27
INSTITUTO TECNOLOGICO DE MEXICALI Maestro: Marco Antonio Casados Pérez Materia: Máquinas de fluidos Compresibles Alumno: Jesús Antonio Sahagún Salazar Trabajo: Resumen 1ra Unidad

Unidad 1 Maquinas Compresibles

Embed Size (px)

DESCRIPTION

Maquinas con sistema de combustion

Citation preview

Page 1: Unidad 1 Maquinas Compresibles

INSTITUTO TECNOLOGICO DE MEXICALI

Maestro:

Marco Antonio Casados Pérez

Materia:

Máquinas de fluidos Compresibles

Alumno:

Jesús Antonio Sahagún Salazar

Trabajo:

Resumen 1ra Unidad

Page 2: Unidad 1 Maquinas Compresibles

Clasificación y Funcionamiento de los motores de fluidos Compresibles

Motor Diesel

El motor diésel es un motor térmico que tiene combustión interna alternativa que se produce por el autoencendido del combustible debido a altas temperaturas derivadas de la compresión del aire en el interior del cilindro, según el principio del ciclo del diésel. Se diferencia del motor de gasolina en usar gasóleo como combustible. Ha sido uno de los más utilizados desde su creación.

Un motor diésel funciona mediante la ignición (encendido) del combustible al ser inyectado muy pulverizado y con alta presión en una cámara (o pre cámara, en el caso de inyección indirecta) de combustión que contiene aire a una temperatura superior a la temperatura de auto combustión, sin necesidad de chispa como en los motores de gasolina. Ésta es la llamada auto inflamación .

La temperatura que inicia la combustión procede de la elevación de la presión que se produce en el segundo tiempo del motor, la compresión. El combustible se inyecta en la parte superior de la cámara de combustión a gran presión desde unos orificios muy pequeños que presenta el inyector de forma que se atomiza y se mezcla con el aire a alta temperatura y presión (entre 700 y 900 °C). Como resultado, la mezcla se inflama muy rápidamente. Esta combustión ocasiona que el gas contenido en la cámara se expanda, impulsando el pistón hacia abajo.

Page 3: Unidad 1 Maquinas Compresibles

Inyector common rail de mando electrohidráulico.

Esta expansión, a diferencia del motor de gasolina es adiabática generando un movimiento rectilíneo a través de la carrera del pistón . La biela transmite este movimiento al cigüeñal, al que hace girar, transformando el movimiento rectilíneo alternativo del pistón en un movimiento de rotación.

Para que se produzca la auto inflamación es necesario alcanzar la temperatura de inflamación espontánea del gasóleo. En frío es necesario pre-calentar el gasóleo o emplear combustibles más pesados que los empleados en el motor de gasolina, empleándose la fracción de destilación del petróleo fluctuando entre los 220 °C y 350 °C, que recibe la denominación de gasóleo o gasoil en inglés.

Aplicaciones

- Maquinaria agrícola de cuatro tiempos (tractores, cosechadoras)- Propulsión ferroviaria 2T- Propulsión marina de cuatro tiempos hasta una cierta potencia, a partir de ahí dos

tiempos- Vehículos de propulsión a oruga- Automóviles y camiones (cuatro tiempos)- Grupos generadores de energía eléctrica (centrales eléctricas y de emergencia)- Accionamiento industrial (bombas, compresores, etc., especialmente de emergencia)- Propulsión aérea-

Ciclos de Motor Diesel

El ciclo del motor diésel lento (en contraposición al ciclo rápido, más aproximado a la realidad) ideal de cuatro tiempos es una idealización del diagrama del indicador de un motor Diesel, en el que se omiten las fases de renovación de la carga., y se asume que el fluido termodinámico que evoluciona es un gas perfecto, en general aire. Además, se acepta que todos los procesos son ideales y reversibles, y que se realizan sobre el mismo fluido. Aunque todo ello lleva a un modelo muy aproximado del comportamiento real del motor, permite al menos extraer una serie de conclusiones cualitativas con respecto a este tipo de motores. No hay que olvidar que los grandes motores marinos y de tracción ferroviaria son del ciclo de 2 tiempos diesel.

