdebenito Montenegro Ingeniero Civil, Especialidad Estructuras Dr. Ingeniería Sísmica y Dinámica Estructural. ROBINSON ENRIQUE LEAL PAREDES  VALDIVIA - CHILE 2012

Sismo Vertical

Embed Size (px)

DESCRIPTION

sz

Citation preview

Page 1: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 1/136

 

Universidad Austral de ChileFacultad de Ciencias de la IngenieríaEscuela de Ingeniería Civil en Obras Civiles

"  ANÁLISIS DE LOS EFECTOS DE LA ACCIÓN SÍSMICA VERTICAL EN EDIFICIO DE ACERO, EN ZONA DE

SISMICIDAD ALTA."

Tesis para optar al Título de:Ingeniero Civil en Obras Civiles

Profesor Patrocinante:Sr. Sr. José Soto Miranda.

Ingeniero Civil, M. Sc. en Ing. Civil.Mención Ingeniería Sísmica

Comisión Evaluadora:Sr. Adolfo Castro Bustamante.

Ingeniero Civil. M. Sc. en Ingeniería CivilEspecialidad Estructuras.

Sr. Galo Valdebenito Montenegro

Ingeniero Civil, Especialidad EstructurasDr. Ingeniería Sísmica y Dinámica Estructural.

ROBINSON ENRIQUE LEAL PAREDES VALDIVIA - CHILE

2012

Page 2: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 2/136

 

 Agradecimientos

 En primer lugar doy gracias a Dios porque sin El no podría escribir las líneas siguientes.

Le agradezco a mi madre por ser mi ángel en la tierra, a mi padre por su apoyo incondicional, a mi hermano por ser

mi alegría, a mis familiares por tanto cariño entregado, a mis amigos por demostrarme que no sólo por la sangre pueden

estar unidas las personas por siempre. A mis profesores y compañeros por hacer de mi paso por la universidad una

lección de vida impagable.

Page 3: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 3/136

 

Índice General

CAPÍTULO I INTRODUCCIÓN  .......... .................................................................................1 

1.1  PLANTEAMIENTO DEL PROBLEMA ................................................................................... 1 

1.2  OBJETIVOS ..................................................................................................................................... 4 

1.2.1  General ........................................................................................................................................... 4 

1.2.2  Específicos .................................................................................................................................... 4 

1.3  METODOLOGÍA ........................................................................................................................... 5 

CAPÍTULO II  ACCIÓN SÍSMICA VERTICAL  .................................................................... 7 

2.1  ONDAS SÍSMICAS ......................................................................................................................... 8 

2.2   ACELERACIONES VERTICALES ......................................................................................... 10 

2.2.1 Daños estructurales asociados a la acción sísmica vertical .................................................. 12 

2.2.2  Registros Sísmicos Nacionales ................................................................................................ 17 

CAPÍTULO III MODELADO DE LAS ESTRUCTURAS A ANALIZAR  .......................... 20 

3.1  MODELO DE ESTRUCTURA ................................................................................................. 21 

3.1.1  Materiales .................................................................................................................................... 21 

3.1.2  Distribución de Elementos Resistentes ................................................................................. 22 

3.1.2.1  Esquemas de edificio de 4 pisos ..................................................................................... 24 

3.1.2.2  Esquemas de edificio de 12 pisos ................................................................................... 29 

3.1.3  Estructura Sismo - Resistente ................................................................................................. 39 

3.1.3.1  Columnas ............................................................................................................................ 40 

3.1.3.2   Vigas .................................................................................................................................... 41 

3.1.3.3  Diagonales .......................................................................................................................... 42 

3.1.3.4  Losas ................................................................................................................................... 43 

Page 4: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 4/136

 

3.2  MODELADO DE MASAS ..................................................................................................... 44 

CAPÍTULO IV CARGAS Y ESTADOS DE CARGA  ............................................................ 49 

4.1  CARGAS APLICADAS ............................................................................................................... 50 

4.2  COMBINACIONES DE CARGA ............................................................................................ 55 

4.3  CÁLCULO DE LAS CARGAS .................................................................................................. 56 

4.3.1  Peso Sísmico........................................................................................................................... 56 

4.3.2  Registro Acelerográficos ..................................................................................................... 57 

4.3.2.1  Corrección ..................................................................................................................... 58 

4.3.2.2 

Espectros de respuesta ................................................................................................. 63 

4.4   ANÁLISIS TIEMPO-HISTORIA ........................................................................................... 68 

4.5   ANÁLISIS MODAL ESPECTRAL ......................................................................................... 70 

4.6  CASOS CONSIDERADOS VARIANDO ESTADOS DE CARGA ................................. 71 

CAPÍTULO V RESULTADOS  .............................................................................................. 73 

5.1   ANÁLISIS POR NORMATIVA CHILENA........................................................................... 74 

5.2   ANÁLISIS TIEMPO-HISTORIA ............................................................................................. 78 

5.3   ANÁLISIS MODAL ESPECTRAL ........................................................................................... 83 

COMENTARIOS Y CONCLUSIONES ................................................................................. 88

 ANEXOS…………………………………………………………………………………………91 

BIBLIOGRAFÍA .....................................................................................................................121 

Page 5: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 5/136

 

Índice de Tablas

 Tabla Nº 1.1 Resumen de registros a utilizar ................................................................................................. 6 

 Tabla Nº 2.1 Resumen de valores obtenidos por registros sísmicos de cada estación ......................... 18 

 Tabla Nº 3.1 Propiedades mecánicas del acero A 42-27 ES .................................................................... 22 

 Tabla Nº 3.2 Propiedades mecánicas del hormigón H-30 ........................................................................ 22 

 Tabla Nº 3.3 Dimensiones de las columnas utilizadas en los diseños .................................................... 40 

 Tabla Nº 3.4 Dimensiones de las vigas utilizadas en los diseños ............................................................ 41 

 Tabla Nº 3.5 Dimensiones de las diagonales utilizadas en los diseños .................................................... 42 

 Tabla Nº 3.6 Factor de la masa sísmica de los elementos tributantes a un punto en un piso ............. 45 

 Tabla Nº 4.1 Presión básica del viento para diferentes alturas sobre el suelo ...................................... 51 

 Tabla Nº 4.2 Presión básica del viento para las alturas de los pisos del edificio de 12 pisos ............. 52 

 Tabla Nº 4.3 Resumen de parámetros utilizados en el diseño sísmico del edificio de 12 pisos .......... 53 

 Tabla Nº 4.4 Resumen datos de entrada ..................................................................................................... 57 

 Tabla Nº 5.1 Desplazamientos del centro de masa relativos al nivel inferior, de cada piso, modelo

con 4 pisos ........................................................................................................................................................ 74 

 Tabla Nº 5.2 Desplazamientos del centro de masa relativos al nivel inferior, de cada piso, modelo

con 12 pisos ...................................................................................................................................................... 74 

 Tabla Nº 5.3 Esfuerzos basales según solicitaciones, modelo de 4 pisos ............................................... 75 

 Tabla Nº 5.4 Esfuerzos basales según solicitaciones, modelo de 12 pisos ............................................. 76 

 Tabla Nº 5.5 Aumento de fuerza axial a nivel basal producto de la acción sísmica vertical................ 79 

 Tabla Nº 5.6 Aumento porcentual de los momentos volcantes a nivel basal producto de la acción

sísmica vertical .................................................................................................................................................. 79 

 Tabla Nº 5.7 Aumento de fuerza axial a nivel basal producto de la acción sísmica vertical con

excentricidad de la masa sísmica en dicha dirección. ................................................................................. 80 

Page 6: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 6/136

 

 Tabla Nº 5.8 Aumento porcentual de los momentos volcantes a nivel basal producto de la acción

sísmica vertical con excentricidad de la masa sísmica en dicha dirección. ............................................. 80 

 Tabla Nº5.9 Promedio de la diferencia entre el caso de 12 pisos sin masa sísmica vertical, sin

excentricidad y sin componente sísmica vertical y el modelo que sí posee masa vertical ..................... 81 

 Tabla Nº5.10 Promedio de la diferencia entre el caso de 12 pisos con masa sísmica vertical, sin

excentricidad y con componente vertical sísmica y el modelo que sí posee excentricidad ................... 81 

 Tabla Nº5.11 Promedio de la diferencia entre el caso de 12 pisos sin masa sísmica vertical, sin

excentricidad y sin componente sísmica vertical y el modelo que sí posee masa vertical y componente

 vertical sísmica .................................................................................................................................................. 82 

 Tabla Nº 5.12 Aumento de fuerza axial a nivel basal producto de la acción sísmica vertical ............. 84 

 Tabla Nº 5.13 Aumento de fuerza axial a nivel basal producto de la acción sísmica vertical con

excentricidad de la masa sísmica en dicha dirección. ................................................................................. 84 

 Tabla Nº5.14 Promedio de la diferencia entre el caso de 4 pisos sin masa sísmica vertical, sin

excentricidad y sin componente sísmica vertical y el modelo que sí posee masa vertical ..................... 85 

 Tabla Nº5.15 Promedio de la diferencia entre el caso de 4 pisos con masa sísmica vertical, sin

excentricidad y con componente vertical sísmica y el modelo que sí posee excentricidad ................... 86 

 Tabla Nº5.16 Promedio de la diferencia entre el caso de 12 pisos sin masa sísmica vertical, sin

excentricidad y sin componente sísmica vertical y el modelo que sí posee masa vertical ..................... 86 

 Tabla Nº5.17 Promedio de la diferencia entre el caso de 12 pisos con masa sísmica vertical, sin

excentricidad y con componente vertical sísmica y el modelo que sí posee excentricidad ................... 86 

 Tabla Nº5.18 Promedio de la diferencia entre el caso de 4 pisos sin masa sísmica vertical, sin

excentricidad y sin componente sísmica vertical y el modelo que sí posee masa vertical y componente

 vertical sísmica .................................................................................................................................................. 87 

 Tabla Nº5.19 Promedio de la diferencia entre el caso de 12 pisos sin masa sísmica vertical, sin

excentricidad y sin componente sísmica vertical y el modelo que sí posee masa vertical y componente

 vertical sísmica .................................................................................................................................................. 87 

Page 7: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 7/136

 

Índice de Figuras

Figura Nº 1.1 Razones de aceleraciones verticales sobre horizontales ...................................................... 2 

Figura Nº 2.1 Esquema de propagación de ondas “P” ................................................................................ 8 

Figura Nº 2.2 Esquema de propagación de ondas “S” .................................................................................. 9 

Figura Nº 2.3 Esquema de propagación de ondas “Love” ........................................................................... 9 

Figura Nº 2.4 Esquema de propagación de ondas “Rayleigh” ..................................................................... 9 

Figura Nº 2.5 Razón espectral Vertical/Horizontal de estaciones a diferentes distancias

epicentrales. ....................................................................................................................................................... 11 

Figura Nº 2.6 Grietas formadas en la unión de una columna con una viga en voladizo. .................... 13 

Figura Nº 2.7 Columna dañada, terremoto de Athenas (1999), a menos de 10 km. del epicentro. ... 13 

Figura Nº 2.8 Falla por cizalle. ...................................................................................................................... 15 

Figura Nº 2.9 Caída de equipo de aire acondicionado, Aeropuerto Pudahuel. ..................................... 15 

Figura Nº 2.10 Barras antisísmicas arrancadas desde su base. Puente Llacolén, 2010. ........................ 16 

Figura Nº 2.11 Falla de anclajes verticales y topes sísmicos, Pte. Las Mercedes, 2010. ....................... 17 

Figura Nº 3.1 Relaciones más estables de las dimensiones de un edificio ............................................. 23 

Figura Nº 3.2 Esquema de edificio de 4 pisos ............................................................................................ 24 

Figura Nº 3.3 Esquema de plantas pisos 1 al 4 .......................................................................................... 25 

Figura Nº 3.4 Esquema de elevación ejes 1 y 5 .......................................................................................... 26 

Figura Nº 3.5 Esquema de elevación ejes A y E ........................................................................................ 26 

Figura Nº 3.6 Esquema de elevación ejes 2 y 4 .......................................................................................... 27 

Figura Nº 3.7 Esquema de elevación ejes B y D ........................................................................................ 27 

Figura Nº 3.8 Esquema de elevación eje 3 .................................................................................................. 28 

Figura Nº 3.9 Esquema de elevación eje C ................................................................................................. 28 

Figura Nº 3.10 Esquema de edificio de 12 pisos ........................................................................................ 29 

Page 8: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 8/136

 

Figura Nº 3.11 Esquema de plantas pisos 1 al 4 ........................................................................................ 30 

Figura Nº 3.12 Esquema de plantas pisos 5 al 8 ........................................................................................ 31 

Figura Nº 3.13 Esquema de plantas pisos 9 al 12 ...................................................................................... 32 

Figura Nº 3.14 Esquema de elevación ejes 1 y 5 ........................................................................................ 33 

Figura Nº 3.15 Esquema de elevación ejes A y E ...................................................................................... 34 

Figura Nº 3.16 Esquema de elevación ejes 2 y 4 ........................................................................................ 35 

Figura Nº 3.17 Esquema de elevación ejes B y D ...................................................................................... 36 

Figura Nº 3.18 Esquema de elevación eje 3 ................................................................................................ 37 

Figura Nº 3.19 Esquema de elevación eje C ............................................................................................... 38 

Figura Nº 3.20 Sección transversal de perfil soldado tipo HN e IN y perfiles laminados en

caliente W .......................................................................................................................................................... 40 

Figura Nº 3.21 Esquema del tipo de marco con diagonales utilizado en los diseños ........................... 43 

Figura Nº 3.22 Puntos de tributación de las masas, vista en planta ........................................................ 45 

Figura Nº 3.23 Áreas tributarias a cada punto de un piso ........................................................................ 46 

Figura Nº 3.24 Elevación donde se muestran los grados de libertad dinámicos asociados. ................ 47 

Figura Nº 3.25 Vista en planta tipo, de los grados de libertad dinámicos. ............................................. 48 

Figura Nº 4.1 Aplicación del factor de forma............................................................................................. 52 

Figura Nº 4.2 Fórmula para obtener la inercia rotacional del diafragma rígido de cada piso.............. 56 

Figura Nº 4.3 Curva de amortiguamiento v/s frecuencias naturales ...................................................... 69 

Page 9: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 9/136

 

Índice de Gráficos

Gráfico Nº 4.1 Espectro de diseño en dirección “X”  ............................................................................... 54 

Gráfico Nº 4.2 Espectro de diseño en dirección “Y”  ............................................................................... 54 

Gráfico Nº 4.3 Acelerograma corregido estación Llolleo (E-O) ............................................................. 58 

Gráfico Nº 4.4 Acelerograma corregido estación Llolleo (N-S) .............................................................. 59 

Gráfico Nº 4.5 Acelerograma corregido estación Llolleo (Vertical) ....................................................... 59 

Gráfico Nº 4.6 Acelerograma corregido estación San Pedro (E-O) ....................................................... 60 

Gráfico Nº 4.7 Acelerograma corregido estación San Pedro  (N-S) ........................................... 60 

Gráfico Nº 4.8 Acelerograma corregido estación San Pedro (Vertical).................................................. 61 

Gráfico Nº 4.9 Acelerograma corregido estación Ventanas (E-O) ......................................................... 61 

Gráfico Nº 4.10 Acelerograma corregido estación Ventanas (N-S) ........................................................ 62 

Gráfico Nº 4.11 Acelerograma corregido estación Ventanas (Vertical) ................................................. 62 

Gráfico Nº 4.12 Espectro de respuesta estación Llolleo (E-O) ............................................................. 63 

Gráfico Nº 4.13 Espectro de respuesta estación Llolleo (N-S) .............................................................. 64 

Gráfico Nº 4.14 Espectro de respuesta estación Llolleo (Vertical) ........................................................ 64 

Gráfico Nº 4.15 Espectro de respuesta estación San Pedro (E-O) ........................................................ 65 

Gráfico Nº 4.16 Espectro de respuesta estación San Pedro (N-S) ........................................................ 65 

Gráfico Nº 4.17 Espectro de respuesta estación San Pedro (Vertical) .................................................. 66 

Gráfico Nº 4.18 Espectro de respuesta estación Ventanas (E-O) ......................................................... 66 

Gráfico Nº 4.19 Espectro de respuesta estación Ventanas (N-S) .......................................................... 67 

Gráfico Nº 4.20 Espectro de respuesta estación Ventanas (Vertical) .................................................... 67 

Page 10: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 10/136

 

 Anexos

 Anexo Nº1 Registros sísmicos ..................................................................................................................... 92 

 Anexo Nº2 Tablas de resultados ................................................................................................................. 95

 Anexo Nº3 Resumen esquemático de casos analizados …………………………………………117 

Page 11: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 11/136

 

Resumen

La componente sísmica vertical es la variable que no ha sido considerada dentro de la

mayoría de las normativas de diseño sísmico principalmente por su aparente poca relevancia en

relación a las componentes horizontales, pero en Chile gracias al aumento de estaciones de

monitoreo sísmico ya se cuenta con muchos registros que revelan importantes peak de aceleración

 vertical, de modo que ver su influencia en una estructura es necesario. Al considerar un modelo tipo

de estructura en base a pórticos de acero y aplicársele registros sísmicos reales con distintos tipos de

análisis y además utilizando un espectro de diseño vertical propuesto, se pudieron realizar

comparaciones encontrando importantes consideraciones a tener presentes para el diseño de

estructuras en el futuro, consideraciones tales como el aumento de la carga axial en columnas

producto de fuerzas dinámicas en dirección vertical, aumento de los esfuerzos de corte en vigas

ubicadas en los pisos superiores o el incremento en la sobrecarga de los elementos resistentes

mientras más pisos tenga una construcción.

 Junto a lo anterior también es posible encontrar información concerniente a modos más

adecuados de la idealización de modelos a estudiar y la base teórica para futuros estudios

relacionados con la materia.

Page 12: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 12/136

 

 Abstract

 The vertical seismic component is the variable that have not been considered into the main

seismic design codes principally for its apparent less relevance between the horizontal seismic

component and the vertical one, but in Chile, because of the increment of monitoring stations, there

are many records which indicate important accelerations in the peaks of the vertical component. In

that way the study of its influence in a structure is necessary. Considering a model of a structure with

steel’s frames and applying real seismic records with differents kinds of analysis and also using a

spectrum of vertical design already suggested, operations could be performed finding important

considerations to keep in mind the design of structures in the future, considerations like the

increment of the axial charge in product columns of dynamic forces in vertical direction, increment

of the shear in beams located in the highest floors or the increase in the excess load of the resistant

elements if the building have more floors.

 According to the previously mentioned, it is posible to find information corresponding to

modes more accurate methods of the idealization of models to study and the theory base to future

studies related with the subject

Page 13: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 13/136

 

- 1 -

Capítulo IIntroducción

1.1 PLANTEAMIENTO DEL PROBLEMA

El evento sísmico que afectó a gran parte de nuestro país el 27 de febrero de 2010 no sólo

remeció nuestros hogares y construcciones en general, también remeció nuestras conciencias al

recordarnos lo impredecibles y destructivos que pueden ser. A pesar de la magnitud de dicho evento(8,8 Mw.), considerado uno de los 10 más grandes documentados de la historia mundial, el desastre

pudo ser peor, pero se vio disminuido gracias al buen funcionamiento de los esquemas constructivos

chilenos y a la normativa vigente. Gracias a la creciente Red Nacional de Acelerógrafos del

Departamento de Ing. Civil de la Universidad de Chile (RENADIC), en poco tiempo se presentaron

los primeros informes con una particular diferencia con respecto a los informes anuales anteriores,

ahora se presentaba un cuadro resumen donde se comparaban los peak de aceleraciones incluyendo a

la acción vertical, componente que en general es menor que la mayor componente horizontal, pero

que en dicho evento (terremoto 2010) entregó valores similares e incluso superiores como fue el caso

de la estación Llolleo (V región), obteniéndose un peak de aceleración vertical de 0,702g (Boroschek

et al, 2010). Registros acelerográficos anteriores nos muestran que en ciertos casos la acción vertical

es considerable, incluso tan alta como 0,865g ocurrido también en la estación Llolleo el año 1985

(COSMOS, s.f.). Estudios que apuntan a relacionar las componentes sísmicas, solo han podido

establecer razones de aceleraciones espectrales V/H (componente vertical / componente horizontal)

que varían dependiendo del o los autores y sus consideraciones, destacándose las mostradas en la

figura Nº 1.1.La más utilizada ha sido la relación de 2/3, pero al igual que los otros casos, varía según la

distancia epicentral, período natural y condiciones de sitio (Malaga et al, s.f.), además los 2/3

propuestos tienden a ser insuficientes en el diseño de un edificio a medida que la fuente sísmica sea

más cercana (Vilera et al, 2008). Debido a esta incertidumbre Shirai et al. (2004) reconocen la

Page 14: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 14/136

Capítulo I Introducción  

- 2 -

necesidad de incluir especificaciones de diseño para acciones sísmicas verticales en códigos futuros.

En el caso de la norma NCh 433 of. 1996 mod. 2009, sólo se establece que se deben incluir todos los

grados de libertad dinámicos importantes del edificio a diseñar y que el peso sísmico de las zonas con

grados de libertad dinámicos verticales se debe considerar como la suma del peso propio ysobrecarga de uso completa (que tributan a dicho grado de libertad) aumentadas en un 30 %, pero en

ningún caso se propone incluir la acción vertical en el cálculo directo de la estructura. Frente a esto

González et al (2010b) proponen una metodología de diseño para realizar un solo cálculo donde se

considere el ángulo de incidencia más desfavorable (de las componentes horizontales de un sismo)

para un edificio y para ello se debe elaborar un espectro de repuesta que incluya las 3 componentes

de un sismo, haciendo una suma ponderada de las aceleraciones sísmicas espectrales tomando como

factores de ponderación los coeficientes de participación modal, siendo calificado como método

aceptable en sus resultados, pero de engorrosa aplicación.

Figura Nº 1.1 Razones de aceleraciones verticales sobre horizontales  

Fuente: Vilera et al, 2008

Page 15: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 15/136

Capítulo I Introducción  

- 3 -

El problema es que en general no se sabe cómo afecta la componente vertical a un

edificio, ni que metodología de análisis dinámico es el más eficiente, puesto que el análisis modal

espectral es más rápido y sencillo, pero sus resultados no son tan confiables como los obtenidos por

un análisis Tiempo-Historia y no se puede trabajar con espectros de diseño verticales porque noexisten en nuestro país. Es por esto que se hace necesario conocer en primer lugar los efectos de la

componente vertical en un edificio y luego establecer las diferencias o semejanzas que se presenten

frente a metodologías de cálculo distintas, generando de este modo directrices para estudios futuros

más particulares o enfocados en casos puntuales.

Frente a lo anterior se propone analizar los efectos provocados a un edificio (en base a

marcos de acero) producto de la acción vertical sísmica, considerando para ello análisis Modal

Espectral y Tiempo-Historia con registros reales, asumiendo el modelo sin grados de libertad

dinámicos verticales (tributando las masas en un punto ubicado en el centro de cada diafragma) y con

grados de libertad dinámicos verticales en el centro de cada viga, distribuyendo las masas a las vigas

de cada nivel, concentrándolas en tres puntos de cada una de ellas (en los extremos y una en el

centro), ya que es la discretización óptima que plantea Ju et al (2000), además se considerará el

edificio con 4 y con 12 pisos.

Page 16: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 16/136

Capítulo I Introducción  

- 4 -

1.2 OBJETIVOS

1.2.1 General

   Analizar los efectos de la acción sísmica vertical en un edificio de acero.

1.2.2 Específicos

  Estudiar y analizar la validez del espectro de diseño vertical obtenido de los 2/3 del

horizontal.

  Determinar, evaluar y contrastar las respuestas del edificio al variar su altura, sus grados de

libertad y el análisis dinámico a emplear.

   Aportar en el estudio de mejoras a la normativa vigente.

Page 17: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 17/136

Capítulo I Introducción  

- 5 -

1.3 METODOLOGÍA

 A partir de un modelo de edificio con grados de libertad dinámicos verticales y que cumpla

con las exigencias de la norma NCh 433 of 1996 mod. 2009, se consideran los siguientes casos a

estudiar:

Caso 1   el modelo del edificio constará de 4 pisos y no tendrá grados de libertad verticales. Se

realizará un análisis dinámico considerando sólo las componentes horizontales

actuando en la dirección más desfavorable.

Caso 2   corresponde al mismo modelo y procedimiento antes descrito, pero considerando

grados de libertad verticales.Caso 3   siguiendo con el mismo modelo del Caso 2, se incorpora la componente sísmica

 vertical.

Caso 4   se asemeja al caso anterior, con la diferencia de que el modelo tendrá 12 pisos. Cabe

mencionar que este modelo también cumplirá con la normativa correspondiente.

Estos casos se trabajarán con análisis Tiempo-Historia y Modal Espectral, comparándose

entre ellos de acuerdo a los resultados que se deseen obtener. Además se analizarán con el espectro

de diseño vertical propuesto y más utilizado a nivel mundial (correspondiente a 2/3 del espectro de

diseño horizontal entregado por la NCh 433 of 96 mod. 2009), para ser comparados con los

resultados obtenidos al utilizar los espectros de respuestas verticales.

El modelo base del edificio a utilizar, tendrá una planta cuadrada, con diafragma rígido en

cada piso y su estructura será en base a marcos de acero y arriostramientos excéntricos, considerando

un caso con 4 pisos y el otro con 12 pisos. El modelo que no contemple grados de libertad

dinámicos verticales, tendrá la masa de cada nivel tributando en un punto ubicado en el centro

geométrico de la planta, y para el modelo que sí considera los grados de libertad verticales, losposeerá en el centro de cada viga ya que se distribuirá la masa de cada nivel en tres puntos de cada

 viga, 2 en los extremos y una en el centro (Ju et. al, 2000).

En relación a los eventos telúricos considerados, se dispone de los acelerogramas corregidos

de cada componente (2 horizontales y 1 vertical) de cada uno de los 3 sismos por lo que solo faltaría

elaborar los espectros de respuesta de cada registro. Esto último se llevará a cabo por medio de

Page 18: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 18/136

Capítulo I Introducción  

- 6 -

métodos numéricos que consideran la ecuación presentada por Clough, Penzien (2003) para obtener

la aceleración espectral, asumiendo que las variaciones de los valores en los acelerogramas, son

lineales.

Los análisis antes descritos se realizarán con los registros de los 3 sismos mostrados en latabla Nº 1.1, los cuales a pesar de que corresponden a la misma zona sísmica e igual tipo de suelo

según NCh 433 of 1996 mod 2009 no se asumen como iguales porque no lo son, de modo que los

resultados obtenidos se compararán entre ellos teniendo en cuenta esto último.

Tabla Nº 1.1 Resumen de registros a utilizar  

Estación Región Magnitud

Zona

Sísmica(1) 

Tipo de

Suelo (1)  Fecha

Peak mayor

aceleraciónhorizontal(2) 

Peak

aceleración vertical(2) 

Colegio

San Pedro VIII 8,8 Mw. III III(3)

27/02/2010

03:34 hrs.0,65g 0,582g

 Ventanas V 7,8 Ms III III(3)03/03/1985

22:47 hrs.0,227g 0.176g

Llolleo V 7,8 Ms III III(3)03/03/1985

22:47 hrs.0,712g 0,865g

(1) Clasificaciones según lo establece NCh 433 of. 96 mod. 2009(2) Estas aceleraciones corresponden a los acelerogramas de registro correspondientes(3)  Valores obtenidos, para el caso de Ventanas y Llolleo, de la comparación de las velocidades de onda de corte que

 presentan los suelos de estas estaciones, con los rangos dados por la NCh 433 of 96 mod. 2009. Dichas velocidades

están presentes en el trabajo de Saragoni et al (2005). Para la estación Colegio San Pedro, se considera lo presentado

 por Peralta (2011).

Page 19: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 19/136

 

- 7 -

Capítulo II Acción sísmica vertical

 Ya es conocido el poder destructivo de los terremotos, el inicial ruido estruendoso de la tierray la posterior agitación de esta es una de las experiencias que pueden marcar sin duda alguna la vida

de una persona, todos quienes han vivido un evento telúrico de gran magnitud recuerdan el vaivén

del suelo bajo sus pies y la dificultad para mantenerse de pie, pero alguien ¿recuerda sentir que el

suelo “saltaba”? o que su cuerpo se movía no sólo de lado a lado sino que además de arriba hacia

abajo. Por lo general nadie lo nota debido al caos generado por la acción horizontal sísmica, pero la

acción sísmica vertical existe, está siempre presente en mayor o menor medida y sus efectos se

pueden reconocer. Primero es necesario conocer cómo o qué la origina, qué se ha logrado establecer

de ella, los daños que produce en las construcciones y su influencia en nuestro país al considerar los

registros sísmicos existentes.

