29
Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 1 8.3.- CURVAS COMPUESTAS DE TRES RADIOS 8.3.1.- GENERALIDADES Este tipo de curvas de tres radios están compuestas por tres curvas circulares continuas que en conjunto suplen en comportamiento a una sola curva con distintas tangentes, se presentan en vías urbanas en la parte de distribuidores de tráfico, ramas de entrada y salida, en caminos rurales de montaña, algunos tratan de evitarlas por su tratamiento, sin embargo no están prohibidas, estas curvas tienen peralte y deben cumplir algunas condiciones restrictivas. El radio de la curva central de las tres, debe ser mayor o igual al Radio mínimo absoluto, sea cual sea el valor de cada Radio R1, R2, R3 se las considera en esa secuencia y orden desde el PC, independientemente de su tamaño. Este tipo de curvas compuestas pueden presentarse en seis combinaciones de radios R1, R2, R3, como ser: 1.- R1>R2>R3 2.- R3>R2>R1

Curvas compuestas horizontales de tres radios

Embed Size (px)

Citation preview

Page 1: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 1

8.3.- CURVAS COMPUESTAS DE TRES RADIOS

8.3.1.- GENERALIDADES Este tipo de curvas de tres radios están compuestas por tres curvas circulares continuas que en conjunto suplen en comportamiento a una sola curva con distintas tangentes, se presentan en vías urbanas en la parte de distribuidores de tráfico, ramas de entrada y salida, en caminos rurales de montaña, algunos tratan de evitarlas por su tratamiento, sin embargo no están prohibidas, estas curvas tienen peralte y deben cumplir algunas condiciones restrictivas. El radio de la curva central de las tres, debe ser mayor o igual al Radio mínimo absoluto, sea cual sea el valor de cada Radio R1, R2, R3 se las considera en esa secuencia y orden desde el PC, independientemente de su tamaño. Este tipo de curvas compuestas pueden presentarse en seis combinaciones de radios R1, R2, R3, como ser: 1.- R1>R2>R3 2.- R3>R2>R1

Page 2: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 2

3.- R1>R3>R2 4.- R3>R1>R2

5.- R2>R1>R3

Page 3: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 3

6.-R2>R3>R1

Fig.8.3.-1 Combinaciones de radios para la configur ación de una curva compuesta de tres radios 8.3.2.- APLICACIONES, CONDICIONES DE RADIOS Y DE PE RALTES Condición de radios idealmente: R1>= Rmd R2>= Rmd R3>= Rmd

Donde: R1= Radio de la curva circular de entrada N°1 (Desd e el PC) en metros R2= Radio de la curva circular de entrada N°2 (Cent ral) en metros R3= Radio de la curva extrema de salida (Antes del FC) en metros Rmd=Radio mínimo deseable en metros (denominación que viene de la Normativa de la D.N.V.A (1980) y de la Norma actualizada (2010), se expresa como: �md = �MM

2

�����max + � Siendo: MM = 1,782 V 0,838 Velocidad media de marcha (Km/h) V=Vd=Vp Velocidad específica de curva o de proyecto o directriz (km/h) emax : Peralte máximo de la curva (e+ft) <= 0,015 El radio de la curva no precisa peralte (D.N.V.A (2010)) �c = �p2

����� + �t�

Reemplazando 0,015 en Rc:

Page 4: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 4

Entonces, si: Rc =>0,5249 Vp2 ‘’La curva circular no precisa peralte’’ Sin embargo basta que las tres curvas tengan sus Radios R1, R2, R3 mayores al Radio Mínimo Absoluto por lo cual habrá la posibilidad de que las tres curvas componentes de la compuesta tengan o no tengan peralte. Condiciones de peralte para los seis casos de combi naciones de radios: Este tipo de curvas tiene el problema de la transición del peralte que de ser mal diseñadas ocasionan cambios bruscos en la transición ya que intervienen tres peraltes (e1%,e2%,e3%), por ello se precisan en ambos extremos hacer que en las entretangentes (antes y después de la curva) absorban la mayor cantidad posible en (%) de los peraltes e1% antes del PC , e3% después del FC; en cambio el peralte e2% de la curva central también debe tener una doble transición en el PCC-1 y en el PCC-2, tal como se vio en el PCC de la curva compuesta de dos radios.

