55
INDICE 1. Introducción 2. Relaciones astronómicas Sol-Tierra . Sistemas de coordenadas . Posición del sol . Tiempo solar . Posición del Sol respecto superficies inclinadas . Símbolos 3. Radiación solar Térmica . Leyes de radiación del cuerpo negro . Símbolos 4. Constante solar y radiación solar extraterrestre . Constante solar . irradiación extraterrestre sobre superficie horizontal . irradiación extraterrestre sobre superficie inclinada . Símbolos 5. Radiación solar sobre la superficie de la Tierra . Modelización de la radiación solar sobre superficies inclinadas . símbolos 6. Radiación solar e instrumentos de medida Bibliografía M. Iqbal . An introduction to Solar Radiation. Academic Press. New york. 1983. R. Siegel and Howell, J.R. Termal Radiation Heat Transfer. McGraw-Hill, New York, 1981. J. A. Duffie and Beckman, W.A. Solar Engineering of Termal Proceses. John Wiley New York. 1991. J. Casanova y colaboradores. Curso de Energía Solar. Universidad de Valladolid. 1993. 1

TERMICA - Radiación Solar

  • Upload
    elfubito

  • View
    4.117

  • Download
    15

Embed Size (px)

Citation preview

Page 1: TERMICA - Radiación Solar

INDICE

1. Introducción

2. Relaciones astronómicas Sol-Tierra

. Sistemas de coordenadas

. Posición del sol

. Tiempo solar

. Posición del Sol respecto superficies inclinadas

. Símbolos

3. Radiación solar Térmica

. Leyes de radiación del cuerpo negro

. Símbolos

4. Constante solar y radiación solar extraterrestre

. Constante solar

. irradiación extraterrestre sobre superficie horizontal

. irradiación extraterrestre sobre superficie inclinada

. Símbolos

5. Radiación solar sobre la superficie de la Tierra

. Modelización de la radiación solar sobre superficies inclinadas

. símbolos

6. Radiación solar e instrumentos de medida

Bibliografía

M. Iqbal . An introduction to Solar Radiation. Academic Press. New york. 1983.

R. Siegel and Howell, J.R. Termal Radiation Heat Transfer. McGraw-Hill, New York,

1981.

J. A. Duffie and Beckman, W.A. Solar Engineering of Termal Proceses. John Wiley New

York. 1991.

J. Casanova y colaboradores. Curso de Energía Solar. Universidad de Valladolid. 1993.

1

Page 2: TERMICA - Radiación Solar

1.INTRODUCCIÓN

El flujo de radiación solar que llega a la Tierra es la fuente primaria de todas las formas de energía conocidas. La radiación solar es el origen de los movimientos de circulación de la atmósfera y del océano, de la vida vegetal o de los combustibles fósiles entre otros. Las características más singulares que presenta la radiación son:

- Gran dispersión y por tanto baja densidad - Intermitencia o variabilidad en el tiempo

Estas dos características son de fundamental importancia cuando se intenta

aprovechar la energía procedente del sol. Desde el punto de vista de los sistemas de utilización de la energía solar, interesa cuantificar la cantidad de radiación solar que incide sobre una superficie en la Tierra, y su relación con los parámetros geográficos y climatológicos. La complejidad de los fenómenos que afectan a la radiación solar en su camino a través de la atmósfera es el principal problema que aparece a la hora de cuantificar la disponibilidad energética. Se puede conocer con suficiente precisión la energía emitida por el Sol en un momento determinado, pero no es sencillo estimar la cantidad de energía que alcanza la superficie de la Tierra. Desde que esta energía entra en la atmósfera dos tipos de factores influyen en su recorrido a través de la misma hasta alcanzar la Tierra, unos son de naturaleza determinista y otros que podemos denominar aleatorios.

Entre los factores deterministas se encuentran los factores astronómicos, que dependen de la geometría Sol-Tierra . Son función de la posición relativa de ambos y del

2

Page 3: TERMICA - Radiación Solar

lugar de la Tierra que consideremos. Estos factores condicionan el recorrido de la radiación a través de la atmósfera y el ángulo de incidencia sobre la misma. Los otros factores que inciden en la cantidad de energía que se recibe en la superficie de la Tierra son los factores climáticos. Estos serán los responsables de que se produzca una atenuación en la cantidad de energía que podría alcanzar la Tierra. Estos factores a diferencia de los astronómicos no son fácilmente cuantificables. Los componentes de la atmósfera son los responsables de dicha atenuación: vapor de agua, aerosoles, ozono y nubes. En los siguientes apartados se analizarán los factores, que condicionan la energía que recibe un sistema de utilización solar, así como la forma de estimarla a partir de los parámetros disponibles.

2. RELACIONES ASTRONÓMICAS SOL-TIERRA

En este primer capítulo se explican las nociones básicas sobre el movimiento

aparente del Sol y los sistemas de coordenadas que permiten fijar su posición y se

introduce el concepto de esfera celeste. Se muestran los sistemas de coordenadas

horizontales y horarias que permiten conocer la posición del Sol respecto a un punto de

la Tierra, en un instante dado, esta posición viene dada por dos coordenadas : la altura y el

acimut en el sistema de coordenadas horizontales y por la declinación y el ángulo horario

en el sistema de coordenadas horarias. Estos dos pares de coordenadas definen el triángulo

esférico astronómico cuya resolución proporciona la expresión de la altura del Sol en

función de la latitud, la declinación y del ángulo horario; y el acimut en función de la

altura, la declinación y el ángulo horario. Se muestra también la relación entre tiempo

solar verdadero y tiempo civil, en un lugar de longitud determinada.

1.- Movimiento de la Tierra.-

La Tierra tiene dos movimientos uno de rotación, alrededor de un eje que pasa por

los polos, llamado eje polar, cuya duración media es de 24 horas y otro de traslación por el

cuál describe una órbita elíptica llamada eclíptica, Fig. 1, en uno de los focos de la elipse

está el Sol. La duración de una vuelta completa es de 365 días 5 horas 48 minutos y 46

3

Page 4: TERMICA - Radiación Solar

segundos y la velocidad de traslación es de 29,8 km s-1 . Dada su pequeña excentricidad (e

= 0.0167) la órbita puede considerarse circular y suponer que el Sol se encuentra en el

centro de la misma.

El eje polar de la Tierra mantiene durante el movimiento una dirección

aproximadamente constante y forma un ángulo de 23.45º con el eje de la eclíptica, llamado

oblicuidad de la eclíptica. Esto da lugar a los distintos períodos que se suceden a lo largo

del año , conocidos como Estaciones.

Veamos como la oblicuidad de la eclíptica explica, por un lado, el distinto

calentamiento de la Tierra al variar su posición a lo largo de la órbita y por otro lado, la

diferente duración del día y de la noche a lo largo del año. En efecto, en la Fig. 1 se

muestran cuatro posiciones de la Tierra en su movimiento alrededor del Sol,

correspondientes al inicio de las Estaciones. En el período de verano, el ángulo que forman

los rayos del Sol con la dirección norte del eje polar es menor de 90º. En cualquier lugar del

hemisferio norte, los rayos inciden con un ángulo menor respecto a la normal a la

superficie, que en un lugar del hemisferio sur con la misma latitud. Por ello, la componente

normal de los rayos solares a un plano horizontal es mayor en el hemisferio norte que en el

sur. Esto produce un calentamiento mayor en el hemisferio norte durante el verano.

Así mismo, en este período, la superficie interceptada por los rayos solares es mayor en el

hemisferio norte que en el sur y al ser constante la rotación propia de la Tierra, la duración

del día en este hemisferio, es superior a la de la noche.

Fig. 1.- Movimiento de la Tierra alrededor del Sol

4

Page 5: TERMICA - Radiación Solar

En la posición opuesta a la anterior, que corresponde al inicio del invierno el 22 de

diciembre, la situación del hemisferio norte y sur respecto al Sol se invierten. El

calentamiento sobre el hemisferio sur es superior y análogamente ocurre a la duración del

día y de la noche. Estas dos posiciones opuestas, verano e invierno se llaman Solsticios.

En las posiciones intermedias, llamadas Equinoccios, primavera el 21 de marzo, el eje polar

es perpendicular a la línea que une la Tierra y el Sol y por tanto perpendicular a los rayos

solares. La duración del día y de la noche es la misma, 12 horas, e igual en el hemisferio

norte y sur, ya que la zona de la superficie terrestre interceptada por los rayos solares es la

mitad de la superficie total.

La excentricidad de la órbita de la Tierra, como ya se ha dicho, es muy pequeña,

0,01673. La distancia más corta entre la Tierra y el Sol es el perihelio y la mayor el afelio.

La distancia media Tierra-Sol, r0, es una unidad astronómica (UA) y es igual a 1,496. 108

km. La rotación de la Tierra alrededor de su eje causa cambios en la distribución de la

radiación solar a lo largo del día, y la posición de este eje respecto al Sol cusa los cambios

estacionales.

La distancia Sol-Tierra varía cada día. Duffie y Beckman han utilizado la siguiente

expresión para evaluar la relación r0 y r , distancia Tierra-Sol, en función del día del año,

dn:

⎟⎠⎞

⎜⎝⎛+=⎟

⎠⎞

⎜⎝⎛=

3652

cos033,012

00

ndrr

( )

2.- Sistemas de Coordenadas

Para conocer de modo más preciso la influencia del Sol no basta con una

descripción meramente cualitativa, es preciso estar en condiciones de obtener resultados

numéricos, para ello, vamos a introducir ciertos sistemas de coordenadas que permiten

describir el movimiento aparente del Sol y conocer su posición en un instante dado. Para

5

Page 6: TERMICA - Radiación Solar

este fin consideremos la idea de Esfera Celeste que, constituye una representación utilizada

en Astronomía.