Page 20: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 20/136

Capítulo II Acción Sísmica Vertical  

- 8 -

2.1 ONDAS SÍSMICAS

Las ondas sísmicas son perturbaciones que se propagan por las distintas capas y distintos

materiales de los que está compuesto el núcleo terrestre, y son originados por eventos naturales

(sismos y erupciones volcánicas principalmente) o artificiales (detonaciones o explosiones). Dentro

de estas, son los movimientos telúricos los causantes de los más grandes daños debido a la gran

energía liberada, transmitida por medio de dichas ondas.

Las ondas sísmicas se dividen en ondas de cuerpo y ondas superficiales, y a su vez estas se

subdividen en ondas de cuerpo “P” (primarias), ondas de cuerpo “S” (secundarias), ondas

superficiales “Love” y ondas superficiales “Rayleigh”. 

Las ondas de cuerpo son perturbaciones que se transmiten a través de las capas internas delnúcleo terrestre, donde las ondas “P” se propagan comprimiendo y dilatando las partículas aledañas ,

siguiendo la dirección de transmisión de la onda por eso se considera una onda de propagación

longitudinal. Las ondas “S” avanzan con un movimiento transversal a la dirección de propagación

generando ondulaciones en las partículas de los materiales que atraviesa.

Las ondas superficiales, como su nombre lo indica, se propagan en la superficie terrestre

siendo las ondas Love las que se transmiten con ondulaciones horizontales en la superficie y las

ondas Rayleigh también con ondulaciones, pero verticales, semejantes a las olas del mar, siendo estas

las causantes de las acciones sísmicas verticales cuyos efectos en las edificaciones son la base del

presente estudio. En las figuras siguientes, se esquematizan los tipos de ondas antes mencionadas.

Figura Nº 2.1  Esquema de propagación de ondas “P”  

Fuente: L.P.I.(2012)

Page 21: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 21/136

Capítulo II Acción Sísmica Vertical  

- 9 -

Figura Nº 2.2 Esquema de propag ación de ondas “S”  

Fuente: L.P.I.(2012)

Figura Nº 2.3 Esquema de propagación de ondas “Love”  

Fuente: L.P.I.(2012)

Figura Nº 2.4 Esquema de propagación de ondas “Rayleigh”  

Fuente: L.P.I.(2012)

Page 22: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 22/136

Capítulo II Acción Sísmica Vertical  

- 10 -

2.2 ACELERACIONES VERTICALES

Producto de las pérdidas materiales y de vidas humanas que hemos sufrido a lo largo de la

historia, provocadas por los movimientos telúricos, es que ha sido necesario investigar y profundizaren la materia para evitar más pérdidas o minimizar los daños, por lo que se han ido generando

propuestas más o menos acertadas que buscan solucionar ciertos problemas o facilitar los estudios

posteriores. En un principio era sólo la prueba y error el método que se utilizaba para sobrellevar un

evento sísmico, pero con el paso del tiempo la inclusión de formas de medir distintos efectos o

causas de los sismos permitieron grandes avances, ejemplo de ello es la escala numérica establecida

por Mercalli (escala que lleva su nombre), la cual le asigna un número a una serie de acontecimientos

o daños estructurales sufrido en las construcciones producto de un movimiento telúrico. Esta escala

mide la intensidad del evento y es muy utilizada actualmente.

 También existen otras mediciones que se preocupan de la magnitud de los eventos sísmicos,

de la energía liberada y su acumulación para futuros eventos, de las singularidades en los materiales

constituyentes del suelo, etc. Aún en la actualidad no es posible predecir la fecha en que ocurrirá un

sismo, es por eso que fue necesario tomar mediciones de los eventos ocurridos para generar

estimaciones de los que podrían venir. Una de estas mediciones cuya aplicación es ampliamente

difundida en el campo ingenieril, corresponde a las mediciones del movimiento del suelo, en

particular las aceleraciones, datos con los cuales la mayoría de las normas de construcción sísmica delmundo obligan a evaluar las estructuras en la etapa de diseño para prever su comportamiento frente a

un evento telúrico. Es así que por medio de un acelerómetro se registran las aceleraciones del suelo

originados por las ondas sísmicas tratadas con anterioridad, siendo dos direcciones horizontales y

ortogonales entre sí y una dirección vertical las componentes de un registro completo necesario para

cualquier análisis. Las componentes horizontales han sido las más estudiadas puesto que por las

formas tradicionales de construcción, son los movimientos horizontales los que generan mayores

desplazamientos en las estructuras e importantes esfuerzos asociados, despreciando la acción vertical,

además presentaban la ventaja de poder analizar tan solo la componente cuyo registro es el mayor

debido a que su orientación es arbitraria. Pero con la evolución en las construcciones y los diseños

cada día más osados, obligaron a cuestionar el efecto de la componente vertical sísmica dando pie a

muchos estudios donde se destacó Newmark et al., (1973) quienes analizaron 33 registros en

E.E.U.U. datos con los cuales determinaron que la razón de la componente vertical sobre la mayor

Page 23: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 23/136

Capítulo II Acción Sísmica Vertical  

- 11 -

horizontal era de 2/3, valor utilizado en muchas normas de diseño sísmico a nivel mundial, pero sin

ser el más acertado ya que existen muchos otros estudios que difieren de este valor, un claro ejemplo

de estas variaciones se reflejan en la figura Nº 2.5 donde se grafican las razones espectrales entre las

aceleraciones verticales sobre la mayor horizontal de diferentes registros obtenidos del terremoto deNorthridge (1994) a diferentes distancias epicentrales, valores que presentan aumentos a medida que

la distancia epicentral disminuye.

Figura Nº 2.5 Razón espectral Vertical/Horizontal de estaciones a diferentes distancias epicentrales. 

Fuente: Elgamal et al (2004)

La incidencia del espectro de diseño entregado por la norma no se especifica, ya que

generalmente se atribuyen sólo a los ejes de simetría de las plantas de las estructuras a analizar,

dejando de lado otras direcciones que podrían generar respuestas más desfavorables para el modelo.

Es aquí donde Gonzáles (1992) encontró la necesidad de desarrollar una metodología de cálculo quefuera rápida en su aplicación, cuyos resultados fueran aceptables, y que dejara fuera la intervención

arbitraria con respecto a las direcciones de acción sísmica. Lo que logró fue el método de máximos

modales direccionales, que es un procedimiento de cálculo que determina la máxima respuesta por

modo, haciendo variar el ángulo de incidencia; luego, aplicando el criterio de superposición modal de

la raíz cuadrada de la suma de los cuadrados (SRSS), se obtiene la respuesta máxima de la estructura.

Page 24: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 24/136

Capítulo II Acción Sísmica Vertical  

- 12 -

Posteriormente, González (2010a) aplicó su método utilizando el espectro de diseño dado por la

NCh 433 of. 96 y lo comparó con los resultados de la aplicación tradicional de la norma,

encontrando una diferencia promedio sólo de un 11%.

Paralelamente a lo antes expuesto, González (2010b) toma en cuenta un nuevo escenario, laacción sísmica vertical, para lo cual realiza ciertas modificaciones a sus procedimientos de cálculos

dando origen al método de máximos modales direccionales generalizado, donde integra el ángulo de

incidencia vertical de un sismo. Los resultados obtenidos de este método se comparan con los

entregados por la integración paso a paso en el tiempo, considerando las 3 componentes

traslacionales de la solicitación, dando errores menores a un 33%, siendo mayores que al considerar

sólo las componentes horizontales, pero el problema mayor radica en el hecho de que se necesita un

espectro representativo de las 3 componentes de solicitación sísmica; para un sismo en particular

existen metodologías para obtener dicho espectro, pero cuando se trata de diseñar una estructura nos

encontramos con la necesidad de utilizar un espectro de diseño de la componente vertical, el cual no

se plantea ni se menciona en la NCh 433 of. 96 mod. 2009 lo que limita a sólo casos puntuales la

aplicación del método de máximos direccionales generalizado.

Lo que se ha avanzado en la materia es bastante, pero aún insuficiente ya que ningún método

permite estimar la componente vertical de las aceleraciones sísmicas con cierta certeza más que

trabajarla directamente de lecturas anteriores y con ellas realizar los correspondientes espectros.

2.2.1 Daños estructurales asociados a la acción sísmica vertical

Los movimientos sísmicos de por sí someten a las estructuras a sobrellevar esfuerzos de

difícil estimación, es por eso que por mucho tiempo sólo se trataron los efectos más evidentes en las

construcciones y su forma de responder frente a estos eventos, siendo los movimientos oscilatorios

tipo péndulo invertido el indicador más directo que poseen las personas comunes y corrientes para

asumir en ese instante la buena o mala respuesta de una edificación frente a un sismo. Pero cuando

se realiza un estudio más preciso y con metodologías e instrumentos más avanzados es posible

diferenciar las causas de determinados sucesos, como por ejemplo los daños provocados por la

componente vertical sísmica, que se dejó observar en casos como los mostrados en las figuras Nº 2.6

y 2.7.

Page 25: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 25/136

Capítulo II Acción Sísmica Vertical  

- 13 -

Figura Nº 2.6 Grietas formadas en la unión de una columna con una viga en voladizo. 

Terremoto de Athenas (1999) a menos de 10 km. del epicentro.

Fuente: Badalouka et al (2008)

Figura Nº 2.7 Columna dañada, terremoto de Athenas (1999), a menos de 10 km. del epicentro. 

Fuente: Badalouka et al (2008)

Page 26: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 26/136

Capítulo II Acción Sísmica Vertical  

- 14 -

Elgamal y He (2004) presentaron un pequeño resumen citando publicaciones de importantes

investigadores en la materia, dando a conocer influencias del movimiento vertical sobre una

estructura o parte de ella, es así como se menciona que dicha componente del movimiento podría

aumentar la fuerza axial de una o varias columnas, provocando incrementos en los momentos, en lafuerza de corte demandante, reducir la ductilidad, generar una deformación plástica o extender las

zonas de plastificación de las viga-columnas.

Con el evento ocurrido en nuestro país el 27 de febrero de 2010, pudimos contrastar en

nuestras propias construcciones los estragos provocados con los registros obtenidos de la

instrumentación instalada a lo largo del país, imágenes representativas de estos daños se aprecian en

las figuras Nº 2.8 y 2.9. Pero lo que se destacó es la relevancia que tuvo la acción sísmica vertical en

la mayoría de los cerca de 40 registros entregados por las estaciones de monitoreo, componente que

en muchos casos se pudo comparar con la mayor horizontal, aumentando los daños al trabajar

conjuntamente (movimientos horizontales y verticales). En una entrevista realizada por la revista

“Que Pasa” ( Chernin, et al 2011), el ingeniero sísmico Rodolfo Saragoni junto a su equipo dieron a

conocer su teoría con respecto a la influencia de la componente vertical en el daño de los edificios

altos, considerándolo como un “pulso” que acrecentaba los esfuerzos producto de la acción

horizontal, ejemplo de aquello fue el caso de la caída de un ala de la torre Titanium (solamente

estética) la cual era una estructura en voladizo y solo el movimiento vertical la pudo hacer saltar para

luego caerse. Pero los edificios no fueron los únicos afectados, los anclajes antisísmicos de lostableros de los puentes también sufrieron severos daños producto de esfuerzos y desplazamientos

 verticales importantes ya que fueron capaces de arrancar o cortar las barras embebidas en el

hormigón (Aguiar,s.f.), esto se aprecia en la figura Nº 2.10 y 2.11.

Page 27: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 27/136

Capítulo II Acción Sísmica Vertical  

- 15 -

Figura Nº 2.8 Falla por cizalle. 

Fuente: Sarrazin(2010)

Figura Nº 2.9 Caída de equipo de aire acondicionado, Aeropuerto Pudahuel. 

Fuente: Luders(2010)

Page 28: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 28/136

Capítulo II Acción Sísmica Vertical  

- 16 -

Figura Nº 2.10 Barras antisísmicas arrancadas desde su base. Puente Llacolén, 2010.

Fuente: Aguiar(s.f.)

Page 29: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 29/136

Capítulo II Acción Sísmica Vertical  

- 17 -

Figura Nº 2.11 Falla de anclajes verticales y topes sísmicos, Pte. Las Mercedes, 2010.

Fuente: Aguiar(s.f.)

2.2.2 Registros Sísmicos Nacionales

Nuestro país ya cuenta con una amplia red de acelerógrafos instalados en la mayoría de las

regiones, abarcando gran parte de las ciudades más pobladas o más afectadas por los movimientos

telúricos, gracias a esto, los estudios en adelante podrán basarse en información sólida aportada por

el gran número de registros ya obtenidos y por los que de seguro se van a obtener. De los ya

obtenidos, se realiza un listado con las estaciones donde se han registrado mayor número de

acontecimientos desde el año 1999 hasta el 27 de febrero de 2010, considerando como mínimo un

mes entre un registro y otro por estación (para evitar casos donde ocurren seguidillas de temblores y

así tener valores más limpios) para evaluar la relación que existe entre el peak de aceleración verticalsobre el peak de aceleración horizontal mayor. Es necesario aclarar que este análisis es superficial y

no permite obtener resultados precisos de cómo estimar la acción vertical, puesto que son muchas las

 variables que entran en juego y un evento sísmico puede ser distinto o muy similar a otro, sólo se

trata de mostrar que la aceleración vertical siempre está presente y en valores importantes.

Page 30: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 30/136

Capítulo II Acción Sísmica Vertical  

- 18 -

En el anexo Nº1 se detalla la elaboración del listado donde se presentan 16 estaciones a lo

largo de Chile, con sus respectivas tres componentes de registro y lecturas distanciados a lo menos

un mes. A cada estación se realizó la división entre el peak de aceleración vertical sobre el mayor

horizontal correspondiente a cada registro sísmico. Con esos valores se calcula el promedio y ladesviación estándar, por último se calcula el promedio de todas las estaciones y la desviación

estándar, lo que se muestra en la tabla Nº 2.1

Tabla Nº 2.1 Resumen de valores obtenidos por registros sísmicos de cada estación  (Datos obtenidos del anexo Nº 1)

Estación Ac. Vert./Ac. Hor. Desviación Estándar

1 Alto Hospicio 0,622 0,123

2 Arica (Costanera) 0,407 0,117

3 Baquedano 0,533 0,161

4 Calama 0,673 0,129

5 Copiapó 0,560 0,276

6 Cuya 0,599 0,185

7 Illapel 0,517 0,082

8 Iquique 0,771 0,231

9 Llolleo 0,747 0,189

10 Papudo 0,400 0,194

11 Pica 0,611 0,216

12 Pisagua 0,649 0,159

13 Poconchile 0,715 0,202

14 Putre 0,528 0,120

15 Tocopilla 0,662 0,173

16 Valparaíso (Almendral) 0,527 0,149

Promedio Total 0,595 0,169

Desv. Estándar Total 0,109 0,050

De la tabla podemos apreciar que el peak de aceleración de la componente vertical se

presenta en la mayoría de los casos, en promedio, como en un 60% (0,595) del mayor horizontal, lo

que no es correcto asumir como una constante sino que tan solo se debe considerar como un valor

que indica la presencia de dicha componente en todos los eventos sísmicos y que su incidencia es de

Page 31: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 31/136

Capítulo II Acción Sísmica Vertical  

- 19 -

real importancia, de modo que se justifican los estudios enfocados en ella porque su presencia y

alcance es innegable.

Las desviaciones estándar son un indicador del grado de dispersión de los datos de la tabla

por lo tanto se puede decir que de los casos presentados es la estación de Copiapó la que presentamayor dispersión en las razones Ac.Vert./Ac.Hor. con un 27,6% y su información podría no ser tan

fiable, pero en general las variaciones son en promedio de un 16,9% siendo la desviación estándar

entorno a este resultado, de un 5% lo que indica cierta homogeneidad en los valores, respaldando la

realización de este sencillo análisis.

En general podemos destacar el hecho de que la componente vertical sísmica, no puede

despreciarse por lo antes expuesto ni tampoco no evaluar su efecto en las construcciones ya que

solicita dinámicamente a los elementos resistentes de un modo distinto a los que han sido diseñados.

Page 32: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 32/136

 

- 20 -

Capítulo IIIModelado de las estructuras a analizar

 Todo diseño comienza con un modelo y toda la teoría que lo respalda. Para los análisis que se

desean realizar es importante considerar no sólo la forma de la estructura, sino que además el

material a utilizar, el uso de la estructura, la posibilidad de construcción y la facilidad para realizar

aquello, etc. Pero para este caso en particular también es necesario tener claro cómo la estructura

responde dinámicamente y cómo se verá reflejada la acción sísmica vertical en ello, ya que no existe

un procedimiento establecido o normado que indique la forma de trabajo que se debe aplicar.

Page 33: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 33/136

Capítulo III Modelado de las estructuras a analizar

- 21 -

3.1 MODELO DE ESTRUCTURA

El edificio a utilizar como modelo dentro de todos los análisis dinámicos a realizar, es unaestructura ficticia por lo que consideraciones económicas no son de importancia y tampoco lo son

los análisis focalizados o extremadamente minuciosos ya que el fin principal es estudiar los efectos

que produce la componente sísmica vertical y no el funcionamiento de la estructura en cuestión, es

por eso que no se tratarán el detalle de las uniones ni fijaciones, ni tampoco el nivel de daños en los

elementos resistentes. Las fundaciones son otro factor que se puede despreciar dentro del diseño ya

que sólo son relevantes las idealización de las condiciones de apoyo. En general, se trata de generar

un modelo cercano a la realidad, que cumpla con toda la normativa actual sin necesidad de una

optimización exhaustiva, pero considerando siempre las recomendaciones existentes para un diseño

seguro, viable, útil y perdurable.

Otro factor importante a tener presente es que se trabajará la misma estructuración, pero con

edificio de 4 y de 12 pisos por lo que se diseñará el edificio considerándolo de 12 pisos y luego se le

quitarán los 8 pisos superiores, quedando el edificio de 4 pisos al que sólo se comprobará que cumpla

toda normativa.

3.1.1 Materiales

Se utiliza el acero por ser un material cuyo comportamiento está muy bien documentado y es

posible predecir con gran exactitud su comportamiento sobre todo en su rango elástico, que es el

tipo de análisis que se realizará.

Por ser un tipo de acero fabricado en nuestro país, apto para la construcción y recomendado

por el ICHA, se utilizará el acero estructural A 42-27 ES cuyas propiedades se muestran en la tabla

Nº 3.1, con el cual estarán diseñadas las vigas, columnas y diagonales de todo el edificio.

Para las losas de todos los niveles se utilizará un hormigón H-30, con un nivel de

confiabilidad de 95% con propiedades resumidas en la tabla Nº 3.2.

Page 34: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 34/136

Capítulo III Modelado de las estructuras a analizar  

- 22 -

Tabla Nº 3.1 Propiedades mecánicas del acero A 42-27 ES

Fluencia Ruptura DensidadMód.

Elástico MóduloPoisson

Mód.Corte

Coef. dil.térm.

[Kgf/cm2 ] [Kgf/cm2 ] [Ton/m3 ] [Kgf/cm2 ] [Kgf/cm2 ] [1/°C]

2533 4200 7,981 2100000 0,30 807700 0,00001

Tabla Nº 3.2 Propiedades mecánicas del hormigón H-30 

Fluencia Fc' DensidadMód.

Elástico MóduloPoisson

Mód.Corte

Coef diltérm

[Kgf/cm2 ] [Kgf/cm2 ] [Ton/m3 ] [Kgf/cm2 ] [Kgf/cm2 ] [1/°C]

4200 250 2,4 235000 0,20 97917 0,0000099

3.1.2 Distribución de Elementos Resistentes

Como ya se ha mencionado, el modelado se hizo pensando en un edificio de 12 pisos en base

a marcos de acero con diagonales excéntricas para otorgar mayor superficie libre en cada nivel, los

pisos se distribuyen en 3 módulos de cuatro pisos cada uno, donde cada módulo presenta

dimensiones de las vigas, columnas y diagonales menores al módulo inferior, de modo que una vez

diseñado el edificio de 12 pisos, se le quitan los dos módulos superiores, quedando los primeros

cuatro pisos correspondientes al primer módulo que dan origen al modelo de 4 pisos necesario en los

análisis posteriores. Es preciso destacar que resulta obvio el hecho de asegurar que si el diseño de los

4 primeros pisos cumple la normativa vigente soportando 8 pisos, evidentemente cumple las normas

sin esos 8 pisos, pero aún así igual fue corroborado.

El alto tradicional entre pisos es de 3[m], dimensión que se utiliza en los modelos, además es

importante que el enrejado de las vigas de cada nivel permita ubicar el centro geométrico de cada

piso (punto donde se concentra la masa de todo el nivel) en una unión de vigas soportadas por unacolumna, de este modo se evitan centros de masa sobre losas que inducirían a un análisis más

profundo del comportamiento de la losa, lo cual se trata de evitar. En base a estas consideraciones e

incluyendo las presentadas por Bazán et al (2000) en la figura Nº 3.1 a) y b), se trabaja con plantas

cuadradas de 20[m] de ancho, las cuales estarán soportadas por marcos de 5[m] de luz.

Page 35: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 35/136

Capítulo III Modelado de las estructuras a analizar  

- 23 -

Figura Nº 3.1 Relaciones más estables de las dimensiones de un edificio

a) b)

Fuente: Bazán et al (2000), figuras 5.8 y 5.13

Page 36: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 36/136

Capítulo III Modelado de las estructuras a analizar  

- 24 -

3.1.2.1 Esquemas de edificio de 4 pisos

Los diferentes colores de los esquemas presentados en las figuras Nº 3.5 a Nº 3.9 se

mantienen constantes y son para diferenciar el tipo de elemento (viga, columna o diagonal) y el tipo

de sección de estos, entonces si dos columna presentan dos colores diferentes esto indica que tienen

secciones diferentes.

Figura Nº 3.2  Esquema de edificio de 4 pisos  

Page 37: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 37/136

Capítulo III Modelado de las estructuras a analizar  

- 25 -

Figura Nº 3.3  Esquema de plantas pisos 1 al 4

Page 38: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 38/136

Capítulo III Modelado de las estructuras a analizar  

- 26 -

Figura Nº 3.4  Esquema de elevación ejes 1 y 5

Figura Nº 3.5  Esquema de elevación ejes A y E

Page 39: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 39/136

Capítulo III Modelado de las estructuras a analizar  

- 27 -

Figura Nº 3.6  Esquema de elevación ejes 2 y 4

Figura Nº 3.7  Esquema de elevación ejes B y D

Page 40: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 40/136

Capítulo III Modelado de las estructuras a analizar  

- 28 -

Figura Nº 3.8  Esquema de elevación eje 3

Figura Nº 3.9  Esquema de elevación eje C

Page 41: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 41/136

Capítulo III Modelado de las estructuras a analizar  

- 29 -

3.1.2.2 Esquemas de edificio de 12 pisos

Los diferentes colores de los esquemas presentados en las figuras Nº 3.10 a Nº 3.19 se

mantienen constantes y son para diferenciar el tipo de elemento (viga, columna o diagonal) y el tipo

de sección de estos, entonces si dos columna presentan dos colores diferentes esto indica que tienen

secciones diferentes.

Figura Nº 3.10  Esquema de edificio de 12 pisos

Page 42: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 42/136

Capítulo III Modelado de las estructuras a analizar  

- 30 -

Figura Nº 3.11  Esquema de plantas pisos 1 al 4

Page 43: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 43/136

Capítulo III Modelado de las estructuras a analizar  

- 31 -

Figura Nº 3.12  Esquema de plantas pisos 5 al 8

Page 44: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 44/136

Capítulo III Modelado de las estructuras a analizar  

- 32 -

Figura Nº 3.13  Esquema de plantas pisos 9 al 12

Page 45: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 45/136

Capítulo III Modelado de las estructuras a analizar  

- 33 -

Figura Nº 3.14  Esquema de elevación ejes 1 y 5

Page 46: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 46/136

Capítulo III Modelado de las estructuras a analizar  

- 34 -

Figura Nº 3.15  Esquema de elevación ejes A y E

Page 47: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 47/136

Capítulo III Modelado de las estructuras a analizar  

- 35 -

Figura Nº 3.16  Esquema de elevación ejes 2 y 4

Page 48: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 48/136

Capítulo III Modelado de las estructuras a analizar  

- 36 -

Figura Nº 3.17  Esquema de elevación ejes B y D

Page 49: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 49/136

Capítulo III Modelado de las estructuras a analizar  

- 37 -

Figura Nº 3.18  Esquema de elevación eje 3

Page 50: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 50/136

Capítulo III Modelado de las estructuras a analizar  

- 38 -

Figura Nº 3.19  Esquema de elevación eje C

Page 51: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 51/136

Capítulo III Modelado de las estructuras a analizar  

- 39 -

3.1.3 Estructura Sismo - Resistente

La estructura se diseñó en base a marcos de uniones rígidas entre vigas y columnas,

permitiendo la distribución completa de los momentos desde un elemento a otro, otorgándole mayor

rigidez lateral a la estructura, pero aún insuficiente. Según el estudio realizado por Bustos (2003) el

método más efectivo de evitar los desplazamientos laterales en edificios aporticados de acero se logra

aumentando la altura de las vigas, sin descuidar obviamente el efecto viga débil-columna fuerte (para

evitar la formación de rótulas plásticas en columna). Debido a que en general en esta tipología

estructural controlan los desplazamientos laterales, también se agregaron diagonales excéntricas a

modo de evitar mucha pérdida de espacio porque permiten la ubicación de una puerta entre ellas,

contribuyen a controlar el cortante en cada nivel del edificio y ayudan a evitar problemas torsionales(dependiendo de su distribución).

Las condiciones de apoyo que poseen las columnas del primer piso que se unen a las

fundaciones son de empotramiento perfecto, el detalle de las fundaciones no reviste de importancia y

tampoco algún tipo de mejoramiento del suelo, ya que este se considera tipo III según NCh 433 of

1996 mod. 2009, debido a que los registros sísmicos que se disponen, fueron obtenidos en estaciones

ubicadas en este tipo de suelo.

Las losas de cada piso se diseñaron con un hormigón H-30 con un nivel de confiabilidad de

95% y de un espesor de 13[cm] lo que permite asumir la formación de un diafragma rígido en cada

piso, ya que se homogenizan los desplazamientos horizontales y se distribuyen las cargas laterales a

cada columna y diagonal existente.

Se utilizaron perfiles soldados tipo HN e IN y perfiles laminados en caliente W, cuyas

medidas fueron entregadas por el “Manual de diseño para estructuras de acero” del ICHA(2008). Las

medidas utilizadas tanto para columnas, vigas y diagonales, varían de acuerdo a la altura; como se

diseñó en primer lugar un edificio de 12 pisos, éste se dividió en tres bloques de 4 pisos cada uno y

en cada bloque las medidas de las secciones transversales disminuyen al aumentar la altura, lo que

permitió una disminución controlada del peso de la estructura y la rigidez de cada nivel a modo de

evitar problemas como el piso blando o excesivos desplazamientos en los niveles inferiores.

Page 52: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 52/136

Capítulo III Modelado de las estructuras a analizar  

- 40 -

3.1.3.1 Columnas

 Todas tienen 3[m] de largo y corresponden al perfil soldado tipo HN. En relación a su

orientación, las columnas exteriores y la del centro, se ubican de modo que su eje fuerte debe resistirlas fuerzas horizontales que afectan al edificio en la dirección asignada “X” y las columnas que están

unidas a las diagonales, se ubican con su eje fuerte resistiendo las fuerzas laterales de la dirección

“Y”.

Para ambos edificios (4 y 12 pisos) las secciones de las columnas varían por cada bloque,

cuyas medidas se detallan en la tabla Nº 3.3. Dentro del diseño, estos elementos (las columnas)

fueron trabajadas como elementos tipo viga-columna ya que es necesario conocer los esfuerzos

axiales, cortante en ambos sentidos (ortogonales entre sí, eje “X” e “Y”) de la sección transversal,

momento en ambas direcciones y momento torsor. En relación a la tributación de la masa de cada

columna, la mitad de esta tributa al nivel inferior correspondiente al piso donde se ubica la columna y

la otra mitad de la masa tributa al nivel superior.

Figura Nº 3.20 Sección transversal de perfil soldado tipo HN e IN y perfiles laminados en caliente W

Tabla Nº 3.3 Dimensiones de las columnas utilizadas en los diseños

Columna largo d bf   tf   t w   h s Ixx Iyy área peso propio

Pisos Color [cm.] [cm.] [cm.] [cm.] [cm.] [cm.] [cm.] [cm4] [cm4] [cm2] [kgf]

1-4 300 50 50 3,2 2,5 43,6 1,4 192759 66723 429 1010

1-4 300 50 50 2,8 2 44,4 1,2 170720 58363 368,8 869

5-8 300 50 50 2,8 2 44,4 1,2 170720 58363 368,8 869

5-8 300 45 45 2,8 1,4 40 0,8 119493 42534 307 723

9-12 300 40 40 2,8 1,4 35 0,8 82390 29874 272 42

9-12 300 40 40 2,8 1,4 35 0,8 82390 29874 272 42

Page 53: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 53/136

Capítulo III Modelado de las estructuras a analizar  

- 41 -

3.1.3.2 Vigas

 Todas tienen un largo de 4,75[m] en promedio aproximado porque en una dirección las vigas

se unen a las almas de cada columna y en otra dirección se unen a las alas de las columnas viendo

reducida su longitud (se tratan las dimensiones aproximadas porque debe existir holgura entre las

uniones, que para fines prácticos no son necesarias de calcular). La sección transversal de todas las

 vigas corresponden a los perfil soldado tipo IN y a los perfiles laminados W mostrado en la figura

Nº 3.20 donde la orientación del eje X-X coincide con la componente vertical en el diseño, de modo

que el eje fuerte de las vigas resista los esfuerzos de flexión producto de las cargas aplicadas sobre

ellas.