�������� = � ∗ �1%�� (8.37)

�������� = � ∗ �1%��2%�� (8.38)

������� = � ∗ �2%��3%�� (8.39)

Donde: Lt (e(1)) = Longitud de transición del peralte e1 en el punto PC de la Curva N°1 Lt(e(2)) = Longitud de transición del peralte e2 en el punto común de curvatura PCC-1 entre la Curva N°1 y La Curva N°2. Lt(e(3)) = Longitud de transición del peralte e3 en el punto común de curvatura PCC-2 entre la Curva N°2 y La Curva N°3. c = Ancho de la calzada con N carriles que giran en la transición (desde el eje al borde) en metros m1 = Pendiente relativa de la curva N°1 m2 = Pendiente relativa más desventajosa de las curvas N°1 y N°2 m3 = Pendiente relativa más desventajosa de las curvas N°2 y N°3 e1% = Peralte de la Curva N°1 (%) e2% = Peralte de la Curva N°2 (%) e3% = Peralte de la Curva N°3 (%) Por ello es importante aplicar las Normativas de diseño geométrico vial de cada País en cuanto a las longitudes de transición mínimas del peralte en la entretangente (sector recto) y en el interior de cada curva que se debe tomar en cuenta antes y después de la curva compuesta. Este tema ya se vio en Capítulos anteriores referido a las Entretangentes (ET o Et)

Page 5: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 5

Fig. 8.3-2- Curva de tres radios; Caso: R3>R1>R2 La gráfica aproximada de alturas o cotas (Eje Y) de los bordes versus distancias horizontales sobre el eje de la rasante (Eje X) debidas a la transición de los tres peraltes sobre el eje de una curva de tres radios para entretangentes mínimas (Etmin) tiene la siguiente conformación.

Fig.8.3-3 Gráfica de la transición de los peraltes e1%, e2%, e3% en una curva de tres radios

Page 6: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 6

Este tema referido a la transición de peraltes en curvas horizontales sobre el eje y sobre los bordes se verá con mayor detalle en el siguiente capítulo. 8.3.3.- PUNTOS NOTABLES Y PUNTOS DE TRABAJO Examinando la figura 8.3-1 para la curva de tres radios, donde: Ángulos horizontales: ∆° =Ángulo central total deflector ∆°(1) = Ángulo deflector central de la curva N°1 en el PI(1) o PI-1 ∆°(2) = Ángulo deflector central de la curva N°2 en el PI(2) o PI-2 ∆°(3) = Ángulo deflector central de la curva N°3 en el PI(3) o PI-3 Ae° = Acimut de entrada (Alineamiento del PC al P I) As° = Acimut de salida (Alineamiento del PI al FC ) Elementos geométricos: Te= Tangente de entrada (Del PI al PC) Ts =Tangente de salida (Del PI al FC) T1 =Tangente interna de la curva N°1 T2 =Tangente interna de la curva N°2 T3 =Tangente interna de la curva N°3 L1 = Longitud o desarrollo de la curva N°1 L2 = Longitud o desarrollo de la curva N°2 L3 = Longitud o desarrollo de la curva N°3 Cada una de las tres curvas circulares internas conserva todos sus elementos geométricos en función de sus ángulos ∆°(1),∆°(2),∆°(3) y de sus radios R1, R2, R3. Puntos notables o singulares: PC = Principio de la curva de tres radios PCC(1) = Punto común de curvatura entre el FC de la curva N°1 y PC de la curva N°2 PCC(2) = Punto común de curvatura entre el FC de la curva N°2 y PC de la curva N°2 FC = Fin de la curva de tres radios CC(1),CC(2),CC(3) = Centros o puntos centrales medios de las curvas N°1,N°2 ,N°3 O1 = Centro de radios R1 O2 = Centro de radios R2 O3 = Centro de radios R3 Condiciones de longitudes de curva: Las longitudes : L1 ,L2 L3 de las curvas deben ser siempre mayores o iguales al valor mayor de Lmin sacado de los dos criterios de longitudes mínimas para garantizar una cómoda transición del peralte en esos tramos, es decir: a. - Lmin = 6, 04* Vp (Vp2 /128Ri – ei) b. - Lmin = 1, 25*(ac + s)*e + Vp Donde: ac = Ancho de calzada (m) s = Sobreancho (m) Vp = Velocidad especifica o de proyecto directriz (Km/h) Ri = Radio de la curva respectiva ( i= 1,2..3) ei = Peralte necesario de la curva con su respectivo radio ‘’Ri’’