Al observar el firmamento de noche da la impresión de una bóveda semiesférica

salpicada de estrellas , de diferente brillo. si se hiciera la observación desde el espacio la

impresión óptica sería la de una esfera de gran radio, cuyo centro es el punto de

observación y en donde resulta difícil apreciar la distancia, únicamente los ángulos entre las

estrellas nos dan una idea de su posición.

Así para estudiar las posiciones de los astros se consideran éstos proyectados sobre

la esfera celeste que tomamos de radio unidad, de modo que el ángulo entre dos direcciones

se mide directamente en unidades de arco, sobre círculos máximos de la esfera. Ahora bien,

para determinar la posición de un punto en este sistema es necesario definir una referencia.

Para ello se elige un círculo máximo llamado fundamental, determinado por la intersección

con la esfera de un plano que pasa por su centro. la recta perpendicular al plano que

contiene el círculo fundamental pasando por el centro de la esfera se llama eje polar y los

puntos P1 y P2 se llaman polos. Todos los círculos máximos que pasan por los polos son

perpendiculares al fundamental y se llaman círculos secundarios. La posición de un punto

cualquiera S de la esfera queda determinada por dos coordenadas esféricas, ver Fig. 2:

P1

P2

BA

S

Fig. 2.- Sistemas de Coordenadas de la Esfera Celeste

6

Page 7: TERMICA - Radiación Solar

a) la distancia angular BS desde el círculo fundamental a S medida a lo largo del círculo

secundario que pasa por S.

b) la distancia AB entre el punto de intersección B del círculo secundario y el fundamental

y un punto A del círculo fundamental que se toma como origen. Por último es preciso

tomar un sentido positivo para ambas coordenadas esféricas. Cada plano fundamental de la

esfera celeste junto con el eje polar define un sistema de coordenadas celestes.

Puesto que la dirección del Sol, en cada instante, depende del movimiento aparente

de éste y del desplazamiento del observador, se ha de tener en cuenta el lugar de

observación sobre la superficie terrestre y definir la posición de un observador sobre ella,

esto se hace mediante las coordenadas geográficas.

Fig. 3.- Esfera Terrestre y ugar de latitud Φ.

Para definir estas coordenadas en un lugar de la superficie terrestre, suponemos la

P1

P2

H'

zH

Z

Z'

Φ

h

Ecuador

Mer

idian

o loc

al

O

Esfera terrestre

Celeste en un l

esfera celeste centrada en el punto de observación de la Tierra, ver Fig. 3, una recta paralela

a la vertical astronómica del lugar, que es la dirección de la gravedad, indicada por la

plomada y que pasa por el centro de la esfera celeste, la corta en dos puntos: el cenit

astronómico celeste Z, en la dirección situada encima del observador y el nadir Z', por

abajo.

7

Page 8: TERMICA - Radiación Solar

H'

HZ

Z'

Fig. 4.- Plano del horizonte de la Esfera Celeste.

En la Fig. 4 se representa la esfera celeste aislada. La recta que pasa por el centro de

la esfera celeste O y es paralela al eje instantáneo de rotación de la Tierra determina los

polos celestes. El polo norte es aquel desde el cual se observa que la rotación de la Tierra

tiene lugar en sentido horario y el opuesto es el sur. El horizonte astronómico celeste es el

círculo máximo HH' determinado sobre la esfera por un plano perpendicular a la vertical

astronómica del lugar por el centro O. Meridiano celeste del lugar O, es el círculo máximo

que pasa por el cenit del observador y los polos celestes. La intersección del plano que

contiene a este meridiano y la superficie terrestre se llama meridiana astronómica o línea N-

S. El plano normal a la vertical del lugar en O, es el plano del horizonte, ver Fig. 5.

TIERRA

ZENIT

EJE POLAR

PLANO DELHORIZONTE

Meridiano astronómico

N

S

WE

POLO NORTE

Fig. 5.- Plano del horizonte de la Esfera Terrestre

8

Page 9: TERMICA - Radiación Solar

Una vez definidas las coordenadas que nos fijan un punto en la esfera celeste vamos a

dar dos sistemas de representación para determinar la posición del Sol sobre esta esfera,

considerando que el punto de observación se encuentra en el centro de la misma.

Sistema de coordenadas horizontales: el plano fundamental en este sistema es el plano

HH' del horizonte astronómico del lugar que pasa por el centro de la esfera celeste y se llama

horizonte astronómico celeste, ver Fig. 4. El eje fundamental es la vertical astronómica del

lugar (dirección del hilo de la plomada) que pasa por el centro de la esfera celeste. Las

coordenadas horizontales son (ver Fig.6):

Acimut Az, es el arco del horizonte celeste comprendido entre el punto Sur y el punto S' donde

el círculo secundario que pasa por el Sol S , corta al horizonte. Se mide de 0 a 360º a partir del

sur en sentido SWNE o bien de 0 a 180º hacia el W y de 0 a -180º hacia el Este.

Altura h, es el arco S'S del círculo secundario que pasa por S, comprendido entre este punto y

el horizonte. Se mide a partir del horizonte de 0 a 90º, positivamente hacia el cenit y

negativamente hacia el nadir. en lugar de la altura, se emplea la distancia cenital θz, que es el

arco complementario de h, es decir θ = 90 - h.

Coordenadas horarias:

El plano fundamental es el ecuador celeste (Fig. 7) que se define como el plano

paralelo al ecuador terrestre que pasa por el centro de la esfera celeste. El eje fundamental es el

eje polar que pasa por los polos celestes , Norte y Sur y se llaman círculos horarios a los

círculos secundarios que pasan por los polos y paralelos celestes los círculos menores

paralelos al ecuador. Las coordenadas horarias son:

El ángulo horario w, de S (posición del Sol) (Fig. 7) es el arco MS' del ecuador celeste

comprendido entre el meridiano del lugar y el círculo horario que pasa por S. Se cuenta sobre

el ecuador a partir del punto de intersección M, entre el meridiano del lugar y el ecuador de 0

h a 24 h, en sentido WNES. También se mide de 0 a 180º con signo positivo hacia el W y con

signo negativo hacia el Este.

9

Page 10: TERMICA - Radiación Solar

La declinación δ es el arco SS' del círculo horario que pasa por S, comprendido entre la

posición del Sol S y el ecuador. Se mide desde el ecuador de 0 a 90º, positivamente, hacia el

polo norte y negativamente hacia el polo sur.

H

Z

S

Az

N

S'W

E

P

H'h

θz

S

M

S'

W

P

δ

Fig.6.- Coordenadas Horizontales. Fig. 7.- Coordenadas Horarias.

Como consecuencia de la rotación de la Tierra alrededor del eje polar, el Sol recorre

en su movimiento aparente un paralelo celeste, ver Fig. 8 , se puede considerar que la

declinación es constante a lo largo del día y que el ángulo horario varía proporcionalmente al

tiempo. Los puntos de intersección de la órbita aparente del Sol con el plano del horizonte se

llaman orto y ocaso y corresponden a la salida y puesta del sol.

Por efecto de la traslación de la Tierra y de la inclinación de su eje polar respecto al eje

de la eclíptica el arco diurno tiene una longitud variable, como se ve en Fig. 9, siendo máxima

en el solsticio de verano y mínima en el de invierno. En los equinoccios el arco diurno es la

mitad de la longitud del paralelo celeste descrito por el Sol.

El plano de giro de la Tierra alrededor del Sol se llama plano de la eclíptica. La Tierra

gira alrededor de su eje polar, que está inclinado 23,5 º respecto a la perpendicular al plano de

la eclíptica. Este ángulo permanece constante a lo largo del año; sin embargo el ángulo

10

Page 11: TERMICA - Radiación Solar

formado por una línea que una lo centros de la Tierra y el Sol y el plano ecuatorial varía cada

día. Este ángulo es, como hemos visto, la declinación solar δ.

Vertical

Z

S

δh

Az

ocaso

orto

Ecuadorω

PEje polar

Paralelo celeste

W

N

φ

ϕ

Q' Q

Z' S

ω

Fig.8.- Posición del Sol, S, dada por sus coordenadas horizontales y horarias

Arco diurnoW

Eje polar

E

S

NP

β

Junio

Marzo

Diciembre

Plano delhorizonte

Fig.9.- Variación del arco diurno en distintas épocas del año.

La declinación es cero en los equinocios y varía entre +23,5º y –23,5º. Es mayor que

cero en verano para el hemisferio Norte.

Spencer, propone la siguiente expresión para el cálculo de la declinación del sol:

11

Page 12: TERMICA - Radiación Solar

δ = 0,006918 – 0,399912 cos Γ + 0,070257 sen Γ - 0,00675 cos 2 Γ + 0,000907 sen 2 Γ -

0,002697 cos 3 Γ + 0,00148 sen 3 Γ (rad)

donde Γ, en radianes se conoce como ángulo del día, y se calcula mediante la expresión:

366d2 nπ=Γ

y dn es el día del año.

5.- Posición del Sol

Mediante las coordenadas horizontales y horarias definidas y como se representa en

Fig. 8 se determina sobre la esfera celeste el triángulo astronómico PZS. Aplicando a este

triángulo las relaciones trigonométricas de la resolución de triángulos esféricos, se obtiene:

sen h= sen φ sen δ + cos φ cosδ cos ω (1)

cos θz = sen φ sen δ + cosφ cos δ cos ω (1’)

El acimut del Sol, Az, en función del ángulo horario, de la declinación y de la altura

viene dado por la expresión:

sen Az = sen ω cos δ / cos h (2)

De la ecuación (1) deducimos los ángulos horarios correspondientes al orto y al ocaso,

haciendo h = 0, resulta así:

cos ωs = - tg φ tg δ (3)

El angulo ωs se considera con signo negativo si corresponde a la salida y positivo si es

la puesta del Sol.

