157
I

UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

Embed Size (px)

Citation preview

Page 1: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

I

Page 2: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

II

UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL

FACULTAD DE CIENCIAS DE LA INGENIERÍA

CARRERA DE TECNOLOGÍA DE PETRÓLEOS

PORTADA

TEMA:

¨IMPLEMENTACIÓN DE UN MANUAL DE OPERACIONES CON EL FIN DE

MEJORAR LA TRANSFERENCIA Y RECEPCIÓN DE LOS PRODUCTOS

LIMPIOS DESDE EL COMPLEJO INDUSTRIAL SHUSHUFINDI HACIA LA

CABECERA DEL POLIDUCTO SHUSHUFINDI-QUITO PARA EL PERIODO

2011¨

TESIS DE GRADO PREVIA LA OBTENCIÓN DEL TÍTULO DE

TECNÓLOGO DE PETRÓLEOS.

Elaborado por: Lukeili Maibelin Valiente Salazar

Director de Tesis: Ing. Raúl Baldeón López.

Quito – Ecuador

2011

Page 3: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

III

DECLARACIÓN

Del contenido del presente trabajo se responsabiliza la autora:

______________________________________

LUKEILI MAIBELIN VALIENTE SALAZAR

C.I. 1723495345

Page 4: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

IV

CERTIFICADO DEL DIRECTOR

Certifico que la presente tesis de grado fue elaborada en su totalidad por la señorita,

LUKEILI MAIBELIN VALIENTE SALAZAR.

Ing. Raúl Baldeón

DIRECTOR DE TESIS

Page 5: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

V

CERTIFICADO DE LA EMPRESA

Page 6: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

VI

AGRADECIMIENTO

En primer lugar agradezco a Dios, por permitirme llegar a culminar una meta más en mi

vida.

A mi mama, el regalo más grande que Dios me ha dado, a mi familia que siempre han

estado conmigo, a mi esposo por su ayuda incondicional, al Ing. Raúl Baldeón, hombre

al que respeto y admiro mucho, a la Universidad por abrirme las puertas para

desarrollarme profesionalmente y finalmente a todos mis amigos.

A todos muchas gracias, sé que sin su ayuda y apoyo no hubiese sido posible este

trabajo.

Lukeili Valiente.

Page 7: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

VII

DEDICATORIA

A mi mamá y mis hermanos que siempre han estado conmigo apoyándome y

brindándome todo su amor. A ellos que siempre han creído en mí, va dedicado este

trabajo. Los quiero mucho.

Lukeili Valiente

Page 8: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

VIII

ÍNDICE GENERAL

PORTADA .................................................................................................................. II

DECLARACIÓN ........................................................................................................ III

CERTIFICADO DEL DIRECTOR ............................................................................. IV

CERTIFICADO DE LA EMPRESA ............................................................................ V

AGRADECIMIENTO ................................................................................................ VI

DEDICATORIA ........................................................................................................ VII

ÍNDICE GENERAL ................................................................................................ VIII

RESUMEN ............................................................................................................... XV

SUMMARY ............................................................................................................ XVI

Page 9: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

IX

INDICE GENERAL

CAPÍTULO I ................................................................................................................ 1

1. INTRODUCCIÓN .................................................................................................... 1

1.1 OBJETIVO GENERAL .......................................................................................... 1

1.2 OBJETIVOS ESPECÍFICOS .................................................................................. 2

1.3 JUSTIFICACIÓN ................................................................................................... 2

1.4 IDEA A DEFENDER ............................................................................................. 3

1.5 IDENTIFICACIÓN DE VARIABLES .................................................................... 3

1.5.1 VARIABLES INDEPENDIENTES .............................................................. 3

1.5.2 VARIABLES DEPENDIENTES................................................................... 3

1.5.3 VARIABLES INTERVINIENTES................................................................ 3

1.6 MARCO DE REFERENCIA. ............................................................................. 4

1.6.1 MARCO TEÓRICO ...................................................................................... 4

1.6.2 ANTECEDENTES ........................................................................................ 8

1.6.3 BASES TEÓRICAS: ........................................................................................... 9

1.7 MARCO CONCEPTUAL: ............................................................................... 10

1.8 METODOLOGÍA: ........................................................................................... 12

1.8.1 MÉTODOS DE INVESTIGACIÓN ............................................................ 12

1.8.2 TÉCNICAS DE INVESTIGACIÓN ............................................................ 12

1.8.2.1 OBSERVACIÓN INDIRECTA ............................................................ 12

1.8.2.2 OBSERVACIÓN DE CAMPO ............................................................. 12

CAPÍTULO II ............................................................................................................. 14

2. FORMACIÓN DEL PETRÓLEO ........................................................................... 14

2.1 PROCESO DE REFINACIÓN DE PETRÓLEO. .................................................. 15

2.1.1 SEPARACIÓN ........................................................................................... 15

2.1.2 CONVERSIÓN ........................................................................................... 16

2.2 LA REFINERÍA AMAZONAS (Complejo Industrial Shushufindi CIS). ............... 17

2.2.1 UNIDAD DE CRUDO. ............................................................................... 20

2.2.2 EL HORNO DE CARGA C-H001 .............................................................. 22

2.2.3 CONTROL DE OPERACIÓN .................................................................... 25

Page 10: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

X

2.3 DERIVADOS DEL PROCESO DE REFINACIÓN ...................................... 25

2.3.1 GASOLINA ................................................................................................ 25

2.3.2 DESTILADO .............................................................................................. 26

2.3.3 DIESEL ................................................................................................. 26

2.3.4 RESIDUO ............................................................................................. 28

2.3.5 JET A-1 ................................................................................................. 28

2.4 DESCRIPCIÓN DE LA ESTACIÓN CABECERA POLIDUCTO SHUSHUFINDI. ................................................................................................................................... 31

2.4.1 DESCRIPCIÓN DE LA INSTALACIÓN ................................................... 31

2.4.2 DESCRIPCIÓN DEL PROCESO TECNOLÓGICO ................................... 32

2.4.3 ÁREAS OBJETOS DE ANÁLISIS Y OBSERVACIONES PUNTUALES . 32

2.5 DESCRIPCIÓN DEL PROCESO DE OBTENCIÓN DEL GLP ............................ 35

2.5.1 SEPARACIÓN ...................................................................................... 36

2.5.2 DESHIDRATACIÓN ............................................................................ 36

2.5.3 REFRIGERACIÓN DE GAS Y LÍQUIDOS DE ENTRADA SECOS ... 37

2.5.4 DESTILACIÓN FRACCIONADA ........................................................ 38

2.6 CONTAMINANTES .................................................................................... 40

2.6.1 EMISIONES FUGITIVAS .......................................................................... 40

2.6.2 FUENTES ANTROPOGENICAS ............................................................... 41

2.6.3 DERRAMES DE HIDROCARBUROS ....................................................... 41

2.6.4 RUIDO Y VIBRACIONES ......................................................................... 41

2.6.5 UTILIZACION DE QUIMICOS ................................................................. 41

2.6.6 EFLUENTES LIQUIDOS ........................................................................... 42

CAPÍTULO III ........................................................................................................... 44

3. NORMAS APLICADAS AL MANUAL ............................................................. 44

3.2 PROCEDIMIENTO PARA DETERMINAR LA DENSIDAD API ................... 47

3.2.1 DEFINICIÓN ............................................................................................. 47

3.2.2 PROCEDIMIENTO: .......................................................................................... 48

3.3 PROCEDIMIENTO PARA DETERMINAR LA CORROSIÓN A LA LÁMINA DE COBRE ............................................................................................................. 49

3.3.1 DEFINICIÓN ............................................................................................. 49

3.3.2 PROCEDIMIENTO .................................................................................... 49

Page 11: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

XI

3.4 PROCEDIMIENTO PARA DETERMINAR LA TEMPERATURA DE INFLAMACIÓN POR MEDIO DE APARATO CERRADO PENSKY MARTENS ................................................................................................................................ 50

3.4.1 DEFINICIÓN ............................................................................................. 50

3.4.2 PROCEDIMIENTO .................................................................................... 50

3.5 PROCEDIMIENTO PARA DETERMINAR EL CONTENIDO DE AGUA Y SEDIMENTOS ....................................................................................................... 52

3.5.1 DEFINICIÓN ............................................................................................. 52

3.5.2 PROCEDIMIENTO .................................................................................... 52

3.6 PROCEDIMIENTO PARA DETERMINAR LA PRESIÓN DE VAPOR REID 53

3.6.1 DEFINICIÓN ............................................................................................. 53

3.6.2 PROCEDIMIENTO .................................................................................... 54

3.7 PROCEDIMIENTO PARA DETERMINAR EL ÍNDICE DE CETANO ........... 54

3.7.1 DEFINICIÓN ............................................................................................. 54

3.7.2 PROCEDIMIENTO .................................................................................... 55

CAPÍTULO IV ........................................................................................................... 57

4. MANUAL DE OPERACIPONES PARA MEJORAR LAS TRASFERENCIA Y RECEPCION DE PRODUCTOS LIMPIOS DESDE EL COMPLEJO INDUSTRIAL SHUHSUFINDI HACIA LA CABECERA DEL POLIDUCTO SHUSHUFINDI-QUITO ....................................................................................................................... 57

4.1 MANUAL PARA LA RECEPCIÓN DE PRODUCTOS LIMPIOS. .................. 59

4.2 MANUAL DE BOMBEO DE PRODUCTOS LIMPIOS ................................... 61

4.3 MANUAL DE CONTROL DE CALIDAD DE PRODUCTOS LIMPIOS ......... 63

CAPÍTULO V ............................................................................................................ 67

5. CONCLUSIONES Y RECOMENDACIONES ....................................................... 67

5.1 CONCLUSIONES ............................................................................................. 67

5.2 RECOMENDACIONES .................................................................................... 68

GLOSARIO DE TÉRMINOS ..................................................................................... 71

BIBLIOGRAFÍA ........................................................................................................ 80

ANEXOS .................................................................................................................... 81

Page 12: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

XII

ÍNDICE DE FIGURAS

Figura Nº 1. Complejo Industrial Shushufindi. .............................................................. 5 Figura Nº 2. Destilación atmosférica Refinería Amazonas. ............................................ 6 Figura Nº 3. Planta de Gas. .......................................................................................... 7 Figura Nº 4. Vista de la Planta de Gas. .......................................................................... 8 Figura Nº 5. Red de poliductos. .................................................................................. 10 Figura Nº 7. Tanque de petróleo YT 801 A. ............................................................... 20 Figura Nº 8. Desalador. .............................................................................................. 21 Figura Nº 9. El horno de crudo. .................................................................................. 22 Figura Nº 10. Domo de torre. ..................................................................................... 23 Figura Nº 11. Poliducto Shushufindi-Quito. ............................................................... 31 Figura Nº 11. Perfil del Poliducto Shushufindi-Quito. ................................................. 34 Figura Nº 12. Planta de Gas. ....................................................................................... 35 Figura # 13. Diagrama de partidas del poliducto Shushufindi Quito. .......................... 44 Figura Nº 14. Equipo analizador de Gravedad API. ..................................................... 48 Figura Nº 15. Analizador punto de inflamación. ......................................................... 51 Figura Nº 16. Equipo analizador de Agua y Sedimentos .............................................. 53

Page 13: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

XIII

ÍNDICE DE TABLAS

Tabla Nº 1. Gravedad API para clasificación del petróleo........................................... 14

Tabla Nº 2. Inicio de operación de refinerías .............................................................. 17

Tabla Nº 3. Productos que se obtienen en la refinería y planta de gas en Shushufindi . 30

Tabla Nº 4. Especificaciones de calidad diesel 2 ........................................................ 45

Tabla Nº 5. Especificaciones de calidad diesel 1 ........................................................ 45

Tabla Nº 6. Especificaciones de calidad Jet Fuel ........................................................ 46

Page 14: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

XIV

ÍNDICE DE ANEXOS

Anexo Nº 1. Norma ASTM D 86 Destilación de Petróleo por Presión Atmosférica ..................82 Anexo Nº 2. Norma ASTM D 1322 Punto de Humo del Querosene y Gasolina de Aviación ....89 Anexo Nº 3. MSDS del GLP ...................................................................................................98 Anexo Nº 4. MSDS del Jet A1............................................................................................... 115 Anexo Nº 5. Perfil del Poliducto Shushufindi – Quito ............................................................ 137 Anexo Nº 6. Registro de Datos de Control Diario .................................................................. 139

Page 15: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

XV

RESUMEN

En la industria petrolera hay diversos componentes derivados del petróleo, los cuales

pueden ser obtenidos en refinerías por medio de diferentes procedimientos como la

destilación, la cual de manera general consiste en aplicar calor al petróleo y así permitir

que los productos livianos se separen de los pesados.

En el país este proceso se lo realiza en el Complejo Industrial Shushufindi (CIS), en el

funciona la Refinería Amazonas con su Planta de Gas.

Luego para su trasporte desde el CIS hasta Quito se lo realiza a través de un poliducto

de productos limpios el cual es conocido como el Poliducto Shushufindi – Quito, por

donde se bombean los productos obtenidos en el CIS (Gasolina, Diesel, GLP y Jet fuel)

para su comercialización.

Es importante que los productos que son bombeados a través poliducto tengan ciertas

características las mismas que deben ser verificadas antes del ingreso al poliducto para

evitar perdidas de tiempo al ingresar productos contaminados, esto se podría evitar si

existiese un manual con los procedimientos adecuados a fin de garantizar el

cumplimiento de las actividades operativas respectivas.

Este trabajo permite cumplir con el objetivo de evitar los inconvenientes mencionados

anteriormente ya que se realizaron de acuerdo a las actividades varios procedimientos

que permiten reducir riesgos de operaciones sin control ni forma de verificación, las

mismas que han sido condensados en un manual para su aplicación directa en el último

componente de la cadena de refinación que es la cabecera del poliducto, ya que ésta es

la encargada de bombear el producto hacia el centro de distribución, en este caso el

Terminal Beaterio ya que el mismo no podría ser comercializado hasta que no cumplan

con las especificaciones correctas las mismas que son establecidas por entidades como

INEN, API, ASTM, etc.