Page 7: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 7

Excepcionalmente cuando se quiere imitar al comportamiento de una curva con transición espiral simétrica, basta con hacer que : R1= R3 Como en las condiciones de radio exigidas en la curva de dos radios, para evitar cambios bruscos en la transición de los peraltes ninguno de los radios puede ser más del doble que los otros, es decir se debe cumplir:

���� �= � o ���� �= � o ���� �= �

De ninguna manera en una curva compuesta de tres radios la curva central de radio R2 no debe ser peraltada, es decir esta curva central siempre debe llevar peralte para no ocasionar un quiebre brusco en la transición de la curva inicial R1 con su peralte e1% que bajaría abruptamente hasta el e2%= b% de la curva central , lo propio acontecería para la curva N°3 que tendría que adaptarse muy bruscamente para hacer la transición desde el e2%=b% a su peralte e3% y luego nuevamente al b% en la recta de salida. De estas tres longitudes de transiciones ‘’Lt (ei) ’’, podemos alternativamente distribuir Lt (ei)/3 dentro de cada curva y (2/3)*Lt (ei) fuera de la Curva (esto depende de las longitudes de entretangentes disponibles antes y después de la curva). Estas longitudes de transición de los tres peraltes Lt(e1), Lt(e2), Lt(e3) están sujetas a criterios de cada normativa de diseño geométrico vial donde un %Lt(ei) se absorbe antes y otro %Lt(ei) se absorbe después de cada punto como el PC ,PCC(1),PCC(2). 8.3.4.- COORDENADAS LOCALES PARA PUNTOS NOTABLES DE LA CURVA Llamadas también abcisas y ordenadas; tomando como referencia el caso general: R1>R2>R3, se deducirán las abcisas X y ordenadas Y tomando como origen de ejes cartesianos el PC de la curva donde el eje X se sobrepondrá a la tangente de entrada Te, como se puede apreciar en al Fig.8.3-4

Fig. 8.3-4 Abcisas y ordenadas de los puntos notabl es de la curva compuesta de tres radios (R1>R2>R3)

Page 8: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 8

De esta figura se puede deducir: ∆°= ∆°(1)+∆°(2)+∆°(3) X1-X2=R2*Cos (90°-( ∆°(1)- ∆°(2))-R2*Sen( ∆°(1)) X1-X2=R2*(Sen(∆°(1)+ ∆°(2)) – Sen( ∆°(1)) También: X3-X4=R3*Cos(90°- ∆°)-R3*Sen( ∆°(1)+ ∆°(2) X3-X4=R3*(Sen(∆°)-Sen( ∆°(1)+ ∆°(2)) Y4-Y3=R2*Cos(∆°(1))-R2*Cos( ∆°(1)+ ∆°(2)) Y2-Y1=R3*(Cos(∆°(1)+ ∆°(2))-R3*Cos( ∆°)) Linealmente podemos observar distancias equivalentes en la figura 8.3-4 como ser: Del triángulo rectángulo con hipotenusa O(1)- PCC(1)=R1 deducimos: X(PCC(1)) = R1*Sen(∆∆∆∆°(1)) (8.40) Y(PCC(1)) = R1*(1-Cos( ∆∆∆∆°(1))) (8.41) De la misma manera se hallan X(PCC(2)) ,Y(PCC(2)): X(PCC(2)= X(PCC(1))+R2 * SEN(∆(1)+∆(2∆(1)+∆(2∆(1)+∆(2∆(1)+∆(2)) - R2*SEN(∆∆∆∆(1)) (8.42) Y(PCC(2)= Y(PCC(1))+R2*COS(∆∆∆∆(1))-R2*COS (∆(1)+∆(2∆(1)+∆(2∆(1)+∆(2∆(1)+∆(2)) (8.43) También: X(FC)=X(PCC(1))+(X1-X2)+(X3-X4) Y(FC)=Y(PCC(1))+(Y4-Y3)+(Y2-Y1) Reemplazando términos equivalentes hallados en la figura anterior en X(FC)) y Y(FC): X(FC)= R1*Sen(∆°(1))+R2*(Sen( ∆°(1)+ ∆°(2))–Sen( ∆°(1))+R3*(Sen( ∆°)-Sen( ∆°(1)+ ∆°(2)) Factorizando y agrupando hallamos la Abcisa del FC: X(FC)=(R1-R2)*Sen(∆∆∆∆°(1)+(R2-R3)*Sen( ∆∆∆∆°(1)+ ∆∆∆∆°(2))+R3*Sen( ∆∆∆∆) (8.44) De la misma forma, hallamos Y(FC): Y(FC)=Y(PCC(1))+(Y4-Y3)+(Y2-Y1) ; reemplazando términos equivalentes hallados: Y(FC)=R1*(1-Cos(∆°(1)))+ R2*Cos( ∆°(1))-R2*Cos( ∆°(1)+ ∆°(2))+ R3*(Cos( ∆°(1)+ ∆°(2))-R3*Cos( ∆°))