La siguiente expresión puede ser usada para el cálculo de la declinación:

sen δ = 0.4 sen (360/365) dn (4)

12

Page 13: TERMICA - Radiación Solar

donde dn es el día del año, contado desde la posición del equinoccio de primavera 21 de

marzo. También se utiliza otra expresión en la que dn se toma a partir del día 1 de Enero:

δ = 23.45 sen ( 360 (284 + dn )/365 ) (5)

6.-Duración del día

Conocida la latitud y la declinación del lugar la duración del día Td se obtiene

fácilmente, pues será el doble del ángulo correspondiente al orto, es decir:

Td = 2 arc cos (- tg φ tg δ ) (6)

este resultado se expresa en horas, dividiendo por 15, ya que cada hora equivale a un ángulo

de 15º ( una rotación completa de la Tierra, 360º, se realiza en 24 h, luego 1 h =360º/24 = 15º,

un minuto =15º/60 =15' y un segundo = 15'/60 = 15''.

7. Tiempo Solar

El tiempo solar verdadero en un lugar se define como el ángulo horario ω, del Sol en

ese lugar y se toman las 12:00 horas cuando ω= 0, es decir, cuando el Sol se halla en el

meridiano local.

Para obtener la relación entre TSV y el Tiempo Civil, es decir el que marcan los relojes

en aquel lugar, se han de introducir las siguientes consideraciones:

a) La Ecuación del tiempo, dada por Et, ya que por un lado la velocidad del Sol en su

movimiento aparente no es constante y por otro lado se ha de tener en cuenta la oblicuidad de

la eclíptica. El valor de Et en minutos para cada día del año se da en la Fig.10 y también puede

obtenerse de la siguiente ecuación:

Et = 0.0002-0.4197 cos Γ + 3.2265 cos 2Γ + 0.0903 cos 3 Γ + 7.3509 sen Γ +

13

Page 14: TERMICA - Radiación Solar

9.3912 sen 2 Γ + 0.3361sen 3 Γ (7)

donde Γ = 2π dn /366, dn día del año a partir 1º de enero.

Así obtenemos el Tiempo solar medio, Tm , es decir TSV corregido de todas sus

irregularidades:

Tm = TSV + Et

b) Debido a la diferencia en longitud entre el meridiano local y el que se toma como origen

que es el meridiano de Greenwich, se introduce la corrección:

∆ λ = ( 24/360) 60 ( λ -λ0 ) = 4 ( λ -λ0 ) (8)

donde λ son las longitudes del meridiano local cero y del meridiano local. El signo + se toma

para los lugares situados al Este del meridiano cero y el signo menos, hacia el Oeste.

0 15 30 45 60 75 90 105

120

135

150

165

180

195

210

225

240

255

270

285

300

315

330

345

360

-18-16-14-12-10-8-6-4-202468

10121416

MIN

UTO

S

Enero Febr. Marzo Abril Mayo Junio Julio Agosto Sept. Octub. Nov. Dic.

Fig. 10. Ecuación del tiempo, Et

14

Page 15: TERMICA - Radiación Solar

c) Teniendo en cuenta lo anterior, el tiempo solar verdadero a partir del tiempo civil puede

ser calculado mediante la expresión:

TSV = Tc –E -∆ t +∆λ

-150 -120 -90 -60 -30 0 30 60 90 120 150Acimut , grados

0

30

60

90

Altu

ra S

olar

, gr

ados

Junio

Abril

Agosto

OctubreFebrero

Diciembre

Septiembre

Marzo

11 horas 13 horas

10 horas

9 horas

8 horas

7 horas

6 horas

14 horas

15 horas

16 horas

17 horas

18 horas

Fig. 11 . Altura del Sol en función del azimut

8. Posición del Sol respecto de superficies inclinadas

15

Page 16: TERMICA - Radiación Solar

θz

Ecuador

θ0

β

φ − βφ

Fig. 12 Diagrama mostrando la igualdad de los ángulos θ0 y θz

θ0 es el ángulo de incidencia de la radiación sobre una superficie inclinada y orientada hacia

el ecuador en un lugar de latitud φ y tiene la siguiente expresión:

cos θ0 = sen δ sen (φ - β) + cos δ cos (φ-β) cosω

16

Page 17: TERMICA - Radiación Solar

β

− ψ

Normal alplano inclinado

+ γ Este

Oeste

Norte

Sur

Superficie horizontal

proyección del rayosolar sobre un plano horizontal

θ

proyección sobre un plano horizontal de lanormal al plano inclinado

Fig. 13. Posición del Sol respecto a un plano inclinado

La Fig. 13 muestra la posición del Sol respecto una superficie inclinada.

9. Sombras

De forma general pueden existir tres tipos de sombreamientos:

1) En el primero podemos considerar el sombreamiento de un colector, ventana u otro

sistema receptor solar, situado cerca de árboles, edificios u otras obstrucciones. En

estos sistemas la geometría puede ser irregular y los cálculos sistemáticos del

sombreamiento del receptor puede ser difícil. Se utiliza para resolver estos casos el

diagrama de la posición del Sol en función del azimut, es decir la altura del Sol en

17

Page 18: TERMICA - Radiación Solar

función del azimut sobre el cual se superpone la forma de la obstrucción y se

determina cuando el recorrido del Sol se ve bloqueado por dicho obstáculo.

2) un segundo caso pude ser el sombreamiento de colectores por otra fila de los

mismos en una instalación multifila.

3) Sombreamientos de ventanas por aleros

Cuando las geometría es regular, el sombreamiento es fácil de calcular y los

resultados se muestran a continuación:

En cualquier instante y en una latitud particular se fijan: φ, δ y ω, es decir la latitud

del lugar, la declinación del Sol y el ángulo horario del Sol o tiempo solar verdadero. Con

las expresiones de la altura del Sol en función del azimut y como hemos explicado antes se

construyen las curvas de la Figura 11, para una latitud de 42º. Las líneas de la declinación

están rotuladas con las fechas del día medio del mes y las líneas del ángulo horario

constante están rotuladas con la hora del día. Partiendo de dicha figura, la posición angular

de edificios, aleros, salientes, etc. debe ser representada en la misma figura.

Un edificio u otro elemento (obstrucción) de dimensiones y orientación conocida se

coloca a una distancia conocida del punto de interés, por ejemplo del colector, receptor,

ventana, etc., las coordenadas angulares correspondientes a la altura y azimut de los puntos

de la obstrucción se calculan mediante relaciones trigonométricas, también pueden medirse

con instrumentos apropiados, por ejemplo altímetros, sextantes, etc. pero este caso no lo

contemplaremos aquí.

Para continuar vamos a tratar los siguientes ejemplos concretos:

1.- Colector

Un colector s se sitúa a 10 m al norte de una larga pared que le sombreara cuando el Sol

esté bajo en el cielo. La pared mide 2.5 m de altura. Mostrar la posición de la pared en la

carta azimut-altura del Sol cuando: 1) la pared se orienta de este a oeste, como se muestra

18

Page 19: TERMICA - Radiación Solar

en la Figura 14; 2) la pared se orienta de sureste a noroeste formando 20º con la dirección

este-oeste, como se muestra en la Figura 15.

a) Tomamos varios puntos de lo alto de la pared para establecer las coordenadas de

ajuste sobre la carta de posición del sol.

Tomamos A hacia el sur y B y C hacia el Oeste de A, B dista de A 10 m y C dista de A

30 m. En el punto S está el colector

Punto A:

azimut= 0º ; α0A es la altura de A respecto de O

tg α0A = 2.5 / 10 α0A = 14º

Punto B:

se proyecta verticalmente y el punto se denomina S1, la distancia S1O es (102 + 102 )1/2

= 14.1 ; tg α0B =2.5 / 14.1 α0B = 10º

El azimut del punto B es: tg γoB = 10 / 10 = 1 γoB= 45º

Punto C:

se proyecta sobre la vertical y la distancia al punto O es (302 + 102 )1/2 = 31.6;

tg αoC = 2.5 / 31.6 αoC= 4.52 º

tg γoC = 30 / 10 γoC = 71.6

Tabla 1.- Alturas y azimut de los puntos seleccionados

punto altura azimut izqda

A 14º 0º 0º

B 10º 45º -45º

C 4.5º 71.6 -71.6

19

Page 20: TERMICA - Radiación Solar

Se deduce al llevarse a la figura del alturas del sol, que el Sol estará sombreado por la

pared desde Septiembre a Marzo. en diciembre hasta las diez horas AM y después de

las 3 horas PM.

2.- Obstrucción sin simetría

Se seleccionan puntos de γo : 45º (B); 90º (C); -30º (D) y –60º (E), el punto A se

encuentra al sur de S:

A:

tg α0A = 2.5 / 10 α0A = 14º γ0A = 0º

B:

tg α0B =2.5 / 10.4 α0B = 13.5º

sen 70/B1 S = sen (180- 45-70)/10 B1S == 10.4

C:

sen 70 / C1S = sen (180-90-70)/ 10 C1 S = 18.78

tg αoC = 2.5 / 18.78 αoC= 4.52 º

Tabla 2.- Alturas y azimut de puntos seleccionados

punto altura azimut izqda

A 14º 0º -14º

B 13.5º 45º -45º

C 4.5º 90º 90º

20

Page 21: TERMICA - Radiación Solar

3. Obstrucción producida por edificios

Los puntos seleccionados en este caso deben ser los límites de la obstrucción. Se ve

en el ejemplo de la Figura 16.