Page 16: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

XVI

SUMMARY

In the oil industry there is a different oil component, which can be obtained from

refineries through various procedures such as distillation, which generally consists of

applying heat and allow oil to lighter products, are separated from the heavy.

In the country this process is done in Shushufindi Industrial Complex (CIS) in the

Amazonas refinery works with the Gas Plant.

Then for transportation from the CIS to Quito is done through a clean product pipeline

which is known as the Pipeline Shushufindi - Quito, where pumping products obtained

in the CIS (Gasoline, Diesel, GLP and Jet Fuel) for marketing.

It is important that products are pumped through the pipeline they have certain

characteristics that must be checked before entering the pipeline to avoid loss of time to

enter the contaminated products, this could be avoided if there was a manual with the

appropriate procedures to ensure compliance with respective operational activities.

This work can meet the goal of avoiding the drawbacks mentioned above and which

were made according to the activities several procedures that reduce operational risk

without control or verification form, the same that have been condensed into a

handbook for direct application in the last component of the refining chain is the head of

the pipeline, as this is responsible for pumping the product into the distribution center,

in this case the Beaterio Terminal since it could not be marketed until they have fulfilled

the correct specifications are the same as those established by organizations such as

INEN, API, ASTM, etc.

Page 17: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

11

CAPÍTULO I

Page 18: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

1

CAPÍTULO I

1. INTRODUCCIÓN

Las operaciones a nivel industrial son de suma importancia más aún tratándose de

elementos tan sensibles en su composición como son los derivados del petróleo y

específicamente los productos que son resultado de la refinación en el Complejo

Industrial Shushufindi, de ahí la importancia de mantener procedimientos acordes a la

necesidad propia de estos procesos, documentados en manuales que puedan servir no

solo de consulta para dichas operaciones sino de elementos de capacitación para

personal nuevo y antiguo.

La implementación de un manual que contenga los procedimientos acordes a las

operaciones no garantiza su ejecución sin problemas inherentes a las actividades propias

de la misma, pero facilita el realizar un seguimiento al fin de detectar posibles

inconvenientes o decisiones erróneas por no aplicar el mismo, esto obliga a tener

siempre actualizado en función de los procesos y sus cambios.

La función principal en el área petrolera de un manual es mantener procedimientos

acordes a las actividades de forma actualizada a fin de evitar posibles problemas que

ocasionen riesgos que puedan derivar en daños más graves como incendios o derrames

que contaminen el suelo circundante o afecte a la población aledaña.

1.1 OBJETIVO GENERAL

Desarrollar un manual para las operaciones de entrega y recepción de los productos

limpios enviados desde la Refinería Shushufindi del Complejo Industrial (CIS) hasta la

cabecera del poliducto Shushufindi-Quito para su transporte hacia Quito.

Page 19: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

2

1.2 OBJETIVOS ESPECÍFICOS

Generar procedimientos para la entrega y recepción de los productos limpios en

el poliducto Shushufindi-Quito.

Preparar un manual de operaciones con los procedimientos para el control de las

características normadas de los productos limpios que entrega la Refinería de

Shushufindi.

Describir un sistema de control mediante el manual a fin de que los productos

fuera de especificaciones no sean recibidos y así no ocasionar problemas de

almacenamiento y distribución en el terminal final de almacenamiento.

1.3 JUSTIFICACIÓN

Una empresa de cualquier índole en la actualidad tiene que ser eficiente y eficaz

basándose en procesos operativos altamente tecnificados y totalmente controlados, esto

se logra cuando se realizan procedimientos con el fin que cualquier operador pueda

conocerlos y aplicarlos, por lo tanto parte fundamental de la mejora continua de los

mismos es el tener procedimientos claros y acordes a la realidad del sitio. El trabajo a

realizarse aportara a la empresa estatal en su conjunto con elementos capaces de

permitir tomar decisiones adecuadas y que beneficien a la misma.

El trabajo pretende desarrollar y dar soluciones a problemas latentes en la actualidad,

los cuales son debilidades dentro de la operación en si y establecer en forma práctica

algunos cambios que aplicados se convertirán en excelentes resultados.

Con un manual como el que se plantea implementar se mantendrá un conjunto de

procedimientos que permitirán alcanzar el objetivo de evitar inconvenientes operativos

dentro de la planta lo que redundara en un mejor manejo de los sistemas de ambiente y

seguridad al igual que garantizara la calidad del producto.

Page 20: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

3

1.4 IDEA A DEFENDER

Si en la entrega y recepción de los productos a ser transportados por el poliducto

Shushufindi-Quito no hay un procedimiento establecido que permita conocer cuales

deben ser las especificaciones de los mismos ni los tiene la Refinería del Complejo

Industrial Shushufindi (CIS) no se puede definir en que momento se cumplió o no con

los mismos lo que si se fiscalizaría de tener un manual con los procedimientos

pertinentes.

1.5 IDENTIFICACIÓN DE VARIABLES

Las variables a ser consideradas son:

1.5.1 VARIABLES INDEPENDIENTES:

Productos limpios.

Procedimientos de entrega recepción.

Manual de procedimientos.

1.5.2 VARIABLES DEPENDIENTES:

Calidad de productos entregados.

Calidad de productos recibidos.

Control de procesos.

1.5.3 VARIABLES INTERVINIENTES:

Temperatura atmosférica.

Productos limpios.

Gravedad API.

Interfaces.

Page 21: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

4

1.6 MARCO DE REFERENCIA.

En el presente marco referencial se hablará un poco sobre el Complejo Industrial

Shushufindi y la Cabecera del poliducto Shushufindi Quito, también de los productos

que se trasportan por el mismo.

1.6.1 MARCO TEÓRICO:

EL COMPLEJO INDUSTRIAL SHUSHUFINDI (CIS) esta ubicado en la provincia de

Sucumbíos, Región Oriental de país, es el principal centro de industrialización de

petróleo de esta región. Posee dos plantas:

Refinería Amazonas

Planta de Gas de Shushufindi

Page 22: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

5

Figura Nº 1. Complejo Industrial Shushufindi.

Fuente: Inducción de visitantes Complejo Industrial de Shushufindi.

Elaborado por: Lukeili Valiente.

La Refinería cuenta con una capacidad total de procesamiento de veinte mil

barriles de petróleo, dispone de una planta de destilación primaria que utiliza los

diferentes puntos de ebullición de los componentes del crudo para obtener varios

productos, en los siguientes porcentajes promedios: gasolina 22.70 %; diesel

22.60%; jet 9% ; y crudo reducido o residuos 53.18%.

Page 23: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

6

Figura Nº 2. Destilación atmosférica Refinería Amazonas.

Fuente: Complejo Industrial Shushufindi.

Elaborado por: Lukeili Valiente.

La planta de gas inicio sus operaciones en 1984, procesando el gas asociado que se

quemaba en las teas de los campos de producción de petróleo Shushufindi-Aguarico,

Limoncocha y Libertador de Petroproducción.

Page 24: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

7

Figura Nº 3. Planta de Gas.

Fuente: Planta de Gas. Shushufindi.

Elaborado por: Lukeili Valiente.

La planta de gas tiene una capacidad instalada de 500 Tm/día y procesa 260 Tm/día, de

las cuales 30 TM se consumen en la zona y el resto se transporta a Quito, a través del

Poliducto Shushufindi - Quito, para consumo doméstico e industrial, también produce

2800 barriles diarios de gasolina.

Page 25: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

8

Figura Nº 4. Vista de la Planta de Gas.

Fuente: Planta de Gas. Shushufindi.

Elaborado por: Lukeili Valiente.

1.6.2 ANTECEDENTES

El Complejo Industrial Shushufíndi se encuentra ubicado en la Región Amazónica

Ecuatoriana, en la Provincia de Sucumbíos, Cantón Shushufíndi, al Sur oriente de la

ciudad de Nueva Loja.

La Refinería amazonas en teoría procesa 20 000 barriles de crudo diarios (7 200 000 al

año), de los cuales se obtienen los siguientes derivados: residuo, diesel, kerosene, jet

fuel y gasolina base. La refinería Amazonas esta a su vez constituida por dos campos

que son la R1 y la R2

La Refinería Amazonas R1, fue construida en el año de 1987 por la compañía KOBE

STEELS con una capacidad de procesamiento de 10000 barriles por día. El diseño del

sistema de enfriamiento de los gases del domo de la torre (CAJ004A/B) fue diseñado

Page 26: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

9

para que la temperatura de entrada del producto sea 106 ºC y a la salida sea de 64 ºC,

este enfriamiento es insuficiente en la actualidad dentro del proceso de la Planta y se

tiene que enfriar colocando una línea de agua exterior.

Este sistema de enfriamiento fue instalado hace aproximadamente 31 años, es decir

cuando se fundó la Refinería, de ahí que su rendimiento ha disminuido, debido al

tiempo de utilización y a las reparaciones hechas en la misma, por lo tanto la Refinería

necesita adquirir un tren adicional de enfriamiento, pero con una tecnología mejorada.

Uno de los principales inconvenientes que tiene la Refinería es el volumen de gasolina

base que se obtiene diariamente, actualmente se obtiene un volumen de 5 m3/h y este

volumen es insuficiente para la capacidad instalada en la refinería, por lo tanto se

busca aumentar el volumen de gasolina obtenida por día, para así cumplir con la

demanda del producto y satisfacer las necesidades del cliente final del producto.

1.6.3 BASES TEÓRICAS:

Para cubrir la demanda regional de combustibles, tanto de los programas de prospección

y desarrollo de campos petroleros cuanto de las poblaciones amazónicas, se instaló

el Complejo Industrial Shushufindi con las Plantas de Gas y la Refinería Amazonas,

ubicadas en el Cantón Shushufindi, Provincia de Sucumbíos.

El CIS no dispone de un Sistema de Gestión Ambiental, pero se encuentra en ejecución

un Diagnóstico Ambiental Inicial de las Plantas estudio que servirá de base para la

implantación del Sistema de Gestión Ambiental.

Dispone de un Plan de Contingencias debidamente estructurado y divulgado; en

aplicación de este se efectúan simulacros periódicamente, conjuntamente con el

personal de campo, el ejército y población civil. Además dispone de un sistema

automático contra incendios.

Page 27: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

10

El Poliducto Shushufindi-Quito con una extensión de 304 + 815Km, consiste de cuatro

estaciones de bombeo ubicadas en Shushufindi, Quijos, Osayacu y Chalpi y una porción

de estación recepción ubicada al sur de la ciudad de Quito.

Figura Nº 5. Red de poliductos.

Fuente: El petróleo en el Ecuador.

Elaborado por: Lukeili Valiente.

El diámetro nominal actual es de 6” desde Shushufindi hasta el Km. 287 + 700 en el

sector de Ushimana y de 4” desde este sitio hasta el Terminal El Beaterio.

Esta línea se encuentra enterrada en toda su longitud exceptuando los cruces de ríos y en

otras ubicaciones.

El GLP, Gasolina Base, Destilado, Jet fuel y Diesel, producidos en el Complejo

Industrial Shushufindi, son los productos transportados por el Poliducto.

1.7 MARCO CONCEPTUAL:

A.P.I.- Instituto americano del petróleo.

BARRIL.- Una unidad de medida para volúmenes del petróleo y productos derivados,

es igual a 42 galones.

Page 28: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

11

CONTRA PRESIÓN.- Es una presión contra la cual un líquido está fluyendo, puede

estar compuesta de líneas de fricción, restricción de tuberías, válvulas, presión en

recipientes en los cuales el líquido está fluyendo, cabeza de presión hidrostática y otra

resistencia al flujo de un fluido.

GRAVEDAD A.P.I.- Son números para la gravedad usados en la industria del

petróleo, para representar la gravedad específica.

GRAVEDAD ESPECÍFICA.- La relación del peso de una unidad de volumen de una

sustancia de referencia, ambas a las mismas condiciones físicas especificadas. Si este

concepto se aplica a un líquido, la gravedad específica es la relación del peso de un

volumen dado a aquel mismo volumen de agua, ambos medidos bajo las mismas

condiciones.

INTERFASES.- Producto resultante de la mezcla originada entre dos partidas, en el

transporte de productos limpios de diferente densidad, por efecto de la turbulencia y

difusión causada en el interior del poliducto.

INYECCIÓN.- Procedimiento mediante el cual se evacua un producto almacenado en

un tanque de mezclas.

MANIFOLD.- Es un grupo de conexiones de tubería y válvulas, las cuales distribuyen

y controlan que un producto fluya hacia los tanques de almacenamiento.

M.O.V.- Válvula operada por motor, es una válvula equipada con un operador eléctrico

para control y operación remota.

PANEL DE CONTROL.- Un ensamblaje de interruptores, instrumentos de indicación

y registro, medidores de presión, anunciadores y otros dispositivos visuales o audibles

para el monitoreo y control de un sistema.

PARTIDA.- Denominación que se le da a un determinado producto para su registro de

acuerdo a una programación emitida para su transporte a través de un Poliducto.

PRODUCTOS LIMPIOS.- Son derivados del petróleo resultado de un proceso de

destilación, con características diferentes tales como: Gasolinas, Diesel 2, Diesel 1, Jet

A 1, Naftas bases etc.

Page 29: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

12

PRESIÓN ABSOLUTA.- Es la presión por encima del vacío perfecto, es la suma de la

presión indicada o medida más la presión atmosférica.

PRESIÓN ATMOSFÉRICA.- Es la presión del peso del aire y vapor de agua sobre la

superficie de la Tierra. La presión atmosférica promedio, al nivel del mar, para

propósitos científicos ha sido determinada en 14.69 lb/pulg2.