Fases

Compresión, proceso 1-2: es un proceso de compresión adiabática reversible (isentrópica), es decir sin intercambio de calor con el exterior. Viene a simbolizar el proceso de compresión de la masa fresca en el motor real, en el que en el pistón, estando en el punto muerto inferior (PMI), empieza su carrera de ascenso, comprimiendo el aire contenido en el cilindro. Ello eleva el estado termodinámico del fluido, aumentando su presión, su temperatura y disminuyendo su volumen

Page 4: Unidad 1 Maquinas Compresibles

específico, en virtud del efecto adiabático. En la idealización, el proceso viene gobernado por la ecuación de la isoentrópica P \cdot v^k = cte , con k índice de politropicidad isoentrópico = Cp/Cv.

Combustión, proceso 2-3: en esta idealización, el aporte de calor Qp se simplifica por un proceso isóbaro (a presión constante). Sin embargo, la combustión Diesel es mucho más compleja: en el entorno del punto muerto superior (PMS) (en general un poco antes de alcanzarlo debido a problemas relacionados con la inercia térmica de los fluidos, es decir el retraso que hay entre la inyección y la inflamación espontánea), se inicia la inyección del combustible (en motores de automóviles, gasóleo, aunque basta con que el combustible sea lo suficientemente auto inflamable y poco volátil). El inyector pulveriza y perliza "atomiza" el combustible, que, en contacto con la atmósfera interior del cilindro, comienza a evaporarse. Como quiera que el combustible de un motor Diesel tiene que ser muy auto inflamable (gran poder detonante, índice de Cetano alto), ocurre que, mucho antes de que haya terminado la inyección de todo el combustible, las primeras gotas de combustible inyectado se auto inflaman y dan comienzo a una primera combustión caracterizada por ser muy turbulenta e imperfecta, al no haber tenido la mezcla de aire y combustible tiempo suficiente como para homogeneizarse. Esta etapa es muy rápida, y en el presente ciclo se obvia, pero no así en el llamado ciclo Diesel rápido, en el que se simboliza como una compresión isócora al final de la compresión. Posteriormente, se da, sobre la masa fresca que no ha sido quemada, una segunda combustión, llamada combustión por difusión, mucho más pausada y perfecta, que es la que aquí se simplifica por un proceso isóbaro. En esta combustión por difusión se suele quemar en torno al 80% de la masa fresca, de ahí que la etapa anterior se suela obviar. Sin embargo, también es cierto que la inmensa mayoría del trabajo de presión y de las pérdidas e irreversibilidades del ciclo se dan en la combustión inicial, por lo que omitirla sin más solo conducirá a un modelo imperfecto del ciclo Diesel. Consecuencia de la combustión es el elevamiento súbito del estado termodinámico del fluido, en realidad debido a la energía química liberada en la combustión, y que en este modelo ha de interpretarse como un calor que el fluido termodinámico recibe, y a consecuencia del cual se expande en un proceso isóbaro reversible.

Explosión/Expansión, proceso 3-4: se simplifica por una expansión isentrópica (adiabática) del fluido termodinámico, hasta el volumen específico que se tenía al inicio de la compresión. En la realidad, la expansión se produce a consecuencia del elevado estado termodinámico de los gases tras la combustión, que empujan al pistón desde el PMS hacia el PMI, produciendo un trabajo. Nótese como, como en todo ciclo de motor de cuatro tiempos o dos tiempos, solo en esta carrera, en la de expansión, se produce un trabajo.

Última etapa, proceso 4-1: esta etapa es un proceso isocórico (escape) es decir a volumen constante. Desde la presión final de expansión hasta la presión inicial de compresión. En rigor, carece de cualquier significado físico, y simplemente se emplea ad hoc, para poder cerrar el ciclo ideal. Sin embargo, hay autores que no satisfechos con todas las idealizaciones realizadas, insisten en dar un siginificado físico a esta etapa, y la asocian a la renovación de la carga. , pues, razonan, es esto lo que se produce en las dos carreras que preceden a la compresión y siguen a la expansión: el escape de masa quemada y la admisión de masa fresca. No obstante, el escape es un

Page 5: Unidad 1 Maquinas Compresibles

proceso que requiere mucho más trabajo que el que implica este proceso (ninguno), y además ninguno de los dos procesos se da, ni por asomo, a volumen específico constante.

