4
CÁLCULO DE UN TRANSFORMADOR Calcular para un transformador de una potencia de 100 watts el diámetro de los conductores y el número de chapas, suponiendo un espesor de las mismas de 0,5 mm. Su relación de transformación será de 120/12. La chapa (laminada en caliente) soportara una inducción máxima de 1,2 T y los conductores serán de cobre y soportaran una densidad de corriente máxima de 3,5 A/mm². V 1 = 120 V I 1 =? N 1 =? V 2 = 12 V I 2 =? N 2 =? Amperaje Individual . I 1 = 100 watts / 120 v I 1 = 0.84Amp I 2 = 100watts/ 12v I 2 = 8.4 Amp Calculo de las chapas magnéticas : A =kPotencia A =1100 watts A =10 cm 2 (k = 0.7 para chapas magnéticas buenas, 1.2 para chapas magnéticas malas. 1 para indecisiones) Área = A*B 10cm 2 / 3.2 cm = 3.12 cm Si las chapas son de 0,05 cm de espesor, necesito: 3.12 / 0.05 = 62 Chapas Magnéticas Área del Núcleo = (62chapas * 0.05 cm) * 3.2cm Área = 9.92cm 2 La sección geométrica teniendo en cuenta las chapas barnizadas de 0.9: Área geométrica = 9.92 cm 2 / 0,9 Área geométrica = 11 cm 2 Luego la dimensión transversal real del núcleo del transformador será: Área del Núcleo = 11 cm 2 / 3.2 cm Área = 3.44 cm 2

Calculo de Transformadores de 1.5 v hasta 220 v

Embed Size (px)

Citation preview

Page 1: Calculo de Transformadores de 1.5 v hasta 220 v

CÁLCULO DE UN TRANSFORMADOR

Calcular para un transformador de una potencia de 100 watts el diámetro de los conductores y el número de chapas, suponiendo un espesor de las mismas de 0,5 mm. Su relación de transformación será de 120/12. La chapa (laminada en caliente) soportara una inducción máxima de 1,2 T y los conductores serán de cobre y soportaran una densidad de corriente máxima de 3,5 A/mm².

V1 = 120 V I1=? N1 =?V2 = 12 V I2=? N2 =?

Amperaje Individual .I1= 100 watts / 120 v I1= 0.84Amp I2= 100watts/ 12v I2= 8.4 Amp

Calculo de las chapas magnéticas:A=k∗√Potencia A=1∗√100 watts A=10 cm2

(k = 0.7 para chapas magnéticas buenas, 1.2 para chapas magnéticas malas. 1 para indecisiones)

Área = A*B10cm2 / 3.2 cm = 3.12 cm

Si las chapas son de 0,05 cm de espesor, necesito:3.12 / 0.05 = 62 Chapas MagnéticasÁrea del Núcleo = (62chapas * 0.05 cm) * 3.2cm Área = 9.92cm 2

La sección geométrica teniendo en cuenta las chapas barnizadas de 0.9:Área geométrica = 9.92 cm2 / 0,9 Área geométrica = 11 cm 2

Luego la dimensión transversal real del núcleo del transformador será:Área del Núcleo = 11 cm2 / 3.2 cm Área = 3.44 cm 2

Calculo del cobre para las bobinasSi la densidad de corriente máxima en los conductores es de es de 3,5 Amp/mm².

Bobina Primaria

I1= 0.84 Amp x= 0.84 Amp

3.5 Amp /mm2 x = 0.24mm2

d=√ 4∗xπ

d=√ 4∗0.24 mm2

π d = 0.55mm Como no hay tal alambre con esa

sección, se le aproxima al mas grande cercano, d = 0.573 mm. Alambre Esmaltado #23El numero de vueltas:V1 = 120 v NP = 120v / (4.44 *50Hz * 1.2 T *(9.92 cm2 * 10-4)) NP = 454 vueltas

Page 2: Calculo de Transformadores de 1.5 v hasta 220 v

Bobina Secundaria

I2 = 8.4 Amp x= 8.4 Amp

3.5 Amp /mm2 x = 2.4 mm2

d=√ 4∗xπ

d=√ 4∗2.4 mm2

π d =1.75 mm Como no hay tal alambre con esa

sección, se le aproxima al mas grande cercano, d = 1.83 mm. Alambre Esmaltado #13

El numero de vueltas:V2 = 12 v NS = 12v / (4.44 *50Hz * 1.2 T * (9.92 cm2 * 10-4)) NS = 45 vueltas

ECUACIONES FUNDAMENTALESEl valor eficaz de la fuerza electromotriz en los devanados del transformador se determina por las siguientes fórmulas:

U = 4,44 BM A f n

En donde:U = tensión en devanado BM = valor máximo de la inducción magnética en el núcleo (Tesla). (En núcleos de hierro magnéticos de transformador suele tener un valor máximo de 1,4 Tesla)f = frecuencia de la corriente alterna (Hz)n = número de espiras del devanado A = área de la sección recta del núcleo magnético (m2)Si el primario y el secundario están atravesados por la misma inducción máxima BM y la sección A del núcleo permanece constante, entonces;

U1 / U2 = n1 /n2

POTENCIAS Y EFICIENCIASUn transformador es esencialmente dos solenoides o inductancias sobre un mismo núcleo, por consiguiente existirá un desfase entre la tensión y la corriente que atraviesa ambos devanados.

Las potencias de entrada y salida son:P = U* I* cosφ

El rendimiento del transformador η es igual:η = P2 /P1

También existen pérdidas en el núcleo debidas a las corrientes parásitas y a la histéresis, y pérdidas en los devanados debido al efecto Joule. Todas estas pérdidas se manifiestan en forma de calor, y disminuyen el rendimiento del transformador, por consiguiente, el rendimiento real también se puede expresar como:η = P2 / (P2 + Pnuc + Pdev)

Page 3: Calculo de Transformadores de 1.5 v hasta 220 v

Los rendimientos reales que se observan en los transformadores son altosy mejoran con el tamaño del transformador (entre un 80% y un 98%).

LIMITES DE FUNCIONAMIENTO DE UN TRANSFORMADOR

Un transformador se proyecta para unas tensiones dadas de servicio en primario y secundario y una potencia máxima continua que puede obtenerse en su secundario. Al incrementar la tensión en la bobina primaria y por tanto la corriente, lleva a la saturación del núcleo magnético. Con lo que el mismo no es capaz de transferir mas potencia al secundario y el exceso de potencia de entrada solo produce sobrecalentamientos del núcleo por corrientes parásitas por efecto Joule, llevando a la rotura del devanado por fallo del aislante del mismo. Una espira en cortocircuito genera a su vez más calor y provoca el fallo total del devanado.

En un transformador es fundamental prever una correcta refrigeración del mismo, y los de mayor tamaño, de varios Kilovatios, están bañados en un aceite refrigerante especial dieléctrico. La tensión de entrada, la potencia máxima continua de salida, y la temperatura ambiente, son tres parámetros que no deben sobrepasarse de forma permanente.