1.8 METODOLOGÍA:

La metodología que se va a utilizar en este trabajo es la siguiente:

1.8.1 MÉTODOS DE INVESTIGACIÓN

Para la elaboración de este trabajo se emplearán: el método de observación científica la

cual en este método se lleva a cabo mediante pasantías, prácticas realizadas en el campo

que son necesarios para adquirir conocimientos, experiencia para cumplir los objetivos

planteados en la investigación, también se ocupará el método Deductivo ya que

recopilare toda la información posible con respecto a mi tema de investigación en la

empresa, bibliotecas, internet, la cual nos ayude al desarrollo eficiente de la

investigación.

1.8.2 TÉCNICAS DE INVESTIGACIÓN:

Utilizaremos las siguientes técnicas de investigación para el desarrollo del presente

trabajo.

1.8.2.1 OBSERVACIÓN INDIRECTA.

Esta técnica se empleará para explorar y analizar los datos e información de la

transferencia y recepción de los productos limpios desde el Complejo Industrial

Shushufindi hacia la cabecera del Poliducto Shushufindi-Quito.

1.8.2.2 OBSERVACIÓN DE CAMPO.

El trabajo a desarrollar va hacer realizado con una técnica de campo, es decir va

hacer realizada en el lugar donde se va a recolectar los datos e información para

la realización del manual de operaciones en la cabecera del Poliducto

Shushufindi-Quito.

Page 30: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

CAPÍTULO II

Page 31: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

14

CAPÍTULO II

2. FORMACIÓN DEL PETRÓLEO

El petróleo se forma bajo la superficie terrestre por la descomposición de organismos

marinos. Los restos de animales minúsculos que viven en el mar y, en menor medida,

los de organismos terrestres arrastrados al mar por los ríos o los de plantas que crecen

en los fondos marinos se mezclan con las finas arenas y limos que cae al fondo en las

cuencas marinas tranquilas. Estos depósitos, ricos en materiales orgánicos, se convierten

en rocas generadoras de crudo.

Tabla Nº 1. Gravedad API para clasificación del petróleo.

ACEITE CRUDO DENSIDAD g/cm3 GRAVEDAD API

Extra pesado > 1.0 10

Pesado 1.0 - 0.92 10 - 22.3

Mediano 0.92 - 0.87 22.3 - 31.1

Ligero 0.87 - 0.83 31.1 - 39

Súper ligero 0.83 > 39

Fuente: http://www.biodisol.com/medio-ambiente/que-es-el-petroleo-tipos-de-petroleo-

hidrocarburos

Elaborado por: Lukeili Valiente.

Una vez formado el petróleo, éste fluye hacia arriba a través de la corteza terrestre

porque su densidad es menor que la del agua que saturan los intersticios de las rocas,

arenas y rocas de carbonato que constituyen dicha corteza. El petróleo y el gas natural

ascienden a través de los poros microscópicos de los sedimentos situados por encima.

Con frecuencia acaban encontrando una capa de roca densa: el petróleo queda atrapado,

formando un depósito. Sin embargo, una parte significativa del petróleo no se topa con

rocas impermeables sino que brota en la superficie terrestre o en el fondo del océano.

Entre los depósitos superficiales también figuran los lagos bituminosos y las filtraciones

de gas natural.

Page 32: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

15

El petróleo finalmente llega a las refinerías en su estado natural para su procesamiento.

Aquí prácticamente lo que se hace es cocinarlo. Por tal razón es que al petróleo también

se le denomina "crudo".

Una refinería es un enorme complejo donde ese petróleo crudo se somete en primer

lugar a un proceso de destilación o separación física y luego a procesos químicos que

permiten extraerle buena parte de la gran variedad de componentes que contiene. El

petróleo tiene una gran variedad de compuestos, al punto que de él se pueden obtener

por encima de los 2.000 productos. El petróleo se puede igualmente clasificar en cuatro

categorías: parafínico, nafténico, asfáltico y aromático.

Los productos que se sacan del proceso de refinación se llaman derivados y los hay de

dos tipos: los combustibles, como la gasolina, aceite para motores, etc.; y los

petroquímicos, tales como polietileno, benceno, etc.

Las refinerías son muy distintas unas de otras, según las tecnologías y los esquemas de

proceso que se utilicen, así como su capacidad. Las hay para procesar petróleos suaves,

petróleos pesados o mezclas de ambos. Por consiguiente, los productos que se obtienen

varían de una a otra.

La refinación se cumple en varias etapas. Es por esto que una refinería tiene numerosas

torres, unidades, equipos y tuberías. Es algo así como una ciudad de plantas de proceso.

2.1 PROCESO DE REFINACIÓN DE PETRÓLEO.

Los procesos de refinación pueden clasificarse en dos grandes grupos:

2.1.1 SEPARACIÓN.- Consiste en separar el crudo en diferentes fracciones de

petróleo, de acuerdo con su punto de ebullición. Para ello emplea procesos físicos

como:

Page 33: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

16

Destilación atmosférica.

En las torres de destilación atmosférica, el crudo desalinizado se precalienta utilizando

calor recuperado del proceso. Después pasa a un calentador de carga de crudo de caldeo

directo, y desde allí a la columna de destilación vertical, justo por encima del fondo, a

presiones ligeramente superiores a la atmosférica y a temperaturas comprendidas entre

343 °C y 371 °C, para evitar el craqueo térmico que se produciría a temperaturas

superiores y producir gas de refinería, gas licuado de petróleo (GLP), nafta, queroseno

(kerosene), gasóleo, y un residuo que corresponde a los compuestos más pesados que no

llegaron a evaporarse.

Destilación al vacío.

La función principal de este proceso es proporcionar la presión reducida necesaria para

evitar el craqueo térmico al destilar el residuo, o crudo reducido, que llega de la torre

atmosférica a mayores temperaturas.

2.1.2 CONVERSIÓN.- Este proceso tiene como objetivo modificar las moléculas

complejas para obtener otras de peso molecular menor y por consiguiente, más

sencillas. La conversión se logra en un principio por la acción del calor (craqueo

térmico). Otra manera de lograr un mejor resultado es adicionando al crudo reducido

sustancias especiales llamadas catalizadores. Un catalizador es un agente acelerador de

una reacción química sin tomar parte en la reacción misma. Las ventajas del

procedimiento de desintegración catalítica sobre el proceso térmico son su mayor

rendimiento en gasolina, obteniéndose productos en cantidad y calidad acorde con los

requisitos del mercado.

Generalmente, bajo condiciones óptimas de trabajo, un barril de crudo (42 galones de

petróleo) produce 79,5 litros de gasolina, 11,5 litros de combustible para reactores, 34

litros de gasóleo y destilados, 15 litros de lubricantes y 11,5 litros de residuos más

pesados.

Page 34: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

17

2.2 LA REFINERÍA AMAZONAS (Complejo Industrial Shushufindi CIS).

La refinería Amazonas está constituida por dos unidades, denominadas Amazonas 1 y

Amazonas 2, en las que se procesa el crudo por destilación atmosférica. Cada una de

ellas procesa 10.000 barriles por día, dando un total de 20.000 BPD.

Las dos unidades son similares y pueden manejar un crudo de 31 °API, teniendo la

flexibilidad de poder operar hasta el 60% de su capacidad establecida de carga de crudo.

Tabla Nº 2. Inicio de operación de refinerías

REFINERIA 1 REFINERIA 2Construída por la CIA. KOBE STEEL, LTD Construída por la CIA. KELLOGG PAN AMERICAN CO.Início de operación de la unidad JULIO 1987 Início de operación de la unidad MAYO 1995

Fuente: Refinería de Amazonas.

Elaborado por: Lukeili Valiente.

El rendimiento de estas dos unidades comprende dos tipos de producción:

Amazonas 1: Producción de gasolina (22 % del material procesado),

destilado/jet (3.6 %), diesel 2 (29.5 %) y residuo (44 %).

Amazonas 2: Producción de gasolina (22 %), destilado/jet (5.5 %), diesel 2

(28%) y de residuo (44 %).

Unidades de la Refinería Amazonas:

Unidad generación de vapor (calderos).

Unidad tratamiento agua cruda (potabilización y desmineralización).

Unidad de efluentes.

Unidad de almacenamiento (tanques)

Unidad de generación de aire de instrumentos y servicios (compresores aire).

Page 35: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

18

Unidad de recuperación y manejo de hidrocarburos licuables (compresores de

gas).

Unidad de despacho de combustibles (llenadera)

Características del crudo a procesarse:

API a 60 ºF 30.8 apox.

API Observado. 32.25 apox.

Grav. Esp. 60 ºF 0.879 apox.

Azufre % Peso 0.794

BSW % Volumen 0.20 apox.

Sal lb/1000 B 17.3 aprox.

El proceso de refinación seguido en las dos refinerías consta de las siguientes Unidades

Operativas, como se indica en el siguiente diagrama de flujo:

Page 36: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

19

Figura Nº 6. Diagrama de flujo general de refinación.

Fuente: Complejo Industrial Shushufindi.

Elaborado por: Lukeili Valiente

CRUDO

PANEL DE CONTROL

COMPUTARIZADO

TORRE DE

FRACCIONAMIENTO

DESMULSIFICANTE

HORNO DE CRUDO 357 ºC

AGUA

DERIVADOS:

GLP

Gasolina

Destilado/Jet

Diesel

REFINERIA AMAZONAS 1 Y 2, 10000 BLS.

USO DE QUIMICOS

INTERCAMBIADOR DE CALOR DE 120 ºC

BOMBEO

TANQUES DE ALMACENAMIENTO DE CRUDO 31ºAPI

TANQUE DESALADOR

INTERCAMBIADOR DE CALOR DE 273-241 ºC

SISTEMA DE CHIMENEA

Page 37: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

20

2.2.1 UNIDAD DE CRUDO. Ubicada fuera del área de refinación, consiste de cuatro tanques denominados YT801-

A/B/C/D. En ellos se almacena el crudo que la Refinería Amazonas recibe desde la

Estación Central de PETROPRODUCCIÓN. Aquí se mide los volúmenes de ingreso

mediante contadores y se decanta para eliminar cualquier residuo de agua de formación

que venga con el petróleo.

Figura Nº 6. Tanque de petróleo YT 801 A.

Fuente: Complejo Industrial Shushufindi.

Elaborado por: Lukeili Valiente

El crudo es enviado a través de intercambiadores que lo van calentando gradualmente

hasta llegar a 120°C antes de su ingreso al desalador C-V007. Aquí son removidas las

sales que contiene el crudo y así se evita corrosiones posteriores en los equipos.

El desalador es un recipiente horizontal en cuyo interior se alojan dos rejillas que

reciben electricidad de un transformador, para ayudar a separar electrostáticamente las

gotas de agua emulsionadas con el petróleo y en las que se encuentran disueltas las

sales.

Page 38: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

21

El desalador recibe una corriente de agua caliente para ayudar al desalado, igualmente

se inyecta demulsificante con el mismo propósito. La corriente de agua con sales que

sale del desalador es enfriada en el intercambiador C-E012, para luego ser enviada al

separador de aceites “CPI”.

Figura Nº 7. Desalador.

Fuente: Complejo Industrial Shushufindi panel de control automático.

Elaborado por: Lukeili Valiente

A continuación se eleva su temperatura del crudo desalado y libre de agua hasta 241°C

en los intercambiadores, que usan como combustible a los residuos secundarios y

primarios. Con esta temperatura ingresa al horno de carga C-H001 donde llega a 357°C,

lo que se conoce como temperatura operativa.

Page 39: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

22

2.2.2 EL HORNO DE CARGA C-H001.

Es del tipo cabina, siendo más largo que alto. Sus quemadores son laterales y los tubos

de la zona de radiación están colocados horizontalmente (tubos de pared). Estos

descansan sobre soportes que permiten dilataciones por efecto de la acción térmica. La

pared está forrada por lana refractaria.

En el centro del hogar hay una pared de radiación de ladrillo refractario, la misma que

se calienta e irradia calor a los tubos. El horno de crudo opera con gas combustible

proporcionado por la Planta de Gas, o con el residuo atmosférico de la misma refinería,

el mismo que es atomizado con vapor en bayonetas de los quemadores.

El vapor saturado se sobrecalienta en la zona de convección del horno y sirve como

fuente de calor para ayudar en el despojamiento del crudo en la parte inferior de la torre

de fraccionamiento C-V001 y del despojador de diesel C-V002.

Figura Nº 8. El horno de crudo.

Fuente: Complejo Industrial Shushufindi panel de control automático.

Elaborado por: Lukeili Valiente

Page 40: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

23

Tiene un diámetro de 2,3 m. e incluye 41 bandejas con válvulas de burbujeo. Posee un

revestimiento de monel o acero al carbono, recubierto con hormigón refractario en la

parte superior y de acero inoxidable en la zona de alimentación. Cada plato tiene un

registro de funcionamiento y mantenimiento, por lo que está diseñado para permitir el

ingreso de una persona.

Los gases de cabeza se enfrían a 100°C, en un intercambiador contra un flujo de crudo

C-E002, y baja su temperatura a 65°C en un ventilador C-A004. El condensado se

almacena en el tambor de reflujo CV005, para ser realimentado en el plato # 41, con las

bombas C-P007 A/B.

El condensado sobrante se combina con los flujos de gasolina natural de la planta de gas

y a la corriente de nafta pesada del despojador C-V004. La corriente combinada se

almacena en los tanques T-T802.

Figura Nº 9. Domo de torre.

Fuente: Complejo Industrial Shushufindi panel de control automático.

Elaborado por: Lukeili Valiente

Page 41: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

24

Los gases no condensados son comprimidos en compresores de tornillo Vilter de la

Dresser Rand, que cuentan con un microprocesador de control y luego son enviados

como GLP a la planta de gas.

La nafta pesada se extrae por el plato #30 y va al despojador C-V004; el keroseno/jet

fuel se extrae por el plato # 20 y va al despojador C-V003, aquí se lo purifica y se lo

enfría a 111°C en el intercambiador C-E004 y luego a 38°C en el ventilador C-A002,

para ser almacenado en los tanques.