Es importante notar cómo, en el ciclo Diesel, no se deben confundir nunca los cuatro tiempos del motor con el ciclo termodinámico que lo idealiza, que solo se refiere a dos de los tiempos: la carrera de compresión y la de expansión; el proceso de renovación de la carga.. cae fuera de los procesos del ciclo Diesel, y ni tan siquiera es un proceso termodinámico en el sentido estricto

Page 6: Unidad 1 Maquinas Compresibles

Motor Gasolina

Un motor de explosión es un tipo de motor de combustión interna que utiliza la explosión de un combustible, provocada mediante una chispa, para expandir un gas empujando así un pistón. Hay de dos y de cuatro tiempos. El ciclo termodinámico utilizado es conocido como Ciclo Otto.

Este motor, también llamado motor de gasolina o motor Otto, es junto al motor diésel, el más utilizado hoy en día para mover vehículos autónomos de transporte de mercancías y personas.

- Motor Otto de ciclo convencional- Motor de ciclo Miller- Motor de mezcla pobre

El combustible se inyecta pulverizado y mezclado con el gas (habitualmente aire u oxígeno) dentro de un cilindro. La combustión total de 1 gramo de gasolina se realizaría teóricamente con 14,8 gramos de aire pero como es imposible realizar una mezcla perfectamente homogénea de ambos elementos se suele introducir un 10% más de aire del necesario (relación en peso 1/16), a veces se suele inyectar más o menos combustible, esto lo determina la sonda lambda (o sonda de oxígeno) la cual envía una señal a la ECU. Una vez dentro del cilindro la mezcla es comprimida. Al llegar al punto de máxima compresión (punto muerto superior o PMS) se hace saltar una chispa, producida por una bujía, que genera la explosión del combustible. Los gases encerrados en el cilindro se expanden empujando un pistón que se desliza dentro del cilindro (expansión teóricamente adiabática de los gases). La energía liberada en esta explosión es transformada en movimiento lineal del pistón, el cual, a través de una biela y el cigüeñal, es convertido en movimiento giratorio.

Page 7: Unidad 1 Maquinas Compresibles

La inercia de este movimiento giratorio hace que el motor no se detenga y que el pistón vuelva a empujar el gas, expulsándolo por la válvula correspondiente, ahora abierta. Por último el pistón retrocede de nuevo permitiendo la entrada de una nueva mezcla de combustible.

La gasolina, la cual se obtiene mediante la destilación fraccionada del petróleo, fue descubierta en 1857. Más adelante, en 1860, Jean Joseph Etienne Lenoir creó el primer motor de combustión interna quemando gas dentro de un cilindro. Pero habría que esperar hasta 1876 para que Nikolaus August Otto construyera el primer motor de gasolina de la historia, de cuatro tiempos, que fue la base para todos los motores posteriores de combustión interna. En 1886 Karl Benz comienza a utilizar motores de gasolina en sus primeros prototipos de automóviles.

Actualmente, algunos motores de explosión pueden funcionar también con etanol, gas natural comprimido, gas licuado del petróleo o hidrógeno, además de gasolina.

Los motores a gasolina son sistemas termodinámicos formados por diversos mecanismos, como pistón, cilindro, válvulas de admisión y válvulas de escape, entre otras piezas fijas y móviles, cuya función principal es la de utilizar de forma efectiva y precisa la energía química del combustible y convertirla en trabajo mecánico que termine por generar movimiento en el automóvil.

Todo este proceso se lleva a cabo, por lo general, en cuatro pasos o tiempos muy sencillos que desencadenarán explosiones del carburante para liberar energía y crear movimiento.

Todo ocurre en el cilindro. En su parte superior se encuentra la cámara de combustión, donde se producen las explosiones. En el interior del cilindro hay un pistón que se mueve de arriba a abajo. Y en la parte inferior hay un cigüeñal que al final utilizará el impulso generado en la cámara de combustión.

