Verificacion Viga Polipasto

Embed Size (px)

Citation preview

Hoja1

Verificacin rpida de una seccin para viga de polipasto (Secciones W, HEA, HEB, I y similares), y polipasto de 4 ruedas.Entrar datos en color azul.http://sites.google.com/site/antolintinez

PROYECTO: La Esmeralda.ELEMENTO: Viga carrilera polipasto en estacin de bombeo.INGENIERO: AMAFECHA: May-12OBSERVACIONES:Usar perfil W 12x22 Acero A-36.

Verificacin de la seccin

PerfilW12x14Acero A36

Datos

rea
Antolin: Antolin:rea de la seccin transversal del perfil.26.84cm2d
Antolin: Antolin:d, bf, tf, tw de acuerdo al dibujo de la derecha.30.25cmbf10.08cm (dato no utilizado)tf0.57cmtw0.51cmIxx3,687.81cm4Iyy98.23cm4 (dato no utilizado)fy2,533kgf/cm2Sxx243.81cm3PP viga21.07kgf/mCarga izable1,000kgfPP polipasto40kgfImpacto25%FS1.15Factor de seguridad adicional.Carga diseo1,495kgfCarga/canal (P)747.5kgf

Verificacin de la viga, caso de voladizoRecomendacin de Covenin 1618-82 sobre las flechas (condicin de servicio).L voladizo2.00mM mx.3,032.14kgfxmTensin flexin1,243.64kgf/cm2 = 0.49fyTensin admisible0.60fyOkTensin corte100.02kgf/cm2 = 0.04fyTensin admisible0.40fyOkDeformacin voladizoDeformacin mx.0.52cm = L / 384Flecha alta

Verificacin de la viga, caso de viga de 1 tramo simplemente apoyada

L tramo3.50mM mx.1,340.39kgfxmTensin flexin549.76kgf/cm2 = 0.22fyTensin admisible0.60fyOkTensin corte51.04kgf/cm2 = 0.02fyTensin admisible0.40fyOkDeformacin tramo isostticoDeformacin mx.0.18cm = L / 1,969Ok

Verificacin de la tensin en el alma

P/2373.75kgfk15.13cmTensin27.79kgf/cm2 = 0.01fyft = P/2A = P/(2tw)(3.5k) = P/(7k)tw
Antolin: Antolin:Vase fundamento terico ms abajo.Ok

Verificacin de la tensin en el ala

Tensin3,432.97kgf/cm2 = 1.36fyfb = M/S = 3eP/(4e)(tf)2 = 0.75P/(tf)2No verifica

Ref.:http://www.modernsteel.com/steelinterchange_details.php?id=499

Esta hoja de clculo est intencionada para verificaciones rpidas, tiles para el predimensionamiento de una viga carrilera que soportar un polipasto tpico, como el mostrado en la figura de arriba, y no constituye un anlisis sofisticado que, segn el caso, se podra requerir. Queda a juicio del ingeniero el utilizar mtodos ms precisos, o no. El autor no se responsabiliza por daos derivados del empleo de esta hoja de clculo. Puerto Ordaz, mayo 12.

Steel Interchange

Bottom Flange Bending Capacity

How do you calculate the lower flange loading capacity of a steel beam to be used to support an underhung crane? Are there any published ASD or LRFD design procedures?James F. Jendusa, P.E.MSI General CorporationOconomowoc, WI

Answer

The bottom part of the crane beam must be checked for:1. Tension in the web.2. Bending of the bottom flange.Most underslung cranes will have each end supported by 2 pairs of wheels. Each individual wheel load will include a portion of the lifted load (in its most critical position), the dead loads, and impact. Impact is usually about 25% of the lifted load but will depend on the speed and braking ability of the hoist. Allowable stresses must be reduced due to the cyclical nature of the applied load.The wheels must be purchased to suit the profile of the supporting crane beam, either an S-shape or a W-shape. The web tension at each pair of wheels is checked at the intersection of the web and fillet (at the "k" distance).Referring to Figure 1 below, the length of resistance is seen to be3.5k. The 30 years. Assuming 4 wheels (2 pair) at each end of the crane, each wheel will supportP/4delivered to the supporting crane beam. In Figure 1, two wheels cause the web tension, so the load isP/2.The tensile stress in the web becomes:ft= P/2A = P/(2tw)(3.5k) = P/(7k)tw

Flange bending depends on the location of the wheels with respect to the beam web. Referring to Figure 2, this is dimensione. As stated previously, each wheel load isP/4.

The longitudinal length of flange participating in the bending resistance can be taken as 2e per yield-line analysis. See Figure 3.

The section modulus at the plane of bending is(bd2)/6which translates toe(tf)2/3. From Figure 2 the bending moment iseP/4. The bending stress is:fb= M/S = 3eP/(4e)(tf)2= 0.75P/(tf)2Local loadings such as this often result in biaxial and triaxial stresses. These stress combinations are quite common, and designers must design accordingly. For more information on crane loading, refer to my paper in theEngineering Journal, 4th quarter 1982, called "Tips for Avoiding Crane Runway Problems."David T. Ricker, P.E.Javelina ExplorationsPayson, AZ

Posted on December 1, 1999

Flange bending depends on the location of the wheels with respect to the beam web. Referring to Figure 2, this is dimensione. As stated previously, each wheel load isP/4.

The longitudinal length of flange participating in the bending resistance can be taken as 2e per yield-line analysis. See Figure 3.

The section modulus at the plane of bending is(bd2)/6which translates toe(tf)2/3. From Figure 2 the bending moment iseP/4. The bending stress is:fb= M/S = 3eP/(4e)(tf)2= 0.75P/(tf)2Local loadings such as this often result in biaxial and triaxial stresses. These stress combinations are quite common, and designers must design accordingly. For more information on crane loading, refer to my paper in theEngineering Journal, 4th quarter 1982, called "Tips for Avoiding Crane Runway Problems."David T. Ricker, P.E.Javelina ExplorationsPayson, AZ

Posted on December 1, 1999