Si se está en corrida jet-fuel, este derivado antes de almacenarlo se lo envía a los filtros

de arena C-V008 y arcilla C-V009, para retirar la humedad.

El diesel se extrae por el plato #10, se lo despoja de contaminantes en el C-V002. El

diesel circulante se refluja mediante las bombas C-P002 A/B y fluye luego al

intercambiador con crudo C-E007 A/B, con una temperatura de 195°C se lo devuelve a

la torre.

A la salida del despojador y mediante las bombas C-P003 A/B se envía el diesel al

intercambiador de crudo C-E005 A/B, donde se enfría a 130°C, y posteriormente a 46°C

en el ventilador C-A002. En estas condiciones y bajo control de nivel se envía a

almacenamiento.

El residuo de la destilación atmosférica, es extraído por las bombas de fondos C-P001

A/B, y se ingresa a los intercambiadores de residuos primarios/crudo C-E008, donde se

enfría a 270°C, pasa al re hervidor del despojador de keroseno C-E009, y se enfría a

257°C, en el despojador de nafta C-E010 se enfría a 251°C; en el intercambiador de

residuos secundarios con crudo C-E006 se enfría a 208°C, prosigue por la caldereta

C-E011 para enfriarse a 180°C, continúa por el intercambiador de residuos terciarios

con crudo C-E013 para enfriarse a 153°C y por último en el intercambiador

crudo/residuo C-E001 donde se enfría a 93°C, para fluir a la Estación Central de

PETROPRODUCCIÓN o a los tanques de almacenamiento.

Page 42: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

25

2.2.3 CONTROL DE OPERACIÓN.

El control de la operación se realiza mediante un sistema computarizado Yewpack II

(R1) y Foxboro (R2). Para cada unidad existen dos monitores conectados en serie

mientras uno opera el otro está como equipo alternante, están conectadas a impresoras

que imprimen automáticamente las variables del proceso, pudiendo hacerlo también en

forma manual. Esto es necesario para realizar los balances de carga y productos. Existe

un cuarto de control de motores eléctricos MCC aledaño al anterior.

Adicionalmente existen paneles de control locales para calderos, aire de instrumentos,

tratamiento de agua, desmineralización de agua, sistema de la red contra incendios.

2.3 DERIVADOS DEL PROCESO DE REFINACIÓN.

2.3.1 GASOLINA.

Se obtiene al mezclar gasolina natural proveniente de la planta de gas con nafta de la

unidad de crudo, para la comercialización se la mezcla con gasolina de alto octanaje y

se reúne en los tres tanques de almacenamiento de techo flotante Y-T802 A/B/C, con

una capacidad de 15.000 barriles (2.385 m³) cada uno.

Especificaciones de la gasolina:

Presión vapor reid (psi) 8.1 max.

Destilación ASTM (ºC)

10% vol 70 max.

50% vol 121 max.

90% vol 189 max.

Punto final (ºC) 215 max.

Azufre % peso D-1266 0.2 max.

Corrosión lamina de cobre D-130 Nr. 1 max.

Page 43: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

26

2.3.2 DESTILADO.

El destilado se almacena en dos tanques de techo fijo: Y-T803 A/B. con una capacidad

de 4.000 barriles (636 m³) cada uno. Cuando se circula el destilado por medio de la

línea de circulación de destilado, se le inyecta colorante. Igualmente cuenta con el

sistema HTG para medición de nivel, así como el tubo de aforo para medición con cinta.

Están protegidos por hidrantes de agua contra incendio y línea de espuma.

2.3.3 DIESEL.

Existen tres tanques para almacenar el producto diesel: Y-T805 A/B/C, de techo flotante

y con una capacidad de 20.000 barriles (3.180 m³) cada uno.

Estos tanques están provistos de un sistema de medición HTG y para medición con

cinta por un tubo de aforo. Al igual que los demás tanques de almacenamiento de

derivados cuentan para su protección con hidrantes de agua contra incendio y sistema de

espuma.

Diesel 1: Los componentes de este producto son hidrocarburos que destilan entre los

200°C y 300°C, los hidrocarburos más importantes que entran en la composición

química de este combustible son: parafínicos, izoparafínicos, aromáticos (monociclo y

biciclos), nafténicos y estructuras mixtas nafteno-aromático.

Tiene una buena combustión, con llama blanca amarillenta debido al bajo contenido de

hidrocarburos aromáticos. La apariencia del producto es blanca transparente y la acidez

orgánica se expresa en mg de KOH/ 100 ml, no sobrepasa de 1,4 %, lo cual evita la

acción corrosiva sobre los metales.

El uso del Diesel 1 es:

Por su alto poder calorífico, es utilizado como combustible de uso industrial,

especialmente en la industria de la cerámica y, en las áreas rurales es de uso doméstico.

Se utiliza como diluyente en la preparación de capa de rodadura de las carreteras.

En la comercialización de los combustibles marinos es usado como diluyente para

ajuste de la viscosidad en la preparación de los IFO (Fuel Oil Intermedio); en el

Page 44: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

27

transporte de hidrocarburos por poliductos se utiliza como interfaces para la separación

de productos.

Especificaciones diesel 1:

Punto inflamación (ºC) D-56 40 min.

Destilación ASTM (ºC) D-86

A 200 ºC 10% Vol max 10 ml.

Punto final (ºC) 288 max.

Azufre % peso D-1552 0.2 max.

Corrosión lamina cobre D-130 Nr. 1 max.

Color saybolt D-156 18 min.

Diesel 2: Es la fracción más pesada que se obtiene del petróleo por destilación

atmosférica, por lo tanto es la fracción que destila entre la temperatura que termina la

destilación del Diesel 1 y aquella temperatura hasta la cual se puede calentar el petróleo

sin que se produzca rompimiento de moléculas (craqueo).

Los hidrocarburos presentes en este combustible son de carácter saturado como los

parafínicos, nafténicos, así como, aromáticos y de carácter mixto. Tiene resistencia baja

al autoencendido, es decir, se enciende por compresión y su tensión superficial baja

permite la fácil pulverización en los inyectores, su bajo contenido de azufre admite la

utilización de lubricantes con bajo contenido de alcalinidad.

El uso del Diesel 2 es:

Se utiliza en motores de autoencendido por compresión, motores utilizados en el

transporte pesado, en sector naviero de cabotaje, turbinas de generación eléctrica,

motores estacionarios de diverso tipo utilizados en la industria, en calderos para la

generación de vapor, etc.; también, se utiliza como diluyente en la preparación de los

combustibles marinos.

Page 45: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

28

Especificaciones diesel 2:

Punto inflamación (ºC) D-93 51 min.

Destilación ASTM (ºC) D-86

Punto Inicial 180 min.

90% Volumen 360 max.

Azufre % peso D-1552 0.7 max.

Viscosidad a 37.8 ºC (CST) D-88 2.5 a 6

Residuo carbón conradson % (peso) D-189 0.15 max.

Cenizas 0.01max

2.3.4 RESIDUO.

Existen tres tanques para almacenar el residuo: YT-806 A/B/C con una capacidad de

25.000 barriles (3.975 m³) cada uno. Los tanques están revestidos de una camisa de

vapor con la finalidad de mantener el residuo fluido a una temperatura de alrededor de

80ºC. Adicionalmente cada tanque está equipado con un agitador.

Cada tanque tiene conexión para recibir el residuo del fondo de la fraccionadoras,

enviados por las bombas de fondos ; y, a su vez una salida hacia los filtros Y-V802

A/B y bombas de residuo Y-P806 A/B/C hacia la estación Central de

PETROPRODUCCIÓN, en donde se han instalado dos medidores de desplazamiento

positivo.

2.3.5 JET A-1

Es un queroseno especialmente indicado como carburante para turbinas de aviación. Las

especificaciones del JET A-1 son restrictivas para asegurar los requerimientos de

seguridad de las aeronaves, tanto en tierra como en el aire (necesidad de acomodarse a

distintas temperaturas y presiones).

Page 46: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

29

Especificaciones jet fuel:

Punto inflamación (ºC) D-56 38 min.

Destilación ASTM (ºC) D-86.

10% vol 204 max.

50% vol 232 max.

Punto final 288 max.

Azufre total (%peso) D-1266 0.2 max.

Corrosión Lam. Cobre D-130 Nr. 1 max.

Punto Congelamiento (ºC) D-2386 -47 max.

El Jet Fuel es un tipo de combustible de la aviación diseñado para el uso en avión

impulsado por los artefactos del gas-turbina. Los combustibles normalmente usados

para la aviación comercial son el motor de reacción UN y motor de reacción UN-1 qué

se produce a una especificación internacional estandarizada. El único otro combustible

del motor de reacción normalmente usó en turbina-artefacto civil impulsado que la

aviación es el motor de reacción B que se usa para su actuación de frío-tiempo

reforzada.

Page 47: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

30

Tabla Nº 3. Productos que se obtienen en la refinería y planta de

gas en Shushufindi

PRODUCTO

PROM.

m 3 / mes USO

CRUDO ORIENTE 95.759 Cargas para refinerías

GASOLINA BASE 20.569 Para preparación de gasolina extra

JET FUEL 3.083 Para combustible de aviones comerciales

DIESEL 1 894 Uso como interface en operativos del Poliducto

DIESEL 2 23.449 Para el transporte público y pesado

CRUDO

REDUCIDO 45.395

Para Combustible en industrias y para

exportación

PROPANO 46 * Para refrigerante ( Planta de gas y Secoya)

G.L.P 11.009 Para uso doméstico e industrial

GASOLINA

NATURAL 7.376

Para preparación de gasolina extra y

exportación

GASOLINA

EXTRA 3.180 ** De 80 octanos para uso automotores

* De acuerdo a consumo en planta de gas y a oferta

** Preparación con nafta de alto octanaje ( Beaterio) para consumo en zona de

influenza

Fuente: Complejo Industrial Shushufindi.

Elaborado por: Lukeili Valiente

Page 48: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

31

2.4 DESCRIPCIÓN DE LA ESTACIÓN CABECERA POLIDUCTO

SHUSHUFINDI.

Recepción de combustibles ligeros (JET, Gasolina, Diesel y GLP) desde la Refinería y

Bombeo de los mismos hacia el Poliducto.

Figura Nº 10. Poliducto Shushufindi-Quito.

Fuente: Poliducto Shushufindi-Quito.

Elaborado por: Lukeili Valiente

2.4.1 DESCRIPCIÓN DE LA INSTALACIÓN.

Área de Manifolds: formado por (5) tuberías de 8’ de diámetro que vienen desde

la Refinería con diesel, gasolina, JET y gas.

Área de bombas: Bombas Booster, tres de productos claros y dos de gas,

Bombas de impulsión (3), contadores.

Área de rascadores.

Área de generadores (2).

Salchicha de gas.

Tanque diesel diario.

Sistema de extinción por agua y espuma.

Page 49: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

32

Aéreas administrativas: Oficina, Sala de operaciones, Laboratorio, Bodega.

Viales de acceso automotor que permiten accesibilidad vehicular en todas las

áreas de la instalación.

2.4.2 DESCRIPCIÓN DEL PROCESO TECNOLÓGICO.

La Estación Terminal Shushufindi perteneciente a la Filial PETROCOMERCIAL está

compuesta por un grupo de instalaciones destinadas a las actividades de recepción y

bombeo de combustible limpio dentro de los cuales tenemos:

Diesel 1: Temperatura de auto inflamación 40 grados Celsius

Diesel 2: Temperatura de auto inflamación 51 grados Celsius

Gasolina Base: Temperatura de auto inflamación ambiente.

Jet A-1: Temperatura de auto inflamación 38 grados Celsius.

Gas Licuado del Petróleo.

Esta estación es la cabecera del poliducto hasta Quito, la misma recibe el producto de la

Refinería Shushufindi, a través de un Manifolds, enviándolo a las bombas Booster las

que se encargan de transferirlo a la sala de máquinas y de aquí al poliducto.

Esta instalación además de la peligrosidad intrínseca que presenta su proceso de

producción se ve amenazada por cualquier hecho que pueda ocurrir en las instalaciones

vecinas las cuales están muy próximas (Refinería Shushufindi perteneciente a

PETROINDUSTRIAL, Planta de Llenado de Cilindros de Gas Licuado del Petróleo

perteneciente a PETROCOMERCIAL), lo que con seguridad la afectaría directamente.

2.4.3 ÁREAS OBJETOS DE ANÁLISIS Y OBSERVACIONES PUNTUALES.

Aéreas de bombas.

Salchicha de gas.

Rascadores.

Tanque de diesel diario.

Page 50: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

33

Manifolds.

Sala de operaciones.

Generadores.

Aéreas administrativas.

Page 51: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

34

Figura Nº 11. Perfil del Poliducto Shushufindi-Quito.

Fuente: Poliducto Shushufindi - Quito.

Elaborado por: Lukeili Valiente.

Page 52: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

35

2.5 DESCRIPCIÓN DEL PROCESO DE OBTENCIÓN DEL GLP.

Para hacer la descripción del proceso de obtención de GLP en la planta de gas del

Complejo Industrial Shushufindi se pueden distinguir las siguientes etapas: separación,

deshidratación, refrigeración de gas y líquidos de entrada secos y destilación. El proceso

esta calculado para obtener la mayor cantidad de propano, isobutano y butanos

normales.

Figura Nº 12. Planta de Gas.

Fuente: Planta de Gas.

Elaborado por: Lukeili Valiente.

El proceso inicia con la recolección del gas natural que llega de los pozos a un

separador de entrada, en el cual se separan gas, hidrocarburos líquidos y agua. El agua

es enviado al pozo de quemado, el gas y los hidrocarburos líquidos son inicialmente

deshidratados y después enfriados por intercambio de calor con: gas residual frío

proveniente de la parte alta del separador frío, liquido del separador frío y propano

Page 53: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

36

refrigerante en un enfriador de gas. El líquido condensado durante el enfriamiento del

gas de entrada es extraído y enviado al desetanizador. El gas restante es enviado al

sistema de gas residual.