El funcionamiento de estos motores se sintetiza de la siguiente manera:

Admisión

Las válvulas de admisión del pistón de los motores se abren y una mezcla de aire y gasolina entra en el interior del cilindro, mientras el pistón va descendiendo para dar mayor espacio a la cámara de combustión.

Compresión

Las válvulas de admisión se cierran y la cámara de combustión queda completamente cerrada, mientras el pistón sube y aprieta la mezcla de aire y gasolina, haciéndola 10 veces más pequeña, lo que origina que la presión y la temperatura aumenten considerablemente.

Page 8: Unidad 1 Maquinas Compresibles

Expansión

Justo en el momento de máxima compresión, la bujía produce una chispa de 40,000 voltios, lo que incendia la mezcla de gasolina y aire, ocasionando una explosión que hace aumentar la temperatura, liberando más calor. Este calor agita violentamente la mezcla, obligando al pistón a bajar hasta el fondo, moviendo la vara de conexión que hace girar el cigüeñal, que convertirá la energía de la explosión en un movimiento rotacional para que la rueda se mueva.

Escape

En esta última etapa, las válvulas de escape se abren, el pistón sube, expulsando de la cámara del cilindro los gases producidos por la combustión.

Este proceso en motores a gasolina es cíclico, llegando a repetirse 60 veces por segundo en cada cilindro.

Page 9: Unidad 1 Maquinas Compresibles

Motor de Vapor

Una máquina de vapor es un motor de combustión externa que transforma la energía térmica de una cantidad de agua en energía mecánica. En esencia, el ciclo de trabajo se realiza en dos etapas:

Se genera vapor de agua en una caldera cerrada por calentamiento, lo cual produce la expansión del volumen de un cilindro empujando un pistón. Mediante un mecanismo de biela - manivela, el movimiento lineal alternativo del pistón del cilindro se transforma en un movimiento de rotación que acciona, por ejemplo, las ruedas de una locomotora o el rotor de un generador eléctrico. Una vez alcanzado el final de carrera el émbolo retorna a su posición inicial y expulsa el vapor de agua utilizando la energía cinética de un volante de inercia.

El vapor a presión se controla mediante una serie de válvulas de entrada y salida que regulan la renovación de la carga; es decir, los flujos del vapor hacia y desde el cilindro.

El motor o máquina de vapor se utilizó extensamente durante la Revolución Industrial, en cuyo desarrollo tuvo un papel relevante para mover máquinas y aparatos tan diversos como bombas, locomotoras, motores marinos, etc. Las modernas máquinas de vapor utilizadas en la generación de energía eléctrica no son ya de émbolo o desplazamiento positivo como las descritas, sino que son turbomáquinas; es decir, son atravesadas por un flujo continuo de vapor y reciben la denominación genérica de turbinas de vapor. En la actualidad la máquina de vapor alternativa es un motor muy poco usado salvo para servicios auxiliares, ya que se ha visto desplazado especialmente por el motor eléctrico en la maquinaria industrial y por el motor de combustión interna en el transporte.

Page 10: Unidad 1 Maquinas Compresibles

Motor Rotativo

El motor rotativo fue uno de los primeros tipos de motores de combustión interna en el cual el cigüeñal permanece fijo y el motor entero gira a su alrededor. El diseño fue muy usado en los años anteriores a la Primera Guerra Mundial y durante ésta para propulsar aviones, y también en algunos de los primeros autos y motocicletas.

A principios de los años 20 del siglo XX el motor rotativo comenzó a volverse obsoleto, principalmente debido a su bajo par motor, consecuencia de la forma en que trabaja el motor. También estaba limitado por su restricción inherente dada por la forma de aspirar la mezcla de aire/combustible a través del cigüeñal y cárter hueco, que afectan directamente a su rendimiento volumétrico. Sin embargo, en su tiempo fue una solución muy eficiente para los problemas de potencia, peso y fiabilidad.

Page 11: Unidad 1 Maquinas Compresibles

Motor Wankel

El motor Wankel es un tipo de motor de combustión interna, inventado por Félix Wankel, que utiliza rotores en vez de los pistones de los motores alternativos.