Las dimensiones de las secciones transversales de las vigas no sólo cumplen las distintascombinaciones de esfuerzos que impone la NCh 3171 of 2010, sino que además el máximo

momento que resiste cada una, es menor que el mínimo resistido por las columnas que la sostiene, lo

que permite utilizar un mismo tipo de viga sin importar la dirección cumpliendo siempre la condición

de viga débil columna fuerte, lo que en la práctica permite unir una misma viga al eje débil de una

columna o al eje fuerte.

Las vigas se dividen en dos tipos y en tres bloques de cuatro pisos cada uno. Las vigas fueron

trabajadas como elementos tipo viga-columna ya que es necesario conocer sus momentos torsores,

momento en ambas direcciones (ortogonales entre sí, eje “X” e “Y”) de la sección transversal, el

cortante en ambos sentidos y los esfuerzos axiales, producto de las uniones con las diagonales. Cada

 viga fue dividida en dos de estos elementos tipo viga-columna de forma continua, para generar un

punto ficticio de unión en el centro de cada viga y así poder asignar masas concentradas en dichos

puntos. Las masas de las vigas se concentran a nivel de cada piso donde se encuentren.

Tabla Nº 3.4 Dimensiones de las vigas utilizadas en los diseños

 Vigas Largo(1) d bf   tf   t w   h s Ixx Iyy área peso

 propio(1)

Pisos Color [cm.] [cm.] [cm.] [cm.] [cm.] [cm.] [cm.] [cm4] [cm4] [cm2] [kgf]1-4 475 34,8 31,8 3,56 2,2 27,7 1,2 59369 19104 287,3 44,531-4 475 50 25 1,4 0,8 47,2 0,5 48356 3647 107,8 16,75-8 477,5 34,8 31,8 3,56 2,2 27,7 1,2 59369 19104 287,3 44,535-8 477,5 50 25 1,2 0,8 47,6 0,5 42918 3127 98,08 15,29-12 480 27,4 26,2 2,5 1,6 22,4 0,8 21872 7501 166,8 25,869-12 480 45 20 1,2 0,8 42,6 0,5 28180 1601 82,08 12,72

(1) Valor promedio

Page 54: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 54/136

Capítulo III Modelado de las estructuras a analizar  

- 42 -

3.1.3.3 Diagonales

Corresponden al perfil laminado W, cuya sección transversal se muestra en la figura Nº 3.20,

donde el largo de cada una es aproximadamente 3,61[m] (sin contar las holguras que en la práctica

son necesarias en las uniones, ni las diferencias que existen dependiendo si se unen al alma de una

columna o a una de sus alas) y la separación entre ellas al unirse a la viga es de 1[m], lo que deja un

área libre de 1,8[m] de ancho por 2[m] de alto, otorgando una mejor utilización del espacio. La figura

Nº 3.21 muestra un esquema de un marco con diagonales que se unen a una de las alas de cada

columna, este esquema es sólo representativo ya que en la otra dirección tanto la viga como las

diagonales serían un poco más largas debido a que se unirían en el alma de las columnas. 

La ubicación de las diagonales dentro de cada piso se muestra en las figuras Nº 3.2 a la Nº3.19. Esta disposición permite contribuir a la disminución de las torsiones que podrían sufrir cada

piso.

Las diagonales al igual que las vigas y columnas fueron consideradas como elementos tipo

 viga-columna aunque es poco probable que presenten problemas por torsión, la carga axial que

resisten es importante y su ángulo inclinado de ubicación favorece a problemas por flexión, por lo

que se deben considerar los momentos en ambas direcciones.

La masa de las diagonales se considera tributando en un 50% al extremo inferior (donde se

unen con las columnas) y el otro 50% al extremo superior donde se unen a la viga.

Tabla Nº 3.5 Dimensiones de las diagonales utilizadas en los diseños

Diagonales Largo(1) d bf   tf   t w   h s Ixx Iyy área peso

 propio(1)

Pisos Color [cm.] [cm.] [cm.] [cm.] [cm.] [cm.] [cm.] [cm4] [cm4] [cm2] [kgf]1-4 360,6 31 25,4 1,6 1 27,8 0,6 19372 4372 109,1 16,95-8 360,6 31 20,5 1,6 1 27,8 0,6 15980 2300 93,4 14,5

9-12 360,6 25,7 20,4 1,57 0,9 22,4 0,6 10199 2223 84,36 13,1

(1) Valor promedio

Page 55: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 55/136

Capítulo III Modelado de las estructuras a analizar  

- 43 -

Figura Nº 3.21  Esquema del tipo de marco con diagonales utilizado en los diseños  

(Todas las medidas están en centímetros)

3.1.3.4 Losas

Están diseñadas con un hormigón H-30 con un nivel de confiabilidad de 95%, el espesor

para cada piso es de 13[cm] y fueron consideradas como elemento tipo “Shell” ya que compatibilizan

los desplazamientos horizontales, lo que impide las deformaciones en su plano y una adecuada

distribución de los esfuerzos laterales del edificio a las columnas y diagonales, permite el giro entorno

al eje ortogonal a su plano resistente, y no impide ni homogeniza los desplazamientos relativos en

dirección perpendicular a su plano resistente. La discretización de la losa en cada piso se realizó enelementos tipo “Shell” de 2,5[m] de ancho por 2,5[m] de largo para que los puntos creados en cada

 vértice coincidan con los originados por las uniones de vigas con columnas y con los puntos medios

de cada viga.

Page 56: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 56/136

Page 57: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 57/136

Capítulo III Modelado de las estructuras a analizar  

- 45 -

Figura Nº 3.22 Puntos de tributación de las masas, vista en planta  

Las unidades de las medidas están en [cm]

Tabla Nº 3.6 Factor de la masa sísmica de los elementos tributantes a un punto en un piso

Punto Factor de participación

color tipo columna diagonal viga área[cm2 ]

1 1 0 0,5 15625

2 0 0 0,5 46875

3 1 0 0,75 31250

4 0 0 0,5 93750

5 1 1 1 625006 0 1 0,5 93750

7 1 0 1 62500

Para el caso en donde se encuentran dos columnas o diagonales de distinta dimensión,

se considera la mitad de la superior más la mitad de la inferior.

Page 58: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 58/136

Capítulo III Modelado de las estructuras a analizar  

- 46 -

Figura Nº 3.23  Áreas tributarias a cada punto de un piso

Como el diseño de los edificios fue realizado considerando la masa tributando en un solo

punto, entonces se corroboró si cumplían aún la normativa. El error entre una idealización y otra fue

tan pequeño que se consideró despreciable.

Para la idealización de los grados de libertad dinámicos se presentan los siguientes esquemas

en donde se muestra una elevación (no importa que elevación sea, todas tributan su masa a los

mismos puntos) y una vista en planta, representando a través de círculos ennegrecidos los puntos

donde tributa la masa sísmica y con flechas las direcciones de los grados de libertad dinámicos.

Page 59: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 59/136

Capítulo III Modelado de las estructuras a analizar  

- 47 -

Figura Nº 3.24  Elevación donde se muestran los grados de libertad dinámicos asociados.

(Todas las elevaciones se idealizan igual que esta)

Page 60: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 60/136

Capítulo III Modelado de las estructuras a analizar  

- 48 -

Figura Nº 3.25 Vista en planta tipo, de los grados de libertad dinámicos.

 Nota 1: El giro en torno al eje vertical que se aprecia representado por una flecha curva, está asociado a la planta

completa ya que trabaja como diafragma rígido, de modo que no es sólo ese punto el que gira sino que todos los puntosen conjunto.

 Nota 2: Los puntos de color rojo además de representar la masa con grados de libertad dinámicos horizontales como los

demás, también poseen grados de libertad dinámicos verticales.

Page 61: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 61/136

 

- 49 -

Capítulo IVCargas y Estados de Carga

Para poner a prueba los modelos y realizar análisis cuyos resultados sean razonables en

relación a lo que se pretende estudiar, no sólo es necesario conocer detalladamente las cargas que

actuarán sino que además cómo se obtienen, donde se aplican, como interactúan entre ellas y la

estructura, cuales son los principios o fundamentos de su aplicación, etc. es por eso que en este

capítulo se mencionarán y detallarán las cargas que indica la normativa chilena a ser incluidas en el

diseño, los cálculos utilizados para obtenerlas y el lugar y el modo en que son aplicadas.

En relación a los análisis que serán realizados con registros sísmicos reales, al no estar

contemplados dentro de ninguna norma, se explicará el modo de incluir los estados de carga

dinámicos y la forma en que se realizarán los análisis, además de toda la fundamentación tanto para

los parámetros a utilizar como los valores que a estos se les asignará.

Page 62: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 62/136

Capitulo IV Cargas y Estados de Carga  

- 50 -

4.1 CARGAS APLICADAS

 Tomando en consideración que los registros acelerográficos disponibles para los posteriores

análisis dinámicos corresponden a mediciones hechas en zonas cercanas a la costa chilena (zona 3

según NCh 433 of 1996 mod. 2009), las cargas utilizadas fueron:

  Carga muerta:   correspondiente a las cargas de peso propio de las columnas, vigas,

diagonales y losas, calculadas con los valores de densidad de cada material

mostrados en las tablas Nº 3.1 y 3.2.

 

Sobrecarga de uso:   por el diseño sencillo de los edificios, lo rápido que se puede construirun tipo de estructura como la mencionada versus el costo agregado que

conlleva por los materiales (acero), representan en gran medida a un

proyecto inmobiliario de edificio de departamentos por lo que se consideró,

según NCh 1537 of 1986, una sobrecarga de uso de 2,0 [kPa] o 200 [kgf/m2 ]

distribuida homogéneamente sobre las losas de cada piso. Para el caso del

techo del 12º piso la norma estipula una sobrecarga mínima de 100 [kgf/m2 ],

pero por fines prácticos y porque al eliminar los 8 pisos superiores del

modelo con 12 pisos para obtener el modelo con 4 pisos, la sobrecarga

sobre el 4º piso debería cambiar (porque pasaría a ser techo) se optó por

mantener la misma sobrecarga de uso a todas las losas sin importar la

cantidad de pisos del modelo (200[kgf/m2 ]).

  Viento:   como se asumió que las estructuras estarán ubicada cercanas a la costa

chilena, según NCh 432 of 1971 las fuerzas del viento corresponden a las

aplicadas en construcciones situadas frente al mar por lo que, por medio deinterpolación lineal y considerando la tabla Nº 4.1, los valores de las

presiones básicas ocasionadas por el viento se detallan en la tabla Nº 4.2

Con respecto a la aplicación de las fuerzas, los modelos se

consideraron como construcciones cerradas con paredes planas por lo que el

factor de forma C = 1,2 se aplicó según se aprecia en la figura Nº 4.1,

Page 63: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 63/136

Capitulo IV Cargas y Estados de Carga

- 51 -

asumiendo la presión en el techo -0,4q debido a no tener inclinación. Por

último, esta presión distribuida sobre todas las caras de los edificios se

concentró como cargas distribuidas linealmente sobre los niveles de cada

piso debido a que se consideraron las losas como los elementos quedistribuyen los esfuerzos laterales a las columnas y diagonales. La

concentración de estas cargas se hizo tributando a nivel de las losas, el 50%

de las cargas del piso anterior más el 50% de las cargas del piso en cuestión.

La dirección de la acción del viento se consideró positiva en la

orientación Este (para el eje “X” en el modelo) y simultáneamente la otra

dirección aplicada se consideró positiva en la orientación Norte (eje “Y” en

el modelo)

Tabla Nº 4.1 Presión básica del viento para diferentes alturas sobre el suelo

Construcciones situadas en campoabierto, ante el mar, o en sitios

asimilables a estas condiciones, ajuicio de la Autoridad Revisora

 Altura sobre elsuelo [m]

Presión básica qen [kgf/m2]

0 704 707 9510 10615 11820 12630 13740 14550 15175 163

100 170150 182200 191300 209

Fuente: NCh 432 of 1971, tabla 1

Page 64: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 64/136

Capitulo IV Cargas y Estados de Carga

- 52 -

Tabla Nº 4.2 Presión básica del viento para las alturas de los pisos del edificio de 12 pisos  

 Altura sobre elsuelo [m]

Presión básica qen [kgf/m2]

3 70,00

6 86,679 102,3312 110,8015 118,0018 122,8021 127,1024 130,4027 133,7030 137,0033 139,4036 141,80

Figura Nº 4.1  Aplicación del factor de forma

Fuente: NCh 432 of 1971, anexo A, figura A.9 a)

  Sismo:   la cantidad de términos que la NCh 433 of 1996 mod. 2009 exige

determinar para elaborar un espectro de diseño es alta por lo que sus valores

se resumen en la tabla Nº 4.3, de modo que en estos párrafos sólo se

explicará el por qué de cada consideración que requiere la norma ya

mencionada.

En primer lugar se debe recordar que la ubicación en teoría de los

modelos a estudiar es en las costas de Chile por lo que la zona sísmica

Page 65: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 65/136

Capitulo IV Cargas y Estados de Carga

- 53 -

corresponde a la número “3” y el tipo de suelo también es tipo “3”, la

clasificación de la ocupación de los edificios es de tipo “II” por ser

estructuras destinadas a la habitación privada. El peso sísmico fue calculado

incluyendo a la suma de los pesos propios de todos los elementos, el 50% dela sobrecarga de uso y se trabajó a nivel de cada diafragma de piso, donde se

tributó toda la masa sísmica de cada nivel en el punto central de cada piso.

Los valores máximos de los factores de modificación de respuesta

“R” y “Ro” fueron considerados para el caso de marcos corrientes (OMF)

de acero estructural.

Por último, para calcular el factor de reducción R *  es necesario

disponer del período del modo de vibrar con mayor masa traslacional en la

dirección de análisis “T”, que se muestran en la tabla Nº 4.3. Este período se

calculará con el método de los vectores de Ritz, los cuales según Crempien

(1992) son más adecuados de utilizar en estructuras complejas.

Con esta información es posible determinar todos los parámetros

exigidos por la norma (mostrados en la tabla Nº 4.3) y con estos, construir

los espectros de diseño mostrados en los gráficos Nº 4.1 y 4.2.

Se aclara que el edificio diseñado fue el de 12 pisos con la ubicación

de las masas sísmicas en el punto central de cada nivel contenido en losdiafragmas, los demás modelos se obtienen a partir de este, corroborando

posteriormente el cumplimiento de las normas.

Tabla Nº 4.3 Resumen de parámetros utilizados en el diseño sísmico del edificio de 12 pisos  

T eje "X" [s] (1)  0,7302 S 1,2 αAA   1142

T eje "Y" [s] (1)  0,7413 To [s] 0,75 αVV   144

g [cm./s2] 981 T' [s] 0,85 αDD  50

Zona sísmica 3 n 0,8  p 0,6I 1 Ta [s] 0 R* 6,4443

 Ao [cm./s2] 392 Tb [s] 0,37 delta T 0,01Z 1 Tc [s] 0,68 Ro 5

Tipo suelo III Td [s] 1,75 R 4(1) Período de mayor masa traslacional en la dirección del eje “X”  (2) Período de mayor masa traslacional en la dirección del eje “Y”  

Page 66: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 66/136

Capitulo IV Cargas y Estados de Carga

- 54 -

Gráfico Nº 4.1   Espectro de diseño en dirección “X”  

Gráfico Nº 4.2   Espectro de diseño en dirección “Y”  

   A  c  e   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

Período s

   A  c  e   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

Período s

Page 67: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 67/136

Capitulo IV Cargas y Estados de Carga

- 55 -

4.2 

COMBINACIONES DE CARGA

Las combinaciones de cargas a utilizar para el diseño de la estructura son las establecidas en la

norma NCh 3171 of. 2010 siguiendo según el método de tensiones admisibles porque es el más

adecuado para los análisis a realizar. Estas combinaciones se detallan a continuación.

El significado de las abreviaciones es el siguiente:

“D”  es la carga muerta.

“Sc”  es la sobrecarga de uso.“Vx”  es el viento en la dirección del eje “X” 

“Vy”  es el viento en la dirección del eje “Y” 

“S1”  es el sismo aplicado en una dirección horizontal, no se especifica en qué dirección puesto que

se trabaja en la dirección horizontal más desfavorable, de modo que “S2” indica la dirección

de aplicación horizontal del sismo que es ortogonal a la de “S1”. 

D

Sc

Vx

Vy

S1+0,3S2

S2+0,3S1

D+ScD+Vx

D+Vy

D+S1+0.3S2

D+S2+0.3S1

D+0.75Vx+0.75Sc

D+0.75Vy+0.75Sc

0.6D+Vx

0.6D+Vy

0.6D+S1+0.3S2

0.6D+S2+0.3S1

D+0.75(S1+0.3S2)+0.75Sc

D+0.75(S2+0.3S1)+0.75Sc

Page 68: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 68/136

Capitulo IV Cargas y Estados de Carga

- 56 -

4.3 CÁLCULO DE LAS CARGAS

La gran cantidad de información considerada dentro de un modelo no necesariamente

conlleva a una mayor exactitud en los cálculos, pero si es clara señal del grado de detalle con que seestudia el comportamiento de una estructura, de modo que todos los datos que se señalan y detallan

a continuación, son requisitos de una u otra norma o investigaciones que los avalan para generar

modelos más correctos de analizar.

4.3.1 Peso Sísmico

Los datos ingresados en el diseño del edificio de 12 pisos están resumidos en la tabla Nº 4.4

la que muestra los valores por piso y como se puede apreciar existen valores que se repiten entre un

piso y otro. Para el peso de las columnas, las vigas y las diagonales los valores se repiten en grupos de

4 pisos (debido a los bloques en que está dividido el edificio) en cambio la sobrecarga de uso y el

peso de la losa es igual en cada piso (la sobrecarga de uso se considera completa en todos los pisos,

pero dentro del peso sísmico sólo se incluye el 50%). El peso sísmico repite sus valores en 3 pisos,

luego existe un piso distinto y posteriormente 3 pisos de igual valor, esto se debe a que en cada

bloque, el último piso por encontrarse en el límite, tributan a él el 50% del peso de las columnas y

diagonales que se encuentran debajo y el 50% de las que se encuentran arriba, generando un valor

distinto debido al cambio de sección de dichos elementos. La masa sísmica está directamente ligada

al peso sísmico y se obtiene dividiendo a este último por la gravedad. Finalmente la inercia rotacional

está ligada a la masa sísmica porque se calcula según se muestra en la figura Nº 4.2.

Figura Nº 4.2 Fórmula para obtener la inercia rotacional del diafragma rígido de cada piso 

12

22

 y x s

bbm I 

 

Donde I r  : inercia rotacional; m s : masa sísmica; b x,y : dimensión de la base en dirección “X” o “Y”  

Page 69: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 69/136

Capitulo IV Cargas y Estados de Carga

- 57 -

 Tradicionalmente se tiende a establecer los ejes en planta de los edificios coincidentes con los

ejes de simetría que a su vez coinciden con los ejes principal y secundario de los elementos

resistentes, de modo que al aplicar el espectro de diseño en una u otra dirección se abarca

arbitrariamente dos direcciones posibles cuando en la realidad existen infinitas.

Tabla Nº 4.4 Resumen datos de entrada

Piso AlturaPeso

columnasPeso

 vigasPeso

diagonalesSobrecarga

de usoPesolosa

Pesosísmico

Masasísmica

Inerciarotacional

[cm.] [ton] [ton] [ton] [ton] [ton] [ton][ton·

s2/cm.][ton· s2 ·

cm.]1 300 22,989 20,689 4,940 80 130 218,62 0,2229 1485682 600 22,989 20,689 4,940 80 130 218,62 0,2229 1485683 900 22,989 20,689 4,940 80 130 218,62 0,2229 148568

4 1200 22,989 20,689 4,940 80 130 215,97 0,2202 1467695 1500 18,405 18,198 4,230 80 130 210,83 0,2149 1432776 1800 18,405 18,198 4,230 80 130 210,83 0,2149 1432777 2100 18,405 18,198 4,230 80 130 210,83 0,2149 1432778 2400 18,405 18,198 4,230 80 130 208,64 0,2127 1417879 2700 14,660 14,916 3,588 80 130 203,16 0,2071 13806610 3000 14,660 14,916 3,588 80 130 203,16 0,2071 13806611 3300 14,660 14,916 3,588 80 130 203,16 0,2071 13806612 3600 14,660 14,916 3,588 80 130 194,04 0,1978 131865

4.3.2 Registro Acelerográficos

Los acelerogramas a utilizar poseen el registro de tres componentes del movimiento, dos

horizontales que están alineadas con la dirección Norte y Este, y una en dirección vertical. Las tres

estaciones que registraron los acelerogramas, están ubicadas en la zona sísmica 3 y sobre suelo tipo

III (según NCh 433 of96 mod. 2009). La elección de estas estaciones se debe en primer lugar a la

disponibilidad de sus registros (se encuentran a libre disposición en Internet), en segundo lugar a la

relevancia del peak de aceleración vertical presentado, en relación a los peak horizontales. En tercer

lugar corresponden a eventos sísmicos de gran magnitud, y en cuarto lugar, presentan zonas sísmicasy tipos de suelos iguales, lo que no quiere decir que sean iguales, pero sus similitudes son interesantes

de tratar. En la tabla Nº 1.1 se encuentra el resumen de los registros de cada estación.

Page 70: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 70/136

Capitulo IV Cargas y Estados de Carga

- 58 -

4.3.2.1 Corrección

 A todos los acelerogramas se les realizó una corrección de línea de base y un filtrado paso-

banda para rectificar los desplazamientos que puede sufrir el acelerograma con respecto a la línea de

aceleración cero y para eliminar las frecuencias bajas y altas que interfieren en los análisis.

Para realizar esta corrección, se utilizó un software de uso gratuito llamado SeismoSignal,

donde se optó por realizar una corrección lineal de línea de base y para el filtrado se utilizó el método

de Butterworth de orden 4 con frecuencias de 0,15 y 25 [Hz], valores y metodologías aconsejados

por el RENADIC (Red Nacional de Acelerógrafos del Departamento de Ing. Civil de la Universidad

de Chile). El resultado se muestra en los gráficos Nº 4.3 al 4.11.

Gráfico Nº 4.3   Acelerograma corregido estación Llolleo (E-O)

Tiempo [s]Tiempo [s]

   A  c  e   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

Page 71: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 71/136

Capitulo IV Cargas y Estados de Carga

- 59 -

Gráfico Nº 4.4   Acelerograma corregido estación Llolleo (N-S) 

Gráfico Nº 4.5   Acelerograma corregido estación Llolleo (Vertical) 

   A  c  e   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

Tiempo [s]

   A  c  e   l  e  r  a

  c   i   ó  n   [  c  m   /  s   2   ]

Tiempo [s]

Page 72: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 72/136

Capitulo IV Cargas y Estados de Carga

- 60 -

Gráfico Nº 4.6   Acelerograma corregido estación San Pedro (E-O)

Gráfico Nº 4.7   Acelerograma corregido estación San Pedro (N-S)

   A

  c  e   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

Tiempo [s]

Tiempo [s]

   A  c  e

   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

Page 73: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 73/136

Capitulo IV Cargas y Estados de Carga

- 61 -

Gráfico Nº 4.8   Acelerograma corregido estación San Pedro (Vertical)

Gráfico Nº 4.9   Acelerograma corregido estación Ventanas (E-O)

Tiempo [s]

Tiempo [s]

   A  c  e   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

   A  c  e   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

Page 74: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 74/136

Capitulo IV Cargas y Estados de Carga

- 62 -

Gráfico Nº 4.10   Acelerograma corregido estación Ventanas (N-S)

Gráfico Nº 4.11   Acelerograma corregido estación Ventanas (Vertical)

Tiempo [s]

Tiempo [s]

   A  c  e   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

   A  c  e   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

Page 75: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 75/136

Capitulo IV Cargas y Estados de Carga

- 63 -

4.3.2.2 Espectros de respuesta

Con los acelerogramas corregidos se elaboran los respectivos espectros de respuesta de cada

registro, por medio del programa SeismoSignal y corroborado por programa numérico de propiaautoría.

Los espectros de respuestas se desarrollaron para un coeficiente de amortiguamiento crítico

igual al 5% (cómo lo propone NCh 433 of96 mod. 2009) y se trabajan hasta períodos de 4[s]. En los

gráficos Nº 4.12 al 4.20 se muestran los espectros de respuesta de cada estación y la orientación

correspondiente.

Gráfico Nº 4.12  Espectro de respuesta estación Llolleo (E-O)

   A  c  e   l  e  r  a  c   i   ó  n   [  c

  m   /  s   2   ]

Período [s]

Page 76: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 76/136

Capitulo IV Cargas y Estados de Carga

- 64 -

Gráfico Nº 4.13  Espectro de respuesta estación Llolleo (N-S)

Gráfico Nº 4.14  Espectro de respuesta estación Llolleo (Vertical)

   A

  c  e   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

   A  c  e   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

Período [s]

Período [s]

Page 77: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 77/136

Capitulo IV Cargas y Estados de Carga

- 65 -

Gráfico Nº 4.15  Espectro de respuesta estación San Pedro (E-O)

Gráfico Nº 4.16  Espectro de respuesta estación San Pedro (N-S)

   A  c  e

   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

   A  c  e   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

Período [s]

Período [s]

Page 78: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 78/136

Capitulo IV Cargas y Estados de Carga

- 66 -

Gráfico Nº 4.17  Espectro de respuesta estación San Pedro (Vertical)

Gráfico Nº 4.18  Espectro de respuesta estación Ventanas (E-O)

   A  c  e   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

   A  c  e   l  e  r  a  c   i   ó  n   [  c  m   /  s   2   ]

Período [s]

Período [s]

Page 79: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 79/136

Capitulo IV Cargas y Estados de Carga

- 67 -

Gráfico Nº 4.19  Espectro de respuesta estación Ventanas (N-S)

Gráfico Nº 4.20  Espectro de respuesta estación Ventanas (Vertical)

   A  c  e   l  e  r  a

  c   i   ó  n   [  c  m   /  s   2   ]

   A  c  e   l  e  r  a

  c   i   ó  n   [  c  m   /  s   2   ]

Período [s]

Período [s]

Page 80: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 80/136

Capitulo IV Cargas y Estados de Carga

- 68 -

4.4 ANÁLISIS TIEMPO-HISTORIA

Este tipo de análisis dinámico contrarresta su dificultad numérica y tiempo de cálculo con la

exactitud de sus resultados y análisis más reales. Lo que se busca con él, es obtener resultados que

sirvan como base para las comparaciones a realizar.

El tipo de análisis Tiempo-Historia escogido fue el de “Integración Directa” debido a que no

sólo calcula paso a paso toda la estructura frente a la acción conjunta de los tres acelerogramas de

una estación, sino que además no sufre problemas con acoplamiento de formas modales, entregando

mejores resultados. Este tipo de análisis involucra considerar las características de los materiales

como lineales o no lineales (Carga v/s deformación) dependiendo del caso, ya que la no linealidad

apunta a estudios más acabados que buscan encontrar rótulas plásticas y comportamiento último de

la estructura, en cambio en el presente estudio esta no linealidad carece de importancia puesto quelos modelos no son reales, no se desea conocer su respuesta última, y los análisis modal espectrales a

realizar parten del hecho de que los elementos de diseño poseen comportamiento dentro de su rango

lineal-elástico de modo que si el análisis Tiempo-Historia se realiza con elementos no lineales, no se

podrían comparar los resultados, por eso se opta por la linealidad.

Los registros sísmicos reales fueron trabajados simultáneamente en cada análisis puesto que

los acelerogramas con los que se trabaja en cada estación están obtenidos de un mismo evento

sísmico y en el mismo tiempo en que transcurrió. El paso utilizado fue acomodado de tal medida que

coincidiera con las lecturas de los acelerogramas y de esta forma no hubo la necesidad de interpolar

 valores lo que evita alterar en cierta medida los resultados. El ángulo de incidencia para la

componente vertical se consideró completamente ortogonal al plano horizontal, en cambio para la

incidencia de las componentes horizontales, se realizó un barrido de las posibles direcciones de

incidencia con un paso de 15º, entre 0º y 90º, determinando que para el caso del registro sísmico de

la estación Llolleo, la mayor respuesta se obtuvo ubicando el registro norte-sur en la dirección “Y” y

el registro este-oeste en la dirección “X”. En cambio para los registros de las estaciones San Pedro y

 Ventanas la respuesta más desfavorable de la estructura se obtuvo con el registro norte-sur en ladirección “X” y este-oeste en la dirección “Y”. 