El caudal de diseño de gas de entrada es: 708.000 Nm3/D (25.000 MSCF/D), a 550 psig

de presión y 49 ºC de temperatura, con un peso molecular de 30.02. el caudal del

liquido es 50.5 GPM con un peso especifico de 0.56.

2.5.1 SEPARACIÓN.

Existen tres líneas de entrada de gas y tres de líneas de entrada del liquido condensado,

estas se juntan y entran en el separador de gas de entrada a una presión de 550 psig y

una temperatura de 49 ºC.

Luego de la separación, el agua es enviada al pozo de quemado, los hidrocarburos

líquidos son bombeados a los deshidratadores de líquidos y el gas pasa a través de un

filtro separador y es enviado a los deshidratadores de gas.

2.5.2 DESHIDRATACIÓN.

Existen dos tipos de deshidratadores para los gases y dos para los líquidos. La

deshidratación de gas se basan en el mismo principio, mientras el un equipo esta

deshidratando el gas o liquido de entrada el otro se regenera.

Cada deshidratador tiene un matiz, el cual retiene el agua contenida en las corrientes de

entrada. La regeneración del matiz se efectúa haciendo circular el gas seco del sistema

residual a través del deshidratador en sentido contrario al seguido para el secado, la

temperatura del gas de regeneración es controlada por un calentador y se eleva a 260 ºC.

Una vez que el deshidratador es secado de debe esperar un tiempo para que pueda entrar

en funcionamiento nuevamente, esto es gobernado por un controlador de tiempo.

El agua extraída del deshidratador es arrastrada por el gas de regeneración caliente y

enviada a un enfriador que hace que la temperatura de la corriente de gas de

Page 54: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

37

regeneración disminuya a 49 ºC, temperatura a la cual el agua se condensa y se separa;

el gas de regeneración es envuelto a la corriente de gas residual.

Se ha fijado un ciclo de seis horas como periodo de deshidratación pata el gas de

estrada, que es el tiempo en que se hace la regeneración de los tamices. El gas

deshidratado antes de entrar en los intercambiadores para por un filtro de polvo para

eliminar cualquier partícula procedente de los tamices.

Se ha fijado un ciclo de 24 horas como periodo de deshidratación para los líquidos de

entrada.

Un calentador de gas natural tipo baño de sal proporciona el calor necesario a las dos

corrientes de gas de regeneración.

La deshidratación del gas y líquidos de entrada se realiza a una presión de 550 psig y la

regeneración a 420 psig. El gas de regeneración debe estar lo mas seco posible y

contener la menor cantidad de hidrocarburos pesados, por esta razón el gas de

regeneración se toma de la corriente de gas residual.

2.5.3 REFRIGERACIÓN DE GAS Y LÍQUIDOS DE ENTRADA SECOS.

Luego de la deshidratación, los gases y los líquidos de entrada se combinan y dividen en

dos corrientes para ser enfriadas. Aproximadamente el 27 % de la corriente de gas

entrante o sea 191.160Nm3 / D (6.750 MSCF / D), y el 27 % de la corriente de líquidos

o sea 13.6 GPM, se unen y fluyen a través del intercambiador gas-gas. La temperatura

de la corriente de gas liquido desciendes de 49 ºC a -30 ºC, mientras que la temperatura

de gas residual de la planta pasa a -38 ºC a 38 ºC. Alrededor del 73 % de la corriente de

gas entrante o sea 516 840 Nm3 / D (18 250 MSCF / D), el 73 % de la corriente de

líquidos o sea 36.9 GPM se unen y pasan a través del intercambiador gas-liquido. La

temperatura de la corriente desciendes de 49 ºC a -30 ºC mientras que la temperatura del

liquido que alimenta al desetanizador aumenta de -40 ºC a 38 ºC. Por tanto el

intercambiador gas – liquido actúa como pre calentador de la alimentación del

desetanizador.

Page 55: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

38

Las dos corrientes gas – liquido se combinan y pasan a través del enfriador da gas de

entrada. La temperatura de la corriente gas – liquido desciendes de -30 ºC a -40 ºC por

la refrigeración con propano en el enfriador de gas.

Seguidamente la corriente gas liquido a través del separador frío, donde se separan

gases y líquidos. El separador ha sido diseñado para trabajar a 535 psig de presión y

– 40 ºC de temperatura. La corriente de gas correspondiente a la parte alta del separador

frío, con un caudal de 257 967 Nm3 / D (9.109 MSCF – D), y peso molecular de 25.86

se juntan y entran al intercambiador gas - gas para efectuarse el intercambiador

calorífico con la corriente gas – liquido. La corriente combinada de gases,

pertenecientes al separador frío y al acumulador de reflujo del desetanizador, forma la

corriente de gas residual de la planta. La temperatura de gas residual para de -38 ºC a

38 ºC en el intercambiador gas – gas.

La corriente de gas residual proporciona a la planta un caudal de gas combustible de 37

297 Nm3 / D (1 317 MSCF / D) con un peso de 24.12.

Parte del gas residual pasa a través de los deshidratadores de gas y liquido como gas de

regeneración y luego es enviado fuera de las estaciones central y sur.

2.5.4 DESTILACIÓN FRACCIONADA.

El liquido proveniente del separador frío pasa a presión a través del intercambiador gas

– liquido y entra al desetanizador con un caudal de 265.7 GPM con un peso especifico

de 0.5018 la temperatura del liquido se intercambia de -40 ºC a 38 ºC a su paso por el

intercambiador de calor.

Los gases de cabeza del desetanizador a una presión de 455 psig y una temperatura de

-19 ºC, son condensados parcialmente mediante refrigeración con propano en el

condensador del desetanizador y enviados al acumulador del reflujo del desetanizador.

Los gases del acumulador de reflujo van al sistema de gas residual y el líquido es

bombeado como reflujo nuevamente al desetanizador con un caudal de 156.5 GPM y un

peso especifico de 0.427. La corriente de líquidos de la parte baja del desetanizador es

extraída y enviada al re hervidor y luego enviada debutanizador.

Page 56: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

39

Los gases de cabeza del debutanizador son totalmente condensados en un

intercambiador de aire frío y enviados al acumulador de reflujo. Una parte del líquido

del acumulador es envuelto al debutanizador como reflujo y el resto es bombeado por

un regulador de presión al almacenaje de GLP, a través del enfriador de aire de

producto. El caudal de diseño para el producto propano – butano es de 117.5 GPM con

un peso especifico de 0.532.

Las colas del debutanizador son enviadas al re hervidor y luego pasan a través de un

enfriador y van al depósito de gasolina natural. Su valor de diseño es 30.61 GPM con un

peso específico de 0.648. Las condiciones de diseño del debutanizador son: presión de

200 psig y temperatura de 149 ºC.

Los re hervidores del desetanizador y del debutanizador son calentados por un sistema

de aceite caliente. Es un circuito cerrado que consta de bombas, un calentador de gas

natural y un tanque de expansión.

De una manera general podemos resumir el proceso así:

De cada estación por medio de compresores y bombas se envía el producto para

procesar un promedio de 250 toneladas de GLP por día, además de la gasolina natural

en la actualidad.

Tanto el gas como los hidrocarburos líquidos llegan a un separador de entrada en donde

se separa el gas, los líquidos y el agua, enviándose el agua al pozo de quemado.

Las cargas líquidas como la gaseosa pasan por las torres deshidratadoras con tamiz

molecular eliminándose totalmente la humedad debido a que si esta logra pasar se

formaran hidratos en el sistema de enfriamiento en donde se trabaja con temperaturas de

-40 grados centígrados, provocando por consiguiente taponamientos y presionamientos

en el proceso.

Después de la deshidratación, los gases y líquidos de entrada se combinan y dividen en

dos corrientes para ser enfriados, la temperatura desciende de 49 a -30 grados

centígrados.

Page 57: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

40

Seguidamente la corriente de gas-líquido circula a través del separador frío, donde se

separan gases y líquidos. La corriente combinada de gases pertenecientes al separador

frío y al acumulador del deetanizador forma la corriente de gas residual de la planta

utilizado como gas combustible.

El líquido proveniente del separador frío entra al deetanizador por el plato 19, la

corriente de líquidos de la parte baja del deetanizador, es extraída y enviada al

rehervidor.

El líquido procedente del rehervidor del deetanizador, entran a la debutanizadora por el

plato 19. Los gases de cabeza de la debutanizadora son condensados y enviados al

acumulador de reflujo una parte es devuelto como reflujo de la torre y el resto es

bombeado al almacenaje de LPG en las esferas de gas.

Las colas del debutanizador son enviadas al rehervidor, enfriadas y pasan al depósito de

almacenaje de gasolina natural.

2.6 CONTAMINANTES.

En las instalaciones de presentan varios contaminantes, estos deben tomarse en cuenta,

y son descriptos a continuación:

2.6.1 EMISIONES FUGITIVAS.

Dentro de las emisiones fugitivas podemos citar a los sistemas de almacenamiento del

gas licuado de petróleo, productos limpios, petróleo, a las fugas de vapores y gases por

las válvulas, drenajes, venteos, etc.

Todas estas emisiones se deben a actividades operativas de los accesorios, mal ajuste de

bridas, sobrepresión en las líneas y a la evaporación constante de los hidrocarburos y

sus derivados en los tanques de almacenamiento debido a las variaciones de

temperatura.

Page 58: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

41

2.6.2 FUENTES ANTROPOGENICAS.

Entre estas podemos citar a los hornos, calderas, generadores, compresores mecheros y

quemadores, maquinaria pesada, etc. Estos equipos para su funcionamiento

generalmente utilizan como combustible el gas o el diesel, estas fuentes antropogénicas

son las que originan las formaciones de NO y CO tóxicos.

2.6.3 DERRAMES DE HIDROCARBUROS.

Debidos principalmente a fallas en los equipos, roturas de tuberías por varios factores,

operaciones de mantenimiento y limpieza.

2.6.4 RUIDO Y VIBRACIONES.

En el CIS hay equipos como los turbogeneradores y compresores que generan ruidos

que sobrepasan los 120 decibeles, excediendo grandemente a los decibeles permitidos

para ocho horas diarias de trabajo, otros equipos que generan ruido y su consiguiente

vibración son los hornos, bombas, flujo de fluidos a alta presión por tuberías, etc.

2.6.5 UTILIZACION DE QUIMICOS.

En la planta de gas utilizan una serie de químicos que deben ser manejados con mucho

cuidado por sus características de toxicidad, así tenemos:

Xileno- utilizado para la limpieza de equipos.

Metil-Mercaptano- se añade al GLP para su detección.

Sulfatos de sodio, de aluminio e hipoclorito se usan en tratamientos de aguas residuales.

Nutrientes, polielectrolitos, carbonatos de sodio se utilizan para tratamientos de aguas

residuales.

Page 59: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

42

2.6.6 EFLUENTES LIQUIDOS.

En la Planta de Gas de Shushufindi los líquidos que se separan en los diferentes equipos

de la planta de procesos, estos líquidos son aguas con trazas de hidrocarburos que van a

un pozo de quemados en donde queman los hidrocarburos y el agua es conducida como

efluente hacia otro cuerpo de agua.

Page 60: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

CAPÍTULO III

Page 61: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

44

CAPÍTULO III

3. NORMAS APLICADAS AL MANUAL

El petróleo desde el momento que llega a superficie pasa por diferentes procesos, como

el de producción, refinación, transporte, comercialización el cual debe cumplir con

especificaciones exigidas por el consumidor y que a la vez están en función de su uso,

como por ejemplo: uso domestico, combustible, elaboración de plásticos, fertilizantes,

etc.

En el país el Complejo Industrial Shushufindi entrega a la Cabecera del Poliducto

Shushufindi Quito productos destilados del petróleo como son la gasolina, diesel, jet y

otros, los cuales se reciben de manera controlada de acuerdo a su gravedad API para

evitar su mezcla y contaminación, y de esa misma forma son bombeados por la tubería

ser transportado hasta el terminal el beaterio en Quito.

Figura Nº 13. Diagrama de partidas del poliducto Shushufindi Quito.

Fuente: Poliducto Shushufindi-Quito.

Elaborado por: Lukeili Valiente

Page 62: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

45

El petróleo para su comercialización debe cumplir ciertas normas que especifican su

calidad de producto, estas cumplen una función muy importante dentro del mundo del

petróleo ya que están normadas por instituciones específicas para el petróleo y sus

derivados tales como API, INEN, etc.