Wankel concibió su motor rotativo en 1924 y obtuvo la patente en 1929. Durante los años 1940 se dedicó a mejorar el diseño. En los años 1950 y los 1960 se hicieron grandes esfuerzos en desarrollar los motores rotativos Wankel. Eran especialmente interesantes por funcionar de forma suave y silenciosa, y con escasas averías, gracias a la simplicidad de su diseño.

Un motor rotativo o Wankel, en honor a su creador Félix Wankel, es un motor de combustión interna que funciona de una manera completamente diferente a los motores alternativos.

En un motor alternativo, se efectúan sucesivamente 4 diferentes operaciones dentro de una cámara -admisión, compresión, combustión y escape-. En un motor Wankel se desarrollan los mismos 4 tiempos pero en zonas distintas del estator o bloque, con el pistón moviéndose sin detenciones de un tiempo a otro. Más concretamente, la envolvente es una cavidad con forma de 8, dentro de la cual se encuentra un rotor triangular o triángulo-lobular que realiza un giro de centro variable (rotor excéntrico). Este pistón transmite su movimiento rotatorio a un eje cigüeñal que se encuentra en su interior, y que gira ya con un centro único.

Al igual que un motor de pistones, el rotativo utiliza la presión producida por la combustión de la mezcla aire-combustible. La diferencia radica en que esta presión está contenida en la cámara formada por una parte de la envolvente o estator y cerrada por uno de los lados del rotor triangular, que en este tipo de motor reemplaza a los pistones.

Page 12: Unidad 1 Maquinas Compresibles

El rotor sigue un recorrido en el que mantiene sus 3 vértices en contacto con el "estator" o "epitrocoide", delimitando así tres compartimentos separados de mezcla. A medida que el rotor gira dentro de la cámara, cada uno de los 3 volúmenes se expande y contrae alternativamente; es esta expansión-contracción la que aspira el aire y el combustible hacia el motor, comprime la mezcla, extrae su energía expansiva y luego expulsa los gases quemados hacia el escape.

Ventajas

Menos piezas móviles: el motor Wankel tiene menos piezas móviles que un motor convencional, tan solo 4 piezas; bloque, rotor (que a su vez está formado por segmentos y regletas), árbol motor y sistema de refrigeración/engrase (similar a los que montan los motores de pistón). Esto contribuye a una mayor fiabilidad.

Suavidad de marcha: todos los componentes de un motor rotativo giran en el mismo sentido, en lugar de sufrir las constantes variaciones de sentido a las que está sometido un pistón. Están equilibrados internamente con contrapesos giratorios para suprimir cualquier vibración. Incluso la entrega de potencia se desarrolla en forma más progresiva, dado que cada etapa de combustión dura 90° de giro del rotor y a su vez como cada vuelta del rotor representa 3 vueltas del eje, cada combustión dura 270° de giro del eje, es decir, 3/4 de cada vuelta; se compara con un motor monocilíndrico, en el que cada combustión transcurre durante 180° de cada 2 revoluciones, o sea 1/4 de cada vuelta del cigüeñal: se produce una combustión cada 120º del rotor y 360º del eje. Un motor Wankel de dos rotores equivale en uniformidad de par a un motor de 6 cilindros alternativo.

Menor velocidad de rotación: dado que los rotores giran a 1/3 de la velocidad del eje y al tocar el estator, las piezas principales del motor se mueven más lentamente que las de un motor convencional, aumentando la fiabilidad, una vez resueltos los problemas iniciales en elegir los materiales más adecuados, los segmentos siempre están en movimiento respecto a las partes fijas, no hay puntos muertos como en los motores alternativos, y precisamente en esos puntos muertos, donde al no haber velocidad relativa de una pieza respecto a otra no hay lubricación (ver tribología) se producen los mayores desgastes.

Menores vibraciones: dado que las inercias internas del motor son muy pequeñas (no hay bielas, ni volante de inercia, ni recorrido de pistones, ni movimiento), solo se producen pequeñas vibraciones en la excéntrica.

Menor peso: debido al menor número de piezas que forman el motor en comparación con los de pistones y dado que generalmente se construyen motores de dos o tres rotores de 600 cc o 700 cc cada uno, ayuda a conseguir un menor peso final del mismo.