Y(FC)=R1*(1-Cos( ∆∆∆∆°(1)+R2*(Cos( ∆∆∆∆°(1))-Cos( ∆∆∆∆°(1)+ ∆∆∆∆°(2))+R3*((Cos( ∆∆∆∆°(1)+ ∆∆∆∆°(2))-Cos( ∆∆∆∆°)) (8.45) 8.3.5.- ELEMENTOS GEOMÉTRICOS Conocidas las Abcisas y ordenadas X(FC) y Y(FC) del fin de la curva FC, podemos hallar fácilmente también las tangentes externas de entrada Te y de salida Ts: �� = ��� � − "�� ��#$�∆°� ( 8.46)

Page 9: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 9

�' = "�� �(�$�∆°� (8.47)

Estas expresiones alternativamente tienen sus equivalentes basadas solamente en la geometría y trigonometría de la conformación de la curva para las seis combinaciones de radios.

Fig. 8.3-5 Deducción de las Tangentes Te y Ts en l a curva compuesta de tres radios

Basándose en la geometría de la curva de la Fig. 8.3-5, conocidos los radios R1,R2,R3 como sus respectívos ángulos deflectores centrales ∆°(1),∆°(2),∆°(3) , se calculan los elementos geométricos internos de cada una de las tres curvas circulares como T1,L1,C1,F1,E1 para la curva N°1, lo propio sucede con T2,L2,C2,F2,E2 Y T3,L3,C3,F3,E3 de las otras dos curvas; para hallar las tangentes de entrada Te y de salida Ts, se precisan hallar los segmentos lineales A,B,C,D ya que: Te=T1+A Ts=C+D+T3 En el triángulo: PI-2, Q, PI-3 aplicando la ley de senos, se tiene: )*+,-∆°�3�/ = 02 + 03*+,�∝ °� Despejando de esta igualdad hallamos el segmento buscado: 3 = �4�54��6�7-∆°���/6�7�∝°�

Siendo: α =180°- ∆°(2)- ∆°(3) ; por lo cual podemos hallar entonces el segme nto A en el triángulo PI-1,PI,Q., aplicando la ley de senos nuevamente: 8*+,�9°� = 01 + 02 + )*+,�;°� Despejando de esta igualdad hallamos el segmento : < = �4�54�53�6�7�=°�6�7>�?°�

Siendo : α°= 180°- ∆°(2)- ∆°(3) ; γ°=180°- α° ; β°=180°- ∆° ;luego como: Te=T1+A

Te=T1+���5��5@�(�$�A°�(�$B�C°� =01 + DE4�54�5F�4�G4��6�7-∆°���/6�7�∝°� HI6�7�=°�

6�7�?°� J (8.48)

Page 10: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 10

En el triángulo PI-1,PI,Q aplicando la ley de senos podemos hallar el segmento C: K*+,-∆°�1�/ = 8*+,�9°�

Despejando de esta nueva igualdad hallamos: C=6�7-∆°���/ <6�7�=°� En el triángulo PI-2,Q,PI-3 aplicando la ley de senos se halla el segmento D: L6�7-∆°���/ = 4� + 4�6�7�∝ °�

Despejando de aquí se halla el segmento : M = ���5���(�$-∆°���/(�$�∝°�

Finalmente:

Ts=C+D+T3 = 6�7-∆°���/ <6�7�=°� +���5���(�$-∆°���/(�$�∝°� +T3

La tangente de salida será:

Ts= (�$-∆°���/ E4�54�5F�4�G4��6�7-∆°���/6�7�∝°� HI

6�7�?°� + ���5���(�$-∆°���/(�$�∝°� +T3 (8.49)