Tabla Nº 4. Especificaciones de calidad diesel 2

Requisitos Unidad Mínimo* Máximo Método Ensayo

Punto de Inflamación °C 51 -- INEN 1493 Corrosión Lámina de Cobre -- -- N° 3 INEN 927

Temperatura de Destilación 90% °C -- 360 INEN 926 Agua y Sedimentos % en V -- 0.05 INEN 1434 Índice de Cetano Calculado 45 INEN 1495 Residuo Carbonoso sobre el 10% del residuo % en peso -- 0.15 INEN 1491 Cenizas % en peso -- 0.01 INEN 1492

Viscosidad Cinemática 38°C CSt 2.5 6.00 INEN 810

Contenido de Azufre % en peso -- 0.70 INEN 1490 Calor de Combustión -- -- -- --

Fuente: Control de Calidad EP Petroecuador Refinería Amazonas

Elaborado por: Lukeili Valiente

Tabla Nº 5. Especificaciones de calidad diesel 1

Requisitos Unidad Mínimo* Máximo Método Ensayo

Punto de Inflamación °C 40 -- INEN 1047 Corrosión Lámina de Cobre -- -- N° 2 INEN 927 Temperatura de Destilación 90% °C -- 288 INEN 926

Agua y Sedimentos % en V -- 0.15 INEN 1494

Índice de Cetano Calculado -- 40 -- INEN 1495 Residuo Carbonoso sobre el 10% del residuo % en peso -- 0.15 INEN 1491 Cenizas % en peso -- 0.01 INEN 1492 Viscosidad Cinemática 38°C CSt 1.3 3.00 INEN 810 Contenido de Azufre % en peso -- 0.30 INEN 1049 Calor de Combustión KJul/Kg. -- 45914 ESTIMADO

Fuente: Control de Calidad EP Petroecuador Refinería Amazonas

Elaborado por: Lukeili Valiente

Page 63: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

46

Tabla Nº 6. Especificaciones de calidad Jet Fuel

Requisitos Unidad Mínimo* Máximo Método Ensayo

Color Saybolt °C

21 INEN 1047

Gravedad Específica 15.6/15.6°C

0,775 0,840 INEN 927

API 15.6/15.6°C °C

37 51 INEN 926

Acidez total mg KOH/g

0,10

Aromáticos %V

22

Olefinas % en peso

5

Azufre mercaptano %P

0,003

Azufre total %P

0,30

Corrosión lámina Cu 2H a 100°C

No. 1

Destilación:

10%

205

20%

REPORTE REPORTE

50%

REPORTE REPORTE

90%

REPORTE REPORTE

P.F.E. % en peso

300 INEN 1491

Residuo % en peso

1,5 INEN 1492

Pérdida CSt

1,5 INEN 810

Punto de inflamación °C

38

Punto de congelación °C

-47

Punto de humo mm

20

Contenido de naftenos %V

% en peso 3,0

INEN 1049 Viscosidad a - 20°C

KJul/Kg. 8,0

ESTIMADO WSIM

85

Goma existente mg/100ml

7

Estabilidad térmica

Page 64: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

47

Caída de presión kpa

3,3

Depósito en el tubo de precalentamiento

3

Reacción al agua

Clasificación de interfase

Clasificación de separación

1b

Agua en emulsión

ppm 2

Calor neto de combustión

MJ/Kg 30

Contenido de partículas

mg/l 42,8

Tiempo de filtración minutos

1

Fuente: Control de Calidad EP Petroecuador Refinería Amazonas

Elaborado por: Lukeili Valiente

3.1 PROCEDIMEINTOS DE CONTROL DE CALIDAD

En el laboratorio del Poliducto Shushufindi-Quito se realizan diferentes pruebas para el

control de calidad de los productos transportados por el mismo, estas pruebas se

realizan dependiendo del producto entrante para su transporte.

3.2 PROCEDIMIENTO PARA DETERMINAR LA DENSIDAD API.

NORMA: ASTM-D 287 API Estándar 2546 INEN 930

3.2.1 DEFINICIÓN

Este método determina la obtención de muestras de derivados del petróleo tomadas en

refinerías, terminales, depósitos, centros de distribución de las empresas productoras

abastecedoras y comercializadoras. Con los cuales se determina la gravedad específica

y el contenido de agua y sedimentos en suspensión.

Page 65: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

48

GRADOS API

Los grados API se definen por la siguiente ecuación

141,5

API = ------------------- - 131,5

Densidad 60/60°F

3.2.2 PROCEDIMIENTO:

Tomar un volumen (500-1000 cm3) de la sustancia problema, cuidando que no

se formen burbujas en la superficie.

Introducir el hidrómetro adecuado y dejarlo que flote libremente, sin que roce las

pareces de la probeta.

Realizar la lectura de la densidad API y simultáneamente medir la temperatura

de la muestra.

Anotar los datos obtenidos y realizar los cálculos de corrección de temperatura

de la densidad API a 60 ºF.

Figura Nº 14. Equipo analizador de Gravedad API.

Fuente: Laboratorio de control de calidad del Poliducto Shushufindi-Quito.

Elaborado por: Lukeili Valiente

Page 66: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

49

3.3 PROCEDIMIENTO PARA DETERMINAR LA CORROSIÓN A LA

LÁMINA DE COBRE.

NORMA ASTM D-130 INEN 927

3.3.1 DEFINICIÓN

Este método cubre la determinación de la corrosión sobre la lámina de cobre, producida

por: gasolina de aviación, combustibles para turbinas de aviación, gasolina para motores

de combustión interna, gasolina natural, kerosene, diesel, aceites combustibles

destilados, aceites lubricantes, solventes y otros productos derivados del petróleo, con

excepción de ciertos productos, como aceites aislantes eléctricos y grasas.

3.3.2 PROCEDIMIENTO:

Colocar la lamina de cobre en el soporte y fijar su superficie.

Introducir la lamina de tubo de ensayo que contiene el hidrocarburo a ser

ensayado.

Posteriormente colocar el tubo anterior en el interior de un tubo metálico con

tapa roscada.

Luego de armar esta bomba, colocarla en baño termostático a temperatura y por

un tiempo determinado, dependiendo del tipo de muestra.

Después de este tiempo retirar del baño y con una pinza extraer la lamina

colocar sobre el estándar para obtener el valor de la corrosión según la

coloración.

Page 67: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

50

3.4 PROCEDIMIENTO PARA DETERMINAR LA TEMPERATURA DE

INFLAMACIÓN POR MEDIO DE APARATO CERRADO PENSKY

MARTENS.

NORMA ASTM 93-52 INEN 1493

3.4.1 DEFINICIÓN

Este método sirve para determinar el punto de inflamación de productos de petróleo en

vaso cerrado (método Pensky-Martens), a menos que se especifique el uso del aparato

cerrado Tag.

Este método se aplica a los productos de petróleo líquidos, como kerosén, diesel,

petróleo combustible, aceites lubricantes y en general a productos cuyo punto de

inflamación en vaso cerrado sea superior en 15 °C (por lo menos) a la temperatura

ambiente. Este método no se puede aplicar a solventes, ceras líquidas y asfaltos. Este

método sirve para la detección de contaminaciones en el diesel, causado por la presencia

de los productos volátiles.

3.4.2 PROCEDIMIENTO:

Llenar la copa con la muestra con la muestra problema, hasta la línea de aforo

indicada en la copa.

Llevar la copa al equipo Pensky-Martens, taparlo y adaptar el termómetro.

Iniciar el calentamiento, activar la agitación y regular la llama a 4 mm.

Pasar la llama sobre la muestra con un intervalo de 2 ºC hasta que se produzca la

primera inflamación con una pequeña detonación.

Registrar esa temperatura la cual corresponde a la del punto de inflamación.

Page 68: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

51

Figura Nº 15. Analizador punto de inflamación.

Fuente: Laboratorio de control de calidad del Poliducto Shushufindi-Quito.

Elaborado por: Lukeili Valiente

Page 69: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

52

3.5 PROCEDIMIENTO PARA DETERMINAR EL CONTENIDO DE AGUA Y

SEDIMENTOS

NORMA INEN 1494-ASTM D 96.

3.5.1 DEFINICIÓN

El método de la centrífuga para la determinación de agua y sedimento no es

completamente satisfactorio debido a que la cantidad de agua obtenida es casi siempre

inferior al contenido real de agua. Sin embargo, debido al uso extendido de la centrífuga

para este objeto, es deseable que el método para efectuar la determinación sea

normalizado hasta donde sea posible. Se debe entender claramente que el volumen total

que se lee en el tubo de la centrífuga incluye tanto el sedimento como el agua

precipitada. La determinación exacta del contenido de agua si se desea, debe efectuarse

de acuerdo con el método para la determinación de agua por destilación.

3.5.2 PROCEDIMIENTO:

En 2 tubos graduados se adicionan iguales volúmenes de solventes y de petróleo.

Adicionar una gota de demulsificante a cada tubo.

Posteriormente se llevan los tubos a baño maría a 49 ºC por 5 min.

Llevar los tubos a esa temperatura a la centrifuga, después de 15 min apagar el

mando de la centrifuga y sacar los tubos.

Observar las distintas fases formadas y medir el volumen de agua y sedimento

formados.

Page 70: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

53

Figura Nº 16. Equipo analizador de Agua y Sedimentos

Fuente: Laboratorio de control de calidad del Poliducto Shushufindi-Quito.

Elaborado por: Lukeili Valiente

3.6 PROCEDIMIENTO PARA DETERMINAR LA PRESIÓN DE VAPOR REID

NORMA ASTM-D323, D1267, INEN 928

3.6.1 DEFINICIÓN.

Solo para gasolinas y solventes. Presión de Vapor Reíd es la presión que ejerce los

vapores producidos al someter a la muestra a una temperatura de 100 °F (

37,8°C).Debido a una pequeña vaporización de la muestra y a la presencia de vapor de

agua y de aire en el espacio confinado de la cámara en la que se realiza la

determinación. 1 Atmósfera = 101,325 Pázcales =14,7 PSI

Page 71: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

54

3.6.2 PROCEDIMIENTO:

Preparar el baño termostático a 100ºF.

Se mide 100 cc de la muestra fría y se la coloca en la cámara de muestra. Tanto

la cámara como el recipiente empleados deben estar previamente enfriados para

evitar perdidas por evaporación.

Enjuagar la cámara de aire con agua e introducir un termómetro para registrar la

temperatura de esta cámara.

Ensamblar ambas cámaras y el manómetro.

Agitar la muestra y colocar en el interior del baño termostático a 100ºF y tomar

la lectura.

Sacar el aparato con la muestra, agitar nuevamente y poner en el baño,

Repetir este procedimiento hasta tener un valor contante de presión, la cual será

la presión de vapor Reid.

3.7 PROCEDIMIENTO PARA DETERMINAR EL ÍNDICE DE CETANO

NORMA. ASTM – D 976. INEN 1495.

3.7.1 DEFINICIÓN

El índice de cetano tiene aplicación para los combustibles de motor diesel y determina

el poder de inyección de estos. El combustible es inyectado dentro de la cámara de

combustión el que se pone en contacto con aire, que se encuentra a una alta presión lo

que produce una alta temperatura. De tal forma que el diesel sé auto combustiona, el

mismo que presentara diferentes intervalos de tiempo desde el ingreso hasta la

combustión completa. Este periodo se lo puede considerar como un punto de referencia

para determinar la característica de combustión de un diesel. Si el intervalo de tiempo

es corto el combustible presenta buenas características para su auto inyección. Y si el

tiempo es relativamente largo el motor se prende con dificultad, y el efecto es cuando el

combustible acumulado se enciende. La presión de liberación es una energía muy

grande. Lo que causa un fuerte golpeteo, cascabeleo y por consiguiente daños en el

sistema.

Para determinar esta característica sé a definido una escala de índice de cetano que

expresa la cualidad de inyección de los combustibles diesel y se basa en las

Page 72: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

55

características de inyección de los hidrocarburos siendo el normal cetano un compuesto

que sé auto enciende con facilidad asignándole un valor de 100 de Índice de cetano. El

Metil Naftaleno que es un compuesto que tarda en auto combustionarse se lo asigna un

valor de 0 de índice de cetano.

3.7.2 PROCEDIMIENTO:

Colocar 100 cc de muestra en el balón de destilación.

Armar el equipo asegurándose de q no existan vapores para disminuir perdidas y

peligro de explosión, sellar herméticamente las uniones.

Inicial la destilación con un leve calentamiento.

Registrar la temperatura, cuando se condense la primera gota de destilado, seguir

registrando las temperaturas a intervalos de 5 % de volumen de destilado.

Incrementar progresivamente el calentamiento de tal forma q se tenga un goteo

constante y uniforme hasta obtener el 95 % de destilado y el punto final.

Se apaga y se desarma el equipo. Una vez enfriado el balón de destilación se

mide el volumen de residuo que se encuentra en el balón.

Page 73: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

CAPÍTULO IV

Page 74: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

57

CAPÍTULO IV

4. MANUAL DE OPERACIPONES PARA MEJORAR LAS TRASFERENCIA Y

RECEPCION DE PRODUCTOS LIMPIOS DESDE EL COMPLEJO

INDUSTRIAL SHUHSUFINDI HACIA LA CABECERA DEL POLIDUCTO

SHUSHUFINDI-QUITO

Los siguientes procedimientos es el trabajo final de toda la aplicación de las normas y

procedimientos de los ensayos antes expuesto. Acá se dará a conocer la forma de cómo

se reciben los productos limpios, bombeo de los mismos y control de calidad aplicado a

los productos en el Poliducto Shushufindi – Quito.