Inconvenientes

Emisiones: es más complicado (aunque no imposible) ajustarse a las normas de emisiones contaminantes, ya que trabaja igual que un motor de 2 tiempos, consumiendo aire, combustible y aceite.

Page 13: Unidad 1 Maquinas Compresibles

Costos de mantenimiento: al no estar tan difundido, su mantenimiento resulta más complejo por la dificultad en encontrar personal adecuadamente formado en este tipo de motor.

Consumo: la eficiencia termodinámica (relación energía disponible en el combustible/potencia efectiva) se ve reducida por la forma alargada de las cámaras de combustión, con una alta relación superficie/volumen.

Difícil estanqueidad: resulta muy difícil aislar cada una de las 3 secciones del rotor, que deben ser estancas unas respecto a otras para un buen funcionamiento. Además, en los primeros modelos se hacía necesario cambiar el sistema de estanqueidad cada 6 años aproximadamente, por su desgaste, que puede reducirse manteniendo una pequeña proporción de aceite mezclado directamente en el combustible +1%, las bombas fallan, con lubricantes sólidos tipo MoS2, y redondeando las aristas de las lumbreras y huecos de las bujías, para evitar choques bruscos entre los segmentos de estanqueidad y el estator.

Sincronización: la sincronización de los distintos componentes del motor debe ser muy buena para evitar que el encendido de la mezcla se inicie antes de que el pistón rotativo se encuentre en la posición adecuada. Si el encendido es precoz, empujará en sentido contrario al deseado, pudiendo averiar el motor.

Encendido: El número y la situación de las bujías influían en el rendimiento del motor y en su complejidad: han evolucionado a una única bujía por cámara para la mayoría de aplicaciones, como en los motores alternativos.

Mantenimiento: Los segmentos que garantizan la estanqueidad debían cambiarse en plazos determinados debido al desgaste producido por el constante rozamiento de los vértices del rotor con la superficie de revestimiento de la epitrocoide, asunto solucionado desde los años 70.

Freno motor El motor rotativo Wankel, como los motores de 2T, tiene menos freno motor que los motores alternativos de 4T, por lo que los vehículos que lo usan precisan unos frenos de mayores dimensiones

Page 14: Unidad 1 Maquinas Compresibles

Motor Stirling

Un motor Stirling es un motor térmico operando por compresión y expansión cíclica de aire u otro gas, el llamado fluido de trabajo, a diferentes niveles de temperatura tales que se produce una conversión neta de energía calorífica a energía mecánica.1 2 O más específicamente, un motor térmico de ciclo cerrado regenerativo con un fluido gaseoso permanente, donde el ciclo cerrado es definido como un sistema termodinámico en el cual el fluido está permanentemente contenido en el sistema, y regenerativo describe el uso de un tipo específico de intercambio de calor y almacenamiento térmico, conocido como el regenerador. Esta inclusión de un regenerador es lo que diferencia a los motores Stirling de otros motores de ciclo cerrado.

El motor Stirling fue inventado en 1816 por el Reverendo escocés Robert Stirling quien lo concibió como un primer motor diseñado para rivalizar con el motor de vapor, en la práctica su uso se redujo a aplicaciones domésticas por casi un siglo.3 Los motores Stirling tienen una alta eficiencia, si se los compara con los motores de vapor,4 y gran facilidad para ser aplicados a cualquier fuente de calor. Estas ventajas están haciendo que vuelva a tener interés este tipo de motores, y su aplicación en sistemas captadores de energías renovables.

El motor Stirling es el único capaz de aproximarse (teóricamente lo alcanza) al rendimiento máximo teórico conocido como rendimiento de Carnot, por lo que, en lo que a rendimiento de motores térmicos se refiere, es la mejor opción. Conviene advertir que no serviría como motor de coche, porque aunque su rendimiento es superior, su potencia es inferior (a igualdad de peso) y el rendimiento óptimo sólo se alcanza a velocidades bajas. El ciclo teórico de Carnot es inalcanzable en la práctica, y el ciclo Stirling real tendría un rendimiento intrínsecamente inferior al Ciclo de Carnot, además el rendimiento del ciclo es sensible a la temperatura exterior, por lo que su eficiencia es mayor en climas fríos como el invierno en los países nórdicos, mientras tendría menos interés en climas como los de los países ecuatoriales, conservando siempre la ventaja de los motores de combustión externa de las mínimas emisiones de gases contaminantes, y la posibilidad de aceptar fuentes de calor sin combustión.