Otro punto que considera este tipo de análisis es el amortiguamiento viscoso planteado por la

fórmula de Rayleigh que se aprecia en la figura Nº 4.3, el cual simula de mejor manera los efectos de

la variación de la amortiguación en la realidad debido por ejemplo a la acción del viento o el roce de

la estructura con el aire. Es por eso que las dos frecuencias naturales necesarias para calcular la curva

Page 81: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 81/136

Capitulo IV Cargas y Estados de Carga

- 69 -

de amortiguamiento, son las frecuencias asociadas al primer período de la estructura y al último entre

los cuales se encuentre participando más del 90% de la masa sísmica total.

Por último el método de integración usado fue el de Hilber-Hughes-Taylor ya que presenta

estabilidad como algoritmo, y permite cierta disipación o amortiguamiento numérico en lasfrecuencias más altas sin perder la precisión, y todo regulado por el valor de   , el que debe oscilar

en -1/3 y 0. En el valor -1/3 se presenta mayor disipación de las oscilaciones excesivas de los

resultados en las frecuencias altas, pero mayor tiempo de cálculo y pérdida de precisión, por eso se

trabajó con el valor 0  , donde ocurre todo lo contrario.

Figura Nº 4.3 Curva de amortiguamiento v/s frecuencias naturales  

Fuente: Chopra (1995)

Page 82: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 82/136

Capitulo IV Cargas y Estados de Carga

- 70 -

4.5 ANÁLISIS MODAL ESPECTRAL

Este análisis dinámico es uno de los más utilizados debido a su fácil implementación, rápido

desarrollo numérico, se enfoca en aquellas formas de movimiento principales o fundamentales de las

estructuras y entrega información sencilla y directa.

Para determinar las formas modales de los modelos se utilizaron los vectores de Ritz, el

coeficiente de amortiguamiento crítico usado fue de 5% constante y se analizaron los edificios

incluyendo los tres espectros de respuesta de cada estación según la combinación del 30% de modo

que a la dirección a estudiar se le suma el 30% de cada una de las otras dos direcciones trabajando al

unísono. Para el caso vertical, el ángulo de incidencia se consideró completamente ortogonal al plano

horizontal, en cambio para la incidencia de las componentes horizontales, se realizó un barrido de las

posibles direcciones de incidencia con un paso de 15º, entre 0º y 90º, determinando que para el casodel registro sísmico de la estación Llolleo, la mayor respuesta se obtuvo ubicando el registro norte-

sur en la dirección “Y” y el registro este-oeste en la dirección “X”. En cambio para los registros de

las estaciones San Pedro y Ventanas la respuesta más desfavorable de la estructura se obtuvo con el

registro norte-sur en la dirección “X” y este-oeste en la dirección “Y”. 

Los materiales presentan un comportamiento lineal y no incursionan en el rango plástico. 

Page 83: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 83/136

Capitulo IV Cargas y Estados de Carga

- 71 -

4.6 

CASOS CONSIDERADOS VARIANDO ESTADOS DE CARGA

Los resultados a obtener luego de cada análisis son válidos en la medida en que las

idealizaciones lo sean, es por eso que las comparaciones que se realicen deben provenir de casos o

condiciones que permitan aislar los efectos que se desean apreciar, de los demás efectos posibles de

participar, de modo que la información sea limpia y esté libre de cualquier variable que la altere. Es

por esto que se opta por aplicar los análisis respectivos a los siguientes casos para su posterior

comparación.

Caso 1   el modelo del edificio constará de 4 pisos y no tendrá grados de libertad dinámicos

 verticales. Se realizará un análisis dinámico considerando sólo las componentes

horizontales actuando en la dirección más desfavorable.Para hacer este caso consecuente con los posteriores fue necesario que la ubicación de la

masa en cada piso sea la misma y como en los casos donde existe masa sísmica vertical ésta se tributó

a puntos intermedios de cada viga (Ju et. al, 2000), por lo tanto la masa sísmica horizontal también

debería estar distribuida, de modo que en cada punto de intersección entre vigas y columnas, y en

cada punto medio de cada viga, se tributó la masa del piso correspondiente.

Caso 2   corresponde al mismo modelo y procedimiento antes descrito, pero considerando

grados de libertad dinámicos verticales.

En este caso los puntos donde se distribuyó la masa sísmica de cada nivel mantendrán la

misma masa sísmica horizontal ingresada en el caso anterior, pero con la diferencia que los puntos

medios de cada viga, poseen la misma masa horizontal, pero actuando también en dirección vertical.

Se escogen estos puntos ya que pueden desplazarse verticalmente debido a que el diafragma rígido de

cada piso, compatibiliza los desplazamientos sólo en su plano y no perpendicular a él. Los puntos de

unión de las vigas por estar ligados directamente a una columna, su desplazamiento vertical está

restringido.

Caso 3   siguiendo con el mismo modelo del Caso 2, se incorpora la componente sísmica

 vertical.

Page 84: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 84/136

Capitulo IV Cargas y Estados de Carga

- 72 -

 A diferencia de las componentes horizontales, las cuales fueron direccionadas en ángulos de

15º desde 0º a 90º para determinar la orientación más adversa, la componente vertical no presenta

 variación en su ángulo de inclinación, siendo este perpendicular al plano horizontal.

Caso 4   se asemeja al caso anterior, con la diferencia de que el modelo tendrá 12 pisos.

Caso 5   se variará la ubicación de las masas sísmicas verticales en los casos 3 y 4.

Se agrega este caso para conocer la influencia de la excentricidad de la masa sísmica vertical

en los modelos propuestos.

Para realizar este caso sólo se puede variar la ubicación de la sobrecarga de uso porque en la

realidad es el único parámetro que varía y del cual no se tiene control después de diseñada la

estructura. Debido a esto, la sobrecarga de uso de todo un nivel se considera distribuida en tan solo

un cuarto de la superficie, de modo que cada planta (cuadrada) se divide en cuatro cuyas líneas

divisorias son las que nacen del punto medio de cada lado y se unen al punto medio del lado

opuesto, permitiendo que cada cuarto quede en las esquinas de cada piso de modo que su influencia

en el peso símico genere una excentricidad de la masa sísmica que será estimulada por las tres

componentes sísmicas en forma simultánea. Además este tipo de distribución de la sobrecarga de uso

desplaza el centro de masa de cada piso en no más de 0,05 veces el ancho de la planta en la dirección

de análisis como lo establece la NCh 433 of 1996 mod 2009.En el anexo nº 3 se encuentra un resumen esquemático de las situaciones planteadas para

analizar y posteriormente comparar. 

Page 85: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 85/136

 

- 73 -

Capítulo VResultados

Debido a la gran cantidad de situaciones planteadas con los modelos, las diferentes

combinaciones posibles ya sea para medir uno u otro efecto, los tipos de análisis realizados y los

tipos de registros sísmicos disponibles, es que se dispone de una inmensa cantidad de datos que

deben ser depurados, contrastados e interpretados de forma correcta y objetiva. Por otra parte es

importante la presentación de los resultados, para tener una idea clara de ellos y evitar en lo posible

confusiones que lleven a apreciaciones erróneas. Es por esto que el capítulo se divide en tres puntos

importantes, en primer lugar todo lo concerniente a los análisis realizados utilizando la normativa

chilena, donde se muestran los resultados obtenidos de los modelos diseñados y luego los obtenidosal implementar un espectro de diseño vertical propuesto. En segundo lugar se presentan los análisis

de Tiempo - Historia lo que abarca toda información obtenida de estos, ya sea con los diferentes

registros sísmicos reales, y en todas las combinaciones realizadas. Por último son presentados los

resultados de los análisis Modal Espectral con el mismo tipo de información que en el caso anterior.

Page 86: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 86/136

Capítulo V Resultados  

- 74 -

5.1 ANÁLISIS POR NORMATIVA CHILENA

Luego de realizar los análisis dinámicos y estáticos que establece la NCh 433 of. 1996 mod.

2009, se muestran las reacciones en la base provocados por cada esfuerzo individualmente y por lacombinación de ellos como lo estipula la NCh 3171 of 2010 para diseño por tensiones admisibles; y

los desplazamientos en cada dirección para cada espectro de diseño, incluyendo la torsión accidental

al desplazar, en 0.05 veces el ancho del edificio, la ubicación del centro de masas.

Para las combinaciones donde se incluya el efecto sísmico, se consideran el caso máximo con

el signo positivo del esfuerzo aportado por el sismo y como mínimo el signo negativo, esto debido a

que el análisis Modal Espectral no establece la dirección de los esfuerzos.

Tabla Nº 5.1 Desplazamientos del centro de masa relativos al nivel inferior, de cada piso, modelo con 4 pisos  

PisoSismo en dirección “X”  Sismo en dirección “Y” 

Sismo en dirección “X”

con masa descentrada(1)

Sismo en dirección “Y”

con masa descentrada(1)

despl. X despl. Y despl. X despl. Y despl. X despl. Y despl. X despl. Y[cm.] [cm.] [cm.] [cm.] [cm.] [cm.] [cm.] [cm.]

1 0,116 0,000 0,000 0,125 0,096 0,000 0,000 0,1062 0,154 0,000 0,000 0,161 0,127 0,000 0,000 0,1353 0,125 0,000 0,000 0,128 0,103 0,000 0,000 0,1084 0,078 0,000 0,000 0,079 0,064 0,000 0,000 0,067

(1) Corresponden a los casos donde se considera torsión accidental

Tabla Nº 5.2 Desplazamientos del centro de masa relativos al nivel inferior, de cada piso, modelo con 12 pisos

PisoSismo en dirección “X”  Sismo en dirección “Y” 

Sismo en dirección “X”

con masa descentrada(1)

Sismo en dirección “Y”

con masa descentrada(1)

despl. X despl. Y despl. X despl. Y despl. X despl. Y despl. X despl. Y[cm.] [cm.] [cm.] [cm.] [cm.] [cm.] [cm.] [cm.]

1 0,258 0,074 0,069 0,274 0,231 0,079 0,069 0,2592 0,393 0,108 0,105 0,402 0,347 0,109 0,104 0,3723 0,420 0,114 0,112 0,425 0,375 0,114 0,111 0,3884 0,427 0,116 0,114 0,432 0,385 0,116 0,113 0,392

5 0,463 0,126 0,124 0,469 0,425 0,132 0,123 0,4266 0,459 0,125 0,123 0,465 0,427 0,131 0,122 0,4247 0,435 0,118 0,116 0,440 0,405 0,124 0,115 0,4028 0,406 0,110 0,108 0,410 0,379 0,115 0,108 0,3759 0,432 0,119 0,115 0,442 0,397 0,126 0,114 0,40410 0,379 0,104 0,101 0,388 0,349 0,110 0,100 0,35311 0,298 0,082 0,079 0,305 0,274 0,086 0,079 0,27712 0,209 0,057 0,056 0,213 0,192 0,060 0,055 0,192

(1 ) Corresponden a los casos donde se considera torsión accidental

Page 87: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 87/136

Capítulo V Resultados  

- 75 -

En las tablas siguientes se consideró la dirección en todas aquellas combinaciones donde

estuviera incluida una componente sísmica, por lo que el signo (+ ó - ) indica la orientación en que

se dispuso el esfuerzo generado por dicha componente.

Tabla Nº 5.3  Esfuerzos basales según solicitaciones, modelo de 4 pisos

Combinación DirecciónFuerzaen “X” 

Fuerzaen “Y” 

Fuerzaen “Z” 

Momentoen “X” 

Momentoen “Y” 

Momentoen “Z” 

[Ton] [Ton] [Ton] [Ton-cm.] [Ton-cm.] [Ton-cm.]

D (+) 0 0 698,6 698581 -698581 0Sc (+) 0 0 320,0 320000 -320000 0

 Vx (+) -32,0 0 0 0 -25752 31951 Vy (+) 0,0 -32,0 0 25752 0 -31951

S1+0,3S2 (+) 213,6 64,7 0 56359 186769 223205S2+0,3S1 (+) 64,1 215,6 0 187865 56031 224899

D+Sc (+) 0 0 1018,6 1018581 -1018581 0D+Vx (+) -32,0 0 698,6 698581 -724333 31951D+Vy (+) 0 -32,0 698,6 724333 -698581 -31951

D+S1+0.3S2 (+) 213,6 64,7 698,6 754940 -511812 223205D+S1+0.3S2 ( - ) -213,6 -64,7 698,6 642221 -885350 -223205D+S2+0.3S1 (+) 64,1 215,6 698,6 886445 -642550 224899D+S2+0.3S1 ( - ) -64,1 -215,6 698,6 510716 -754612 -224899

D+0.75Vx+0.75Sc (+) -24,0 0 938,6 938581 -957895 23963D+0.75Vy+0.75Sc (+)  0 -24,0 938,6 957895 -938581 -23963

0.6D+Vx (+)  -32,0 0 419,1 419149 -444901 319510.6D+Vy (+)  0 -32,0 419,1 444901 -419149 -31951

0.6D+S1+0.3S2 (+)  213,6 64,7 419,1 475508 -232379 2232050.6D+S1+0.3S2 ( - ) -213,6 -64,7 419,1 362789 -605918 -2232050.6D+S2+0.3S1 (+) 64,1 215,6 419,1 607013 -363118 2248990.6D+S2+0.3S1 ( - ) -64,1 -215,6 419,1 231284 -475179 -224899

D+0.75(S1+0.3S2)+0.75Sc (+) 160,2 48,5 938,6 980850 -798504 167404D+0.75(S1+0.3S2)+0.75Sc ( - ) -160,2 -48,5 938,6 896311 -1078658 -167404D+0.75(S2+0.3S1)+0.75Sc (+) 48,1 161,7 938,6 1079479 -896558 168674D+0.75(S2+0.3S1)+0.75Sc ( - ) -48,1 -161,7 938,6 797682 -980604 -168674

Page 88: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 88/136

Capítulo V Resultados  

- 76 -

Tabla Nº 5.4  Esfuerzos basales según solicitaciones, modelo de 12 pisos

La inclusión de un espectro de diseño de la componente vertical, obtenido a partir de 2/3 del

horizontal, como se plantea en algunos códigos internacionales, generó aumentos en las

solicitaciones donde participa la acción sísmica. Como no se plantea dentro de la normativa chilena la

inclusión de la componente vertical entonces se establece la combinación que corresponde al 100%

de la participación de la componente vertical sísmica y el 30% simultáneo de la acción sísmica

horizontal en cada una de sus direcciones, en cada combinación donde estén presenten los esfuerzos

producto del sismo. De este modo los resultados obtenidos fueron comparados con los análisis

anteriores (sin componente vertical) tomando el máximo valor basal y el mínimo correspondiente a

Combinación Dirección

Fuerza

en “X” 

Fuerza

en “Y” 

Fuerza

en “Z” 

Momento

en “X” 

Momento

en “Y” 

Momento

en “Z” [Ton] [Ton] [Ton] [Ton-cm.] [Ton-cm.] [Ton-cm.]

D (+)  0 0 2000 1999999 -1999999 0Sc (+)  0 0 960 960000 -960000 0

 Vx (+)  -117 0 -23 -22688 -216054 116562 Vy (+)  0 -117 -23 216054 22688 -116562

S1+0,3S2 (+)  500 148 0 365453 1232804 521466S2+0,3S1 (+)  150 495 0 1218176 369841 516945

D+Sc (+)  0 0 2960 2959999 -2959999 0D+Vx (+)  -117 0 1977 1977311 -2216053 116562D+Vy (+)  0 -117 1977 2216053 -1977311 -116562

D+S1+0.3S2 (+) 

500 148 2000 2365451 -767195 521466D+S1+0.3S2 ( - ) -500 -148 2000 1634546 -3232803 -521466D+S2+0.3S1 (+) 150 495 2000 3218175 -1630157 516945D+S2+0.3S1 ( - ) -150 -495 2000 781823 -2369840 -516945

D+0.75Vx+0.75Sc (+)  -87 0 2703 2702983 -2882039 87422D+0.75Vy+0.75Sc (+)  0 -87 2703 2882039 -2702983 -87422

0.6D+Vx (+)  -117 0 1177 1177311 -1416053 1165620.6D+Vy (+)  0 -117 1177 1416053 -1177311 -116562

0.6D+S1+0.3S2 (+)  500 148 1200 1565452 32805 5214660.6D+S1+0.3S2 ( - ) -500 -148 1200 834546 -2432803 -5214660.6D+S2+0.3S1 (+) 150 495 1200 2418175 -830158 5169450.6D+S2+0.3S1 ( - ) -150 -495 1200 -18177 -1569840 -516945

D+0.75(S1+0.3S2)+0.75Sc (+) 375 111 2720 2994088 -1795396 391100D+0.75(S1+0.3S2)+0.75Sc ( - ) -375 -111 2720 2445909 -3644602 -391100D+0.75(S2+0.3S1)+0.75Sc (+) 112 371 2720 3633631 -2442618 387709D+0.75(S2+0.3S1)+0.75Sc ( - ) -112 -371 2720 1806367 -2997379 -387709

Page 89: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 89/136

Capítulo V Resultados

- 77 -

cada tipo de esfuerzo, entregando variaciones menores a 1% lo que demuestra que la aplicación del

método de los 2/3 para obtener un espectro de diseño vertical es inútil para fines prácticos.

 Al evaluar por otra parte, la variación de los esfuerzos (producto de la componente vertical

sísmica) de cada elemento resistente en relación a su capacidad admisible se observa una muy bajainfluencia, es más, para el caso del edificio con 4 pisos, la mayor alza registrada es de un 0,63% de la

resistencia admisible al corte en un elemento y para el caso de 12 pisos es de 1,57% de la resistencia

en el eje fuerte de un elemento, esto dicho en otras palabras significa que sólo en los casos donde se

diseñara cada uno de los elementos resistentes de una estructura al 100% de su resistencia admisible

sin considerar la componente sísmica vertical, ésta marcaría una diferencia puesto que sobrecargaría

minimamente algún elemento, condición sumamente rebuscada y que en la realidad prácticamente no

sucede. Por su insignificante relevancia no se presentan estos valores en tablas para no entorpecer ni

complicar la lectura de los resultados que sí importan y se reafirma el hecho de que 2/3 de la

componente horizontal no es un método que entregue un espectro de diseño útil.

En relación a los desplazamientos, tradicionalmente no se consideran relevantes los de

dirección vertical, por lo que no existe valores o condiciones claras para controlarlos, sólo la

deflexión máxima de los elemento (en este caso vigas) la que fue considerada como “L/360” siendo

“L” la luz del elemento, fórmula que en general da como resultado aproximadamente 1,38[cm], en

relación a esto el modelo de 4 pisos alcanzó como máximo un desplazamiento absoluto de 0,01 [cm]

(0,7% del límite) y por su parte el modelo de 12 pisos tuvo algunos puntos que alcanzaron los 0,037[cm] (2,7% del límite) lo que establece que la acción sísmica vertical utilizando el tipo de espectro de

diseño propuesto no genera grandes desplazamientos en su dirección de acción.

Page 90: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 90/136

Capítulo V Resultados

- 78 -

5.2 

 ANÁLISIS TIEMPO-HISTORIA

Desde la tabla Nº 5.5 hasta la tabla Nº 5.11, se muestran las reacciones resultantes en la base

del edificio, según el caso considerado.Los valores positivos y negativos reflejan la capacidad que posee el análisis Tiempo-Historia

de reconocer la dirección en que se aplican las fuerzas a medida que avanza el tiempo, como

obviamente se obtienen muchos registros, sólo son considerados los máximos y mínimos.

El primer análisis realizado apuntó a determinar la influencia en los resultados al considerar

masa sísmica participando en la dirección vertical, pero sin considerar el registro sísmico de dicha

dirección, lo cual se comprobó al no arrojar variaciones en los esfuerzos del edificio (con 4 y con 12

pisos) con masa vertical en relación al que no la poseía. De este modo en los análisis posteriores se

descarta la idea de que las características de un modelo varíen al asignarle masa sísmica verticalmente.

El segundo análisis se enfocó directamente en como afecta la componente sísmica vertical a

los esfuerzos basales de la estructura, de modo que se analizó en primer lugar la estructura (con 4 y

12 pisos) sin grados de libertad dinámicos verticales, de modo que no poseía masa sísmica en esa

dirección y tampoco se consideraba el acelerograma en dicha dirección. Los acelerogramas

horizontales fueron aplicados simultáneamente, ortogonales entre sí. Luego se realizó el análisis en la

misma estructura, pero ahora considerando la masa vertical y la componente sísmica vertical (esta

también de manera simultanea junto a los acelerogramas horizontales). Con estas dos situaciones serealizó la comparación de las reacciones basales siendo el esfuerzo axial el que aparece en la segunda

situación ya que al no considerar masa sísmica vertical, la resultante en la base de las fuerzas

 verticales es cercana a cero, esto debido a que sólo se está considerando los análisis dinámicos,

dejando a los estáticos de lado porque no varían de un caso a otro. En la tabla Nº 5.5 se muestran los

resultados por evento sísmico (ubicación) y por número de pisos de la estructura, los valores se

presentan en toneladas y en porcentaje en relación al peso sísmico del edificio. Con respecto a la

otras reacciones solo se apreciaron variaciones en los momentos volcantes (momento en torno al eje

“X” y momento en torno al eje “Y”) a nivel basal para el caso del edificio con 12 pisos y que son

mostrados en la tabla Nº 5.6 como el aumento porcentual del modelo con componente vertical

sísmica en relación al que no la posee. Los demás casos no presentaron variaciones significativas en

las reacciones restantes.

Page 91: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 91/136

Capítulo V Resultados

- 79 -

Tabla Nº 5.5  Aumento de fuerza axial a nivel basal producto de la acción sísmica vertical

4 Pisos

Fuerza

resultanteen "Z"

 Aumento porcentual

en relaciónal PesoSísmico

12 Pisos

Fuerza

resultanteen "Z"

 Aumento porcentual

en relaciónal PesoSísmico

Estación Dirección [Ton] [%] Estación Dirección [Ton] [%]

 Ventanas (+) 74,85 8,59% Ventanas (+) 415,26 16,50% Ventanas (-) -99,10 11,37% Ventanas (-) -329,94 13,11%San Pedro (+) 295,07 33,84% San Pedro (+) 1524,08 60,56%San Pedro (-) -294,28 33,75% San Pedro (-) -1296,14 51,51%

Llolleo (+) 300,95 34,52% Llolleo (+) 1560,74 62,02%Llolleo (-) -380,54 43,65% Llolleo (-) -1217,76 48,39%

 Nota: El peso sísmico del edifico con 4 pisos es de 871,8 [ton] y el de 12 es de 2516,5 [ton].

Tabla Nº 5.6  Aumento porcentual de los momentos volcantes a nivel basal producto de la acción sísmica vertical

12 Pisos

 Aumento porcentualdel Momento

resultante en tornoal eje "X"

 Aumento porcentualdel Momento

resultante en tornoal eje "Y"

Estación Dirección [%] [%]

 Ventanas (+) 10,30% 5,88% Ventanas (-) 13,03% 1,96%San Pedro (+) 0,00% 17,69%

San Pedro (-) 3,75% 13,17%Llolleo (+) 0,00% 13,40%Llolleo (-) 14,65% 0,00%

Para considerar la influencia de la excentricidad de la masa sísmica vertical se consideran dos

situaciones que presentan la misma excentricidad de las masas horizontalmente, pero en uno no seconsidera la masa vertical y en el otro sí, de modo que en el primer análisis se trabaja con los dos

acelerogramas horizontales simultáneos en cambio en el segundo, el análisis incorpora los tres

registros sísmicos (uno vertical y dos horizontales). Los resultados se muestran en las tablas Nº 5.7 y

Nº 5.8, los valores de las reacciones basales que no se presenten indican que no tuvieron variaciones.

Page 92: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 92/136

Capítulo V Resultados

- 80 -

Tabla Nº 5.7  Aumento de fuerza axial a nivel basal producto de la acción sísmica vertical con excentricidad de lamasa sísmica en dicha dirección.

4 PisosFuerza

resultanteen "Z"

 Aumento porcentualen relación

al PesoSísmico

12 PisosFuerza

resultanteen "Z"

 Aumento porcentualen relación

al PesoSísmico

Estación Dirección [Ton] [%] Estación Dirección [Ton] [%]

 Ventanas (+) 66,49 7,63% Ventanas (+) 405,58 16,12% Ventanas (-) -73,00 8,37% Ventanas (-) -417,65 16,60%San Pedro (+) 267,60 30,69% San Pedro (+) 1588,94 63,14%San Pedro (-) -221,62 25,42% San Pedro (-) -1111,96 44,19%

Llolleo (+) 294,10 33,73% Llolleo (+) 1377,21 54,73%Llolleo (-) -277,24 31,80% Llolleo (-) -1224,22 48,65%

 Nota: El peso sísmico del edifico con 4 pisos es de 871,8 [ton] y el de 12 es de 2516,5 [ton].

Tabla Nº 5.8  Aumento porcentual de los momentos volcantes a nivel basal producto de la acción sísmica vertical conexcentricidad de la masa sísmica en dicha dirección.

12 Pisos

 Aumento porcentualdel Momento

resultante en tornoal eje "X"

 Aumento porcentualdel Momento

resultante en tornoal eje "Y"

Estación Dirección [%] [%] Ventanas (+) 6,28% 2,54% Ventanas (-) 2,09% 10,62%San Pedro (+) 0,00% 11,24%

San Pedro (-) 4,11% 18,42%Llolleo (+) 2,20% 1,57%Llolleo (-) 0,39% 16,88%

Para reflejar las variaciones que presenta cada elemento resistente del modelo en estudio,

primero se estandarizan los esfuerzos obtenidos representándolos como el porcentaje al que

equivalen con respecto al esfuerzo admisible de diseño obtenido del ICHA (2008), con esto es

posible realizar una comparación entre esfuerzos en un mismo elemento, pero en diferentes casos,

sin ver afectados los resultados por las magnitudes de dichos esfuerzos, permitiendo de este modo

Page 93: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 93/136

Capítulo V Resultados

- 81 -

determinar de forma directa la variación de los esfuerzos de los elementos en relación a su capacidad

admisible.

En el anexo Nº 2 se pueden observar las tablas de cada caso, de cada evento sísmico y de

cada tipo de análisis, con los 15 primeros elementos con mayor aumento en sus esfuerzos admisiblesde diseño al comparar cada situación ahí descrita.

En las tablas Nº 5.9 a 5.11 se presenta un resumen donde se calcula el promedio de cada

 variación de esfuerzos de todos los elementos resistentes del modelo en cuestión según sus

capacidades admisibles. Los resultados se presentan como porcentaje, lo que refleja en que

porcentaje  promedio  aumentan las capacidades admisibles de los elementos. Las posibles

comparaciones a realizar que no se presentan se debe a que no sufrieron aumentos en sus resultados.

Tabla Nº5.9 Promedio de la diferencia entre el caso de 12 pisos sin masa sísmica vertical, sin excentricidad y sin

componente sísmica vertical y el modelo que sí posee masa vertical  

Eventosísmico

Esfuerzo

 Axial Corte Momento en torno al eje débil Momento en torno al eje fuerte

Llolleo 0,065% 0,000% 0,005% 0,000%

Desv. Est. 0,521% 0,714% 0,228% 0,377%

San Pedro 0,017% 0,000% 0,000% 0,000%

Desv. Est. 0,582% 0,757% 0,238% 0,398% Ventanas 0,000% 0,000% 0,000% 0,000%

Desv. Est. 0,212% 0,294% 0,085% 0,153%

Tabla Nº5.10 Promedio de la diferencia entre el caso de 12 pisos con masa sísmica vertical, sin excentricidad y con

componente vertical sísmica y el modelo que sí posee excentricidad  

Eventosísmico

Esfuerzo

 Axial Corte Momento en torno al eje débil Momento en torno al eje fuerte

Llolleo 3,402% 5,453% 2,503% 3,094%Desv. Est. 15,970% 20,154% 8,695% 8,910%San Pedro 9,618% 16,271% 5,125% 8,530%Desv. Est. 20,848% 24,784% 9,469% 11,372% Ventanas 4,748% 8,501% 3,356% 4,371%Desv. Est. 10,211% 12,107% 5,697% 5,279%

Page 94: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 94/136

Capítulo V Resultados

- 82 -

Tabla Nº5.11 Promedio de la diferencia entre el caso de 12 pisos sin masa sísmica vertical, sin excentricidad y sin

componente sísmica vertical y el modelo que sí posee masa vertical y componente vertical sísmica  

Evento

sísmico

Esfuerzo

 Axial Corte Momento en torno al eje débil Momento en torno al eje fuerte

Llolleo 1,690% 1,923% 0,935% 1,417%

Desv. Est. 3,422% 3,890% 1,718% 2,252%

San Pedro 1,554% 1,931% 0,707% 1,589%

Desv. Est. 3,438% 4,254% 1,543% 2,689%

 Ventanas 0,576% 0,744% 0,201% 0,521%

Desv. Est. 1,126% 1,402% 0,393% 0,832%

La desviación estándar calculada a cada valor entregado en las tablas Nº 5.9 a 5.11, refleja laconfiabilidad del dato inmediatamente superior a ella. Al analizar cada una de las tablas se puede

apreciar una clara tendencia, lo que refleja el hecho de que como conjunto, los elementos resistentes

de cada modelo no sufren similares alteraciones a sus características frente a un mismo estímulo

general, ni tampoco variaciones importantes en los esfuerzos, lo que en una apresurada

interpretación da para asumir que la componente sísmica vertical tiene una importancia

insignificante, pero al revisar los análisis caso a caso y por elementos (presentado en el anexo Nº2), se

puede apreciar la tendencia al aumento de ciertos elementos resistentes ubicados en determinados

lugares como por ejemplo la columna ubicada en el centro de la planta de cada nivel aumenta su

esfuerzo axial y las vigas de los pisos superiores aumentan tanto su esfuerzo de corte como el de

momento.