POLIDUCTO SHUSHUFINDI – QUITO

ORIGEN: SHUSHUFINDI DESTINO: QUITO FECHA INICIO DE OPERACIONES: 29 - 06 -81 PRODUCTOS QUE TRANSPORTA: GLP - DIESEL - GASOLINA BASE -

DESTILADO 1 LONGITUD TOTAL: 304 + 815

CAPACIDAD DE TRANSPORTE

CAPACIDAD DE DISEÑO CAPACIDAD ACTUAL CAPACIDAD MAXIMA 900 m3/d 1.700 m3/d 1.908 m3/d

5.661 bpd 10.800 bpd 12.000 bpd Volumen empaquetamiento línea 36.700 BLS Caudal máximo: 450 bls/h

PRESIONES DE TRABAJO

MÁXIMA MÍNIMA 134 Kg / cm2 13 Kg / cm2

1900 PSI 180 PSI

DESCRIPCIÓNPOR TRAMOS TRAMOS LONGITUD

(Km) DIÁMETRO (pulg)

ESPESOR (mm) ESPECIFICACIÓN DE LA TUBERÍA

Shushufindi-Quijos 122+007 6 4,7 5LX-52 Quijos-Osayacu 85+004 6 4,7 5LX-52 Osayacu-Chalpi 35+126 6 4,7 5LX-52 Chalpi-Oyambaro 36+513 6 4,7 5LX-52

Page 75: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

58

Ushimana-Beaterio 17+115 4 3,9 5LX-42 ESTACIONES DE BOMBEO

DENOMINACIÓN

POTENCIA TOTAL

INSTALADA (KW)

# DE GRUPOS DE BOMBEO

ALTURA (msnm) DIESEL ELÉCTRICOS B. BOOSTER

SHUSHUFINDI 972 3 8 215 QUIJOS 3 987 OSAYACU 3 1 1840 CHALPI 3 1 2860

ÁREA DE ALMACENAMIENTO CABECERA SHUSHUFINDI

# TANQUE TIPO DE TECHO PRODUCTO VOLUMEN BLS OPERATIVO TOTAL

TSH-01 Flotante G. Extra 18.000 21.914 SUBTOTAL 18.000 21.914 TSH-02 Fijo Diesel 2 18.000 21.914 SUBTOTAL 18.000 21.914 CAPACIDAD TOTAL DEL TERMINAL 36.000 43.828

TANQUERÍA

# TANQUE TIPO PRODUCTO CAPACIDAD BLS OPERATIVA TOTAL

1201 Cónico Diesel 2 419 433,2 1202 Cilíndrico horizontal Diesel 2 30,2 1204 Cilíndrico horizontal Sumidero 20.2 1205 Horizontal cilíndrico GLP 219 1221 Cónico Alivio 528.2 523.8

INSTALACIONES Y EQUIPOS DE SEGURIDAD INDUSTRIAL Y PROTECCIÓN

AMBIENTAL

Tanques De Almacenamiento De Agua Contra Incendios

# TANQUE ALTURA (m) DIÁMETRO (m) CAPACIDAD (BLS)

1207 9,75 11,2 6.000

Sistemas Contra Incendios

EQUIPO DETROIT DIESEL

EQUIPO FIJO DE ESPUMA

EQUIPO NATIONAL FOAM INC

Potencia motor =130 HP

Motor Baldor Bomba de Espuma 50 gal/ min 200 PSI

Caudal = 1000 GPM Tanque de espuma

300 gal

Page 76: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

59

Frecuencia = 1975 RPM

24 splinkers

Bomba DEMING 8X6X20

# Botones Parada de Emergencias

3 # Detectores de Fuego 10

Detector de Muestras Explosivas

Piscinas Separadoras API

CAPACIDAD (BLS)

ALTURA (m) ANCHO (m) LARGO (m)

136 1,23 2,15 8,15

4.1 MANUAL PARA LA RECEPCIÓN DE PRODUCTOS LIMPIOS.

1. OBJETIVO

Definir un método para el control para la recepción de los productos limpios desde el

Complejo Industrial Shushufindi hacia la cabecera del Poliducto Shushufindi – Quito.

2. ALCANCE

Aplicada a todas las personas que trabajen en el área de operaciones en el Poliducto

Shushufindi – Quito.

3. DEFINICIONES

Alineamiento de Válvulas: Es una actividad que se realiza para dar una vía de flujo al

producto que está en línea y de esta manera evitar

estrangulamientos y sobrepresiones que afecten al

poliducto.

Control de operación: Actividad que realizan los operadores de la estación para

mantener el funcionamiento óptimo de los equipos del

sistema operacional.

Page 77: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

60

Grupo de Bombeo: Compuesto por Motor, Incrementador y Bomba, con el cual

Incrementamos el flujo.

4. RESPONSABILIDADES

Elabora: Personal de operaciones de la cabecera Shushufindi.

Revisa: Coordinador de Estación Shushufindi.

Aprueba: Coordinador de Estación Shushufindi.

Cumplimiento: Personal de Operaciones de la cabecera Shushufindi.

5. DESCRIPCIÓN DEL PROCEDIMIENTO

5.1 Coordinación con el CIS el tanque o Planta de Gas la esfera a evacuar, su

volumen y tiempo de evacuación.

5.2 Verificar si el producto ofrecido por el CIS cumplen los requerimientos

solicitados por el laboratorio de control de calidad de la estación.

5.3 Verificar que la válvula principal de entrada a la cabecera se encuentre abierta.

5.4 Alinear la válvula de manifold de acuerdo al producto que se va recibir.

5.5 Verificar que la válvula de salida de la cabecera se encuentre abierta.

5.6 Verificar que todas las válvulas de drenaje se encuentren cerradas y no exista

paso de producto hacia el sumidero.

5.7 Verificar que las válvulas de succión de cada grupo se encuentren abiertas.

6. CRITERIO OPERATIVO

6.1 Las válvulas de entrada y salida de la estación deben estar 100% abiertas.

6.2 De acuerdo al producto a recibir debe estar alineada la válvula en el manifold.

7. REFERENCIAS

Normas aplicadas al manual y procedimientos de pruebas de calidad dependiendo

producto.

Page 78: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

61

8. FORMULARIOS

Registro de datos de Control Diario.

9. ANEXOS

Bitácora de Operaciones.

Archivo Digital.

4.2 MANUAL DE BOMBEO DE PRODUCTOS LIMPIOS.

1. OBJETIVO

Definir un método para el control de bombeo de los productos limpios en la cabecera

del Poliducto Shushufindi – Quito.

2. ALCANCE

Aplicada a todas las personas que trabajen en el área de operaciones en el Poliducto

Shushufindi – Quito.

3. DEFINICIONES

Registrador de Densidad: Elemento electrónico encargado de registrar la densidad del

producto.

Control de operación: Actividad que realizan los operadores de la estación para

mantener el funcionamiento óptimo de los equipos del

sistema operacional.

Puesta en marcha: Es una actividad que se realiza para aumentar la presión de

impulso al producto que está en línea.

Page 79: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

62

4. RESPONSABILIDADES

Elabora: Personal de operaciones de la cabecera Shushufindi.

Revisa: Coordinador de Estación Shushufindi.

Aprueba: Coordinador de Estación Shushufindi.

Cumplimiento: Personal de Operaciones de la cabecera Shushufindi.

5. DESCRIPCIÓN DEL PROCEDIMIENTO

5.1 Verificar el cronograma de bombeo del producto que va a ser evacuado, su

caudal, presiones de la línea y métodos de control de los grupos principales.

5.2 Proceder al venteo de líneas y bombas booster en la línea de entrada a la

cabecera.

5.3 Abrir la válvula de entrada accionada a motor, de acuerdo al producto a

evacuarse.

5.4 Luego el operador informara al CIS que la estación se encuentra lista para entrar

en línea (operar).

5.5 El operador selecciona el equipo de bombeo que se va arrancar y posteriormente

que entra en línea se le da la confirmación de recibido.

5.6 Iniciada la operación en la estación, el operador observara en la pantalla de

control, una variación de ascenso en la presión estática de succión,

inmediatamente se arranca los motores seleccionados que van a entrar en línea.

5.7 Una vez que los motores han arrancado automáticamente se abren las válvulas

de descarga de dichos grupos.

5.8 Lentamente subimos revoluciones de los motores desde el control de velocidad,

tratando de mantenernos con una presión de succión de 80 psi y cuidando que la

presión de descarga no exceda de 1900 psi por cuanto fuera de estos rangos los

grupos se bloquean.

5.9 Verificar en el campo que no exista alguna novedad con los equipos luego del

reinicio de las operaciones.

5.10 En la estación se comprobara periódicamente en la toma muestras el producto

que está pasando.

Page 80: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

63

5.11 Durante el tiempo que dure la operación se realizara un control horario tanto en

la pantalla de control como en el campo y manifold, de temperaturas y presiones

de los equipos.

5.12 Registrar los datos de entrada y salida de operación en la bitácora de

operaciones así como los datos de campo, para ser reportados cada hora.

6. CRITERIO OPERATIVO

6.1 Condiciones del manifold.

6.2 Condiciones de bridas.

6.3 Condiciones de válvulas.

6.4 Presiones de línea.

6.5 Condiciones de los grupos de bombeo.

6.5 Características del producto a bombear.

7. REFERENCIAS

Normas aplicadas al manual y procedimientos de pruebas de calidad dependiendo

producto.

8. FORMULARIOS

Registro de datos de Control Diario.

9. ANEXOS

Bitácora de Operaciones.

Archivo Digital.

4.3 MANUAL DE CONTROL DE CALIDAD DE PRODUCTOS LIMPIOS.

1. OBJETIVO

Definir un método para el control de calidad de los productos limpios en la cabecera del

Poliducto Shushufindi – Quito.

Page 81: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

64

2. ALCANCE

Aplicada a todas las personas que trabajen en el área de operaciones en el Poliducto

Shushufindi – Quito.

3. DEFINICIONES

Interfase: Es el común en estado de fusión de dos productos.

Registrador de Densidad: Elemento electrónico encargado de registrar la densidad del

producto.

4. RESPONSABILIDADES

Elabora: Personal de operaciones de la cabecera Shushufindi.

Revisa: Coordinador de Estación Shushufindi.

Aprueba: Coordinador de Estación Shushufindi.

Cumplimiento: Personal de Operaciones de la cabecera Shushufindi.

5. DESCRIPCIÓN DEL PROCEDIMIENTO

5.1 Fiscalización de tanque o esfera a evacuar hacia la cabecera Shushufindi.

5.2 Solicitar certificado de calidad al CIS, del producto a ingresar a la cabecera

Shushufindi.

5.3 Tomar muestras de producto a evacuarse para análisis de laboratorio en la cabecera

Shushufindi antes del ingreso del producto.

5.4 Elaborar certificado de aceptación o rechazo del producto con datos obtenidos.

5.5 Informar al supervisor de turno de los resultados obtenidos para su ingreso a la

cabecera Shushufindi.

Page 82: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

65

6. CRITERIO OPERATIVO

Dependiendo del producto:

6.1 Densidad API

6.2 Temperatura

6.3 Índice de cetano

6.4 Viscosidad, etc.

7. REFERENCIAS

Normas aplicadas al manual y procedimientos de pruebas de calidad dependiendo

producto.

8. FORMULARIOS

Registro de datos de Control Diario.

9. ANEXOS

Bitácora de Operaciones.

Archivo Digital.

Page 83: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

CAPÍTULO V

Page 84: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

67

CAPÍTULO V

5. CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

No existe procedimientos establecidos y validados por parte de la autoridad

superior encargada del control operativo de estas actividades, es decir por el

Intendente del Poliducto, esto ocasiona que no se pueda establecer

responsabilidades sobre problemas operativos que se detecten, ni se generen

auditorias de control sobre su aplicación.

Al no existir manual con los procedimientos de aplicación a las actividades de

entrega recepción de producto entre dos Gerencias diferentes no se establece

parámetros acordados para validar calidad o características de producto para su

transferencia de custodia.

La idea de que son áreas de la misma empresa aunque diferentes gerencias no

exime de responsabilidad en el manejo de los combustibles a ser

comercializados lo cual se denoto como falencia en el estudio realizado.

Se evidencia que al no contar con manuales de operación, no existe

responsabilidad definida en caso de problemas de aceptación de producto en

malas condiciones es decir fuera de especificaciones.

No se ha documentado menos aun digitalizado ningún procedimiento por parte

de ninguna de las áreas involucradas en la entrega recepción de combustibles

para ser transportados a los centros de distribución.

Page 85: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

68

Los tiempos de operación del poliducto son altos en muchos casos debido a

paradas por problemas en la acepción de los productos transportados en el

Terminal Beaterio.

5.2 RECOMENDACIONES

Es importante y necesario contar con un sistema de operación validado en sus

diferentes actividades no solo como control del mismo, sino como elemento de

capacitación a funcionarios nuevos o trasladados de otras áreas a fin de que no

existan problemas operativos por desconocimiento de o falta de información,

por lo cual es recomendable al crearlo y validarlo realizar una amplia difusión

del mismo.

El presente manual consta de varios procedimientos los cuales deberán ser

revisados y de ser el caso constantemente actualizados a fin de que sirvan de

guía en los criterios operativos de los procesos fundamentales de la cabecera del

Poliducto Shushufindi Quito.

Todo manual y procedimiento debe ser validado por la máxima autoridad a

cargo de las operaciones en mención, con el aval de la revisión de los jefes de

campo, por lo que se recomienda, que estos, que se entregan en el presente

trabajo, sigan el camino mencionado antes de su implementación y así sirvan

como elementos de control en caso de algún momento se de un problema

operativo.

Validados los procedimientos y el manual deberá capacitarse a todo el personal

incluido jefes y técnicos, y de ser el caso incorporar recomendaciones de los

mismos para futuras revisiones.

Page 86: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

69

Siempre que exista cambio de equipos o remodelaciones, incremento de

productos u otras actividades, deberán incluirse en el manual o deberán generase

nuevos procedimientos.

Se deben generar un check list para entrega – recepción de turno, ya que no es

suficiente redactar las novedades solo en bitácoras.

Se recomienda aplicar la norma ANSI/ISA S 5.1 a fin de tener PI&Ds

actualizados concordantes con los check list que se generen, esto ayudara a ser

coherentes entre los equipos de campo y el panel de control.

Page 87: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

GLOSARIO

Page 88: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

71

GLOSARIO DE TÉRMINOS

Aditivos.- Substancias que se añaden a un aceite lubricante, para mejorar sus

propiedades naturales, que le confieren nuevas características a los mismos.

Alquilación.- Proceso que une olefinas con isoparafinas de bajo peso molecular, en

particular, la reacción de butileno con isobutano utilizando ácido sultüirico o ácido

fluorhídrico como catalizador para obtener un producto para la preparación de mezclas para

obtener gasolinas por su alto octanaje.

API.- Siglas del Instituto Americano del Petróleo, organismo con sede en Estados

Unidos de Norteamérica, que entre otras actividades establece la nomenclatura de los

diferentes niveles de servicio para aceites lubricantes.

ASTM.- Siglas de la Sociedad Americana de Ensayos y Materiales, organismo con sede en

Estados Unidos de Norteamérica, que entre otras actividades establece los métodos de ensayo

para ser utilizados en los diferentes laboratorios.

Asfaltos.- Son materiales aglomerados sólidos o semisólidos, de color que varía de

negro a pardo oscuro y que se licúan gradualmente al calentarse; sus constituyentes

predominantes son betunes que se encuentran en la naturaleza en forma sólida o

semisólida; también se obtienen de la destilación del petróleo o combinaciones de éstos entre

si con el petróleo o productos derivados de estas combinaciones.

Asfalto de petróleo. Es el producto de residuo obtenido de la destilación en la unidad de

vacío.