Page 15: Unidad 1 Maquinas Compresibles

Su ciclo de trabajo se conforma mediante 2 transformaciones isocóricas (calentamiento y enfriamiento a volumen constante) y dos isotermas (compresión y expansión a temperatura constante)

Existe un elemento adicional al motor, llamado regenerador, que, aunque no es indispensable, permite alcanzar mayores rendimientos. El regenerador es un intercambiador de calor interno que tiene la función de absorber y ceder calor en las evoluciones a volumen constante del ciclo. El regenerador consiste en un medio poroso con conductividad térmica despreciable, que contiene un fluido. El regenerador divide al motor en dos zonas: una zona caliente y otra zona fría. El fluido se desplaza de la zona caliente a la fría durante los diversos ciclos de trabajo, atravesando el regenerador.

Puede emplear 1, 2, 3 o más pistones.

Page 16: Unidad 1 Maquinas Compresibles

Ciclo Operativo 4 Tiempos

Se denomina motor de cuatro tiempos al motor de combustión interna alternativo tanto de ciclo Otto como ciclo del diésel, que precisa cuatro, o en ocasiones cinco, carreras del pistón o émbolo (dos vueltas completas del cigüeñal) para completar el ciclo termodinámico de combustión. Estos cuatro tiempos son:

Tiempos del ciclo

Aquí se detallan los diferentes tiempos (actividades realizadas durante el ciclo) y sus características.

1-Primer tiempo o admisión: en esta fase el descenso del pistón aspira la mezcla aire combustible en los motores de encendido provocado o el aire en motores de encendido por compresión. La válvula de escape permanece cerrada, mientras que la de admisión está abierta. En el primer tiempo el cigüeñal gira 180º y el árbol de levas da 90º y la válvula de admisión se encuentra abierta y su carrera es descendente.

2-Segundo tiempo o compresión: al llegar al final de la carrera inferior, la válvula de admisión se cierra, comprimiéndose el gas contenido en la cámara por el ascenso del pistón. En el 2º tiempo el cigüeñal da 360º y el árbol de levas da 180º, y además ambas válvulas se encuentran cerradas y su carrera es ascendente.

3-Tercer tiempo o explosión/expansión: al llegar al final de la carrera superior el gas ha alcanzado la presión máxima. En los motores de encendido provocado o de ciclo Otto salta la chispa en la bujía, provocando la inflamación de la mezcla, mientras que en los motores diésel, se inyecta a través del inyector el combustible muy pulverizado, que se autoinflama por la presión y temperatura existentes en el interior del cilindro. En ambos casos, una vez iniciada la combustión,

Page 17: Unidad 1 Maquinas Compresibles

esta progresa rápidamente incrementando la temperatura y la presión en el interior del cilindro y expandiendo los gases que empujan el pistón. Esta es la única fase en la que se obtiene trabajo. En este tiempo el cigüeñal gira 180º mientras que el árbol de levas gira 90º respectivamente, ambas válvulas se encuentran cerradas y su carrera es descendente.

4 -Cuarto tiempo o escape: en esta fase el pistón empuja, en su movimiento ascendente, los gases de la combustión que salen a través de la válvula de escape que permanece abierta. Al llegar al punto máximo de carrera superior, se cierra la válvula de escape y se abre la de admisión, reiniciándose el ciclo. En este tiempo el cigüeñal gira 180º y el árbol de levas gira 90º.

Page 18: Unidad 1 Maquinas Compresibles

Ciclo Operativo 2 Tiempos

El motor de dos tiempos, también denominado motor de ciclos, es un motor de combustión interna que realiza las cuatro etapas del ciclo termodinámico (admisión, compresión, explosión y escape) en dos movimientos lineales del pistón (una vuelta del cigüeñal). Se diferencia del más conocido y frecuente motor de cuatro tiempos de ciclo de Otto, en el que este último realiza las cuatro etapas en dos revoluciones del cigüeñal. Existe tanto en ciclo Otto como en ciclo Diésel.