Se desea instalar un colector a 4 m sobre la Tierra en un lugar de latitud 45º. Un

edificio rectangular de 30 m de alto está localizado 45 m al Sur, tiene su dimensión más

larga sobre el eje E-W . Los puntos críticos para calcular la imagen son: A, B y C,

asiendo B y C esquinas. Sobre el edificio se toma el punto A hacia el sur, el B a 52 m

de A y el C a 8 m de A, todos ellos en la parte alta del edificio.

Punto A:

tg α0A = 26 / 45 α0A = 30º γoA= 0º

Punto C

tg αoC = 26 / C1C ; C1C = (82 + 452 ) ½ = 45.7 αoC= 29.6 º

tg γ0C = 8 / 45 γ0C = 10.1º

Punto B:

B1B2 = (45 2 + 522 )1/2= 68.8 m

tg α0B = 26 / 68.8 αoB = 20.7 º

tg γ0B = 52 / 45 γ0B= 49.1 º

Tabla 3.- Altura y azimut de los puntos seleccionados

Punto altura azimut

A 30 0

B 20.7 49.1

C 29.6 10.1

21

Page 22: TERMICA - Radiación Solar

S

C B A

30 m10 m

Figura 14

D

20º

B

SC

E

A

Figura 15

22

Page 23: TERMICA - Radiación Solar

Colector

B CA

8 m

52 m

45 m

Figura 16

23

Page 24: TERMICA - Radiación Solar

Lista de Símbolos

r: distancia actual Tierra- sol

r0 : distancia media Tierra- Sol (1 UA), equivale a 1,5 . 108 km

rs : radio del Sol ( 7. 105 km)

E0 : factor de corrección de la excentricidad de la Tierra (r / r0)2

dn : número del día del año contado a partir del día 1 de enero

h: altura del Sol (grados)

Az : azimut del Sol (grados)

Td = duración del día

Et : ecuación del tiempo

Símbolos griegos:

α: altura del Sol (grados)

β : ángulo inclinación de una superficie (grados)

δ : declinación del Sol (grados)

φ : latitud del lugar (grados)

24

Page 25: TERMICA - Radiación Solar

γ : azimut del Sol (grados)

λ : latitud del lugar (grados)

θz : ángulo zenital del Sol (grados)

θ0 : ángulo de incidencia para una superficie inclinada hacia el ecuador (grados)

Γ: ángulo del día ( rad)

ω : ángulo horario del sol, a las 12 es cero, cambia 15 º cada hora (grados)

ωi : ángulo horario en el centro de cada hora (grados)

: 3. RADIACIÓN SOLAR TÉRMICA Y RADIACIÓN SOLAR EXTRATERRESTRE La materia puede emitir radiación térmica debida a la agitación de moléculas y átomos. el espectro electromagnético de radiación se compone de rayos γ, rayos X, radiación ultravioleta, luz, calor, ondas de radio y ondas de radar. En la Fig. 1 se muestra el espectro electromagnético. Ahora estamos interesados en la región de radiación térmica del espectro. La radiación térmica se emite por agitación asociada a la temperatura de la materia y se compone de luz y calor. El ojo humano es buen detector de la luz pero no del calor. Como mostraremos más tarde mucha de la radiación solar que alcanza la superficie de la tierra se encuentra en el rango de la radiación térmica. La radiación electromagnética se clasifica por la frecuencia, la longitud de onda y el número de onda. La radiación térmica está comprendida dentro del rango 0.2 – 1000 µm .El espectro visible comprende entre 0.39 y 0.77 µm y la división espectral en los diferentes colores es como sigue:

violeta ... 0.390-0.455 µm azul ........0.455-0.492 “

verde .....0.492-0.577 “

amarillo ..0.577-0.597 “

25

Page 26: TERMICA - Radiación Solar

naranja .. 0.597-0.622 “

rojo ...... 0.622-0.770 “

El espectro ultravioleta se divide en tres bandas:

UV próximo....... 0.3-0.4 µm UV lejano ........ 0.2-0.3 “

UV máximo ..... 0.001-0.2 “

A su vez la región infrarroja se divide en dos partes: IR cercano 0.77-25 µm IR lejano: 25-1000 µm Otra subdivisión de la radiación térmica es en longitud de onda larga y corta. El

límite entre las dos es a veces arbitrario: en energía solar la mayor porción de radiación solar se considera en la región de la longitud de onda corta y el límite está entre 3 y 4 µm . La radiación emitida por la tierra y su atmósfera se denomina radiación terrestre, la figura 1 muestra el espectro electromagnético.

LONGITUD DE ONDA ( m)

VIOLETA 0,39 m ROJO 0,77 mµ µ

ULTRAVIOLETA INFRARROJO CERCANO

INFRARROJO LEJANO

RADAR TV RADIO

RAYOS XRAYOS γ

RADIACIÓN TÉRMICA

µ

10-3 10-2 10-1 1 10 102 103

Fig. 1.- Espectro de radiación electromagnética

Radiación del cuerpo negro

Un cuerpo o una superficie emite energía en todas las longitudes de onda del espectro electromagnético. A una temperatura dada, un cuerpo negro es uno que emite la máxima cantidad de energía en cada longitud de onda y en todas las direcciones y absorbe todas las radiaciones incidentes en cada longitud y todas las direcciones. Un cuerpo negro es una superficie ideal con la que el funcionamiento de las superficies reales se compara. Compararemos la radiación del sol con la del cuerpo negro a una temperatura equivalente. Por lo tanto es útil señalar las leyes fundamentales de emisión del cuerpo negro. 1.- Ley de Planck : la potencia emitida en cualquier longitud de onda y T, llamada potencia emisiva espectral viene dada por la ley de Planck:

26

Page 27: TERMICA - Radiación Solar

[ ]1)T/Cexp(Ce

25

1b −λλ

=λ (1)

donde ebλ es la potencia de emisión espectral hemisférica de un cuerpo negro en: Wm-2µm-1, donde hemisférica significa que se emite radialmente en todas las direcciones sobre una superficie, C1 es una constante que vale 3.7427 W µm4 m-2, C2 es una constante que vale 1.4388 µm K; λ es la longitud de onda en µm y T es la temperatura del cuerpo negro (K).

En la figura 2 mostramos la potencia emitida por el cuerpo negro: se deducen tres observaciones cuando T aumenta:

1) el poder emisivo aumenta con la longitud de onda 2) se emite más energía para longitudes de onda corta. 3) la posición del máximo se desvía hacia longitudes de onda más cortas

El sol se comporta como un cuerpo negro a la temperatura de 5777 K , por tanto la

mayor parte de su energía se encuentra en el rango de longitudes de onda cortas .

0 2 4 6 8 10 12 14 16 18 20Longitud de onda ( m)

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

Pote

ncia

esp

ectra

l em

itida

(W m

-2

m-1

)

373 K

1000 K

3000 K5777 K

Ley de WienmaxT = 2897.8 m Kλ

µ

µ

µ

Fig. 2.- Poder emisivo espectral del cuerpo negro

27

Page 28: TERMICA - Radiación Solar

1000 10000Producto longitud de onda - Temperatura T ( m K)

0

2E-12

4E-12

6E-12

8E-12

1E-11

1.2E-11

1.4E-11

1.6E-11

e b

/T5

(W m

-2

m-1

K-5 )

1448 2898 4108 6149 234220 T, ( m K)λ

µ

µ

1 25 50 75 99 Porcentaje de energía emitida por debajo de T

λ µ

λ

( max T)λ

Fig. 3.- Distribución espectral del poder emisivo del cuerpo negro

28

Page 29: TERMICA - Radiación Solar

Como muchos colectores solares (dispositivos para el aprovechamiento de la energía solar) están diseñados para operar a 100 ºC, de la figura 2 se deduce que la energía que emiten está la mayor parte en el rango de la longitudes de onda larga. 2.- Ley de Stefan-Boltzmann: La potencia emitida por un cuerpo negro dentro del ancho de banda dλ se escribe como: ebλ dλ . La radiación que emite una superficie de área unidad en todas las longitudes de onda se llama poder emisivo eb :

[ ] λ−λλ

=λ= ∫∫∞=λ

∞=λ

=λ λ d1)T/Cexp(

Cdee0

25

10 bb (2)

Cuando se integra la ecuación 2 se obtiene: eb = (C1 π

4 / 15 ) T42C 4 = σ T4

donde σ es la constante de Stefan-Boltzmann = 5.6697 10-8 Wm-2 K-4

3.- Ley de Wien: La ley de Planck, ecuación (1), puede ponerse en una forma más universal; dividiendo por T5 se obtiene:

[ ]1)T/Cexp()T(CT/e

25

15b −λλ

=λ (3)

esta ecuación expresa ebλ / T5 en términos de una sola variable λ T . La figura 3 muestra la relación dada por la ecuación (3). El valor λmax T es de 2897.8 , es decir, λ max = 2897.8 / T , en µm . Suponiendo que el sol es un cuerpo negro a T= 5777 K , λ max = 2897.8/5777= 0.5016 µm, la cual está en la región del verde.

Para un colector plano a la temperatura de 373 K, λ max = 2897.8 / 373 = 8 µm

Suponiendo el sol como cuerpo negro a una temperatura de 5777 K, se puede

representar la irradiancia espectral, (energía por unidad de tiempo unidad de superficie y unidad de longitud de onda) sobre una superficie normal a los rayos del sol y a la distancia media tierra sol:

λn0.I

(4) 2sb

2n0

.r4er4I π=π λλ

donde rs es el radio del sol, (7x 105 km), r es la distancia media tierra sol, ( 1,5 x 10 8 km); ebλ es el poder emisivo del cuerpo negro ( W m-2 λ-1) que se calcula por la ecuación de

Planck. A partir de la ecuación (4) se obtiene el valor de y se representa en la figura 4.