Algunos autores e investigadores (Burbano, 2011, J. Cárdenas Crisales (ECOE Ediciones) ,1993), Jacob Carciente (Ediciones. Vega S.R.L, Caracas 1980), recomiendan alternativamente otras ecuaciones para las tangentes de entrada y de salida en función de sus Ángulos ∆°(1),∆°(2),∆°(3),∆° y las tangentes internas T1, T2, T3. Aplicables también a las seis combinaciones de radios para este tipo de curvas. Tangente de Entrada :

�� = T1 + F�� + �� + ���5���(�$-∆°���/(�$-∆°���5∆°���/ H O(�$-∆°���5∆°���/(�$�∆°� P (8.50) Tangente de Salida: Ts =A x B (8.51)

Q = �� + D�� + �� + E��� + ���(�$B-∆°���/(�$B-∆°��� + ∆°���/ ∗ (�$B-∆°���/(�$B�∆°� IJ

@ = ���5���∗(�$B-∆���/(�$B-∆°���5∆°���/ La longitud total de la curva será: Lt = L1+L3+L3

El ángulo deflector total central : ∆°= ∆°(1)+∆°(2)+∆°(3)∆°= ∆°(1)+∆°(2)+∆°(3)∆°= ∆°(1)+∆°(2)+∆°(3)∆°= ∆°(1)+∆°(2)+∆°(3) 8.3.6.- PROGRESIVAS O ABCISAS DE LA CURVA Con el dato normalmente dado de Progresiva o Abcisa del PI y conocidas las Tangentes de entrada Te y de salida Ts como las tangentes internas T1, T2, T3 de las tres curvas así también las longitudes o desarrollos L1, L2, L3 de las tres curvas, se calculan las abcisas o progresivas en kilómetros de los puntos notables de la curva.

Prog. PC = Prog. PI-Prog. CC(1) = Prog. PC +RST

Prog. PCC(1) = Prog. PC+L1

Page 11: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 11

Prog. CC(2) = Prog. PCC(2) +RTT =Prog.PC+L1+

RTT Prog. PCC(2) = Prog. PCC(1)+L2 = Prog.PC+L1+L2

Prog. CC(3) = Prog. PCC(2) +RUT = Prog.PC+L1+L2+

RUT

Prog. FC = Prog. PCC(2)+L3 = Prog. PC+L1+L2+L3 Cualquier punto intermedio en la curva tendrá su respectiva progresiva referida al punto notable anterior PC, PCC(1), PCC(2). Si por ejemplo la Prog. PCC(1)= 5+540,45 Km y se tiene un punto Px a una distancia acumulada de L(Px)=89,10 m del PPC(1), su progresiva es Prog. Px =Prog. PCC(1)+L(Px)=5540,45+89,10=5629,55 m = 5+629,55 Km. 8.3.7.- CÁLCULO DE COORDENADAS PLANAS. CARTERA DE L OCALIZACIÓN Este proceso lo resumiremos paso a paso con fines pedagógicos al ser este muy largo y oneroso propenso en su desarrollo a cometer errores, por ello es recomendable tener una buena base topográfica de cálculo de coordenadas de poligonales, ya que se trata de un proceso similar.

1) Cálculo de elementos geométricos Una vez configurados los radios R1, R2, R3 adecuados que ajustan la curva al terreno que cumplan la Normativa de Velocidades específicas o de curvas con entretangentes; se calculan los elementos geométricos externos como las Tangentes de entrada Te y de Salida Ts por cualquiera de los métodos explicados, también se deben calcular el resto de los elementos geométricos internos de las tres curvas : Tangente, Cuerda, Flecha, Desarrollo y Externa, empleando las fórmulas conocidas para curvas circulares.

2) Replanteo por deflexiones El procedimiento pasa inicialmente por realizar el replanteo de puntos con estacas intermedias por deflexiones de cada una de las curvas con eje de abcisas y ordenadas en los puntos PC para la curva N°1 , en el PCC(1) para la curva N°2 y en el PCC(2) para la curva N°3, donde el eje respectivo X debe sobreponerse a su respectiva tangente interna Ti antes del PI respectivo y el eje Y se sobrepone sobre el radio respectivo de cada curva , como se detalla en la Fig.8.3-6

Fig. 8.3-6 Ubicación de ejes X, Y del replanteo par a las curvas internas de la compuesta de tres radio s

Page 12: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 12

El replanteo se puede hacer clásicamente por arcos acumulados y cuerdas extremas o también con el grado de curvatura, cuerda unidad y subcuerdas extremas para progresivas en estaciones enteras como ya se explicó en capítulos anteriores para curvas circulares. Cada punto del replanteo en las tres curvas interna debe contar con su arco Li (m), Ángulo de Deflexión (ϕi°), Cuerda Ci (m) y Progresiva ya que esos valores se utilizan para calcular las coordenadas planas respectivas. Elaborar las tres planillas del replanteo de las tres curvas con la numeración correlativa de estacas a partir del PC.