El motor de 2 tiempos es, junto al motor de 4 tiempos, un motor de combustión interna con un ciclo de cuatro fases de admisión, compresión, combustión y escape, como el 4 tiempos, pero realizadas todas ellas en sólo 2 tiempos, es decir, en dos movimientos del pistón.

En un motor 2 tiempos se produce una explosión por cada vuelta de cigüeñal mientras que en un motor 4 tiempos se produce una explosión por cada dos vueltas de cigüeñal, lo que significa que a misma cilindrada se genera mayor potencia, pero también un mayor consumo de combustible.

El motor de dos tiempos se diferencia en su construcción, del motor de cuatro tiempos Otto en las siguientes características:

El motor de 2 tiempos es, junto al motor de 4 tiempos, un motor de combustión interna con un ciclo de cuatro fases de admisión, compresión, combustión y escape, como el 4 tiempos, pero realizadas todas ellas en sólo 2 tiempos, es decir, en dos movimientos del pistón.

En un motor de 2 tiempos se produce una explosión por cada vuelta de cigüeñal mientras que en un motor 4 tiempos se produce una explosión por cada dos vueltas de cigüeñal, lo que significa que a misma cilindrada se genera mayor potencia, pero también un mayor consumo de combustible.

Ambas caras del pistón realizan una función simultáneamente, a diferencia del motor de cuatro tiempos en el que únicamente está activa la cara superior.

La entrada y salida de gases al motor se realiza a través de las lumbreras (orificios situados en el cilindro). Este motor carece de las válvulas que abren y cierran el paso de los gases en los motores de cuatro tiempos. El pistón dependiendo de la posición que ocupa en el cilindro en cada momento abre o cierra el paso de gases a través de las lumbreras.

El cárter del cigüeñal debe estar sellado y cumple la función de cámara de precompresión. En el motor de cuatro tiempos, por el contrario, el cárter sirve de depósito de lubricante.

Page 19: Unidad 1 Maquinas Compresibles

La lubricación, que en el motor de cuatro tiempos se efectúa mediante el cárter, en el motor de dos tiempos se consigue mezclando aceite con el combustible en una proporción que varía entre el 2 y el 5 por ciento. Dado que esta mezcla está en contacto con todas las partes móviles del motor se consigue la adecuada lubricación.

Funcionamiento:

Fase de admisión-compresión

El pistón se desplaza hacia arriba (la culata) desde su punto muerto inferior, en su recorrido deja abierta la lumbrera de admisión. Mientras la cara superior del pistón realiza la compresión, en el cárter la cara inferior succiona la mezcla de aire y combustible a través de la lumbrera. Para que esta operación sea posible el cárter tiene que estar sellado. Es posible que el pistón se desgaste y la culata se mantenga estable en los procesos de combustión.

Fase de explosión-escape

Al llegar el pistón a su punto muerto superior se finaliza la compresión y se provoca la combustión de la mezcla gracias a una chispa eléctrica producida por la bujía. La expansión de los gases de combustión impulsa con fuerza el pistón que transmite su movimiento al cigüeñal a través de la biela.

Page 20: Unidad 1 Maquinas Compresibles

En su recorrido descendente el pistón abre la lumbrera de escape para que puedan salir los gases de combustión y la lumbrera de transferencia por la que la mezcla de aire-combustible pasa del cárter al cilindro. Cuando el pistón alcanza el punto inferior empieza a ascender de nuevo, se cierra la lumbrera de transferencia y comienza un nuevo ciclo.

Es muy importante el buen diseño del tubo de escape, ya que el mismo en la etapa de compresión ayuda a mantener la mezcla dentro de la cámara de explosión y en la exhaustación ayuda a la pronta evacuación de los gases quemados.

Para el barrido y expulsión de los gases procedentes de la combustión y la entrada de mezcla aire/combustible para el siguiente ciclo, hay dos sistemas: el Schnuerle, y el uni-flujo. Se ha demostrado (SAE news) que en cualquier circunstancia, el barrido Schnuerle o en bucle supera al uni-direccional.

Page 21: Unidad 1 Maquinas Compresibles