λn0.I

29

Page 30: TERMICA - Radiación Solar

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0Longitud de onda ( m)

0

500

1000

1500

2000

2500

Irrad

ianc

ia e

spec

tral I

On

(W

m -2

m

-1 )

El Sol como cuerpo negro a 5777 Ka 1 AU de distancia

µ

µ

λ

Fig. 4.- Irradiancia espectral desde el sol como cuerpo negro

Propiedades de los cuerpos reales

El término cuerpo negro se usa para describir una superficie ideal o material que sigue las leyes de Planck, Stefan-Boltzmann y Wien. Una propiedad adicional del cuerpo negro es su capacidad de absorción. Por definición un cuerpo negro absorbe toda radiación en todas longitudes de onda incidente sobre él desde cualquier dirección. Por tanto el cuerpo negro ni refleja ni trasmite energía.

El concepto de cuerpo negro sirve como una referencia para comparar las propiedades radiativas de las superficies reales con una ideal. Una superficie real parcialmente absorberá y parcialmente reflejara la radiación incidente y no será opaca por lo que parcialmente trasmitirá la radiación incidente. Consideremos una unidad de radiación monocromática que incide sobre una superficie real, se puede escribir:

λλλ τ+ρ+α=1 (4) donde αλ, es la absortancia monocromática. es la relación entre la energía absorbida y la incidente; ρλ es la reflectancia monocromática, es la relación entre la energía reflejada y la incidente; τλ es la trasmitancia monocromática, es la relación entre la energía trasmitida y la incidente. Cuando la radiación procede del sol, a la reflectancia de una superficie, se le denomina albedo.

30

Page 31: TERMICA - Radiación Solar

Definiciones Irradiación, Insolación, Radiación, Irradiancia, Radiancia, Intensidad, Flujo Radiante, Densidad de flujo radiante, son términos que aparecerán en adelante. De forma breve les podemos definir como: Flujo radiante: es la energía emitida por unidad de tiempo: Energía /t; Unidades: J s-1 = W Densidad de flujo radiante: es el flujo radiante por unidad de superficie, es lo mismo que irradiancia.

1) Irradiancia: indica la proporción de energía solar que llega a una superficie por unidad de tiempo y por unidad de área. Irradiancia es lo mismo que densidad de flujo radiante : Unidades: W m-2 .

2) Irradiación e insolación: son intercambiables y ambas se refieren a la cantidad de

energía solar que llega a una superficie durante un período de tiempo. Unidades: kJ m-2 h-1 ó MJ m-2 h-1. 3) Radiación: se utiliza en sentido genérico. 4) Intensidad radiativa: es la irradiancia en una dirección particular y contenida en un

ángulo sólido. Unidades: W m-2 sr –1.

Símbolos ebλ : potencia espectral emitida ( W m-2 µm-1) T : temperatura (K)

4. LA CONSTANTE SOLAR Y SU DISTRIBUCIÓN ESPECTRAL El objetivo de este tema es describir la física del Sol, la naturaleza de la energía que emana, la constante solar y la cantidad de energía total que llega a la cima de la atmósfera. El Sol es la estrella más próxima a la tierra y es la fuente de energía que influye en los movimientos atmosféricos y en el clima. El Sol es un cuerpo gaseoso compuesto principalmente de hidrógeno su estructura se compone de diferentes regiones:

31

Page 32: TERMICA - Radiación Solar

1) Núcleo es el más caliente y denso, su temperatura oscila entre 15.106 y 40.106 K; su densidad oscila entre 100 y 150 g cm-3.

2) Interior: es la zona que contiene la masa, las regiones 1 y 2 son el reactor nuclear y fuente de energía . La energía se propaga a las otras regiones por convección y radiación.

3) Zona convectiva 4) Superficie: fotoesfera, es la fuente de radiación visible que llega a la tierra. Se

compone de gases (esfera de luz) Ca y Fe gaseosos e H1 y He que dan brillo. 5) Zona de inversión 6) Cromosfera: tiene un espesor de 2500 km y se considera como la atmósfera del Sol,

se compone de hidrógeno y helio. 7) La corona, es la parte externa del Sol, se compone de gases y se encuentra rodeada

por el viento solar. A continuación exponemos algunos datos de interés: el diámetro del Sol es 1,4 106 km y el de la tierra 6500 km ; 1 UA (distancia media Tierra-Sol) = 1,5 . 108 km y el radio del Sol, rs = 7 .105 km . La reacción de fusión que se produce en el Sol en forma esquemática es:

4 H11 - He4

2 + 2 e01 + E

Esta ecuación conlleva una pérdida de masa que se transforma en energía según la relación: E= mc2 . La edad del Sol es de 5000 millones de años, y en un segundo 700 millones de toneladas de H1

1 se convierten en helio, con una pérdida de masa de 4,3 toneladas, lo que significa que en 6000 millones de años, la masa de H1

1 se reduce el 10% . El Sol varía su temperatura, tiene ciclos de 11 años de manchas y otros ciclos de otras actividades, de forma que varía la distribución espacial y temporal de la energía radiante que abandona el Sol.

Constante Solar La constante solar es la energía total a todas las longitudes de onda incidente sobre una superficie normal a los rayos del Sol a una distancia de una unidad astronómica (1 UA), su valor es de 1367 W m-2 según la escala del WMO (World Radiation Reference Centre); 1373 W m-2 según la escala de WMO ( World Meteorological Organization). Su valor en unidades de energía, según la escala WMO, es: = 1367 W mscI& -2

= 4921 kJ m-2 h-1. El cálculo se realiza teniendo en cuenta que 1s son 1/3600 h.

Temperatura del Sol como cuerpo negro

La temperatura del Sol varía de unas partes a otras. La temperatura del Sol se puede calcular a partir de la constante solar y de la ley de Stefan-Boltzmann :

32

Page 33: TERMICA - Radiación Solar

4/1

2s

20

SC

.

r

rIT

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

σ= ( )

donde r0 la distancia media tierra Sol (1UA), 1,5 x 108 km; rs es el radio del Sol : 7 x 105

km; σ es la constante de Stefan Boltzmann : 5,6697 x 10-8 W m-2 K-4 ; es la constante solar: 1367 W m

sc.I

-2 . La proporción de energía radiada por el Sol es 3,844 x 1023 kW, se calcula multiplicando la constante solar por la superficie de la esfera de radio 1 UA. Si suponemos que el radio medio de la tierra es 6370 km, la energía que incide sobre la tierra es 1,743 x 1014 kW .

Irradiación solar horaria sobre superficie horizontal

Si es el valor de la constante solar en unidades de potencia e Isc.I sc en unidades de energía,

es la irradiancia normal a la distancia r del Sol se evalúa según la expresión: N0.I

sc.I 4π r2

0 = oN.I 4π r2 ( 1 )

siendo E0= 2

0 ⎟⎠⎞

⎜⎝⎛

rr la excentricidad de la órbita; y r la distancia tierra Sol, de la expresión (1)

se deduce la siguiente relación: oN.I = sc

.I E0,

33

Page 34: TERMICA - Radiación Solar

Irradiancianormal IOn θz

cenitSol

Irradianciahorizontal IO

Tierra

Superficiehorizontal

Fig. 4. 1 . Relación entre la irradiancia normal directa, , y la horizontal oN.I 0

.I

La irradiancia horizontal a la distancia r del Sol, , se evalúa mediante la expresión:

0.I

= cos θz = E0 cos θz = E00.I oN

.I sc

.I sc

.I [ ]ωφδ+φδ coscoscossensen (2)

la secuencia de términos que se tienen son:

sc.I , , , I0 oN

.I 0

.I

donde es irradiancia e I0 es irradiación solar horizontal respectivamente. 0.I

Para aclarar estos conceptos, tengamos en cuenta que, en un tiempo dt llega a una superficie horizontal la irradiación solar dada por:

dI0= dt = E0 cos θz dt, (3) 0.I sc

.I

donde dt (s) e viene dada en Wmsc.I -2, realizando un cambio de unidades:

dI0= dt = E0 cos θz dt = E0 cos θz (3600)dt y dt está en horas; 0.I sc

.I sc

.I

como . 3600 = Isc sc.I

dI0= Isc E0 cos θz dt, (4 ) donde dt está en (h)

34

Page 35: TERMICA - Radiación Solar

sabemos que = 1367 W msc.I -2 = 1367 J m-2/s , en unidades de energía: 1367 x 3600 = 4921

kJ m-2 h-1. Continuando con la evaluación de I0 sobre una superficie horizontal, en la expresión: dI0 =

Isc E0 cos θz dt , debe hacerse, el cambio: dt = π12 dω, dado que la velocidad angular de

rotación de la tierra es:

Ω = 242π (rad h-1) =

dtdω

se obtiene la relación:

12π

dt = dω, dt = ⎟⎠⎞

⎜⎝⎛π12 dω,

siendo: Ω la velocidad angular de rotación de la tierra y ω el ángulo horario del Sol. Si en la expresión (4) sustituimos este último resultado, se obtiene:

dI0= Isc E0 cos θz ⎟⎠⎞

⎜⎝⎛π12

dω = Isc E0 ⎟⎠⎞

⎜⎝⎛π12 [ ]ωφδ+φδ coscoscossensen dω (5)

integrando la expresión anterior, (5), entre los límites (ωi + 24π ) y (ωi - 24

π ), que

corresponde a los valores extremos de la hora centrada en ωi , se obtienen los siguientes resultados:

I0 = Isc E0 ⎟⎠⎞

⎜⎝⎛π12

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ π

ω⎟⎠⎞

⎜⎝⎛

πφδ+φδ

24sencos24coscossensen i (6)

como ⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛

2424 ππ

sen ≈ 1, la expresión (6) se escribe:

I0h = Isc E0 [ ]icoscoscossensen ωφδ+φδ (7)

donde ωi es el ángulo horario correspondiente al centro de la hora en la cual se está evaluando la irradiación solar horaria extraterrestre horizontal, I0. Teniendo en cuenta que:

δφδφ

−=ωcoscossensencos s

la expresión (7) toma la forma:

35

Page 36: TERMICA - Radiación Solar

I0h = Isc E0 [ ]si coscoscoscos ω−ωφδ (8) El valor de I0

entre dos instantes cualquiera, definidos por los correspondientes ángulos horarios ω1 y ω2, es:

I0 = Isc E0 ( ) ( )⎥⎦

⎤⎢⎣

⎡ω−ωφδ+⎟

⎠⎞

⎜⎝⎛ π

ω−ωφδ⎟⎠⎞

⎜⎝⎛

π 1212 sensencoscos180

sensen12 (9)

donde ω1 y ω2 vienen dados en grados.