Los valores de desplazamientos verticales son insignificantes puesto que en ningún caso se

acercaron a una deflexión límite de L/360 (donde L = luz del elemento en cuestión), es por eso que

no merece la pena mostrarlos.

Page 95: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 95/136

Capítulo V Resultados

- 83 -

5.3 ANÁLISIS MODAL ESPECTRAL

 A diferencia del análisis Tiempo-Historia, aquí no se considera la direccionalidad de las

fuerzas por lo que sólo se entregan valores en la dirección positiva. En relación a las comparaciones

realizadas estas fueron las mismas que en el Análisis Tiempo  –   Historia, en primer lugar se

comprobó que al analizar el edificio (ya sea con 4 pisos o con 12) sin masa sísmica actuando en la

dirección vertical o con ella sin la presencia del registro sísmico vertical, no genera variaciones en los

esfuerzos basales ni en cada elemento por separado.

La siguiente comparación fue realizada entre el edificio sin masa sísmica asociada a la

componente vertical versus el edificio que si la posee y además se le aplica el registro correspondiente

en dicha dirección, de este modo aislamos el efecto de la acción sísmica vertical de efectos

secundarios. Las variaciones en los esfuerzos basales son categóricos, no existen aumentos en lasreacciones basales, sólo existe un aumento en el esfuerzo vertical ya que al no considerar masa

sísmica vertical en el primer caso el esfuerzo axial resultante es cercano a cero, de modo que el

aumento que se registró en la segunda situación analizada se muestra en la tabla Nº 5.12, donde se

indica el valor obtenido y el porcentaje de este en relación al peso sísmico del edificio.

Es importante recordar que al aplicar los espectros en cada dirección, se le considera el 30%

de los otros actuando simultáneamente en la dirección que les corresponda de modo que al analizar

la estructura sin grados de libertad dinámicos verticales se obtienen resultados de análsis en la

dirección “X” ( sismo en X + 30% de sismo en Y) y en la dirección “Y” ( sismo en Y + 30% sismo en

X), pero al incorporarse la componente vertical los resultados corresponden a “sismo en X + 30% de

sismo en Y + 30% sismo en Z”, en la dirección “X”, “sismo en Y + 30% sismo en X + 30% sismo

en Z” en la dirección “Y”, y “sismo en Z + 30% sismo en X + 30% sismo en Y”  en la dirección

“Z”, por lo que las comparaciones que se realizaron fueron en la dirección “X” sin y con el 30% en

“Z”, en la dirección “Y” con y sin el 30% en Z y en la dirección en “Z” con los mayores resultados

de “X” e “Y” sin el 30% de “Z”. 

Para considerar el efecto de la excentricidad de la masa sísmica vertical se toma como base eledificio (de 4 y de 12 pisos) sin masa sísmica en la dirección vertical, pero con la masa sísmica

horizontal distribuida y con excentricidad (se recuerda que la excentricidad se logró concentrando la

sobrecarga de uso en un cuarto de la superficie de cada planta). El modelo a comparar posee la

misma distribución de masas horizontales, pero se le agrega la masa distribuida verticalmente

respetando la excentricidad propuesta. Los resultados obtenidos resultan similares a los arrojados por

Page 96: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 96/136

Capítulo V Resultados

- 84 -

los modelos sin excentricidad, o sea nulo aumento en todas las reacciones basales excepto la vertical

cuyos valores se presentan en la tabla Nº 5.13.

Tabla Nº 5.12  Aumento de fuerza axial a nivel basal producto de la acción sísmica vertical

4 PisosFuerza

resultante

en "Z"

 Aumento porcentualen relación

al PesoSísmico

12 PisosFuerza

resultante

en "Z"

 Aumento porcentualen relación

al PesoSísmico

Estación Dirección [Ton] [%] Estación Dirección [Ton] [%]

 Ventanas (+) 96,02 11,01% Ventanas (+) 357,26 14,20%San Pedro (+) 303,09 34,76% San Pedro (+) 1456,74 57,89%

Llolleo (+) 410,44 47,08% Llolleo (+) 1452,43 57,72%

 Nota: El peso sísmico del edifico con 4 pisos es de 871,8 [ton] y el de 12 es de 2516,5 [ton].

Tabla Nº 5.13  Aumento de fuerza axial a nivel basal producto de la acción sísmica vertical con excentricidad de lamasa sísmica en dicha dirección.

4 PisosFuerza

resultanteen "Z"

 Aumento porcentualen relación

al PesoSísmico

12 PisosFuerza

resultanteen "Z"

 Aumento porcentualen relación

al PesoSísmico

Estación Dirección [Ton] [%] Estación Dirección [Ton] [%]

 Ventanas (+) 73,43 8,42% Ventanas (+) 357,83 14,22%

San Pedro (+) 234,99 26,95% San Pedro (+) 1244,84 49,47%Llolleo (+) 336,02 38,54% Llolleo (+) 1242,79 49,39%

 Nota: El peso sísmico del edifico con 4 pisos es de 871,8 [ton] y el de 12 es de 2516,5 [ton].

Page 97: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 97/136

Capítulo V Resultados

- 85 -

 A nivel global de la estructura ya se presentaron las variaciones, en las siguientes tablas, se

resume las comparaciones entre los esfuerzos obtenidos de un caso y otro, pero evaluando elemento

a elemento. Al igual que en el análisis Tiempo-Historia, primero se comparan los esfuerzos obtenidos

en relación a la capacidad admisible por diseño de cada elemento, de este modo se estandarizan los valores. Esta comparación se expresa en forma porcentual y luego al valor obtenido por un elemento

resistente del edificio en el primer caso en cuestión, se compara con lo obtenido por el mismo

elemento, pero en el caso siguiente. Una vez realizada esta operación a cada elemento resistente, se

saca el promedio de las diferencias según el esfuerzo y se presentan en las tablas , además se

presenta la desviación estándar de los valores promediados para establecer la dispersión de estos, de

modo que al fijarnos en el primer evento sísmico de la tabla Nº 5.14 (Llolleo) se debe interpretar

como: “El aumento promedio del esfuerzo axial de todos los elementos resistentes del edificio con 4

pisos es de un 0,007% en relación a la capacidad admisible de cada uno y la desviación de cada uno

de los resultados en relación al promedio es de 0,058%”. 

Tabla Nº5.14 Promedio de la diferencia entre el caso de 4 pisos sin masa sísmica vertical, sin excentricidad y sin

componente sísmica vertical y el modelo que sí posee masa vertical  

Eventosísmico

Esfuerzo

 Axial Corte Momento en torno al eje débil Momento en torno al eje fuerte

Llolleo 0,007% 0,000% 0,002% 0,008%Desv. Est. 0,058% 0,138% 0,043% 0,081%

San Pedro 0,008% 0,000% 0,000% 0,000%

Desv. Est. 0,056% 0,131% 0,044% 0,075%

 Ventanas 0,001% 0,000% 0,000% 0,000%

Desv. Est. 0,022% 0,049% 0,015% 0,029%

Page 98: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 98/136

Capítulo V Resultados

- 86 -

Tabla Nº5.15 Promedio de la diferencia entre el caso de 4 pisos con masa sísmica vertical, sin excentricidad y con

componente vertical sísmica y el modelo que sí posee excentricidad  

Evento

sísmico

Esfuerzo

 Axial Corte Momento en torno al eje débil Momento en torno al eje fuerte

Llolleo 0,052% 1,556% 0,000% 1,025%

Desv. Est. 6,172% 8,420% 2,037% 4,201%

San Pedro 0,000% 0,811% 0,000% 0,561%

Desv. Est. 2,940% 4,371% 1,372% 2,531%

 Ventanas 0,000% 0,000% 0,000% 0,000%

Desv. Est. 0,739% 1,151% 0,580% 0,687%

Tabla Nº5.16 Promedio de la diferencia entre el caso de 12 pisos sin masa sísmica vertical, sin excentricidad y sin

componente sísmica vertical y el modelo que sí posee masa vertical  

Eventosísmico

Esfuerzo

 Axial Corte Momento en torno al eje débil Momento en torno al eje fuerte

Llolleo 0,063% 0,013% 0,002% 0,047%

Desv. Est. 0,270% 0,350% 0,126% 0,322%

San Pedro 0,071% 0,000% 0,013% 0,033%

Desv. Est. 0,338% 0,427% 0,195% 0,412%

 Ventanas 0,032% 0,013% 0,010% 0,016%

Desv. Est. 0,123% 0,159% 0,087% 0,160%

Tabla Nº5.17 Promedio de la diferencia entre el caso de 12 pisos con masa sísmica vertical, sin excentricidad y con

componente vertical sísmica y el modelo que sí posee excentricidad  

Eventosísmico

Esfuerzo

 Axial Corte Momento en torno al eje débil Momento en torno al eje fuerte

Llolleo 1,065% 2,474% 0,617% 1,657%

Desv. Est. 5,881% 7,306% 3,385% 4,245%

San Pedro 1,189% 3,015% 0,492% 2,081%

Desv. Est. 8,179% 10,241% 4,873% 5,343%

 Ventanas 3,966% 8,839% 2,348% 4,990%

Desv. Est. 9,616% 10,575% 5,489% 5,402%

Page 99: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 99/136

Capítulo V Resultados

- 87 -

Tabla Nº5.18 Promedio de la diferencia entre el caso de 4 pisos sin masa sísmica vertical, sin excentricidad y sin

componente sísmica vertical y el modelo que sí posee masa vertical y componente vertical sísmica  

Evento

sísmico

Esfuerzo

 Axial Corte Momento en torno al eje débil Momento en torno al eje fuerteLlolleo 0,150% 0,469% 0,026% 0,618%

Desv. Est. 0,477% 0,899% 0,129% 1,032%

San Pedro 0,084% 0,191% 0,015% 0,374%

Desv. Est. 0,320% 0,417% 0,086% 0,726%

 Ventanas 0,023% 0,046% 0,003% 0,107%

Desv. Est. 0,102% 0,121% 0,028% 0,227%

Tabla Nº5.19 Promedio de la diferencia entre el caso de 12 pisos sin masa sísmica vertical, sin excentricidad y sin

componente sísmica vertical y el modelo que sí posee masa vertical y componente vertical sísmica  

Eventosísmico

Esfuerzo

 Axial Corte Momento en torno al eje débil Momento en torno al eje fuerte

Llolleo 0,476% 0,387% 0,030% 1,053%

Desv. Est. 1,674% 1,140% 0,305% 2,517%

San Pedro 0,456% 0,329% 0,037% 0,954%

Desv. Est. 1,679% 1,116% 0,311% 2,493%

 Ventanas 0,122% 0,096% 2,359% 0,235%

Desv. Est. 0,424% 0,323% 14,374% 0,617%

El paso siguiente que falta por evaluar y de este modo generar un análisis completo es el de

estudiar elemento a elemento cuales fueron más afectados y donde se ubican, tarea más compleja y

cuyos resultados por ser muchos, serán mostrados en el anexo Nº2.

Los valores de desplazamientos verticales son insignificantes puesto que en ningún caso se

acercaron a una deflexión límite de L/360 (donde L = luz del elemento en cuestión), es por eso que

no merece la pena mostrarlos.

Page 100: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 100/136

 

- 88 -

Comentarios y Conclusiones

Debidamente diseñado los modelos a utilizar, la forma más directa y clara de evaluar la

influencia de la componente vertical sísmica en la variación de las respuestas es observar los

esfuerzos en la base de los edificios ya que sus componentes estructurales están ligados entre ellos de

una u otra forma, a diferencia de los desplazamientos, los que se relacionan más bien entre dos pisos

seguidos de modo que lo que suceda en el piso superior no se puede relacionar directamente con lo

que ocurra en la base. Como no existe un espectro de diseño vertical entonces la influencia de esta

componente sólo se puede identificar en los análisis realizados con registros reales tanto por elmétodo Modal Espectral como el de Tiempo-Historia, es por eso que se aprecia que tanto los

modelos ya sean de 4 o 12 pisos con o sin masa sísmica vertical asociada no poseen esfuerzos en la

dirección “Z” (vertical) si no se les aplica el registro sísmico en dicha dirección. Por lo tanto es claro

afirmar que dicha componente sísmica (vertical) influye en la respuesta de los elementos resistentes

de una estructura, lo relevante ahora es determinar si dicha influencia es de considerar o se puede

despreciar y para ello en las tablas Nº 5.5 a la Nº 5.19 se presentan diferentes situaciones a comparar

en donde las variaciones de los esfuerzos de los elementos resistentes expresadas como porcentajes

de sus respectivas capacidades admisibles en general fueron mínimos, pero al considerar los

esfuerzos totales de la estructura a nivel basal los resultados fueron más importantes. Debido a esta

dualidad en los resultados es que se optó por presentar en el anexo Nº 2 el detalle por elemento

resistente para enfocarse en aquellos cuyos esfuerzos presentaron mayor aumento debido a la

componente sísmica vertical. La necesidad de presentar estas tablas radica en que por un lado los

análisis realizados arrojan variaciones en los esfuerzos a nivel de la base de las estructuras, pero al

promediar las variaciones de cada elemento no se ve reflejada una clara tendencia de cambio por lo

que se puede afirmar que la influencia de la acción sísmica vertical es más importante a nivellocalizado que en el total de la estructura y es aquí donde reviste de importancia el hecho de analizar

puntualmente los elementos resistentes afectados más que la estructura en general. Para hacer más

 validos los resultados a desglosar de las tablas del anexo Nº 2 es que se plantean 6 situaciones de

comparación por sismo y por tipo de análisis donde la situación 1 y 2 se enfocan en demostrar que la

adición por sí sola de la masa sísmica vertical no afecta los resultados por eso se obtuvieron

Page 101: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 101/136

Comentarios y Conclusiones

- 89 -

porcentajes cercanos a 0% que no necesitan ser mostrados. Las comparaciones 3 y 4 buscan evaluar

el efecto que provoca la excentricidad de la masa sísmica causada por la concentración en cierta área

de la sobrecarga por uso, y fue aquí donde se presentaron grandes variaciones, pero debidas a la

excentricidad de la masa sísmica horizontal, y no por la masa actuando verticalmente.Las comparaciones 5 y 6 del anexo Nº 2 son las de mayor importancia porque a diferencia de

las otras están directamente enfocadas a mostrar las diferencias producidas por la acción sísmica

 vertical. En primer lugar queda clara la diferencia que se marca entre el modelo de 4 pisos y el de 12

ya que al aumentar los niveles aumentaron los valores que indican el sobreesfuerzo de ciertos

elementos resistentes, en segundo lugar las diferencias presentadas por la utilización de un tipo de

análisis u otro fueron:

  Para el modelo de 4 pisos, no existen grandes diferencias entre los valores obtenidos por

ambos métodos (Modal Espectral y Tiempo-Historia) y los elementos que presentaron

dichos aumentos.

  En general para el modelo de 12 pisos existe menor concordancia entre la ubicación de los

elementos que sufren variaciones entre un método y otro, a diferencia del modelo con 4

pisos.

  Para el modelo de 12 pisos existe concordancia en los valores de aumentos obtenidos por

ambos métodos para el esfuerzo axial, pero en el resto de los esfuerzos se generan mayores

diferencias importantes de tener en cuenta.

En tercer lugar al comparar los datos de las comparaciones nº 5 y nº 6 con los obtenidos del

espectro propuesto, estos últimos son considerablemente más bajos de modo que no otorgarían un

diseño seguro. Pero es bueno destacar que al diseñar con un espectro sísmico vertical es posible

identificar varios de los elementos más afectados por las cargas dinámicas en esa dirección, aunque

aún no se pueda aproximar su magnitud.

Por último cabe recalcar que a modo de regla general es claro señalar que por acción de la

componente sísmica vertical toda columna que reciba mayor cantidad de vigas con grados de libertad

dinámicos verticales, presentará mayor incremento en su carga axial siendo esta mayor en los niveles

inferiores y disminuyendo hacia los superiores. Más importante aún es el hecho de que al aumentar

los niveles de un edificio, aumentan significativamente los efectos de la acción de las cargas

dinámicas verticales. La excentricidad de la masa sísmica vertical no genera complicaciones mayores a

los que genera la masa sísmica horizontal. Y lo que a primeras es difícil de prever, pero representa

Page 102: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 102/136

Comentarios y Conclusiones

- 90 -

una constante absoluta en todos los análisis realizados es el hecho de que las vigas de los pisos

superiores presentan un importante aumento en sus esfuerzos de corte y momentos, lo que es

necesario considerar al momento de diseñar porque en general siempre se tiende a disminuir las

secciones de los elementos resistentes a medida que subimos niveles y aunque no consideren unriesgo para la estabilidad general de la estructura, si representan un riesgo para las vidas humanas que

puedan esos espacios. Si actualmente se ha demostrado la importancia de estudiar cuidadosamente

las fijaciones de los elementos no estructurales y de su participación dentro de toda estructura puesto

que son los causantes de la mayoría de los daños producto de movimientos sísmicos, entonces con

mayor razón es necesario tomar en cuenta los aumentos en los esfuerzos de corte y momentos en las

 vigas de los niveles superiores ya que sí son elementos resistentes.

En relación a los desplazamientos verticales, como en los análisis realizados no se

encontraron variaciones de consideración, tal vez estudios enfocados a la interacción suelo-estructura

puedan entregar información más importante.

Page 103: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 103/136

 

- 91 -

 Anexos

Page 104: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 104/136

 

- 92 -

 Anexo Nº1Registros sísmicos  

Listado de registros sísmicos ocurridos en nuestro país, utilizados para justificar la

importancia de la componente vertical sísmica durante un evento telúrico. Los requisitos para estar

en la lista son poseer más de 3 registros por estación, que dichos registros se distancien un mes

como mínimo y que cada registro tenga la aceleración de las tres componentes direccionales de

importancia (dos horizontales y una vertical).

Con estos datos, calculamos la relación V/H (aceleración vertical sobre la mayor aceleración

horizontal) para cada registro, luego se promedian los valores correspondientes a una misma

estación, calculando además la desviación estándar de ellos. Estos valores son los presentados en la

tabla Nº2.1.

Estación Día Mes Año

 Ac. Vert.

 Ac. hor.Mayor

 Ac. hor.Menor

[cm/s2] [cm/s2] [cm/s2]

 Alto hospicio 13 agosto 2005 21,86 42,84 32,22

 Alto hospicio 14 febrero 2007 29,94 42,03 40,73

 Alto hospicio 14 noviembre 2007 64,53 87,06 79

 Alto hospicio 4 febrero 2008 188,13 278,35 214,22

 Alto hospicio 10 septiembre 2008 137,98 292,59 169,89

 Arica costanera - noviembre 1994 17,05 62,1 41,86

 Arica costanera - febrero 1997 26,78 43,77 37,83

 Arica costanera 30 noviembre 1999 21,21 53,92 42,85

 Arica costanera 23 junio 2001 81,94 331,59 270,11

 Arica costanera - - 2002 23,16 51,06 46,35

 Arica costanera 16 abril 2005 11,94 25,15 23,39

 Arica costanera 13 junio 2005 70,28 160,06 158,16

 Arica costanera 13 julio 2005 24,13 67,06 63,98

Baquedano 13 agosto 2005 16,46 28,22 22,54

Baquedano 14 febrero 2007 18,06 50,25 48,32

Baquedano 14 noviembre 2007 40,39 88,25 66,18

Baquedano 4 febrero 2008 54 73,81 72,24

Calama 6 enero 2005 4,3 8,73 5,85

Calama 13 junio 2005 40,85 70,19 64,24

Calama 17 noviembre 2005 34,14 45,84 44

Page 105: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 105/136

 Anexo Nº 1 Registros sísmicos

- 93 -

Calama 14 noviembre 2007 69,69 91,17 89,83

Calama 5 enero 2008 22,91 29,24 18,75

Copiapo 27 junio 2002 7,56 18,2 15,74

Copiapo 9 abril 2003 19,62 29,43 29,43

Copiapo 8 julio 2004 12,29 32,92 27Copiapo 26 agosto 2004 31,86 45,01 43,23

Copiapo 14 noviembre 2007 11,33 52,13 29,74

Copiapo 10 marzo 2008 14,45 14,79 13,79

Cuya - septiembre 1993 20,04 35,35 33,94

Cuya 2 mayo 1994 29,53 53,09 49,66

Cuya - noviembre 1994 23,74 24,03 23,29

Cuya - febrero 1997 20,01 33,26 30,79

Cuya 23 junio 2001 63,57 157,43 134,36

Cuya 14 enero 2002 40,85 101,39 87,23

Cuya - abril 2003 27,12 38,92 37,1

Cuya 13 junio 2005 254,77 440,93 429,16

Illapel - julio 1995 36,61 88,13 55,41

Illapel - abril 1997 24,82 58,75 54,45

Illapel 14 octubre 1997 180,77 342,61 267,54

Illapel 3 noviembre 1997 102,77 216,86 195,71

Illapel - diciembre 2001 23,73 38,19 34,91

Illapel - - 2002 59,26 99,67 82,52

Illapel - agosto 2003 21,65 38,25 34,99

Iquique 13 junio 2005 236,38 222,98 212,48

Iquique 14 febrero 2007 15,42 19,87 18,22

Iquique 14 noviembre 2007 33,56 67,9 48,79

Iquique 22 enero 2008 45,18 60,08 44,61

Llolleo 22 febrero 1996 147,54 142,5 110,13

Llolleo - abril 1997 37,8 56,21 39,05

Llolleo 29 julio 1998 25,77 49,63 37,69

Llolleo 16 junio 2000 39,67 50,63 43,08

Llolleo - septiembre 2001 24,9 34,29 26,46

Papudo 14 octubre 1997 38,04 141,83 84,05

Papudo 17 abril 1998 222,89 329,23 260,02

Papudo 16 junio 2000 21,97 95,13 43,32

Papudo - septiembre 2001 107,51 203,45 183,27

Papudo 23 mayo 2002 32,56 110,67 72,24

Pica 18 marzo 2005 21,89 57,76 46,29

Pica 13 junio 2005 757,03 720,54 532,72

Pica 14 febrero 2007 22,06 46,22 46,11

Pica 14 noviembre 2007 102,6 198,99 176,08

Page 106: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 106/136

 Anexo Nº 1 Registros sísmicos

- 94 -

Pica 25 diciembre 2007 21,33 37,59 34,51

Pica 22 enero 2008 26,57 43,28 36,52

Pica 10 septiembre 2008 399,14 589,96 588,17

Pisagua 23 junio 2001 34,51 42,35 31,27

Pisagua 13 junio 2005 231,93 339,98 296,95Pisagua 14 febrero 2007 20,32 28,74 28,5

Pisagua 14 noviembre 2007 11,85 18,12 12,78

Pisagua 22 enero 2008 24,75 64,18 45,53

Poconchile 23 junio 2001 142,72 253,01 240,91

Poconchile 26 febrero 2002 66,74 101,53 94,5

Poconchile 13 junio 2005 174,96 309,35 258,26

Poconchile 16 abril 2005 37,97 48,21 44,65

Poconchile 13 julio 2005 63,01 75,9 60,88

Poconchile 13 agosto 2005 13,14 20,41 14,63

Poconchile 14 febrero 2007 12,81 14,91 12,35

Poconchile 11 abril 2007 19,84 35,56 23,07

Poconchile 14 noviembre 2007 13,59 21,75 20,18

Poconchile 25 diciembre 2007 21,22 30,78 21,58

Poconchile 4 febrero 2008 13,19 24,3 16,08

Poconchile 3 noviembre 2008 25,54 20,32 15,87

Putre 1 abril 1997 46,99 105,63 82,6

Putre 23 junio 2001 92,54 195,03 184,74

Putre 13 junio 2005 66,37 99,64 85,74

 Tocopilla 30 julio 1995 45,28 49,87 50,57

 Tocopilla 6 febrero 1998 55,66 82,93 80,42

 Tocopilla 23 enero 2004 21,7 26,85 25,21

 Tocopilla 13 junio 2005 23,32 41,62 39,54

 Tocopilla 17 noviembre 2005 10,12 16,99 16,47

 Tocopilla 14 noviembre 2007 166,21 385,77 327,59 Valparaiso-

almendral29 julio 1998 31,9 46,95 37,19

 Valparaiso-almendral

16 junio 2000 12,86 33,76 23,23

 Valparaiso-almendral

15 diciembre 2007 56,79 108,77 60,25

 Vallenar 2 julio 2004 7,04 22,8 17,61 Vallenar 26 agosto 2004 10,32 25,31 22,93

 Vallenar 21 junio 2005 6,31 14,67 12,52

 Vallenar 6 marzo 2007 20,45 15,42 6,88

 Vallenar 25 octubre 2007 30,82 36,12 12,14

Page 107: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 107/136

 

- 95 -

 Anexo Nº2Tablas de resultados  

La gran cantidad de información obtenida de cada uno de los análisis realizados obliga a

evaluar las variaciones desde un punto de vista global, el cual es inútil para reflejar las diferencias

originadas de la aplicación de la componente vertical sísmica dentro de cada estudio, lo que conlleva

a realizar un análisis detallado que apunte a identificar cada elemento que sufra alteración y el valor

de dicha alteración. La cantidad de elementos alterados a presentar también es una variable difícil de

establecer debido al gran número que significa, es por eso que a continuación se presentan los 15

elementos que sufrieron mayor aumento en sus capacidades admisibles de diseño, en relación al tipode análisis realizado, el evento sísmico utilizado y el esfuerzo considerado.

La ubicación de los elementos resistentes que se destacan también tiene relevancia, puesto

que indica las zonas más críticas del edificio, es por eso que en las figuras siguientes se plantean

sistemas de coordenadas para cada elemento para determinar su lugar en cada planta, además del piso

o nivel en que se encuentra.

Figura Nº1  Esquema de elevación tipo, donde se indica la nomenclatura a utilizar para identificar la ubicación de

un elemento de la estructura en altura. 

Page 108: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 108/136

 Anexo Nº 2 Tablas de resultados

- 96 -

Figura Nº1  Esquema de planta tipo, donde se indica la nomenclatura a utilizar para identificar la ubicación de un

elemento de la estructura a nivel de planta.

 Nota: La letra acompañada de una cifra es el código para ubicar un elemento dentro de una planta. La letra

representa al elemento: “D” para diagonal, “P” para pilar y “V” para viga. Por su parte la cifra cambia de un

elemento del mismo tipo a otro para diferenciarlos.

Page 109: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 109/136

 Anexo Nº 2 Tablas de resultados

- 97 -

Para realizar una comparación adecuada y cuyo resultado sea representativo, en primer lugar

los esfuerzos de cada elemento resistente se expresaron como un porcentaje de la capacidad

admisible de diseño de dicho elemento, de modo que el valor a utilizar es el porcentaje que se está

utilizando del esfuerzo admisible de diseño y no el esfuerzo en sí mismo cuyo valor por sí solo norefleja nada. Luego se realizó la comparación entre una situación y otra que corresponden a:

  Comparación nº 1: Diferencia entre el caso de 4 pisos sin masa sísmica vertical, sin

excentricidad y sin componente sísmica vertical y el modelo que sí posee masa vertical.

  Comparación nº 2: Diferencia entre el caso de 12 pisos sin masa sísmica vertical, sin

excentricidad y sin componente vertical sísmica y el modelo que sí posee masa vertical.

  Comparación nº 3: Diferencia entre el caso de 4 pisos sin masa sísmica vertical, con

excentricidad y sin componente sísmica vertical y el modelo que sí posee excentricidad de la

masa vertical.

  Comparación nº 4: Diferencia entre el caso de 12 pisos sin masa sísmica vertical, con

excentricidad y con componente vertical sísmica y el modelo que sí posee excentricidad de la

masa vertical.

  Comparación nº 5: Diferencia entre el caso de 4 pisos sin masa sísmica vertical, sin

excentricidad y sin componente sísmica vertical y el modelo que sí posee masa vertical y

componente vertical sísmica.

  Comparación nº 6: Diferencia entre el caso de 12 pisos sin masa sísmica vertical, sin

excentricidad y sin componente sísmica vertical y el modelo que sí posee masa vertical ycomponente vertical sísmica.