Betún.- Porción del petróleo, asfalto y alquitranes que se disuelven completamente en

disulfuro de carbono.

Catalizador.- Sustancia o material que hace que una reacción química tenga lugar sin

que cambie químicamente.

Page 89: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

72

Clasificación API. Orden sistemático de las categorías de acuerdo con los diferentes

niveles de desempeño en pruebas patrón para motores de combustión interna. Se utiliza la

letra C mayúscula para identificar los niveles de desempeño de los lubricantes en motores

de diesel.

Combustibles para motores de dos tiempos. Mezcla en proporciones adecuadas de una

nafta industrial de bajo octanaje y aceite lubricante para motores de dos tiempos

enfriados por agua.

Corte.- Porción de un crudo que hierve dentro de ciertos límites de temperatura y que

generalmente se toman en base a los puntos de ebullición verdaderos del ensayo de

destilación del crudo.

Craqueo.- Rotura de hidrocarburos de elevado peso molecular a compuestos más ligeros

mediante la aplicación de calor.

Craqueo Catalítico.- Rotura de hidrocarburos de elevado peso molecular a compuestos

más ligeros mediante la aplicación de calor y en presencia de catalizador selectivo. El

craqueo catalítico produce un mejor rendimiento y calidad de los productos frente al

craqueo térmico.

Crudo acido.- Crudo que contiene azufre en cantidades superiores al 1 % o que contiene

mas de 0,05 pies cúbicos de sulfuro de hidrógeno por a 100 galones de crudo.

Crudo Dulce.- Contiene poco o nada de sulfuro de hidrógeno y pequeñas cantidades de

mercaptanos y otros compuestos de azufre.

Crudo Reducido.- Residuo cuya densidad API se ha reducido por separación por

destilación de los componentes más ligeros de menor punto de ebullición.

Des parafinado.- Eliminación de parafinas de aceites lubricantes, bien por enfriamiento y

filtración o por un proceso de extracción con solventes.

Page 90: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

73

Destilación.- Proceso de separación física de componentes de una muestra líquida

basado en sus diferentes puntos de ebullición o diferente grado de volatilidad.

Destilación ASTM.- Destilación intermitente de laboratorio normalizada para productos

livianos que se destila a la presión atmosférica sin que se craquee.

Destilados Medios.- cortes de queroseno y diesel de la destilación atmosférica. El corte

exacto se determina por las especificaciones de los productos.

Destilación TBP.- Destilación discontinua de laboratorio realizada en una columna de

fraccionamiento de 15 platos teóricos con una razón de reflujo de cinco a uno. Un buen

fraccionamiento conduce a temperaturas de ebullición exactas. Por esta razón, la

destilación se conoce como destilación de puntos de ebullición verdaderos.

Endulzado.- Eliminación o conversión a sustancias inocuas de compuestos de azufre en un

producto del petróleo mediante cualquiera de los diversos procesos existentes como por

ejemplo oxidación de mercaptanos.

Factor de Caracterización.- Número que determina el predominio de determinada

familia hidrocarburífera contenidos en el petróleo y derivados.

Fuel Oil. Es el combustible resultante de la mezcla de diversas fracciones pesadas de

petróleo utilizada para la generación de calor o energía.

Gasolina. Mezcla de hidrocarburos relativamente volátiles, libre de aguas, sedimento y

material sólido en suspensión, destinada a ser utilizada como combustible para motores

de combustión interna de encendido por chispa.

Gas Licuado de Petróleo, GLP. Es un producto constituido fundamentalmente por

propano, butano o sus mezclas, que se comercializa como combustible gaseoso. La

denominación de gas licuado de petróleo deberá expresarse con la abreviatura GLP.

Page 91: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

74

Gas Residual.- Gases ligeros constituidos por metano y etano con impurezas de bajo

punto de ebullición producida como subproductos de los procesos de refinería.

Gasóleo. Son los destilados diluidos de petróleo cuyos cortes están comprendidos

entre el Diesel No. 2 y el fondo de destilación al vacío.

Índice Antidetonante (IAD). Es la semisuma del número de octano obtenido por el

método Research (RON), y el número de octano obtenido por el método motor (MON).

Índice de Diesel.- Medida de la calidad de ignición de un combustible diesel, cuanto

mayor es su valor más satisfactorio es la calidad. Por medio de correlaciones específicas

de cada crudo y proceso de fabricación esta cantidad puede predecir el número de

cetano.

'

Izomerización.- Reordenamiento de las moléculas de hidrocarburos de cadena lineal

para dar productos de cadena ramificada. Los pentanos y hexanos, que son difíciles de

reformar se izomerizan utilizando catalizadores de cloruro de aluminio o metales

preciosos para formar componentes de mezcla para gasolinas de alto octanaje. El butano

normal puede izomerizarse para obtener isobutano necesario como carga para el

proceso de alquilación.

Líquido Newtoniano. Es un líquido que tiene una viscosidad independiente del esfuerzo

cortante o coeficiente cortante; si la relación del esfuerzo cortante y el coeficiente

cortante no es constante, el líquido no es newtoniano.

Nm3 / D. 1 metro cúbicos normales por día.

MSCF/D. Abreviatura de un millar de pies cúbicos estándar por día, una medida común

para el volumen de gas. Condiciones normales suelen establecerse en 60ºF y psia 14.7.

Porcentaje Total de Recuperado. Es el máximo porcentaje obtenido de la destilación.

Page 92: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

75

Porcentaje Total de Recuperación. Es la suma de porcentaje total de recuperado y

residuo.

Porcentaje de Pérdidas. Es la diferencia entre el 100% y el porcentaje total de

recuperación.

Porcentaje de Volumen Evaporado. Es la suma de los porcentajes de recuperado y de

pérdidas.

Porcentaje de Residuo. Es el volumen remanente de la muestra presente en el matraz al final

de la destilación, expresado en porcentaje.

Presión Absoluta. Es la suma de la presión manométrica más la presión atmosférica.

Presión de Vapor. Es la presión que a una temperatura dada ejercen los vapores

emanados de un líquido contra las paredes del recipiente que lo contiene, una vez que se ha

establecido el equilibrio entre el número de moléculas que abandonan el líquido y las que

vuelven a su seno.

Presión de Vapor Reíd. Es aproximadamente la presión de vapor de un material a

37,8°C, que difiere de la presión de vapor verdadera, debido a una pequeña vaporización de

la muestra y la presencia de vapor de agua y de aire en el espacio confinado de la cámara

en la que se realiza la determinación.

Punto de Anilina.- Temperatura mínima para la miscibilidad completa de volúmenes

iguales de anilina y de la muestra a ensayo. El ensayo se considera una indicación del

contenido de parafinas de la muestra y en diesel tiene relación con la calidad de ignición del

combustible.

Punto de Humo.- Ensayo que mide la calidad de combustión de combustibles para

motores de reacción turbo fuel, queroseno y aceites de iluminación. Se define como la

altura de la llama en milímetros que emite humo.

Page 93: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

76

Punto Inicial de Ebullición. Es la temperatura observada en el termómetro, colocado en el

cuello del matraz de destilación, en el instante en que la primera gota de destilación cae de

la boca del tubo condensador.

Punto Final de Destilación. Es la temperatura más alta observada durante toda la

destilación en el termómetro ubicado en el cuello del matraz de destilación.

Punto Seco. Es la temperatura observada en el termómetro del matraz de destilación, en el

instante en que la última gota de líquido se evapora del fondo del matraz de

destilación.

Punto de Descomposición. Es la temperatura observada en el termómetro, que coincide con

la manifestación de los primeros indicios de descomposición térmica del producto contenido

en el matraz de destilación. Los signos característicos de una descomposición térmica son:

presencia de vapores, variaciones irregulares de temperatura de los vapores, descenso

de temperatura a pesar de un aumento del calor.

Punto de Inflamación. Temperatura mínima corregida a presión barométrica de 101,3 kPa

(1 atm), en la cual la aplicación de una fuente de calentamiento hace desprender vapores

de la muestra de análisis, que se inflaman bajo condiciones específicas de ensayo.

Punto de Nube o Neblina.- Temperatura a la que los compuestos solidifícables

presentes en la muestra empiezan a cristalizar o a separarse de la mezcla siguiendo un

método de enfriamiento especificado. Este punto es una especificación típica de los

combustibles y destilados medios.

Punto de Escurrimiento, Vertido o Fluidez. Es un índice de la más baja temperatura, en

la cual se observa fluidez en el producto, la misma que es de utilidad en determinadas

aplicaciones.

Reacción Endotérmica.- Reacción en la que debe añadirse calor para mantener los

reactantes y productos a una temperatura constante.

Page 94: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

77

Reacción Exotérmica.- Reacción en la que se desprende calor, como ejemplo alas de

alquilación, polimerización e hidrogenación.

Reformado.- Reordenamiento de las moléculas cambiando su composición química por

ejemplo conversión de fracciones de nafta en productos de índice de octano superior.

Reformado Térmico.- Es esencialmente un aplicado a naftas pesadas para obtener

rendimientos crecientes de intervalos de ebullición de la gasolina mejorando el octanaje.

Reformado Catalítico.- Se aplica a diferentes naftas y consiste principalmente en la

deshidrogenación de cicloalcano a aromáticos. Se utilizan como catalizadores platino,

platino-renio, óxidos de aluminio, de cromo, de molibdeno de cobalto y de silicio.

Selectividad.- Razón de productos deseables frente a los indeseables.

Severidad.- Grado de intensidad de las condiciones de operación de una unidad de

proceso.

Solvente No. 1. Destilado de petróleo alifático en un intervalo de destilación entre 28 y

200°C.

Solvente No. 2. Destilado de petróleo alifático, en un intervalo de destilación entre 28 y

140°C.

Turbo Combustible. Mezcla de hidrocarburos refinados, derivados del petróleo crudo,

adecuado para ser utilizado como carburante en aviones de turbina.

Unidad de muestreo. Es una porción de material o un artículo individual, extraída al azar

de un lote.

Viscosidad cinemática. Es la relación entre la viscosidad y la densidad de la muestra; es

una medida de la resistencia al flujo de un líquido bajo la acción de la gravedad. En el SI,

la unidad de viscosidad cinemática es el metro cuadrado por segundo.

Page 95: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

78

Viscosidad Dinámica. Es la relación entre el esfuerzo cortante aplicado y el coeficiente de

corte; es una medida de la resistencia al flujo de un líquido bajo la acción de la gravedad.

En el SI, la unidad de viscosidad dinámica es el pascual por segundo.

Viscosidad Saybolt Universal, SSU. Es el tiempo de flujo, en segundos, de 60 cm3 de

muestra, a través de un orificio universal, calibrado a condiciones normalizadas. Se

utiliza para tiempos de flujo igual o mayor que 32s.

Viscosidad Saybolt Furol, SSF. Es el tiempo de flujo, en segundos, de 60m3 de

muestra, a través de un orificio furol, calibrado a condiciones normalizadas. Se utiliza

para tiempos de flujo Igual o mayor que 25 s.

Viscosidad Redwood No. 1. Es el tiempo de flujo, en segundos, de 50 cm3 de muestra, a

través de un oficio Redwood, calibrado a condiciones normalizadas.

Page 96: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

BIBLIOGRAFÍA

Page 97: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

80

BIBLIOGRAFÍA

1. http://www.monografias.com/trabajos10/petro/petro.shtml

2. www.quiminet.com.mx

3. http://www.biodisol.com/medio-ambiente/que-es-el-petroleo-tipos-de-petroleo-

hidrocarburos

4. American Petroleum Institute, API Standard 650: Welded Steel Tanks for Oil

Storage, 1978, Washington.

5. Standard Method for Distillation of Petroleum Products Method; ASTM D-86,

2002.

6. Artículos técnicos de varias revistas.

7. Química y características del petróleo y productos básicos.

8. ANTONIO CREUS, Instrumentación Industrial, Séptima edición Alfaomega

Grupo Editor, México. Noviembre 2005

9. DALE R. PATRICK, Instrumentation Training course, Howard W Saws & Co.,

Inc., USA.

Page 98: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

81

ANEXOS

Page 99: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

82

Anexo Nº 1. Norma ASTM D 86 Destilación de Petróleo por Presión Atmosférica

Page 100: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

83

Page 101: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

84

Page 102: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

85

Page 103: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

86

Page 104: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

87

Page 105: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

88

Page 106: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

89

Anexo Nº 2. Norma ASTM D 1322 Punto de Humo del Querosene y Gasolina de

Aviación

Page 107: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

90

Page 108: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

91

Page 109: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

92

Page 110: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

93

Page 111: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

94

Page 112: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

95

Page 113: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

96

Page 114: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

97

Page 115: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

98

Anexo Nº 3. MSDS del GLP

Page 116: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

99

Page 117: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

100

Page 118: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

101

Page 119: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

102

Page 120: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

103

Page 121: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

104

Page 122: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

105

Page 123: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

106

Page 124: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

107

Page 125: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

108

Page 126: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

109

Page 127: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

110

Page 128: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

111

Page 129: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

112

Page 130: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

113

Page 131: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

114

Page 132: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

115

Anexo Nº 4. MSDS del Jet A1

Page 133: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

116

Page 134: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

117

Page 135: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

118

Page 136: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

119

Page 137: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

120

Page 138: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

121

Page 139: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

122

Page 140: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

123

Page 141: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

124

Page 142: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

125

Page 143: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

126

Page 144: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

127

Page 145: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

128

Page 146: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

129

Page 147: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

130

Page 148: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

131

Page 149: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

132

Page 150: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

133

Page 151: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

134

Page 152: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

135

Page 153: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

136

Page 154: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

137

Anexo Nº 5. Perfil del Poliducto Shushufindi – Quito

Page 155: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

138

Page 156: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

139

Anexo Nº 6. Registro de Datos de Control Diario

Page 157: UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE …repositorio.ute.edu.ec/bitstream/123456789/6013/1/45382_1.pdf · IV CERTIFICADO DEL DIRECTOR Certifico que la presente tesis de

140