Irradiación extraterrestre diaria sobre superficie horizontal

[ ]

[ ]∫∫∫∫

ωφδ+φδ

=ωφδ+φδ===ss

00sc

0

ss

0 sc

ss

0 0

ss

sr 0d0

dtcoscoscossensenEI2

dtcoscoscossensenEI2dtI2dtII

donde ss indica el momento de la puesta del Sol y sr indica el momento de la salida del Sol

[ ]

[ ]

[ ]ss0sc

0s0sc

w

00scd0

sencoscossensenEI24

)sen(coscossensenEI24

d12coscoscossensenEI2I

s

s

ωφδ+ωφδ⎟⎠⎞

⎜⎝⎛

π

=ωφδ+ωφδ⎟⎠⎞

⎜⎝⎛

π

=ω⎟⎠⎞

⎜⎝⎛

πωφδ+φδ=

ω

I0d = ⎥⎦

⎤⎢⎣

⎡ωφδ+⎥⎦

⎤⎢⎣⎡ π

ωφδ⎟⎠⎞

⎜⎝⎛

π ss0sc sencoscos180

sensenEI24 (10)

donde ωs es el ángulo horario correspondiente a la salida del Sol. Otras formas en que se puede presentar la ecuación (10) son:

I0d = ] ⎥⎦

⎤⎢⎣

⎡ω−⎟

⎠⎞

⎜⎝⎛ π

ωφδ⎟⎠⎞

⎜⎝⎛

π ss0sc tg180

[sensenEI24 (11)

I0d = ] ⎥⎦

⎤⎢⎣

⎡ω⎟

⎠⎞

⎜⎝⎛ π

ω−ωφδ⎟⎠⎞

⎜⎝⎛

π sss0sc cos180

sen[coscosEI24 (12)

36

Page 37: TERMICA - Radiación Solar

Casos especiales: 1) Ecuador: φ= 0, ωs= 90º

I0d = δ⎟⎠⎞

⎜⎝⎛

πcosEI24

0sc

Asi, en marzo, el día 21, δ=0, Φ=0 ; I0d= 38 MJ m-2 día-1

en el mismo lugar en junio δ= 23,5º , I0d = 34,47 MJ m-2 día-1

En las regiones polares, Φ= 90º , ωs = 180º;

I0d = ⎥⎦

⎤⎢⎣

⎡+⎥⎦

⎤⎢⎣⎡ π

φδ⎟⎠⎞

⎜⎝⎛

π0

180180sensenEI24

0sc

I0d = [ ][ ]πφδ⎟⎠⎞

⎜⎝⎛

πsensenEI24

0sc

En la región polar, en junio δ = 23,5º , I0d = 46,22 MJ m-2 día-1

en región polar para δ = 0 º (equinoccio de primavera e invierno), I0d = 0.

0 10 20 30 40 50 60 70 80Latitud, grados

90

0

10

20

30

40

50

Irrad

iaci

n ex

trate

rrest

re, M

J m

-2 d

ay -1

Febrero

Marzo

Abril

Mayo

Junio

JulioAgosto

SeptiembreOctubre

Noviembre

Diciembre

Enero

37

Page 38: TERMICA - Radiación Solar

Fig. 4.2. Irradiación solar global horizontal media mensual en el hemisferio norte

Irradiación solar extraterrestre horaria sobre superficie inclinada un ángulo β

IO

Sol

IOn

β

β

θ0

Fig. 4.3. Irradiancia sobre una superficie inclinada hacia el ecuador

[ ] ωωβ−φδ+β−φδπ

= ∫ωβ dcos)(coscos)(sensenEI12I 2

1

w

0sch0 =

[ ]i0sch0 cos)(coscos9972,0)(sensenEII ωβ−φδ+β−φδ=β

[ ]i0sch0 cos)(coscos)(sensenEII ωβ−φδ+β−φδ=β (13)

Irradiación solar extraterrestre diaria sobre superficie inclinada un ángulo β

I 0dβ = ⎥⎦

⎤⎢⎣

⎡ωβ−φδ+⎥⎦

⎤⎢⎣⎡ π

ωβ−φδ⎟⎠⎞

⎜⎝⎛

π ss0sc 'sen)(coscos180

')(sensenEI24 ω’s ≤ ωs

I 0dβ = ⎥⎦

⎤⎢⎣

⎡ωβ−φδ+⎥⎦

⎤⎢⎣⎡ π

ωβ−φδ⎟⎠⎞

⎜⎝⎛

π ss0sc sen)(coscos180

)(sensenEI24 ω’s ≥ ωs

38

Page 39: TERMICA - Radiación Solar

I 0β = ⎥⎦

⎤⎢⎣

⎡ωβ−φδ+⎥⎦

⎤⎢⎣⎡ π

ωβ−φδ⎟⎠⎞

⎜⎝⎛

π ss0sc 'sen)(coscos180

')(sensenEI24

ω’s = mín ⎨ωs , cos –1 [-tg δ tg (φ -β)] ⎬

Símbolos

sc.I : constante solar (1367 Wm-2)

Isc : constante solar en unidades de energía , Isc= 3,6 ( kJ msc.I -2 h-1)

o.I : irradiancia solar global horizontal (W m-2)

on.I : irradiancia extraterrestre normal (W m-2) I0h : irradiación horaria global horizontal extraterrestre ( kJ m-2 h-1) I0d : irradiación diaria global horizontal extraterrestre ( kJ m-2 h-1)

d0I : irradiación solar extraterrestre media mensual diaria ( kJ m-2 h-1) ( kJ m-2 h-1) Iohβ : irradiación solar extraterrestre horaria sobre superficie inclinada ( kJ m-2 h-1) I0dβ: irradiación solar extraterrestre diaria sobre superficie inclinada ( kJ m-2 h-1)

5. RADIACIÓN SOLAR EN LA SUPERFICIE DE LA TIERRA

1 Radiaciones directa, difusa y reflejada La radiación solar que llega a la tierra está condicionada por dos fenómenos: - Factores astronómicos: son aquellos que dependen de la geometría Tierra-Sol. Dichos

factores son función de la posición relativa Tierra-Sol y de las coordenadas geográficas del lugar considerado: latitud y longitud. Estos factores condicionan el recorrido de la

39

Page 40: TERMICA - Radiación Solar

radiación a través de la atmósfera y el ángulo de incidencia de los rayos solares. Son función de la altura solar en cada instante.

- Factores climáticos: Para cada altura solar, la radiación máxima teórica que se espera en

un lugar, no suele nunca tomar dicho valor. Existen factores llamados climáticos que atenúan la radiación que incide sobre la superficie terrestre. Las nubes, la cantidad de vapor de agua, ozono, aerosoles, etc. contenidos en la atmósfera son los responsables de dicha atenuación, que ocurre fundamentalmente por absorción, reflexión y difusión de la radiación.

El espectro de la radiación solar al atravesar la atmósfera sufre modificaciones debido a la desigual absorción de la distintas longitudes de onda del mismo, por los componentes atmosféricos.

L mite de la Atm sfera

Directa

AerosolesMoléculasde aire

NubesNubesdelgadas

Ib

In Radiación difusa anisótropa que llegaa una superficie horizontal

Radiación solarreflejada que vuelve al espacio

Fig. 5.1. Radiación que alcanza la superficie de la tierra bajo cielo con nubes La radiación total que procedente del sol incide sobre una superficie en la tierra está compuesta por (ver Fig. 5.1): - Radiación directa, B: la que llega a la tierra directamente del sol - Radiación difusa, D: originada por los efectos de dispersión de los componentes de la

atmósfera, incluidas las nubes. - Radiación reflejada, R: radiación incidente en la superficie que procede de la reflejada

en el suelo. El cociente entre la radiación reflejada y la incidente en la superficie de la tierra se denomina albedo.

La radiación global, G o total que llega a una superficie se puede expresar como la suma de estas tres componentes:

G = B + D + R

40

Page 41: TERMICA - Radiación Solar

2 Relaciones entre los distintos tipos de radiación Disponibilidad de datos. En el dimensionado de sistemas de aprovechamiento de energía solar es necesario conocer la disponibilidad energética de la fuente, tanto cuantitativa como cualitativamente. En concreto, en sistemas fotovoltaicos es preciso determinar la cantidad de radiación directa, difusa, y reflejada que recibirá el sistema. Sin embargo debido a los factores climáticos que condicionan la radiación que llega a una superficie en la tierra, será imposible conocer con antelación la energía que recibirá el sistema. Por esto para el dimensionado de instalaciones fotovoltaicas es necesario utilizar valores de radiación solar de años anteriores. En la actualidad para muchas localidades no se dispone de datos de estas tres magnitudes: radiación global, directa y difusa. En España, el Instituto Nacional de Meteorología, tiene alrededor de 110 estaciones radiométricas donde se registran los valores de horas de sol, mientras que en otras estaciones registran radiación solar global diaria y horaria respectivamente y menos estaciones miden radiación directa y radiación difusa horaria. En las localidades donde no existen sensores de radiación es necesario estimar sus valores mediante adecuadas correlaciones. El tipo de datos de radiación necesarios para el dimensionado de los sistemas solares, depende de la exactitud con que sea necesario realizar el mismo, es decir, de la aplicación de que se trate. Así habrá sistemas que puedan dimensionarse con valores medios mensuales de radiación global, mientras que en otros será necesario utilizar series de datos horarios de varios años.