Page 110: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 110/136

 Anexo Nº 2 Tablas de resultados

- 98 -

De todas las comparaciones realizadas se presentan los resultados sólo de aquellas que

arrojaron aumentos porcentuales significativos, las demás, por entregar valores cercanos a 0%, no se

presentan en este anexo. En las comparaciones nº 3 y nº 4 no se presentan aumentos en los

momentos volcantes basales de los elementos resistentes ubicados en el primer piso (variación que sebuscaba encontrar con esas 2 comparaciones). Finalmente los resultados a presentar corresponden a

las comparaciones nº 5 y nº 6, tanto para análisis Modal Espectral como para Tiempo –  Historia.

 También se realizó la comparación nº 5 y nº 6 considerando los espectros de diseño que

entrega la norma NCh 433 of 1996 mod 2009, más el espectro de diseño vertical propuesto

correspondiente a 2/3 de la componente horizontal, donde la máxima influencia que se obtuvo del

espectro de diseño vertical en la comparación nº 5, afectó a una viga del cuarto piso aumentando su

esfuerzo de corte en un 0,95% de la capacidad admisible de esa viga, valor que es muy inferior a lo

que se podría esperar de los que se obtuvieron de los análisis con registros sísmicos reales. En la

comparación nº 6 el máximo aumento registrado fue sólo un 1,57%, de modo que la insuficiencia del

método de diseño tomando como espectro vertical a los 2/3 del horizontal queda demostrada.

Page 111: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 111/136

 Anexo Nº 2 Tablas de resultados

- 99 -

Tabla Nº1  

 Análisis Modal Espectral - Sismo Llolleo - Comparación nº 4.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V

  a  r   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   6 ,   7   1   %

 

   6 ,   7   1   %

 

   6 ,   7   1   %

 

   6 ,   4   1   %

 

   6 ,   3   9   %

 

   3 ,   7   3   %

 

   3 ,   7   0   %

 

   3 ,   6   3   %

 

   2 ,   4   3   %

 

   2 ,   4   3   %

 

   1 ,   6   4   %

 

   1 ,   6   3   %

 

   1 ,   6   1   %

 

   1 ,   5   3   %

 

   1 ,   1   4   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,  s   i

  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o

   l  u  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a

   l  a  s

    "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p

  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m  e  n

  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t   á

   e  x  p  r  e  s  a

   d  a  e  n

   f  u  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   2   2

   C   2   4

   C   2   3

   C   2   1

   C   2   5

   C   0   9

   C   1   9

   C   1   4

   C   1   6

   C   2   0

   D   0   6

   D   1   0

   D   0   8

   D   1   2

   D   1   6  

   M  o  m  e  n  t  o  e   j  e   D   é   b   i   l

   V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   8 ,   5

   8   %

 

   8 ,   5

   8   %

 

   8 ,   5

   3   %

 

   7 ,   6

   2   %

 

   7 ,   6

   2   %

 

   3 ,   5

   8   %

 

   3 ,   5

   4   %

 

   2 ,   3

   9   %

 

   2 ,   3

   5   %

 

   2 ,   2

   0   %

 

   1 ,   4

   2   %

 

   0 ,   8

   5   %

 

   0 ,   8

   3   %

 

   0 ,   8

   0   %

 

   0 ,   7

   9   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   2   0

   C   1   0

   C   1   5

   C   2   5

   C   0   5

   C   2   4

   C   0   4

   C   1   9

   C   1   7

   C   1   8

   D   1   6

   D   0   3

   D   1   5

   D   1   1

   D   1   2  

   E  s   f  u  e  r  z  o   d  e   C

  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   3 ,   4

   6   %

 

   3 ,   4

   5   %

 

   3 ,   4

   5   %

 

   2 ,   9

   2   %

 

   2 ,   8

   7   %

 

   1 ,   9

   7   %

 

   1 ,   9

   6   %

 

   1 ,   9

   4   %

 

   1 ,   8

   5   %

 

   1 ,   5

   9   %

 

   1 ,   5

   5   %

 

   1 ,   4

   4   %

 

   1 ,   3

   5   %

 

   1 ,   3

   1   %

 

   1 ,   2

   9   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   2   2

   C   2   4

   C   2   3

   C   2   1

   C   2   5

   D   0   6

   D   1   0

   D   0   8

   D   1   2

   C   0   9

   C   1   9

   C   1   4

   D   1   6

   D   1   4

   D   1   5  

   E  s   f  u  e  r  z  o   A

  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   7 ,   8

   7   %

 

   6 ,   7

   0   %

 

   5 ,   3

   8   %

 

   5 ,   2

   1   %

 

   5 ,   0

   8   %

 

   5 ,   0

   0   %

 

   4 ,   9

   0   %

 

   4 ,   8

   8   %

 

   3 ,   3

   8   %

 

   3 ,   3

   4   %

 

   3 ,   2

   8   %

 

   3 ,   2

   4   %

 

   3 ,   1

   7   %

 

   3 ,   0

   8   %

 

   2 ,   9

   8   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   0   6

   C   0   2

   C   1   2

   C   0   1

   D   0   8

   C   0   7

   D   0   6

   D   1   0

   D   1   6

   D   1   4

   D   1   5

   D   1   3

   C   0   3

   C   1   9

   C   1   1  

Page 112: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 112/136

 Anexo Nº 2 Tablas de resultados

- 100 -

Tabla Nº2  

 Análisis Modal Espectral - Sismo Llolleo - Comparación nº 5.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   4 ,   9   7   %

 

   4 ,   9   7   %

 

   4 ,   9   7   %

 

   4 ,   9   7   %

 

   4 ,   7   5   %

 

   4 ,   7   5   %

 

   4 ,   7   5   %

 

   4 ,   7   5   %

 

   4 ,   3   5   %

 

   4 ,   3   5   %

 

   4 ,   1   7   %

 

   4 ,   1   7   %

 

   3 ,   6   1   %

 

   3 ,   6   1   %

 

   3 ,   6   1   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a

   l  a  s

 

   "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t

   á

 

  e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   3

   N   3

   N   3

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   0   8

   V   3   3

   V   0   6

   V   3   5

   V   1   0

   V   3   1

   V   1   3

   V   2   8

   V   1   9

   V   2   2

   V   0   7

   V   3   4

   V   3   3

   V   0   8

   V   3   5  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   2 ,   0

   4   %

 

   2 ,   0

   4   %

 

   2 ,   0

   4   %

 

   2 ,   0

   4   %

 

   1 ,   7

   0   %

 

   1 ,   7

   0   %

 

   0 ,   4

   1   %

 

   0 ,   4

   1   %

 

   0 ,   4

   1   %

 

   0 ,   4

   1   %

 

   0 ,   3

   8   %

 

   0 ,   3

   8   %

 

   0 ,   3

   8   %

 

   0 ,   3

   8   %

 

   0 ,   3

   8   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   4

   P   4

   P   4

   P   4

   P   4

   P   4

   P   3

   P   3

   P   3

   P   3

   P   3

   P   3

   P   4

   P   4

   P   4

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   0   4

   C   2   2

   C   0   2

   C   2   4

   C   0   3

   C   2   3

   C   0   4

   C   2   2

   C   2   4

   C   0   2

   C   0   3

   C   2   3

   C   0   1

   C   2   5

   C   2   1  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   5 ,   4

   6   %

 

   5 ,   4

   6   %

 

   5 ,   4

   6   %

 

   5 ,   4

   6   %

 

   5 ,   1

   3   %

 

   5 ,   1

   3   %

 

   4 ,   6

   7   %

 

   4 ,   6

   7   %

 

   4 ,   1

   9   %

 

   4 ,   1

   9   %

 

   3 ,   9

   0   %

 

   3 ,   3

   4   %

 

   3 ,   3

   4   %

 

   2 ,   8

   3   %

 

   2 ,   8

   3   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   3

   N   3

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   0   6

   V   3   3

   V   0   8

   V   3   5

   V   0   7

   V   3   4

   V   1   6

   V   2   5

   V   1   9

   V   2   2

   V   0   7

   V   2   0

   V   2   1

   V   1   6

   V   2   5  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   5 ,   4

   3   %

 

   4 ,   5

   8   %

 

   3 ,   3

   3   %

 

   2 ,   3

   6   %

 

   2 ,   3

   6   %

 

   2 ,   0

   1   %

 

   2 ,   0

   1   %

 

   1 ,   7

   1   %

 

   1 ,   5

   5   %

 

   1 ,   5

   5   %

 

   1 ,   5

   5   %

 

   1 ,   5

   5   %

 

   1 ,   4

   5   %

 

   1 ,   4

   5   %

 

   1 ,   3

   1   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   1    P   2    P   3    P   1    P   1    P   2    P   2    P   4    P   3    P   3    P   1    P   1    P   2    P   2    P   3

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   3

   C   1   3

   C   1   3

   C   0   8

   C   1   8

   C   0   8

   C   1   8

   C   1   3

   C   0   8

   C   1   8

   C   1   2

   C   1   4

   C   1   2

   C   1   4

   C   1   2  

Page 113: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 113/136

 Anexo Nº 2 Tablas de resultados

- 101 -

Tabla Nº3  

 Análisis Modal Espectral - Sismo Llolleo - Comparación nº 6.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   1   7 ,   6

   1   %

 

   1   7 ,   6

   1   %

 

   1   6 ,   8

   5   %

 

   1   6 ,   8

   5   %

 

   1   6 ,   0

   1   %

 

   1   6 ,   0

   1   %

 

   1   4 ,   8

   7   %

 

   1   4 ,   8

   6   %

 

   1   4 ,   6

   1   %

 

   1   4 ,   6

   1   %

 

   1   4 ,   5

   4   %

 

   1   4 ,   5

   4   %

 

   1   4 ,   3

   2   %

 

   1   4 ,   3

   2   %

 

   1   4 ,   3

   1   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a

   l  a  s

 

   "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t   á

 

  e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   1   2

   N   1   2

   N   1   1

   N   1   1

   N   1   0

   N   1   0

   N   1   2

   N   1   2

   N   1   1

   N   1   1

   N   9

   N   9

   N   1   2

   N   1   2

   N   1   2

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   1   6

   V   2   5

   V   1   6

   V   2   5

   V   1   6

   V   2   5

   V   2   0

   V   2   1

   V   2   0

   V   2   1

   V   1   6

   V   2   5

   V   1   3

   V   3   1

   V   2   8  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   4 ,   0

   6   %

 

   4 ,   0

   6   %

 

   1 ,   8

   8   %

 

   1 ,   8

   8   %

 

   1 ,   4

   7   %

 

   1 ,   4

   7   %

 

   0 ,   8

   2   %

 

   0 ,   8

   2   %

 

   0 ,   8

   2   %

 

   0 ,   8

   2   %

 

   0 ,   8

   1   %

 

   0 ,   8

   1   %

 

   0 ,   7

   3   %

 

   0 ,   7

   3   %

 

   0 ,   5

   4   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1   2

   P   1   2

   P   1   1

   P   1   1

   P   1   0

   P   1   0

   P   1   2

   P   1   2

   P   1   2

   P   1   2

   P   9

   P   9

   P   8

   P   8

   P   1   2

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   2   3

   C   0   3

   C   0   3

   C   2   3

   C   0   3

   C   2   3

   C   0   1

   C   2   1

   C   2   5

   C   0   5

   C   0   3

   C   2   3

   C   0   3

   C   2   3

   C   2   0  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1   1

 ,   1   5   %

 

   1   1

 ,   1   5   %

 

   9 ,   8

   3   %

 

   9 ,   8

   2   %

 

   9 ,   4

   9   %

 

   9 ,   4

   9   %

 

   7 ,   6

   2   %

 

   7 ,   6

   2   %

 

   6 ,   0

   0   %

 

   5 ,   9

   9   %

 

   4 ,   9

   7   %

 

   4 ,   9

   7   %

 

   4 ,   6

   9   %

 

   4 ,   4

   0   %

 

   4 ,   4

   0   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   1   2

   N   1   2

   N   1   2

   N   1   2

   N   1   1

   N   1   1

   N   1   0

   N   1   0

   N   9

   N   9

   N   1   2

   N   1   2

   N   1   1

   N   8

   N   8

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   1   6

   V   2   5

   V   2   0

   V   2   1

   V   1   6

   V   2   5

   V   1   6

   V   2   5

   V   2   5

   V   1   6

   V   0   7

   V   3   4

   V   2   1

   V   1   6

   V   2   5  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1   9

 ,   2   2   %

 

   1   8

 ,   9   8   %

 

   1   8

 ,   6   7   %

 

   1   8

 ,   1   6   %

 

   1   7

 ,   8   0   %

 

   1   7

 ,   4   4   %

 

   1   6

 ,   4   6   %

 

   1   6

 ,   1   3   %

 

   1   4

 ,   2   3   %

 

   1   2

 ,   7   8   %

 

   8 ,   7

   7   %

 

   7 ,   5

   0   %

 

   7 ,   5

   0   %

 

   6 ,   2

   7   %

 

   6 ,   2

   7   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   5    P   1    P   2    P   3    P   6    P   4    P   9    P   7    P   8   P   1   0

   P   1   1    P   9    P   9    P   6    P   6

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   0   8

   C   1   8

   C   0   8

   C   1   8  

Page 114: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 114/136

 Anexo Nº 2 Tablas de resultados

- 102 -

Tabla Nº4  

 Análisis Modal Espectral - Sismo San Pedro - Comparación nº 4.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   8 ,   1   8   %

 

   8 ,   1   8   %

 

   8 ,   1   8   %

 

   7 ,   8   1   %

 

   7 ,   7   9   %

 

   4 ,   4   0   %

 

   4 ,   3   3   %

 

   4 ,   2   5   %

 

   3 ,   2   1   %

 

   3 ,   2   0   %

 

   3 ,   1   9   %

 

   3 ,   1   1   %

 

   3 ,   0   7   %

 

   3 ,   0   3   %

 

   2 ,   0   5   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a

   l  a  s

    "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s

   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m

  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t   á

   e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   2   2

   C   2   3

   C   2   4

   C   2   1

   C   2   5

   C   0   9

   C   1   9

   C   1   4

   C   0   2

   C   0   3

   C   0   4

   C   1   6

   C   0   1

   C   0   5

   D   0   6  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1   0

 ,   9   1   %

 

   1   0

 ,   9   1   %

 

   1   0

 ,   8   6   %

 

   9 ,   7

   0   %

 

   9 ,   6

   9   %

 

   4 ,   1

   9   %

 

   4 ,   1

   1   %

 

   3 ,   0

   7   %

 

   2 ,   8

   9   %

 

   2 ,   7

   9   %

 

   1 ,   4

   7   %

 

   1 ,   4

   5   %

 

   1 ,   1

   5   %

 

   1 ,   1

   4   %

 

   1 ,   0

   9   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   2   0

   C   1   0

   C   1   5

   C   2   5

   C   0   5

   C   2   4

   C   0   4

   C   1   9

   C   1   7

   C   1   8

   D   0   4

   D   1   6

   D   1   1

   D   1   2

   C   0   9  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   4 ,   2

   1   %

 

   4 ,   2

   0   %

 

   4 ,   2

   0   %

 

   3 ,   5

   5   %

 

   3 ,   5

   1   %

 

   2 ,   4

   4   %

 

   2 ,   3

   4   %

 

   2 ,   2

   8   %

 

   2 ,   1

   9   %

 

   1 ,   9

   1   %

 

   1 ,   8

   1   %

 

   1 ,   7

   8   %

 

   1 ,   6

   8   %

 

   1 ,   6

   7   %

 

   1 ,   6

   6   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   2   2

   C   2   3

   C   2   4

   C   2   1

   C   2   5

   D   0   6

   D   1   0

   D   0   8

   D   1   2

   C   0   9

   C   1   9

   D   1   6

   D   1   4

   C   1   4

   C   0   2  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   7 ,   8

   2   %

 

   6 ,   2

   5   %

 

   6 ,   0

   1   %

 

   5 ,   6

   7   %

 

   5 ,   4

   9   %

 

   5 ,   2

   8   %

 

   4 ,   6

   7   %

 

   4 ,   4

   8   %

 

   4 ,   4

   8   %

 

   4 ,   3

   4   %

 

   4 ,   0

   7   %

 

   4 ,   0

   5   %

 

   4 ,   0

   0   %

 

   2 ,   8

   2   %

 

   2 ,   6

   0   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   0   6

   D   1   2

   D   0   8

   D   1   0

   D   0   6

   C   0   7

   C   0   1

   C   0   2

   D   1   3

   D   1   5

   D   1   6

   D   1   4

   C   1   9

   C   1   1

   D   0   1  

Page 115: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 115/136

 Anexo Nº 2 Tablas de resultados

- 103 -

Tabla Nº5  

 Análisis Modal Espectral - Sismo San Pedro - Comparación nº 5.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   3 ,   6   0   %

 

   3 ,   6   0   %

 

   3 ,   6   0   %

 

   3 ,   6   0   %

 

   3 ,   3   1   %

 

   3 ,   3   1   %

 

   3 ,   3   1   %

 

   3 ,   3   1   %

 

   3 ,   2   1   %

 

   3 ,   2   1   %

 

   2 ,   8   0   %

 

   2 ,   8   0   %

 

   2 ,   7   1   %

 

   2 ,   7   1   %

 

   2 ,   6   5   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a

   l  a  s

 

   "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t

   á

 

  e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   3

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   1   0

   V   3   1

   V   1   3

   V   2   8

   V   0   8

   V   3   3

   V   0   6

   V   3   5

   V   1   9

   V   2   2

   V   0   7

   V   3   4

   V   2   0

   V   2   1

   V   1   0  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   0 ,   5

   2   %

 

   0 ,   5

   2   %

 

   0 ,   5

   2   %

 

   0 ,   5

   2   %

 

   0 ,   3

   2   %

 

   0 ,   3

   2   %

 

   0 ,   2

   5   %

 

   0 ,   2

   5   %

 

   0 ,   2

   5   %

 

   0 ,   2

   5   %

 

   0 ,   2

   0   %

 

   0 ,   2

   0   %

 

   0 ,   2

   0   %

 

   0 ,   2

   0   %

 

   0 ,   1

   0   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   4

   P   4

   P   4

   P   4

   P   4

   P   4

   P   4

   P   4

   P   4

   P   4

   P   3

   P   3

   P   3

   P   3

   P   3

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   0   9

   C   1   7

   C   0   7

   C   1   9

   C   1   2

   C   1   4

   D   0   5

   D   1   1

   D   0   6

   D   1   2

   C   1   9

   C   0   7

   C   0   9

   C   1   7

   D   0   5  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   4 ,   0

   7   %

 

   4 ,   0

   7   %

 

   3 ,   6

   4   %

 

   3 ,   6

   4   %

 

   3 ,   3

   5   %

 

   3 ,   3

   5   %

 

   3 ,   3

   5   %

 

   3 ,   3

   5   %

 

   2 ,   3

   1   %

 

   2 ,   3

   1   %

 

   1 ,   8

   4   %

 

   1 ,   8

   4   %

 

   1 ,   5

   7   %

 

   1 ,   5

   7   %

 

   1 ,   5

   7   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   3

   N   3

   N   3

   N   3

   N   3

   N   3

   N   3

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   1   9

   V   2   2

   V   2   0

   V   2   1

   V   1   0

   V   1   3

   V   2   8

   V   3   1

   V   2   0

   V   2   1

   V   1   9

   V   2   2

   V   1   0

   V   3   1

   V   1   3  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   4 ,   1

   1   %

 

   3 ,   5

   0   %

 

   2 ,   5

   5   %

 

   1 ,   7

   2   %

 

   1 ,   7

   2   %

 

   1 ,   4

   9   %

 

   1 ,   4

   9   %

 

   1 ,   3

   1   %

 

   1 ,   1

   5   %

 

   1 ,   1

   5   %

 

   0 ,   8

   4   %

 

   0 ,   8

   4   %

 

   0 ,   8

   1   %

 

   0 ,   8

   1   %

 

   0 ,   8

   1   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   1    P   2    P   3    P   1    P   1    P   2    P   2    P   4    P   3    P   3    P   1    P   1    P   1    P   1    P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   3

   C   1   3

   C   1   3

   C   1   2

   C   1   4

   C   1   2

   C   1   4

   C   1   3

   C   1   2

   C   1   4

   C   1   1

   C   1   5

   C   0   6

   C   1   0

   C   1   6  

Page 116: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 116/136

 Anexo Nº 2 Tablas de resultados

- 104 -

Tabla Nº6  

 Análisis Modal Espectral - Sismo San Pedro - Comparación nº 6.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   1   8 ,   7

   5   %

 

   1   8 ,   7

   3   %

 

   1   7 ,   2

   6   %

 

   1   7 ,   2

   6   %

 

   1   6 ,   3

   3   %

 

   1   6 ,   3

   3   %

 

   1   5 ,   8

   6   %

 

   1   5 ,   8

   6   %

 

   1   5 ,   6

   5   %

 

   1   5 ,   6

   5   %

 

   1   4 ,   8

   6   %

 

   1   4 ,   8

   6   %

 

   1   4 ,   6

   1   %

 

   1   4 ,   6

   1   %

 

   1   4 ,   4

   0   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a   l  a  s

    "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s

   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m

  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t   á

   e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   1   2

   N   1   2

   N   1   1

   N   1   1

   N   1   0

   N   1   0

   N   1   0

   N   1   0

   N   1   1

   N   1   1

   N   9

   N   9

   N   1   2

   N   1   2

   N   1   2

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   2   0

   V   2   1

   V   2   0

   V   2   1

   V   2   0

   V   2   1

   V   1   6

   V   2   5

   V   1   6

   V   2   5

   V   2   1

   V   2   0

   V   1   6

   V   2   5

   V   3   1  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   5 ,   6

   6   %

 

   5 ,   6

   0   %

 

   2 ,   3

   8   %

 

   2 ,   3

   6   %

 

   1 ,   6

   7   %

 

   1 ,   6

   6   %

 

   0 ,   9

   3   %

 

   0 ,   9

   1   %

 

   0 ,   7

   7   %

 

   0 ,   7

   6   %

 

   0 ,   7

   2   %

 

   0 ,   7

   2   %

 

   0 ,   7

   2   %

 

   0 ,   7

   2   %

 

   0 ,   5

   5   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1   2

   P   1   2

   P   1   1

   P   1   1

   P   1   0

   P   1   0

   P   9

   P   9

   P   8

   P   8

   P   1   2

   P   1   2

   P   1   2

   P   1   2

   P   1   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   2

   C   1   4

   C   1   2

   C   1   4

   C   1   4

   C   1   2

   C   1   4

   C   1   2

   C   1   2

   C   1   4

   D   0   7

   D   0   9

   D   0   8

   D   1   0

   D   0   7  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1   1

 ,   7   2   %

 

   1   1

 ,   7   1   %

 

   1   0

 ,   4   3   %

 

   1   0

 ,   4   2   %

 

   8 ,   7

   6   %

 

   8 ,   7

   6   %

 

   8 ,   0

   0   %

 

   8 ,   0

   0   %

 

   7 ,   2

   0   %

 

   7 ,   2

   0   %

 

   5 ,   5

   0   %

 

   5 ,   5

   0   %

 

   5 ,   4

   1   %

 

   5 ,   4

   0   %

 

   4 ,   5

   0   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   1   2

   N   1   2

   N   1   1

   N   1   1

   N   1   0

   N   1   0

   N   1   2

   N   1   2

   N   9

   N   9

   N   8

   N   8

   N   1   2

   N   1   2

   N   7

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   2   0

   V   2   1

   V   2   0

   V   2   1

   V   2   1

   V   2   0

   V   1   6

   V   2   5

   V   2   1

   V   2   0

   V   2   1

   V   2   0

   V   2   2

   V   1   9

   V   2   1  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1   9

 ,   5   1   %

 

   1   9

 ,   1   4   %

 

   1   8

 ,   8   8   %

 

   1   8

 ,   3   9   %

 

   1   8

 ,   0   9   %

 

   1   7

 ,   6   9   %

 

   1   6

 ,   7   6   %

 

   1   6

 ,   4   0   %

 

   1   4

 ,   4   8   %

 

   1   3

 ,   0   1   %

 

   8 ,   9

   4   %

 

   8 ,   2

   5   %

 

   8 ,   2

   5   %

 

   7 ,   6

   2   %

 

   7 ,   6

   2   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   5    P   1    P   2    P   3    P   6    P   4    P   9    P   7    P   8   P   1   0

   P   1   1    P   9    P   9    P   5    P   5

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   2

   C   1   4

   C   1   4

   C   1   2  

Page 117: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 117/136

 Anexo Nº 2 Tablas de resultados

- 105 -

Tabla Nº7  

 Análisis Modal Espectral - Sismo Ventanas - Comparación nº 4.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   1   1 ,   6

   7   %

 

   1   1 ,   6

   7   %

 

   1   1 ,   6

   6   %

 

   1   1 ,   1

   3   %

 

   1   1 ,   1

   3   %

 

   8 ,   5   4   %

 

   8 ,   5   4   %

 

   8 ,   5   4   %

 

   8 ,   1   4   %

 

   8 ,   1   4   %

 

   5 ,   4   8   %

 

   5 ,   4   6   %

 

   5 ,   3   7   %

 

   4 ,   8   8   %

 

   4 ,   8   1   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a   l  a  s

    "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s

   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m

  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t   á

   e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   0   2

   C   0   4

   C   0   3

   C   0   1

   C   0   5

   C   2   4

   C   2   3

   C   2   2

   C   2   5

   C   2   1

   C   1   7

   C   0   7

   C   1   2

   C   0   9

   C   1   9  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1   1

 ,   3   3   %

 

   1   1

 ,   3   3   %

 

   1   1

 ,   2   8   %

 

   1   0

 ,   3   1   %

 

   1   0

 ,   3   1   %

 

   1   0

 ,   2   6   %

 

   1   0

 ,   0   7   %

 

   1   0

 ,   0   7   %

 

   9 ,   1

   6   %

 

   9 ,   1

   5   %

 

   5 ,   3

   0   %

 

   5 ,   2

   7   %

 

   4 ,   7

   3   %

 

   4 ,   6

   4   %

 

   4 ,   5

   6   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   0   6

   C   1   6

   C   1   1

   C   2   0

   C   1   0

   C   1   5

   C   0   1

   C   2   1

   C   2   5

   C   0   5

   C   0   2

   C   2   2

   C   2   4

   C   0   4

   C   0   9  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   5 ,   9

   9   %

 

   5 ,   9

   9   %

 

   5 ,   9

   8   %

 

   5 ,   0

   3   %

 

   5 ,   0

   2   %

 

   4 ,   4

   0   %

 

   4 ,   4

   0   %

 

   4 ,   4

   0   %

 

   3 ,   6

   9   %

 

   3 ,   6

   8   %

 

   2 ,   8

   9   %

 

   2 ,   8

   6   %

 

   2 ,   8

   2   %

 

   2 ,   7

   4   %

 

   2 ,   6

   1   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   0   2

   C   0   4

   C   0   3

   C   0   1

   C   0   5

   C   2   4

   C   2   3

   C   2   2

   C   2   5

   C   2   1

   D   0   7

   D   0   9

   D   1   1

   D   0   5

   D   0   6  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   7 ,   8

   9   %

 

   7 ,   6

   0   %

 

   7 ,   4

   2   %

 

   7 ,   2

   9   %

 

   7 ,   2

   6   %

 

   6 ,   9

   7   %

 

   6 ,   7

   1   %

 

   6 ,   6

   3   %

 

   6 ,   6

   0   %

 

   6 ,   4

   6   %

 

   6 ,   4

   0   %

 

   6 ,   3

   1   %

 

   6 ,   1

   9   %

 

   6 ,   1

   4   %

 

   3 ,   6

   1   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   D   0   5

   D   1   1

   D   0   9

   D   0   7

   D   1   2

   C   0   7

   D   0   8

   D   0   1

   C   1   9

   D   0   6

   D   0   3

   D   1   0

   D   0   2

   D   0   4

   D   1   6  

Page 118: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 118/136

 Anexo Nº 2 Tablas de resultados

- 106 -

Tabla Nº8  

 Análisis Modal Espectral - Sismo Ventanas - Comparación nº 5.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   1 ,   1   7   %

 

   1 ,   1   7   %

 

   1 ,   1   7   %

 

   1 ,   1   7   %

 

   1 ,   0   7   %

 

   1 ,   0   7   %

 

   1 ,   0   7   %

 

   1 ,   0   7   %

 

   0 ,   9   9   %

 

   0 ,   9   9   %

 

   0 ,   8   9   %

 

   0 ,   8   9   %

 

   0 ,   8   7   %

 

   0 ,   8   7   %

 

   0 ,   8   5   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a

   l  a  s

    "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t   á

   e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   3

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   1   0

   V   3   1

   V   1   3

   V   2   8

   V   0   8

   V   3   3

   V   0   6

   V   3   5

   V   1   9

   V   2   2

   V   0   7

   V   3   4

   V   2   0

   V   2   1

   V   2   0  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   0 ,   1

   3   %

 

   0 ,   1

   3   %

 

   0 ,   1

   3   %

 