Datos Diarios medios mensuales

Datos Diarios series anuales

Datos Horarios series anuales

Horas de Sol Radiación Global

2.2.1 Radiación Global

2.2.2 Radiación Global

2.2.3 Radiación Difusa Radiación Directa

Radiación Difusa Radiación Directa

Radiación Difusa Radiación Directa

Radiación Directa, Difusa y Reflejada

Superficie Inclinada 2.4.1

Radiación Directa, Difusa yReflejada

Superficie Inclinada 2.4.1

Radiación Directa, Difusa yReflejada

Superficie Inclinada 2.4.2

2.2 Cálculo de radiación difusa y directa sobre superficie horizontal a partir de los valores de radiación global 2.2.1 Valores medios mensuales

41

Page 42: TERMICA - Radiación Solar

Este cálculo se realiza a partir de los valores medios mensuales de radiación solar global diaria sobre superficie horizontal. El primer método fue propuesto por Liu y Jordan. La relación que utilizaron fue la siguiente:

7.0K3.0K108.3K531.5K027.439.1GD

T3T

2TT

d

d <<−+−=

donde d0

dT I

GK = es el índice de claridad diario medio mensual

La radiación directa se obtiene como diferencia entre la radiación global y la radiación difusa.:

ddd DGB −= 2.2.2 Valores diarios La radiación difusa diaria incidente sobre un superficie está relacionada con la radiación global que incide sobre la misma. El índice de trasparencia atmosférico diario, definido como el cociente entre la radiación global y la radiación extraterretre diaria, es un indicador del índice de nubosidad o claridad del día, y por tanto un indicador de la cantidad de radiación difusa. Es posible predecir, el valor de radiación difusa diaria a parir del valor del radiación global diaria. Collares-Pereira y Rabl propusieron la siguiente expresión analítica:

⎩⎨⎧

≤≤+−+−≤

=0.80 K 0.17 K648.14K856.21K473.9K272.2188.1

0.17 K 99.0GD

d4d

3d

2dd

d

d

d

donde d

dd I

GK

0

= , es el índice de claridad diario

la radiación directa se obtiene como la diferencia entre la radiación global y difusa:

Bd = Gd - Dd

2.2.3 Valores horarios Como en el caso de la radiación diaria, la radiación difusa horaria incidente sobre una superficie está relacionada con la radiación global horaria. En este caso las distintas correlaciones propuestas, utilizan el índice de trasparencia atmosférico horario, Kh, que se define como el cociente entre la radiación global horaria y la radiación extraterretre horaria. Entre las correlaciones más utilizadas están las de Orgill y Hollands , Erbs y col. Y Spencer, que no tienen en cuenta el efecto de la altura solar, y las de Boes y col. e Iqbal, que tienen en cuenta la altura solar. Las propuestas por Orgill y Hollands divide el cielo cubierto en tres tipos y propone según el valor del índice Kh, las expresiones son la siguientes:

42

Page 43: TERMICA - Radiación Solar

⎪⎩

⎪⎨

≥≤≤−

≤≤−=

75.0K 177.075.0K35.0 K84.1577.1

35.0K0K249.00.1

GD

h

hh

hh

h

h

donde Kh =h

h

IG

0

es el índice de claridad horario

El valor obtenido para Dh no es normalmente muy exacto, ya que es muy difícil predecir el mismo sólo con el valor de radiación global. Lo mismo ocurre si se utiliza cualquiera de las otras correlaciones mencionadas. La radiación directa se obtiene como la diferencia entre la radiación global y la radiación difusa:

Bh = Gh -Dh 2.4 Cálculo de la radiación sobre superficies inclinadas

Difusa del cielo

Directa

β

Directa

Difusa Difusa reflejada en el suelo

Fig. 5.2 . Incidencia de la radiación directa, difusa y reflejada en tierra sobre una superficie

inclinada

43

Page 44: TERMICA - Radiación Solar

2.4. 1 Valores diarios y valores diarios medios mensuales La radiación solar global diaria incidente sobre una superficie inclinada se puede calcular como suma de la radiación directa, difusa procedente del cielo y reflejada (albedo), que inciden sobre esa superficie, ver Fig. 5.2:

Gdβ= B dβ + D dβ + R dβ Esta misma expresión se puede utilizar para calcular el valor medio mensual de la misma a partir de los valores medios mensuales de radiación directa, difusa y reflejada sobre superficie inclinada. Las expresiónes para calcular cada una de estas componentes en valores medios mensuales son las mismas que se proponen aquí para los valores diarios. La radiación directa diaria que incide sobre una superficie inclinada es:

B dβ = B d R b

Rb es un factor de conversión geométrico. Para superficies orientadas al sur, tiene la siguiente expresión:

( ) ( )

ss

ssb sencoscossensen

sencoscossensenR

ωφδ+φδω

ωβ−φδ+β−φδω=

donde ωs es el ángulo horario de la salida del sol

La radiación reflejada sobre una superficie se puede calcular suponiendo una reflexión isotrópica o anisotrópica. Según el primer supuesto la cantidad de radiación diaria reflejada por la tierra que incide en una superficie inclinada, se puede calcular mediante la siguiente expresión:

R dβ = 21 Gd ρ (1 – cos β)

donde ρ es el albedo de la superficie reflectora. Por último la radiación difusa procedente del cielo se puede calcular utilizando el modelo anisotrópico de Hay. Según hay, la radiación difusa que incide sobre una superficie tiene una componente circumsolar, la que llega directamente en la dirección del sol y una componente difusa procedente del resto del cielo. Estas dos componentes dependen de la relación entre la radiación directa incidente sobre una superficie y la radiación extraterretre. La expresión que propone Hay es la siguiente:

44

Page 45: TERMICA - Radiación Solar

D dβ = Dd ( ) ( ) ⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛ −−++−

d

dd

d

bdd I

DGIRDG

00

1cos121 β

comp. circumsolar comp. Isotrópica la suma de estas tres componentes: directa, reflejada y difusa, es la radiación global diaria incidente sobre una superficie inclinada. 2.4.2 Valores horarios La radiación global horaria incidente sobre una superficie inclinada se puede calcular como la suma de la radiación directa, difusa procedente del cielo y reflejada (albedo), que incide sobre esa superficie, como en el caso de la radiación diaria:

Ghβ= B hβ + D hβ + R hβ

La radiación directa horaria sobre una superficie inclinada es:

Bhβ = Bh r b

Donde r b es un factor geométrico. Para una superficie orientada al sur, en un lugar de latitud φ e inclinada un ángulo β, el factor r b , viene dado por la siguiente expresión:

( ) ( )ωφδφδ

ωβφδβφδcoscoscos

coscoscos+

−+−=

sensensensenrb

donde ω es el ángulo horario del sol a la hora considerada. la radiación reflejada en una superficie se puede calcular suponiendo una reflexión isotrópica o anisotrópica. Según el primer supuesto la cantidad de radiación horaria reflejada por la tierra que incide sobre un superficie inclinada, se puede evaluar según la expresión:

R hβ = 21 Gh ρ (1 – cos β)

donde ρ es el albedo de la superficie reflectora. Por último , la radiación difusa procedente del cielo se pude calcular utilizando el modelo anisotrópico de Hay. Según Hay, la radiación difusa que incide sobre una superficie tiene una componente circumsolar, la que llega directamente del sol y una componente difusa procedente del resto del cielo. Estas dos componentes dependen dela relación entre radiación directa incidente en una superficie y radiación extraterrestre. La expresión que propone Hay es la siguiente:

45

Page 46: TERMICA - Radiación Solar

D hβ = Dh ( ) ( ) ⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛ −−++−

h

hh

h

bhh I

DGIrDG

00

1cos121 β

comp. circumsolar comp. Isotrópica similar a la propuesta para valores diarios. La suma de estas tres componentes, directa, reflejada y difusa, es la radiación solar global horaria incidente sobre una superficie inclinada.

Símbolos

B : radiación directa D : radiación solar difusa G : radiación solar global R : radiación reflejada en tierra K : índice de claridad Subíndices: o : radiación extraterrestre d : valores diarios h . valores horarios β : radiación sobre superficie inclinada Los valores diarios medios mensuales se indican con barra encima del símbolo. BIBLIGRAFIA: J.A.Duffie y A. Beckman.”Solar energy and termal proceses”. Wiley. New York. 1990. M. Iqbal. “ An introduction to solar radiation” . Academic Press Canada, 1983. K.Y. Kondratiev. “ Radiation in the atmosphere”. Academic Press. 1969. R. Dogniaux y col. “Solar Meteorology . units and Simbols”. Int. J. Solar Energy. Vol 2, 1984. Perrin de Brichambaut y col. “Meteorological aspects of the utilization of solar radiation as an energy source”. World Meteorological Organization, nº 557. H. P. Garg. “ Treatise on Solar Energy . Fundamentals of Solar Energy”. Vol. 1, John Wiley and Sons Tld. 1982.