   0 ,   1

   3   %

 

   0 ,   0

   8   %

 

   0 ,   0

   8   %

 

   0 ,   0

   7   %

 

   0 ,   0

   7   %

 

   0 ,   0

   7   %

 

   0 ,   0

   7   %

 

   0 ,   0

   4   %

 

   0 ,   0

   4   %

 

   0 ,   0

   4   %

 

   0 ,   0

   4   %

 

   0 ,   0

   2   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   4

   P   4

   P   4

   P   4

   P   4

   P   4

   P   4

   P   4

   P   4

   P   4

   P   3

   P   3

   P   3

   P   3

   P   4

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   0   9

   C   1   7

   C   0   7

   C   1   9

   C   1   2

   C   1   4

   D   0   5

   D   1   1

   D   0   6

   D   1   2

   C   0   7

   C   0   9

   C   1   7

   C   1   9

   D   0   7  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1 ,   1

   3   %

 

   1 ,   1

   3   %

 

   1 ,   0

   6   %

 

   1 ,   0

   6   %

 

   0 ,   9

   5   %

 

   0 ,   9

   5   %

 

   0 ,   9

   5   %

 

   0 ,   9

   5   %

 

   0 ,   6

   3   %

 

   0 ,   6

   3   %

 

   0 ,   4

   5   %

 

   0 ,   4

   5   %

 

   0 ,   4

   0   %

 

   0 ,   4

   0   %

 

   0 ,   4

   0   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   3

   N   3

   N   3

   N   3

   N   3

   N   3

   N   3

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   1   9

   V   2   2

   V   2   0

   V   2   1

   V   1   0

   V   3   1

   V   1   3

   V   2   8

   V   2   0

   V   2   1

   V   1   9

   V   2   2

   V   1   0

   V   1   3

   V   2   8  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1 ,   3

   3   %

 

   1 ,   1

   4   %

 

   0 ,   8

   3   %

 

   0 ,   4

   7   %

 

   0 ,   4

   7   %

 

   0 ,   4

   3   %

 

   0 ,   4

   2   %

 

   0 ,   4

   2   %

 

   0 ,   3

   4   %

 

   0 ,   3

   4   %

 

   0 ,   2

   1   %

 

   0 ,   2

   1   %

 

   0 ,   2

   1   %

 

   0 ,   2

   1   %

 

   0 ,   2

   1   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   1    P   2    P   3    P   1    P   1    P   4    P   2    P   2    P   3    P   3    P   1    P   1    P   1    P   1    P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   3

   C   1   3

   C   1   3

   C   1   2

   C   1   4

   C   1   3

   C   1   2

   C   1   4

   C   1   2

   C   1   4

   C   0   6

   C   1   0

   C   1   6

   C   2   0

   C   1   1  

Page 119: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 119/136

 Anexo Nº 2 Tablas de resultados

- 107 -

Tabla Nº9  

 Análisis Modal Espectral - Sismo Ventanas - Comparación nº 6.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   4 ,   3   3   %

 

   4 ,   3   3   %

 

   4 ,   0   5   %

 

   4 ,   0   5   %

 

   3 ,   8   0   %

 

   3 ,   8   0   %

 

   3 ,   7   6   %

 

   3 ,   7   6   %

 

   3 ,   7   2   %

 

   3 ,   7   2   %

 

   3 ,   6   2   %

 

   3 ,   6   2   %

 

   3 ,   6   2   %

 

   3 ,   6   2   %

 

   3 ,   4   7   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a   l  a  s

    "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s

   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m

  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t   á

   e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   1   2

   N   1   2

   N   1   1

   N   1   1

   N   1   0

   N   1   0

   N   1   1

   N   1   1

   N   1   0

   N   1   0

   N   1   2

   N   1   2

   N   1   2

   N   1   2

   N   1   2

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   2   0

   V   2   1

   V   2   0

   V   2   1

   V   2   0

   V   2   1

   V   1   6

   V   2   5

   V   1   6

   V   2   5

   V   1   3

   V   3   1

   V   1   0

   V   2   8

   V   1   6  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1 ,   0

   1   %

 

   0 ,   9

   9   %

 

   0 ,   4

   2   %

 

   0 ,   4

   2   %

 

   0 ,   2

   6   %

 

   0 ,   2

   5   %

 

   0 ,   1

   4   %

 

   0 ,   1

   3   %

 

   0 ,   1

   3   %

 

   0 ,   1

   3   %

 

   0 ,   1

   3   %

 

   0 ,   1

   3   %

 

   0 ,   1

   2   %

 

   0 ,   1

   2   %

 

   0 ,   1

   0   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1   2

   P   1   2

   P   1   1

   P   1   1

   P   1   0

   P   1   0

   P   9

   P   9

   P   1   2

   P   1   2

   P   1   2

   P   1   2

   P   8

   P   8

   P   1   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   2

   C   1   4

   C   1   2

   C   1   4

   C   1   4

   C   1   2

   C   1   4

   C   1   2

   D   0   9

   D   0   7

   D   0   8

   D   1   0

   C   1   2

   C   1   4

   D   0   7  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   2 ,   7

   6   %

 

   2 ,   7

   5   %

 

   2 ,   2

   9   %

 

   2 ,   2

   9   %

 

   1 ,   7

   9   %

 

   1 ,   7

   9   %

 

   1 ,   7

   8   %

 

   1 ,   7

   8   %

 

   1 ,   3

   8   %

 

   1 ,   3

   8   %

 

   1 ,   1

   0   %

 

   1 ,   0

   9   %

 

   0 ,   9

   7   %

 

   0 ,   9

   7   %

 

   0 ,   8

   2   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   1   2

   N   1   2

   N   1   1

   N   1   1

   N   1   0

   N   1   0

   N   1   2

   N   1   2

   N   9

   N   9

   N   1   2

   N   1   2

   N   8

   N   8

   N   1   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   2   0

   V   2   1

   V   2   0

   V   2   1

   V   2   1

   V   2   0

   V   1   6

   V   2   5

   V   2   1

   V   2   0

   V   1   9

   V   2   2

   V   2   0

   V   2   1

   V   2   2  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   4 ,   7

   4   %

 

   4 ,   6

   8   %

 

   4 ,   6

   0   %

 

   4 ,   4

   8   %

 

   4 ,   3

   9   %

 

   4 ,   3

   0   %

 

   4 ,   0

   8   %

 

   3 ,   9

   8   %

 

   3 ,   5

   2   %

 

   3 ,   1

   7   %

 

   2 ,   1

   8   %

 

   1 ,   6

   7   %

 

   1 ,   6

   7   %

 

   1 ,   3

   9   %

 

   1 ,   3

   9   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   5    P   1    P   2    P   3    P   6    P   4    P   9    P   7    P   8   P   1   0

   P   1   1    P   9    P   9

   P   1   0

   P   1   0

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   2

   C   1   4

   C   1   4

   C   1   2  

Page 120: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 120/136

 Anexo Nº 2 Tablas de resultados

- 108 -

Tabla Nº10  

 Análisis Tiempo-Historia - Sismo Llolleo - Comparación nº 4.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   4   4 ,   6

   8   %

 

   4   4 ,   6

   7   %

 

   4   4 ,   6

   5   %

 

   4   2 ,   6

   4   %

 

   4   2 ,   6

   3   %

 

   2   7 ,   1

   8   %

 

   2   5 ,   8

   0   %

 

   2   5 ,   5

   6   %

 

   1   4 ,   1

   3   %

 

   1   2 ,   6

   3   %

 

   1   2 ,   0

   2   %

 

   1   1 ,   8

   7   %

 

   1   1 ,   0

   0   %

 

   8 ,   6   8   %

 

   6 ,   7   2   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a   l  a  s

    "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s

   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m

  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t   á

   e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   2   4

   C   2   2

   C   2   3

   C   2   1

   C   2   5

   C   1   9

   C   1   4

   C   0   9

   D   1   2

   D   0   8

   C   1   6

   C   2   0

   D   1   0

   D   0   6

   D   1   6  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   5   4

 ,   3   4   %

 

   5   4

 ,   3   4   %

 

   5   4

 ,   0   5   %

 

   4   8

 ,   3   3   %

 

   4   8

 ,   2   2   %

 

   2   6

 ,   5   4   %

 

   2   4

 ,   1   5   %

 

   1   2

 ,   3   9   %

 

   1   2

 ,   0   4   %

 

   1   1

 ,   7   2   %

 

   1   1

 ,   4   9   %

 

   1   0

 ,   7   5   %

 

   8 ,   4

   8   %

 

   8 ,   0

   0   %

 

   4 ,   8

   1   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   2   0

   C   1   0

   C   1   5

   C   0   5

   C   2   5

   C   0   4

   C   2   4

   C   1   9

   D   1   6

   C   1   7

   D   0   4

   C   1   8

   D   1   5

   D   0   3

   C   1   3  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   2   3

 ,   1   5   %

 

   2   3

 ,   1   5   %

 

   2   3

 ,   1   1   %

 

   1   9

 ,   4   8   %

 

   1   9

 ,   4   7   %

 

   1   6

 ,   5   5   %

 

   1   5

 ,   0   6   %

 

   1   3

 ,   3   3   %

 

   1   1

 ,   8   6   %

 

   1   1

 ,   0   0   %

 

   9 ,   6

   7   %

 

   9 ,   3

   0   %

 

   7 ,   8

   0   %

 

   6 ,   6

   3   %

 

   6 ,   5

   6   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   2   4

   C   2   2

   C   2   3

   C   2   1

   C   2   5

   D   1   2

   D   0   8

   D   1   0

   C   1   9

   D   0   6

   C   1   4

   C   0   9

   D   1   6

   D   1   5

   D   1   4  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   4   6

 ,   2   1   %

 

   4   0

 ,   9   0   %

 

   3   0

 ,   7   9   %

 

   2   8

 ,   7   0   %

 

   2   6

 ,   5   7   %

 

   2   5

 ,   5   7   %

 

   2   4

 ,   5   6   %

 

   1   9

 ,   2   8   %

 

   1   6

 ,   7   2   %

 

   1   6

 ,   6   1   %

 

   1   5

 ,   9   1   %

 

   1   4

 ,   1   2   %

 

   1   3

 ,   6   0   %

 

   1   3

 ,   2   6   %

 

   1   3

 ,   1   2   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   D   0   6

   D   1   0

   D   0   8

   D   1   2

   C   0   7

   C   1   7

   C   0   9

   C   1   8

   D   1   3

   D   1   5

   D   1   4

   C   2   4

   C   0   8

   C   0   4

   D   1   6  

Page 121: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 121/136

 Anexo Nº 2 Tablas de resultados

- 109 -

Tabla Nº11  

 Análisis Tiempo-Historia - Sismo Llolleo - Comparación nº 5.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   5 ,   0   2   %

 

   5 ,   0   1   %

 

   4 ,   3   9   %

 

   4 ,   3   4   %

 

   4 ,   2   5   %

 

   4 ,   0   8   %

 

   4 ,   0   4   %

 

   3 ,   9   9   %

 

   3 ,   1   8   %

 

   3 ,   1   6   %

 

   3 ,   1   1   %

 

   2 ,   9   6   %

 

   2 ,   9   5   %

 

   2 ,   8   9   %

 

   2 ,   7   8   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a

   l  a  s

    "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s

   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m

  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t   á

   e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   3

   N   4

   N   3

   N   3

   N   4

   N   4

   N   3

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   3   5

   V   3   3

   V   3   1

   V   2   8

   V   1   3

   V   1   0

   V   0   8

   V   0   6

   V   2   0

   V   3   4

   V   2   1

   V   1   6

   V   2   2

   V   1   9

   V   2   5  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1 ,   0

   4   %

 

   0 ,   8

   2   %

 

   0 ,   8

   2   %

 

   0 ,   8

   1   %

 

   0 ,   6

   5   %

 

   0 ,   5

   6   %

 

   0 ,   4

   9   %

 

   0 ,   4

   3   %

 

   0 ,   4

   1   %

 

   0 ,   4

   0   %

 

   0 ,   3

   7   %

 

   0 ,   3

   7   %

 

   0 ,   3

   6   %

 

   0 ,   3

   6   %

 

   0 ,   3

   4   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   4

   P   4

   P   4

   P   4

   P   4

   P   4

   P   4

   P   3

   P   3

   P   3

   P   3

   P   3

   P   3

   P   3

   P   3

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   9

   C   1   7

   C   2   4

   C   0   7

   C   2   3

   C   0   9

   C   1   4

   C   1   9

   D   0   5

   C   0   9

   D   0   6

   D   1   2

   C   0   8

   C   1   8

   D   1   1  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   4 ,   2

   7   %

 

   4 ,   2

   5   %

 

   4 ,   1

   7   %

 

   4 ,   0

   5   %

 

   3 ,   9

   2   %

 

   3 ,   9

   1   %

 

   3 ,   6

   6   %

 

   3 ,   6

   0   %

 

   3 ,   4

   5   %

 

   3 ,   3

   1   %

 

   3 ,   1

   4   %

 

   2 ,   9

   5   %

 

   2 ,   9

   1   %

 

   2 ,   8

   3   %

 

   2 ,   6

   7   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   3

   N   3

   N   4

   N   4

   N   3

   N   3

   N   3

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   2   2

   V   2   8

   V   2   0

   V   1   9

   V   1   0

   V   3   1

   V   2   1

   V   1   3

   V   2   0

   V   2   1

   V   3   5

   V   0   6

   V   2   2

   V   1   9

   V   1   0  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   4 ,   5

   6   %

 

   3 ,   8

   5   %

 

   2 ,   7

   3   %

 

   2 ,   2

   6   %

 

   1 ,   9

   1   %

 

   1 ,   8

   5   %

 

   1 ,   4

   9   %

 

   1 ,   3

   8   %

 

   1 ,   3

   8   %

 

   1 ,   3

   2   %

 

   1 ,   2

   8   %

 

   1 ,   2

   2   %

 

   1 ,   1

   4   %

 

   1 ,   1

   2   %

 

   1 ,   1

   1   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   1    P   2    P   3    P   1    P   2    P   1    P   1    P   3    P   3    P   2    P   4    P   2    P   1    P   3    P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   3

   C   1   3

   C   1   3

   C   1   2

   C   1   2

   C   1   8

   C   1   4

   C   1   2

   C   1   9

   C   1   4

   C   1   3

   C   1   8

   C   0   6

   C   1   4

   C   1   1  

Page 122: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 122/136

 Anexo Nº 2 Tablas de resultados

- 110 -

Tabla Nº12  

 Análisis Tiempo-Historia - Sismo Llolleo - Comparación nº 6.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   1   8 ,   2

   4   %

 

   1   7 ,   3

   1   %

 

   1   6 ,   5

   4   %

 

   1   5 ,   9

   0   %

 

   1   5 ,   8

   7   %

 

   1   5 ,   5

   6   %

 

   1   5 ,   2

   3   %

 

   1   5 ,   1

   6   %

 

   1   5 ,   1

   3   %

 

   1   5 ,   0

   9   %

 

   1   5 ,   0

   1   %

 

   1   4 ,   8

   8   %

 

   1   4 ,   7

   9   %

 

   1   4 ,   7

   5   %

 

   1   4 ,   6

   9   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a

   l  a  s

    "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s

   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m

  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t   á

   e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   1   2

   N   1   2

   N   9

   N   1   1

   N   1   0

   N   9

   N   1   1

   N   2

   N   2

   N   9

   N   2

   N   2

   N   1   0

   N   9

   N   9

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   2   5

   V   2   0

   V   3   3

   V   2   5

   V   3   3

   V   2   6

   V   2   0

   V   2   6

   V   2   4

   V   2   4

   V   1   7

   V   1   5

   V   2   6

   V   3   4

   V   1   5  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1   0

 ,   0   2   %

 

   9 ,   9

   4   %

 

   9 ,   9

   4   %

 

   9 ,   8

   9   %

 

   9 ,   8

   8   %

 

   9 ,   8

   8   %

 

   9 ,   8

   5   %

 

   9 ,   8

   5   %

 

   9 ,   8

   1   %

 

   9 ,   2

   3   %

 

   9 ,   2

   2   %

 

   9 ,   1

   0   %

 

   8 ,   9

   1   %

 

   8 ,   9

   1   %

 

   8 ,   9

   0   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1   2

   P   1

   P   1

   P   1   2

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   2   2

   C   1   0

   C   0   6

   C   0   4

   C   1   6

   C   2   0

   C   1   1

   C   1   5

   C   1   3

   C   0   4

   C   0   2

   C   0   3

   C   0   5

   C   0   1

   C   2   3  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   2   6

 ,   3   2   %

 

   2   5

 ,   8   3   %

 

   2   5

 ,   7   5   %

 

   2   5

 ,   3   2   %

 

   2   5

 ,   1   6   %

 

   2   5

 ,   0   4   %

 

   2   5

 ,   0   3   %

 

   2   5

 ,   0   2   %

 

   2   5

 ,   0   0   %

 

   2   4

 ,   3   3   %

 

   2   3

 ,   0   8   %

 

   2   2

 ,   3   3   %

 

   2   0

 ,   7   4   %

 

   2   0

 ,   4   8   %

 

   2   0

 ,   4   7   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   9

   N   9

   N   1   0

   N   1   0

   N   2

   N   2

   N   2

   N   2

   N   9

   N   1   0

   N   9

   N   1   0

   N   1   1

   N   1

   N   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   2   6

   V   2   4

   V   2   6

   V   2   4

   V   1   7

   V   2   4

   V   1   5

   V   2   6

   V   1   5

   V   1   5

   V   1   7

   V   1   7

   V   2   6

   V   2   6

   V   1   7  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1   8

 ,   1   6   %

 

   1   7

 ,   5   3   %

 

   1   6

 ,   6   4   %

 

   1   6

 ,   5   5   %

 

   1   6

 ,   5   4   %

 

   1   6

 ,   5   3   %

 

   1   6

 ,   5   1   %

 

   1   6

 ,   3   7   %

 

   1   5

 ,   8   2   %

 

   1   5

 ,   5   3   %

 

   1   5

 ,   1   3   %

 

   1   5

 ,   0   5   %

 

   1   4

 ,   4   7   %

 

   1   4

 ,   4   4   %

 

   1   4

 ,   4   3   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   1    P   2    P   3    P   5    P   2    P   2    P   2    P   2    P   5    P   4    P   6    P   9    P   2    P   2    P   2

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   D   1   0

   D   0   9

   D   0   6

   D   0   5

   C   0   9

   C   1   3

   C   1   3

   C   1   3

   D   1   1

   D   0   7

   D   0   8  

Page 123: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 123/136

 Anexo Nº 2 Tablas de resultados

- 111 -

Tabla Nº13  

 Análisis Tiempo-Historia - Sismo San Pedro - Comparación nº 4.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   7   5 ,   0

   4   %

 

   7   5 ,   0

   0   %

 

   7   4 ,   9

   6   %

 

   7   1 ,   6

   9   %

 

   7   1 ,   5

   6   %

 

   5   8 ,   6

   7   %

 

   5   8 ,   6

   5   %

 

   5   8 ,   6

   4   %

 

   5   6 ,   0

   5   %

 

   5   5 ,   9

   9   %

 

   4   5 ,   6

   4   %

 

   4   4 ,   7

   3   %

 

   3   9 ,   8

   0   %

 

   3   8 ,   6

   3   %

 

   3   8 ,   5

   9   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a   l  a  s

    "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s

   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m

  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t   á

   e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   2   4

   C   2   2

   C   2   3

   C   2   5

   C   2   1

   C   0   4

   C   0   2

   C   0   3

   C   0   5

   C   0   1

   C   2   0

   C   1   6

   C   0   9

   C   1   9

   C   1   4  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   6   4

 ,   3   7   %

 

   6   4

 ,   3   4   %

 

   6   4

 ,   0   4   %

 

   5   7

 ,   2   3   %

 

   5   7

 ,   1   5   %

 

   4   5

 ,   2   3   %

 

   4   1

 ,   0   5   %

 

   4   0

 ,   9   9   %

 

   3   8

 ,   8   4   %

 

   3   7

 ,   6   6   %

 

   3   4

 ,   3   9   %

 

   3   2

 ,   9   8   %

 

   3   1

 ,   6   7   %

 

   3   1

 ,   6   7   %

 

   3   0

 ,   6   7   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   2   0

   C   1   0

   C   1   5

   C   0   5

   C   2   5

   C   1   7

   C   1   9

   C   1   8

   C   2   4

   C   0   4

   C   0   9

   C   1   3

   C   0   7

   C   0   8

   C   0   3  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   3   8

 ,   8   3   %

 

   3   8

 ,   7   5   %

 

   3   8

 ,   6   9   %

 

   3   2

 ,   8   0   %

 

   3   2

 ,   5   7   %

 

   3   0

 ,   5   4   %

 

   3   0

 ,   5   1   %

 

   3   0

 ,   4   8   %

 

   2   5

 ,   9   2   %

 

   2   5

 ,   8   3   %

 

   2   5

 ,   7   1   %

 

   2   4

 ,   3   0   %

 

   2   2

 ,   8   7   %

 

   2   1

 ,   7   3   %

 

   2   1

 ,   6   5   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   2   4

   C   2   2

   C   2   3

   C   2   5

   C   2   1

   C   0   4

   C   0   2

   C   0   3

   D   1   3

   C   0   5

   C   0   1

   D   1   5

   D   1   4

   D   0   6

   C   2   0  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   7   4

 ,   1   9   %

 

   6   9

 ,   4   3   %

 

   6   5

 ,   4   1   %

 

   6   4

 ,   9   0   %

 

   6   3

 ,   8   1   %

 

   5   7

 ,   6   9   %

 

   5   6

 ,   8   4   %

 

   5   6

 ,   2   9   %

 

   5   6

 ,   2   4   %

 

   5   5

 ,   1   8   %

 

   5   2

 ,   2   6   %

 

   4   8

 ,   8   3   %

 

   4   7

 ,   8   8   %

 

   4   5

 ,   8   6   %

 

   4   2

 ,   9   4   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   D   1   6

   C   1   9

   D   1   4

   C   0   7

   D   1   2

   D   0   1

   D   1   5

   D   0   8

   D   1   6

   D   1   3

   D   0   6

   D   1   0

   D   0   3

   D   0   2

   D   0   4  

Page 124: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 124/136

 Anexo Nº 2 Tablas de resultados

- 112 -

Tabla Nº14  

 Análisis Tiempo-Historia - Sismo San Pedro - Comparación nº 5.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   3 ,   4   1   %

 

   3 ,   1   6   %

 

   3 ,   1   3   %

 

   3 ,   1   0   %

 

   3 ,   0   0   %

 

   2 ,   9   8   %

 

   2 ,   6   5   %

 

   2 ,   5   7   %

 

   2 ,   4   7   %

 

   2 ,   4   2   %

 

   2 ,   3   9   %

 

   2 ,   2   0   %

 

   2 ,   1   8   %

 

   2 ,   1   6   %

 

   2 ,   1   0   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a

   l  a  s

    "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s

   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m

  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t   á

   e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   3

   N   3

   N   4

   N   3

   N   4

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   3   3

   V   2   8

   V   3   1

   V   3   5

   V   1   0

   V   1   3

   V   1   0

   V   0   6

   V   0   8

   V   3   4

   V   2   0

   V   1   6

   V   1   9

   V   2   1

   V   0   7  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   0 ,   7

   1   %

 

   0 ,   3

   7   %

 

   0 ,   3

   4   %

 

   0 ,   2

   3   %

 

   0 ,   1

   5   %

 

   0 ,   1

   5   %

 

   0 ,   1

   5   %

 

   0 ,   1

   4   %

 

   0 ,   1

   2   %

 

   0 ,   1

   1   %

 

   0 ,   1

   1   %

 

   0 ,   1

   0   %

 

   0 ,   1

   0   %

 

   0 ,   0

   7   %

 

   0 ,   0

   7   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   4

   P   4

   P   4

   P   4

   P   3

   P   3

   P   4

   P   4

   P   4

   P   4

   P   4

   P   4

   P   4

   P   2

   P   2

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   0   9

   C   1   9

   C   0   7

   C   1   7

   C   0   8

   C   1   8

   D   1   2

   D   0   6

   D   0   5

   D   0   3

   D   0   2

   D   1   4

   D   1   5

   C   0   8

   C   1   8  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   2 ,   5

   3   %

 

   2 ,   0

   8   %

 

   2 ,   0

   0   %

 

   1 ,   9

   9   %

 

   1 ,   9

   7   %

 

   1 ,   8

   5   %

 

   1 ,   8

   4   %

 

   1 ,   6

   1   %

 

   1 ,   6

   0   %

 

   0 ,   7

   7   %

 

   0 ,   6

   6   %

 

   0 ,   5

   7   %

 

   0 ,   4

   5   %

 

   0 ,   4

   3   %

 

   0 ,   4

   1   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   P   4

   N   3

   P   4

   P   4

   N   3

   P   4

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   2   2

   V   1   9

   V   2   8

   V   2   0

   V   2   1

   V   1   9

   V   3   1

   V   1   0

   V   1   3

   C   1   6

   V   2   1

   C   1   1

   C   2   0

   V   3   1

   C   0   6  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   3 ,   4

   8   %

 

   2 ,   9

   5   %

 

   2 ,   1

   3   %

 

   1 ,   2

   2   %

 

   1 ,   0

   6   %

 

   0 ,   8

   3   %

 

   0 ,   8

   2   %

 

   0 ,   8

   2   %

 

   0 ,   8

   2   %

 

   0 ,   7

   3   %

 

   0 ,   6

   7   %

 

   0 ,   5

   7   %

 

   0 ,   4

   4   %

 

   0 ,   4

   4   %

 

   0 ,   4

   0   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   1    P   2    P   3    P   3    P   4    P   1    P   2    P   2    P   1    P   3    P   3    P   1    P   4    P   3    P   4

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   3

   C   1   3

   C   1   3

   C   1   7

   C   1   3

   C   1   4

   C   1   2

   C   1   4

   C   1   2

   C   1   2

   C   1   4

   C   1   8

   C   1   4

   C   0   9

   C   0   8  

Page 125: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 125/136

 Anexo Nº 2 Tablas de resultados

- 113 -

Tabla Nº15  

 Análisis Tiempo-Historia - Sismo San Pedro - Comparación nº 6.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   2   3 ,   0

   2   %

 

   2   2 ,   8

   0   %

 

   2   1 ,   1

   3   %

 

   2   0 ,   8

   1   %

 

   2   0 ,   5

   2   %

 

   2   0 ,   5

   0   %

 

   2   0 ,   2

   9   %

 

   2   0 ,   2

   1   %

 

   2   0 ,   1

   5   %

 

   1   9 ,   9

   8   %

 

   1   9 ,   7

   6   %

 

   1   9 ,   3

   6   %

 

   1   9 ,   3

   0   %

 

   1   9 ,   1

   0   %

 

   1   8 ,   8

   7   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a   l  a  s

    "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s

   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m

  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t   á

   e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   1   1

   N   1   1

   N   1   0

   N   1   0

   N   1   0

   N   1   1

   N   1   1

   N   1   2

   N   1   0

   N   1   2

   N   1   1

   N   1   1

   N   1   2

   N   1   0

   N   1   0

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   2   6

   V   1   5

   V   2   6

   V   1   5

   V   1   0

   V   2   4

   V   1   7

   V   2   1

   V   2   6

   V   2   1

   V   1   0

   V   2   1

   V   2   0

   V   2   4

   V   3   1  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1   2

 ,   3   5   %

 

   1   0

 ,   5   8   %

 

   1   0

 ,   5   1   %

 

   1   0

 ,   4   9   %

 

   9 ,   4

   1   %

 

   9 ,   2

   0   %

 

   8 ,   9

   1   %

 

   8 ,   8

   6   %

 

   8 ,   6

   3   %

 

   8 ,   6

   2   %

 

   8 ,   4

   8   %

 

   8 ,   3

   6   %

 

   8 ,   3

   2   %

 

   8 ,   2

   5   %

 

   8 ,   1

   3   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1   2

   P   1   1

   P   1   2

   P   1   0

   P   1   2

   P   1   0

   P   1   1

   P   1   1

   P   1   2

   P   1   1

   P   1   1

   P   1   0

   P   1   2

   P   1   1

   P   1   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   2

   C   1   2

   C   2   2

   C   1   2

   C   1   4

   C   2   2

   C   2   2

   C   1   6

   C   2   3

   C   2   0

   C   1   0

   C   1   6

   C   2   4

   C   0   6

   C   1   1  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   3   7

 ,   1   1   %

 

   3   6

 ,   3   1   %

 

   3   3

 ,   7   9   %

 

   3   3

 ,   7   0   %

 

   3   2

 ,   8   8   %

 

   3   2

 ,   2   5   %

 

   3   1

 ,   8   8   %

 

   3   1

 ,   2   3   %

 

   3   0

 ,   7   1   %

 

   2   9

 ,   3   6   %

 

   2   8

 ,   8   7   %

 

   2   8

 ,   6   6   %

 

   2   3

 ,   9   0   %

 

   2   2

 ,   8   2   %

 