46

Page 47: TERMICA - Radiación Solar

www. uva.es/renova 6. RADIACIÓN SOLAR E INSTRUMENTOS DE MEDIDA Con el fin de determinar la energía solar que llega a la tierra es necesario medir la radiación solar en diferentes localidades y a partir de las medidas se pueden desarrollar modelos empíricos para predecir la energía solar disponible en otras localidades. Tres son los instrumentos que miden el flujo de radiación solar que alcanza la tierra : piheliómetro, mide radiación solar directa con incidencia normal, este instrumento debe ser conectado con un seguidor solar. Piranómetro, mide la radiación directa y difusa de todo el hemisferio y si se coloca sobre un plano inclinado recibe también radiación reflejada en tierra. Un piranómetro con anillo de sombra, mide la radiación difusa en un ángulo sólido de 2π, con excepción del ángulo sólido subtendido por el disco del sol. El elemento sensible de los radiómetros es su sensor; los sensores de radiación se clasifican como: calorimétricos, termoeléctricos y fotoeléctricos. Sensores calorimétricos: en estos sensores la energía radiante incide sobre un metal de alta conductividad y protegido por una pintura negra de alta absortancia. La energía radiante es convertida en calor que puede ser medido por ejemplo a través de su cambio de temperatura. Sensores termomecánicos: El flujo radiante se mide a través del cambio de una varilla bimetálica. En este sistema están unidas dos tiras de metal con diferentes propiedades de expansión térmica, aísladas una de otra y una está pintada de negro y la otra es reflectiva. La tira negra se expone a la radiación solar y la otra se protege. La temperatura desigual de cada una causa deformación y esta distorsión se trasmite mecánicamente a un indicador. Sensores termoeléctricos: Un sensor termoeléctrico consiste de dos hilos metálicos distintos con sus extremos conectados. Cuando ambas uniones se encuentran a distinta temperatura se produce una fuerza electromotriz, ver Fig.1. La f.em. desarrollada es proporcional a la diferencia de temperaturas y depende del material de los dos metales. La unión cobre constantan es una de las típicas a baja temperatura. Para su utilización, una unión se expone a la radiación incidente y la otra se evita tomándose como referencia.

47

Page 48: TERMICA - Radiación Solar

La f.e.m. desarrollada por una pila es muy baja, se incrementa conectando un número de pilas en serie, ver Fig 1 (b). El conjunto formado por varias uniones de termopares se denomina termopila. En algunos dispositivos los termopares se disponen según la Fig 1 (c). Las uniones calientes están pintadas de negro y las frías de blanco y se protegen de a radiación solar. Sensores fotoeléctricos Entre los fotoeléctricos los fotovoltaicos son los más numerosos en las medidas de radiación solar. Están hechos de material semiconductor como el silicio. Un semiconductor tipo unión p-n cuando la radiación incide origina una corriente, la Fig 2 muestra esquemáticamente una célula fotovoltaica. Una desventaja de las células de silicio es su respuesta espectral, que es elevada sólo en la región del rojo e infrarrojo cercano del espectro. Sin embargo las ventajas son su bajo coste y su rápida respuesta para medidas instantáneas.

48

Page 49: TERMICA - Radiación Solar

Fig. 1- Sensores termoeléctricos

49

Page 50: TERMICA - Radiación Solar

Fig. 2- Unión de semiconductores

2 MEDIDA DE LA IRRADIANCIA DIRECTA : PIRHELIÓMETRO La Fig 3 muestra el instrumento denominado pirheliómetro de incidencia normal y está montado sobre un seguidor. Se compone de una termopila de multiunión y el tubo colimado tiene 5º43’30” de campo visual. El tubo contiene aire seco a la presión atmosférica y termina en una ventana de cuarzo de 1mm de espesor. Tiene la posibilidad de adaptarle tres filtros para medir a terminadas longitudes de onda. Si no se coloca ningún filtro se mide el espectro completo.

3 PIRANÓMETROS La radiación solar global se mide con radiómetros hemisféricos, denominados piranómetros. El elemento sensible normalmente es termoeléctrico o fotovoltaico. Estos sensores se colocan horizontales Los sensores de marca Kipp-Zonen tienen una termopila Moll como detector La Figura 5 muestra un piranómetro sobre un plano inclinado y un piranómetro también incliado y con anillo de sombra para la medida de la radiación solar difusa. La Figura 6 muestra un registrado, modelo Campbell-Stokes, denominado heliofanógrafo o también sunfotómetro, registra las horas de sol sobre cartulinas especiales y debe estar correctamente orientado. La Figura 7 muestra una terraza con tres sensores de radiación solar.

50

Page 51: TERMICA - Radiación Solar

4 MEDIDA DE LA RADIACIÓN SOLAR DIFUSA: PIRANÓMETRO CON BANDA DE SOMBRA. Cuando la radiación solar global se mide mediante un piranómetro y la radiación solar directa se mide separadamente mediante un pirheliómetro, la radiación solar difusa pude evaluarse mediante la expresión:

D = G - B cos θz

La radiación solar difusa puede también medirse montando una banda de sombra sobre un piranómetro para evitar la radiación solar directa. La figura 5 muestra dos piránometros, uno de ellos con banda de sombra. La banda de sombra debe instalarse paralela al plano del ecuador e inclinada con la vertical un ángulo igual a la latitud del lugar. Es necesario ajustar el centro de la banda periódicamente por que la declinación del sol cambia. Este ajuste debe realizarse cuando el sol está totalmente despejado de nubes. La superficie de la banda debe estar pintada de negro con el objetivo de que las reflexiones múltiples sean mínimas. Los brazos del soporte de la banda llevan una graduación de los valores de la declinación. Dado que la banda de sombra evita que incida sobre el sensor una parte de radiación difusa proveniente del cielo, debe introducirse una corrección en las medidas. Debido a la anisotropía de la radiación difusa, el máximo se registra próximo al sol, lo cual hace difícil un cálculo teórico exacto de la corrección, por lo cual se combina una aproximación teórica y experimental. La fracción de radiación difusa bloqueada por la banda de sombra viene dada por:

⎥⎦

⎤⎢⎣

⎡δφ+δφ⎟

⎠⎞

⎜⎝⎛ π

δπ

= zszs3 AsencoscossensenA

180cos

rb2

X

donde b es la anchura de la banda de sombra, r es el radio, Azs es el ángulo azimutal de la salida del sol ( grados), φ es la latitud del lugar (GRADOS) y δ es la declinación del sol (grados). Para condiciones isotrópicas la corrección es:

C = 1 / (1- X)

51

Page 52: TERMICA - Radiación Solar

Fig. 3 Pirheliómetro

Fig. 4- Piranómetro

52

Page 53: TERMICA - Radiación Solar

Fig. 5 Piranómetros sobre superficie inclinada y con banda de sombra, respectivamente.

53

Page 54: TERMICA - Radiación Solar

Fig. 6- Sensor de horas de sol

Fig. 7 – Sensores radiométricos

5 MEDIDA DE LA DURACIÓN DEL SOL El número de horas de sol es un indicador de la cantidad de radiación solar que llega a la tierra. Los registros de las horas de sol son necesarios para los observatorios meteorológicos, así como para la industria turística, cámaras de comercio y utilizaciones energéticas. Un registro exacto del tiempo durante el cual el sol puede estar visible en un lugar particular es un ato requerido por jueces para admitir o desestimar el testimonio de un testigo. Las horas durante las cuales el sol brilla se utilizan para desarrollar métodos y modelos de predicción de la radiación solar global y difusa que alcanza la superficie, dado que los instrumentos de registro de horas de sol son más económicos y operan de forma más fácil que los piranómetros, por lo que son esenciales en las redes de medida de los centros meteorológicos. Los dos tipos de sensores de horas de sol son : sensor de focalización y sensor fotovoltaico. El sensor de focalización se muestra en la figura 6 y consiste en una esfera sólida de precisión de vidrio óptico, de 10 cm de diámetro, soportada por una cavidad esférica donde se forma la imagen del sol sobre una tira de cartón registradora colocada en una ranura de dicha cavidad. La esfera está montada sobre un eje paralelo al de rotación de la tierra. La cavidad esférica está montada para que la imagen del sol se forme en la

54

Page 55: TERMICA - Radiación Solar

superficie que contiene la tira de cartón, la cual está orientada de este a oeste y lleva impresas las horas, de manera que se puede medir el tiempo que brilla el sol. La altura de sol cambia en cada estación del año, causando que la imagen del sol se eleve y baje de norte a sur en la cavidad. Par acomodar dicho efecto, tres series diferentes de tiras deben ser utilizadas y deben colocares en tres ranuras distintas.. largas y curvadas son las del verano; cortas y curvadas las de invierno y rectas para primavera y otoño. Los rayos del sol que pasan a través del vidrio, se concentran sobre las tiras de cartón. Como el sol se mueve , una línea marrón aparece cuando el cartón se quema por que la radiación alcanza un nivel umbral. Cuando la radiación está bajo dicho umbral, la línea se interrumpe y aparece una zona no quemada. El número de horas de brillo del sol se determina midiendo la longitud total del segmento quemado. Un problema con este instrumento es el efecto de la humedad sobre las tiras y su capacidad para establecer un umbral fijo de radiación.. Bajo condiciones muy húmedas, no comienza a quemar hasta un valor de 280 Wm-2, mientras en días muy secos, puede comenzar con 70 Wm-2 . Existen sensores de horas de sol basados en el efecto fotovoltaico. El modelo Foster, que se utiliza en Estados Unidos, consiste en dos células fotovoltaicas de selenio, una se expone directamente al sol y la otra se sombrea mediante una banda. Ambas células se conectan en forma diferencial, cuando el cielo está cubierto no hay señal y bajo la luz directa del sol se registra señal. Cuando se examinan los registros de diferentes sensores, puede observarse diferencias debidas a los valores umbrales diferentes del registro. Para uniformizar las medidas la Organización Meteorológica Mundial adoptó el registrador Campbell-Stokes como referencia con un valor umbral medio de 210 Wm-2

.

55