   2   2

 ,   7   7   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   1   1

   N   1   1

   N   1   1

   N   1   0

   N   1   0

   N   1   1

   N   1   1

   N   1   0

   N   1   0

   N   1   0

   N   1   1

   N   1   0

   N   1   1

   N   1   2

   N   1   2

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   2   6

   V   1   5

   V   2   4

   V   2   6

   V   1   5

   V   1   7

   V   2   9

   V   2   9

   V   2   4

   V   1   7

   V   1   2

   V   1   2

   V   3   0

   V   2   4

   V   2   9  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   2   0

 ,   7   2   %

 

   2   0

 ,   5   8   %

 

   2   0

 ,   1   2   %

 

   1   9

 ,   3   1   %

 

   1   8

 ,   9   2   %

 

   1   8

 ,   5   9   %

 

   1   7

 ,   3   4   %

 

   1   7

 ,   0   3   %

 

   1   6

 ,   9   9   %

 

   1   6

 ,   7   8   %

 

   1   6

 ,   7   3   %

 

   1   6

 ,   0   5   %

 

   1   5

 ,   8   2   %

 

   1   5

 ,   5   3   %

 

   1   5

 ,   2   1   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   1    P   5    P   2    P   3    P   6    P   4   P   1   1    P   9    P   7

   P   1   1

   P   1   1

   P   1   1

   P   1   1

   P   1   0

   P   1   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   D   1   2

   C   1   3

   C   1   3

   D   0   7

   D   0   5

   D   1   0

   D   1   1

   D   1   2

   D   0   6  

Page 126: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 126/136

 Anexo Nº 2 Tablas de resultados

- 114 -

Tabla Nº16  

 Análisis Tiempo-Historia - Sismo Ventanas - Comparación nº 4.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   3   4 ,   2

   9   %

 

   3   4 ,   2

   8   %

 

   3   4 ,   2

   7   %

 

   3   2 ,   7

   6   %

 

   3   2 ,   7

   1   %

 

   2   8 ,   8

   6   %

 

   2   8 ,   8

   5   %

 

   2   8 ,   8

   4   %

 

   2   7 ,   5

   4   %

 

   2   7 ,   5

   4   %

 

   2   4 ,   6

   1   %

 

   2   4 ,   5

   0   %

 

   2   4 ,   1

   0   %

 

   1   7 ,   1

   2   %

 

   1   6 ,   7

   9   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a   l  a  s

    "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s

   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m

  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t   á

   e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   0   2

   C   0   4

   C   0   3

   C   0   1

   C   0   5

   C   2   4

   C   2   2

   C   2   3

   C   2   1

   C   2   5

   C   0   9

   C   1   9

   C   1   4

   C   0   6

   C   1   0  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   4   2

 ,   0   3   %

 

   4   2

 ,   0   2   %

 

   4   1

 ,   8   0   %

 

   3   7

 ,   4   6   %

 

   3   7

 ,   3   1   %

 

   2   3

 ,   8   7   %

 

   2   3

 ,   6   8   %

 

   1   8

 ,   2   3   %

 

   1   8

 ,   2   2   %

 

   1   8

 ,   1   7   %

 

   1   6

 ,   8   6   %

 

   1   6

 ,   1   1   %

 

   1   6

 ,   0   9   %

 

   1   5

 ,   4   5   %

 

   1   5

 ,   4   0   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   2   0

   C   1   0

   C   1   5

   C   2   5

   C   0   5

   C   2   4

   C   0   4

   C   1   6

   C   0   6

   C   1   1

   C   0   9

   C   0   1

   C   2   1

   C   0   7

   C   0   8  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1   7

 ,   7   4   %

 

   1   7

 ,   7   1   %

 

   1   7

 ,   6   9   %

 

   1   4

 ,   9   8   %

 

   1   4

 ,   8   9   %

 

   1   4

 ,   8   8   %

 

   1   4

 ,   8   7   %

 

   1   4

 ,   8   6   %

 

   1   2

 ,   8   2   %

 

   1   2

 ,   7   5   %

 

   1   2

 ,   6   6   %

 

   1   2

 ,   5   1   %

 

   1   2

 ,   5   0   %

 

   1   2

 ,   1   2   %

 

   1   0

 ,   5   9   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   0   2

   C   0   4

   C   0   3

   C   0   1

   C   0   5

   C   2   4

   C   2   2

   C   2   3

   D   1   0

   D   0   8

   D   0   6

   C   2   1

   C   2   5

   D   1   2

   C   0   9  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   3   5

 ,   6   8   %

 

   3   4

 ,   0   8   %

 

   3   3

 ,   1   2   %

 

   3   2

 ,   6   7   %

 

   2   7

 ,   5   9   %

 

   2   4

 ,   6   8   %

 

   2   1

 ,   8   9   %

 

   2   1

 ,   2   9   %

 

   1   9

 ,   3   8   %

 

   1   9

 ,   3   2   %

 

   1   8

 ,   9   3   %

 

   1   6

 ,   2   9   %

 

   1   5

 ,   1   4   %

 

   1   4

 ,   5   9   %

 

   1   4

 ,   5   0   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1    P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   D   1   2

   D   0   6

   D   0   8

   D   1   0

   D   0   1

   D   0   3

   D   0   4

   D   0   2

   C   0   7

   C   1   9

   D   1   6

   D   1   4

   D   1   3

   D   1   5

   D   0   5  

Page 127: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 127/136

 Anexo Nº 2 Tablas de resultados

- 115 -

Tabla Nº17  

 Análisis Tiempo-Historia - Sismo Ventanas - Comparación nº 5.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V  a  r

   i  a  c   i   ó  n

   [

   %   ]

   (   2   )

   1 ,   0   3   %

 

   1 ,   0   1   %

 

   1 ,   0   0   %

 

   0 ,   9   8   %

 

   0 ,   9   6   %

 

   0 ,   9   4   %

 

   0 ,   9   1   %

 

   0 ,   8   8   %

 

   0 ,   7   3   %

 

   0 ,   7   3   %

 

   0 ,   7   1   %

 

   0 ,   7   0   %

 

   0 ,   6   9   %

 

   0 ,   6   9   %

 

   0 ,   6   7   %

 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a

   l  a  s

    "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s

   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m

  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t   á

   e  x  p  r  e  s  a

   d  a  e  n

   f  u

  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   3

   N   3

   N   4

   N   3

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   2   8

   V   1   0

   V   3   1

   V   3   3

   V   1   3

   V   3   5

   V   0   6

   V   0   8

   V   0   7

   V   3   4

   V   1   9

   V   2   0

   V   2   1

   V   2   2

   V   3   5  

   M  o  m  e  n  t  o  e   j  e   D   é

   b   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   0 ,   3

   1   %

 

   0 ,   1

   5   %

 

   0 ,   1

   2   %

 

   0 ,   1

   2   %

 

   0 ,   0

   6   %

 

   0 ,   0

   6   %

 

   0 ,   0

   6   %

 

   0 ,   0

   5   %

 

   0 ,   0

   5   %

 

   0 ,   0

   5   %

 

   0 ,   0

   4   %

 

   0 ,   0

   4   %

 

   0 ,   0

   4   %

 

   0 ,   0

   4   %

 

   0 ,   0

   4   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   4

   P   4

   P   3

   P   3

   P   4

   P   4

   P   4

   P   2

   P   2

   P   4

   P   4

   P   4

   P   3

   P   4

   P   4

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   0   2

   C   0   3

   C   0   8

   C   1   8

   D   1   1

   D   0   3

   D   0   2

   C   0   8

   C   1   8

   D   1   2

   D   0   5

   C   1   7

   D   1   3

   D   1   4

   D   1   5  

   E  s   f  u  e  r  z  o   d  e   C  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   0 ,   6

   0   %

 

   0 ,   5

   7   %

 

   0 ,   4

   8   %

 

   0 ,   4

   7   %

 

   0 ,   4

   7   %

 

   0 ,   3

   8   %

 

   0 ,   3

   0   %

 

   0 ,   2

   9   %

 

   0 ,   1

   9   %

 

   0 ,   1

   6   %

 

   0 ,   1

   4   %

 

   0 ,   1

   0   %

 

   0 ,   0

   8   %

 

   0 ,   0

   3   %

 

   0 ,   0

   1   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   N   4

   P   4

   P   4

   P   4

   P   4

   P   4

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   1   0

   V   2   0

   V   3   1

   V   2   8

   V   2   1

   V   2   2

   V   1   9

   V   1   3

   V   0   8

   V   0   6

   C   1   7

   C   1   9

   C   1   1

   C   1   5

   C   1   0  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1 ,   1

   5   %

 

   0 ,   9

   1   %

 

   0 ,   6

   6   %

 

   0 ,   3

   2   %

 

   0 ,   1

   5   %

 

   0 ,   1

   4   %

 

   0 ,   1

   1   %

 

   0 ,   1

   1   %

 

   0 ,   1

   0   %

 

   0 ,   0

   9   %

 

   0 ,   0

   8   %

 

   0 ,   0

   8   %

 

   0 ,   0

   8   %

 

   0 ,   0

   7   %

 

   0 ,   0

   6   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   1    P   2    P   3    P   4    P   3    P   3    P   3    P   4    P   4    P   2    P   4    P   4    P   3    P   3    P   3

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   C   1   2

   C   0   7

   C   1   9

   C   1   4

   C   1   8

   C   1   2

   C   0   8

   C   1   2

   C   1   7

   C   1   4

   C   0   8  

Page 128: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 128/136

 Anexo Nº 2 Tablas de resultados

- 116 -

Tabla Nº18  

 Análisis Tiempo-Historia - Sismo Ventanas - Comparación nº 6.

   M  o  m  e  n  t  o  e   j  e   F  u  e  r  t  e    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   6 ,   6   1

   % 

   6 ,   6   0

   % 

   6 ,   5   3

   % 

   6 ,   5   2

   % 

   6 ,   0   9

   % 

   6 ,   0   3

   % 

   6 ,   0   0

   % 

   5 ,   9   5

   % 

   5 ,   8   5

   % 

   5 ,   8   4

   % 

   5 ,   6   7

   % 

   5 ,   6   6

   % 

   5 ,   6   1

   % 

   5 ,   4   4

   % 

   5 ,   3   1

   % 

   (   1   )   C   /   D   /   V

  c  o  r  r  e  s  p  o  n

   d  e  a

   l  t   i  p  o

   d  e  e

   l  e  m  e  n  t  o  e  n  c  u  e  s  t   i   ó  n ,

  s   i  e  n

   d  o

   "   C   "  p  a  r  a  r  e  p  r  e  s  e  n  t  a  r  a

   l  a  s

   "   C  o   l  u

  m  n  a  s   " ,

   "   D   "  a

   l  a  s

   "   D   i  a  g  o  n  a

   l  e  s   "  y

   "   V   "  a

   l  a  s

 

   "   V   i  g  a  s   " .

   (   2   )   E  s  t  a  c  o

   l  u  m  n  a  r  e  p  r  e  s  e  n  t  a

   l  a  v  a  r   i  a  c

   i   ó  n  p  o  r  c  e  n  t  u  a

   l   d  e

   l  e  s   f  u  e  r  z  o  e  n  c  u  e  s  t   i   ó  n  q  u  e  p  r  e  s  e  n  t  a  e

   l  e

   l  e  m

  e  n  t  o  a  n  t  e  s

   d  e  s   i  g  n  a

   d  o .

   E  s  t  a  v  a  r   i  a  c

   i   ó  n  e  s  t

   á

 

  e  x  p  r  e  s  a

   d  a  e  n   f  u  n  c

   i   ó  n  a

   l  a  c  a  p  a  c

   i   d  a

   d  a

   d  m

   i  s   i   b   l  e   d  e

   l  e

   l  e  m

  e  n  t  o .

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   1   1

   N   1   1

   N   1   1

   N   1   1

   N   1   0

   N   1   0

   N   1   0

   N   1   0

   N   1   0

   N   2

   N   1   1

   N   1   1

   N   1   0

   N   1   0

   N   1   2

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   1   2

   V   3   0

   V   2   9

   V   1   1

   V   1   2

   V   2   9

   V   3   0

   V   1   1

   V   1   0

   V   2   9

   V   3   1

   V   1   0

   V   3   1

   V   2   8

   V   1   6  

   M  o  m  e  n  t  o  e   j  e   D   é   b

   i   l

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   3 ,   5

   1   %

 

   2 ,   9

   8   %

 

   2 ,   7

   3   %

 

   2 ,   7

   0   %

 

   2 ,   5

   2   %

 

   2 ,   3

   7   %

 

   2 ,   3

   6   %

 

   2 ,   3

   0   %

 

   2 ,   2

   6   %

 

   2 ,   2

   6   %

 

   2 ,   2

   4   %

 

   2 ,   2

   3   %

 

   2 ,   1

   3   %

 

   2 ,   1

   2   %

 

   2 ,   0

   9   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   P   1   2

   P   1   1

   P   1   2

   P   1   0

   P   1   1

   P   1

   P   1

   P   8

   P   1   0

   P   1   2

   P   1

   P   1

   P   1   2

   P   9

   P   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   4

   C   1   4

   C   0   4

   C   1   4

   C   1   2

   C   1   2

   C   1   4

   C   1   4

   C   1   2

   C   1   2

   C   1   7

   C   0   7

   C   0   4

   C   1   2

   C   0   9  

   E  s   f  u  e  r  z  o   d  e   C

  o  r  t  e

   V  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   1   0

 ,   6   8   %

 

   1   0

 ,   6   6   %

 

   1   0

 ,   5   5   %

 

   1   0

 ,   5   3   %

 

   9 ,   9

   0   %

 

   9 ,   6

   0   %

 

   9 ,   5

   9   %

 

   9 ,   5

   7   %

 

   9 ,   5

   6   %

 

   8 ,   5

   4   %

 

   8 ,   1

   9   %

 

   8 ,   0

   0   %

 

   7 ,   9

   3   %

 

   7 ,   9

   3   %

 

   7 ,   7

   5   %

 

   N   i  v  e   l

  o   P   i  s  o

   (   N   /   P   )

   N   1   1

   N   1   1

   N   1   1

   N   1   1

   N   1   1

   N   1   0

   N   1   0

   N   1   0

   N   1   0

   N   9

   N   9

   N   9

   N   1   2

   N   1   2

   N   1   2

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   V   3   0

   V   1   1

   V   1   2

   V   2   9

   V   1   2

   V   1   1

   V   2   9

   V   3   0

   V   1   2

   V   2   9

   V   1   2

   V   1   1

   V   3   0

   V   1   1

   V   1   2  

   E  s   f  u  e  r  z  o

   A  x   i  a   l    V

  a  r   i  a  c   i   ó  n

   [   %   ]

   (   2   )

   5 ,   8

   5   %

 

   5 ,   7

   3   %

 

   5 ,   6

   6   %

 

   5 ,   4

   5   %

 

   5 ,   4

   4   %

 

   5 ,   3

   3   %

 

   5 ,   2

   0   %

 

   5 ,   1

   3   %

 

   5 ,   0

   5   %

 

   5 ,   0

   2   %

 

   5 ,   0

   2   %

 

   5 ,   0

   1   %

 

   4 ,   9

   9   %

 

   4 ,   9

   9   %

 

   4 ,   9

   8   %

 

   N   i  v  e

   l

  o   P   i  s  o

   (   N   /   P   )

   P   1    P   5    P   2    P   3    P   8    P   6    P   4    P   9    P   8   P   1   1

   P   1   1    P   8    P   3    P   2

   P   1   1

 

   E   l  e  m  e  n  t  o

   (   C   /   D   /   V   )

   (   1   )

   C   1   3

   C   1   3

   C   1   3

   C   1   3

   D   0   4

   C   1   3

   C   1   3

   C   1   3

   D   1   4

   D   1   6

   D   0   1

   D   1   3

   D   1   4

   D   1   4

   D   0   4  

Page 129: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 129/136

 

- 117 -

 Anexo Nº3Resumen esquemático de casos analizados

 A modo de aclaración para exponer de forma sencilla todos los análisis realizados y las

respectivas comparaciones es que se elabora este anexo donde se presentarán por separado dos

esquemas que grafican las principales consideraciones utilizadas tanto para el modelo del edificio con

4 pisos y el de 12. La idea es aislar cada situación planteada, explicar el por qué de su aplicación y de

su comparación.

En primer lugar cada esquema tiene tres segmentos con colores distintos (rojo, azul y verde)para destacar los tres diferentes tipos de análisis realizados y dejar en claro el hecho de que no se

realizaron comparaciones cuantitativas entre análisis distintos, esto último se debe a las diferencias

que se presentan tanto en las modalidades de cálculo, las distintas idealizaciones requeridas y los

distintos datos de entrada requeridos. Es así puesto que en el análisis con NCh 433 of 96 mod. 2009

se debe trabajar con un espectro de diseño horizontal obtenido estadísticamente de un gran número

de eventos sísmicos estudiados y para la dirección vertical se utiliza un espectro de diseño propuesto

correspondiente a 2/3 del espectro de diseño horizontal, en cambio para los análisis Modal Espectral

se trabaja también con espectros, pero obtenidos de acelerogramas de eventos sísmicos puntuales ypor último los análisis de Tiempo-Historia no utilizan espectros sino acelerogramas reales.

Los esquemas parten con el número de pisos del modelo a estudiar, luego el esquema se

divide en tres para identificar los tipos de análisis que se realiza, luego se indica si se aplica o no el

registro sísmico vertical correspondiente de modo que se pueda realizar la comparación de los

resultados obtenidos con y sin la componente sísmica vertical. Es necesario aclarar que para el

análisis con la NCh 433 of 96 mod 2009, la situación sin componente vertical considera sólo el

espectro de diseño que esta norma contempla aplicándolo al 100% en una dirección más el 30% en la

dirección ortogonal, en cambio para la situación con componente vertical se utiliza un espectro

obtenido de multiplicar por 2/3 al horizontal, aplicándolo al 100% junto al 30% de los espectros

horizontales. Esta misma metodología se utiliza para el análisis Modal Espectral con la diferencia de

que los espectros corresponden a registros reales de eventos puntuales (la combinación de estos

también es de un 100% en la dirección de estudio más un 30% en las otras direcciones). Por último

Page 130: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 130/136

 Anexo Nº 3 Resumen esquemático de casos analizados  

- 118 -

el análisis Tiempo-Historia involucra acelerogramas los cuales se aplican simultáneamente sin

combinaciones porcentuales.

En cada esquema luego de indicar si se aplica o no el registro sísmico vertical

correspondiente, se establece si se considera o no la masa sísmica del modelo actuando en ladirección vertical, generando casos netamente de control como lo son los que contemplan masa

sísmica vertical, pero no el registro sísmico en dicha dirección (nº 3 y 4) y viceversa (nº 5 y 6),

buscando con esto tan solo confirmar que la aplicación tanto de la masa sísmica vertical o el registro

sísmico por separados no generan modificaciones en los resultados. Por otra parte se generan los

casos principales de donde se extrae la información buscada, que son los que consideran ambas

condiciones (masa y registro) (nº 1 y 2) o las que no consideran ninguno (nº 7 y 8).

Por último se evalúa la situación con y sin excentricidad de la masa sísmica para determinar si

este fenómeno acentúa los efectos de la acción sísmica vertical. De este modo ya se tienen las ocho

situación por tipo de análisis y a modo de resumen se indicará cada comparación realizada y el

objetivo de dicha comparación.

Comparaciones:

1 –  3 y 2 –  4 Se busca confirmar que la aplicación de la masa sísmica vertical por sí sola no altera

los resultados.

1 –  5 y 2 –  6 Se busca confirmar que la aplicación de un registro sísmico vertical por sí solo no

altera los resultados.

1 –  7 Se busca determinar los efectos de la acción sísmica vertical en la estructura.

2 –  8 Se busca determinar si la excentricidad de la masa sísmica altera los resultados.

Page 131: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 131/136

 Anexo Nº 3 Resumen esquemático de casos analizados  

- 119 -

Figura Nº1  Esquema de los casos analizados en el edificio de cuatro pisos.

Modelo4 pisos

 Análisiscon

NormaNCh 433of 1996mod.2009

 Análisis Tiempo-Historia

conacelero-gramasreales

 AnálisisModal

Espectralconespectros

deregistros

reales

Sin espectrode diseño vertical

propuesto

Conespectro de

diseño vertical

propuesto

Sinacelerograma

 vertical

Con

acelerograma vertical

Sin espectrosísmico vertical

Con espectrosísmico vertical

Sin masa sísmica vertical

Con masa sísmica vertical

Sin masa sísmica vertical

Con masa sísmica vertical

Sin masa sísmica vertical

Con masa sísmica vertical

Sin masa sísmica vertical

Con masa sísmica vertical

Sin masa sísmica vertical

Con masa sísmica vertical

Sin masa sísmica vertical

Con masa sísmica vertical

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Con excentricidad

Sin excentricidad

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Page 132: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 132/136

 Anexo Nº 3 Resumen esquemático de casos analizados  

- 120 -

Figura Nº2  Esquema de los casos analizados en el edificio de doce pisos.

Modelo12 pisos

 Análisiscon

NormaNCh 433of 1996mod.2009

 Análisis Tiempo-Historia

conacelero-gramasreales

 AnálisisModal

Espectralcon

espectrosde

registrosreales

Sin espectrode diseño vertical

propuesto

Conespectro de

diseño vertical

propuesto

Sinacelerograma

 vertical

Con

acelerograma vertical

Sin espectrosísmico vertical

Con espectrosísmico vertical

Sin masa sísmica vertical

Con masa sísmica vertical

Sin masa sísmica vertical

Con masa sísmica vertical

Sin masa sísmica vertical

Con masa sísmica vertical

Sin masa sísmica vertical

Con masa sísmica vertical

Sin masa sísmica vertical

Con masa sísmica vertical

Sin masa sísmica vertical

Con masa sísmica vertical

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Sin excentricidad

Con excentricidad

Con excentricidad

Sin excentricidad

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Page 133: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 133/136

 

- 121 -

BIBLIOGRAFÍA

 AGUIAR, R. s.f. “Elementos verticales de anclaje en puentes. Lecciones del sismo de Chile de

2010”. (Disponible en: http://www.cicp-ec.com/ pdf/ Comportamiento%20Sismico%20de%20

Puentes.pdf. Consultado el: 01 de febrero de 2012).

BADALOUKA, B.; G. PAPADOPOULOS. 2008. “Experimental Study of a Structure Under Stress 

Pulse Simulating Vertical Ground Motion”. Journal of Earthquake Engineering, 12: 341– 356.

BOROSCHEK, R.; P. SOTO; R. LEON. 2010. “Registros del Terremoto del Maule Mw.=8,8 27 de

febrero de 2010”. Informe del RENADIC. (Disponible en: http://www.renadic.cl. Consultado el: 04

de julio de 2011).

BUSTOS, A. 2003. “Análisis comparativo de la respuesta sísmica entre edificios en altura de acero en 

base a marcos de momento y marcos arriostrados en el núcleo y en base a marcos de momento y

núcleo de hormigón armado”. Tesis Ing. Civil en Obras Civiles, Univ. Austral de Chile, Facultad de

Cs. de la Ingeniería. 109 p.

CHERNIN, A.; F. JARA. 2011. “Chile, laboratorio natural”, Revista Que Pasa. 39: .18-25.

CLOUGH, R.; J. PENZIEN. 2003. “Dynamics of structures”. 3ed. Estados Unidos. Computers &

Structures, Inc. 575-577.

COSMOS. s.f. Consortium of Organizations for Strong Motion Observation Systems. (Disponibleen: http://db.cosmos-eq.org/scripts/event.plx?evt=151. Consultado el: 04 de julio de 2011).

ELGAMAL, A.; L. HE. 2004. “Vertical earthquake ground motion records: an overview”. Journal of

Earthquake Engineering, 8(5). 663 – 697

Page 134: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 134/136

Bibliografía

- 122 -

GONZÁLEZ, P. 1992. "Considering Earthquake Direction on Seismic Analysis", Proceedings 10ª

 WCEE, Madrid, España, Vol.7: 3809-3813. (Original no consultado, citado por: GONZALEZ, P.; T.

GUENDELMAN; J. ALLENDE; N. MELA; C. SAN MARTÍN. 2010a. “Análisis de la precisión de

un método espectral de análisis sísmico de edificios utilizando el espectro de la norma chilena NCh433 Of.96”. X Congreso Chileno de Sismología e Ingeniería Antisísmica.). 

GONZALEZ, P.; T. GUENDELMAN; J. ALLENDE; N. MELA; C. SAN MARTÍN. 2010a.

“Análisis de la precisión de un método espectral de análisis sísmico de edificios utilizando el espectro

de la norma chilena NCh 433 Of.96”. X Congreso Chileno de Sismología e Ingeniería Antisísmica.

GONZALES, P; T. GUENDELMAN; J. ALLENDE; J. MARTÍNEZ; K. GENTINA; A.

MERTÍNEZ. 2010b. “Proposición de método de análisis sísmico de edificios y de espectro

representativo de las tres componentes de la solicitación”. X Congreso Chileno de Sismología e

Ingeniería Antisísmica.

ICHA. 2008. “Manual de Diseño Estructural en Acero”. 2 ed. Quebecor World S.A. Chile.

 JU, S.; C. LIU; K. WU. 2000. “3d Analyses of buildings under vertical component of earthquakes”.

 Journal of Structural Engineering. 126(10): 1196-1202. (Disponible en:http://140.116.207.99/bitstream/987654321/40004/1/3010601301007.pdf. Consultado el: 04 de

julio de 2011).

L.P.I. (Laboratorio de Procesado de Imagen) 2012. “Ondas sísmicas”. (Disponible en:

http://www.lpi.tel.uva.es/~nacho/docencia/ing_ond_1/trabajos_06_07/io3/public_html/Ondas/

Ondas.html. Consultado el: 01 de febrero de 2012).

LUDERS, C. 2010. “Elementos no estructurales”. 6º Encuentro de Profesionales de Obra. 

Page 135: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 135/136

Bibliografía

- 123 -

MALAGA, C.; R. GARCIA; O. GOMEZ. s.f. “Razón de movimiento horizontal sobre vertical

(H/V) para sismos fuertes”.  (Disponible en: http://www.freewebs.com/cmalaga/Estructuras6/

Malaga%20et%20al.%20-%20H%20sobre%20V%20para%20sismos%20fuertes.pdf. Consultado el:

04 de julio de 2011).

McCORMAC, J.; 2003. “Diseño de estructuras de acero método LRFD”. 2 ed. José De la Cera

 Alonso. México. Alfaomega. 704 p.

NEWMARK, N. 1973. “A study of vertical and horizontal spectra”. Report WASH -1255.

 Washington D.C. U.S. Atomic Energy Commission, Directorate of Licensing. (Original no

consultado, citado por: VILERA, L.; P. RIVERO; W. LOBO. 2008. “Ef ectos sísmicos de la

componente vertical en edificios aporticados de acero”. Revista Ciencia e Ingeniería. 29(1). 79-88.

(Disponible en:http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/viewFile/245/268.

Consultado el: 04 de julio de 2011).).

PERALTA, J.; 2011. “Análisis de la respuesta sísmica no lineal de puentes de arco tipo Network”.

 Tesis Ing. Civil en Obras Civiles, Univ. Austral de Chile, Facultad de Cs. de la Ingeniería. 136 p.

SARAGONI, G. R.; N. LUPPICHINI; S. RUIZ. 2005. “Estudio de ondas de suelo de movimientolibre y de ondas tipo Rayleigh de alta frecuencia en los acelerogramas del terremoto de Chile central

de 1985”. Congreso Chileno de Sismología e Ingeniería Antisísmica IX Jornadas. 

SARRAZIN, M. 2010. “Reparación y soluciones”. 6º Encuentro de Profesionales de Obra. 

SERVICIO SISMOLÓGICO. 2011. Universidad de Chile. (Disponible en:http://www.sismologia.cl.

Consultado el: 27 de agosto de 2011).

Page 136: Sismo Vertical

7/17/2019 Sismo Vertical

http://slidepdf.com/reader/full/sismo-vertical-568e0e64299a1 136/136

Bibliografía

SHIRAI, K.; T. OHMACHI; S. ARITA. 2004. “Empirical study on relationship between horizontal

and vertical groud motions”. 13th World Conference on Earthquake Engineering. Vancouver. B.C.,

Canada. (Original no consultado, citado por: MALAGA, C.; R. GARCIA; O. GOMEZ. s.f. “Razón

de movimiento horizontal sobre vertical ( H/V) para sismos fuertes”. (Disponible en: http://www.freewebs.com/ cmalaga/Estructuras6/Malaga% 20et% 20al.%20-%20H%20sobre%20V%20para%

20sismos%20fuertes.pdf. Consultado el: 04 de julio de 2011)).

 VILERA, L.; P. RIVERO; W. LOBO. 2008. “Efectos sísmicos de la componente vertical en

edificios aporticados de acero”. Revista Ciencia e Ingeniería. 29(1). 79-88. (Disponible en:

http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/viewFile/245/268. Consultado el:

04 de julio de 2011).