3) Acimutes y coordenadas planas o topográficas De similar forma que en la curva de dos radios en base a las coordenadas planas del PI N(PI) y E(PI) que generalmente son datos iniciales se hallan inicialmente la coordenadas planas de los puntos notables ;PC,PCC(1),PCC(2),FC , de los punto de intersección de los alineamientos internos como el PI-1, PI-2,PI-3, para esto se calculan todos los acimut necesarios en base a los datos de los ángulos horizontales facilitados en cada problema ∆°,∆°(1),∆°(2) , ∆°(3) y por lo menos Contar como dato con un acimut de entrada Ae° o de salida As°. Cálculo de los acimutes necesarios dependiendo de l a configuración de radios : ∆°= ∆°(1)+∆°(2)+∆°(3)= As°-Ae° ó ∆°=Ae°-As° Ángulo deflector total al centro de l a curva

A°(PI-1)=Ae°+ ∆°(1) o Ae°- ∆°(1) Acimut del alineami ento del PI-1 al PI-2

A°(PI-2)=A°(PI-1)+ ∆°(2) o A°(PI-1)- ∆°(2) Acimut del alineamiento del PI-2 al PI-3

A°(PI-3)=As°=A°(PI-2)+ ∆°(3) o A°(PI-2)- ∆°(3) Acimut del alineamiento del PI-3 al FC o del PI al FC Acimutes para los centros de radios: A°(PC-O1) = Ae°+90° Acimut del alineamiento del PC al O1 A°(O1-PC) = Ae°+90+180°=Ae°+270° Acimut del alineamiento del O1 al PC A°(PCC(1)-O2)=A°(PI-1)+90° Acimut del alineamiento del PCC(1) al O2 A°(O2-PCC(1))=A°(PI-1)+90+180°=A°(PI-1)+270° Acimu t del alineamiento del O2 al PCC(1) A°(PCC(2)-O3)=A°(PI-2)+90° Acimut del alineamiento del PCC(2) al O3 A°(O3-PCC(2))=A°(PI-2)+90+180°=A°(PI-2)+270° Acimu t del alineamiento del O3 al PCC(2) Acimutes para puntos con estacas intermedias en las tres curvas circulares internas Se los puede calcular e interpretar de dos formas :

a) Tomando cuerdas acumuladas( CPi=(XPi +YPi)1/2) ;desde su punto base en cada curva (PC par la 1°,PCC(1) para la N°2 y PCC(2) para la N°3 hasta el punto Px o Py o Pz, se deben hallar obligatoriamente las Abcisas ,Ordenadas X,Y para cada punto del replanteo y calcular su acimut desde su respectivo punto base hasta el alineamiento de la cuerda respectiva, es decir:

Para un punto cualquiera Px en la L1 de la curva N°1, su acimut desde el PC a la cuerda C(Px) es: A°(Px)=Ae°+ ϕ°ϕ°ϕ°ϕ°(Px) o Ae-°- ϕ°ϕ°ϕ°ϕ°(Px) Según la configuración de la curva Para un punto cualquiera Py en la L2 de la curva N°2, su acimut desde el PI-1 a la cuerda C(Py) es: A°(Py)=A(PI-1)°+ ϕ°ϕ°ϕ°ϕ°(Py) o A(PI-1)-°- ϕ°ϕ°ϕ°ϕ°(Py) Según la configuración de la curva Para un punto cualquiera Pz en la L3 de la curva N°3, su acimut desde el PI-2ª la cuerda C(Pz) es: A°(Pz)=A(PI-2)°+ ϕ°ϕ°ϕ°ϕ°(Pz) o A(PI-2)-°- ϕ°ϕ°ϕ°ϕ°(Pz) Según la configuración de la curva

b) Tomando los acimut en cada curva desde sus centros de radios O1,O2 y O3 hasta los puntos Px, Py, Py en la respectiva curva, es decir:

Page 13: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 13

Para un punto cualquiera Px en la L1 de la curva N°1, su acimut desde O1 con alineamiento hacia el punto Px (como radio R1) es: A°(Px)=A°(O1-PC)+2 ϕϕϕϕ°(Px) o A°(O1-PC)-2 ϕϕϕϕ°(Px) Según la configuración de la curva Para un punto cualquiera Py en la L2 de la curva N°2, su acimut desde O2 con alineamiento hacia el punto Py (como radio R2) es: A°(Py)=A°(O2-PCC(1))+2 ϕϕϕϕ°(Py) o A°(O2-PCC(1))-2 ϕϕϕϕ°(Py) Según la configuración de la curva Para un punto cualquiera Pz en la L3 de la curva N°3, su acimut desde O3 con alineamiento hacia el punto Pz (como radio R3) es: A°(Pz)=A°(O3-PCC(2))+2 ϕϕϕϕ°(Pz) o A°(O3-PCC(2))-2 ϕϕϕϕ°(Pz) Según la configuración de la curva Recordemos que cualquier ángulo central ∆i° respecto a su ángulo deflector es : ∆∆∆∆i°=2 ϕϕϕϕi° Usualmente la forma o el procedimiento a) es más largo por lo que es más rápido optar con el procedimiento del punto b) que implícitamente obliga a calcular las coordenadas planas de los puntos del replanteo con base en los centros O1, O2, O3. Coordenadas planas o topográficas de los puntos bas e más importantes Coordenadas planas del PC: N(PC)=N(PI)+Te*Coseno(Ae°) E(PC)=E(PI)+Te*Seno(Ae°) Coordenadas planas del PI-1 N(PI-1)=N(PC)+T1*Coseno(Ae°) E(PI-1)=E(PC)+T1*Seno(Ae°) Coordenadas planas del PCC(1) N(PCC(1))=N(PI-1)+T1*Coseno(A°(PI-1)) E(PCC(1))=E(PI-1)+T1*Seno(A°(PI-1)) Coordenadas planas del PI-2 N(PI-2)=N(PCC(1))+T2*Coseno(A°(PI-1)) E(PI-2)=E(PCC(1)+T2*Seno(A°(PI-1)) Coordenadas planas del PCC(2) N(PCC(2))=N(PI-2)+T2*Coseno(A°(PI-2)) E(PCC(2))=E(PI-2)+T2*Seno(A°(PI-2)) Coordenadas planas del PI-3 N(PI-3)=N(PCC(2))+T3*Coseno(A°(PI-2)) E(PI-3)=E(PCC(2)+T3*Seno(A°(PI-2))

Page 14: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 14

Coordenadas planas del FC: N(FC)=N(PI)+Ts*Coseno(As°)= N(PI)+Ts*Coseno(As°+180 °) E(FC)=E(PI)+Ts*Seno(As°) = E(PI)+Ts*Seno(As°+18 0°) También se pueden calcular estas coordenadas del FC en base a las coordenadas planas del PI-3 N(FC)=N(PI-3)+T3*Coseno(As°)= N(PI-3)+T3*Coseno(As° +180°) E(FC)=E(PI-3)+T3*Seno(As°) = E(PI-3)+T3*Seno(As° +180°) Se recomienda tener cuidado en la asignación de signos a los acimut los cuales dependerán de la configuración de los alineamientos respectivos en los seis casos de la curva compuesta de tres radios. Coordenadas planas de puntos intermedios con estaca s para el replanteo Nuevamente tomando como puntos genéricos Px, Py, Pz intermedios en L1,L2,L3 de la curva respectiva. Punto Px en la L1 de la curva N°1 (Lx=Prog. Px-Prog . PC) Si el acimut A°(Px) se calculó con base en el PC (c aso a)), siendo C(Px)=(X(Px)+Y(Px))1/2 ,Cuerda desde el PC al punto Px. N(Px)=N(PC)+C(Px)*Coseno(A°(Px)) E(Px)=E(PC)+C(Px)*Seno(A°(Px)) Si el acimut A°(Px) se calculó con base en el O1 , Caso b). N(Px)=N(O1)+R1*Coseno(A°(Px)) E(Px)=E(O1)+R1*Seno(A°(Px)) Punto Py en la L2 de la curva N°2 (Ly=Prog.Py-Prog. PCC(1)) Si el acimut A°(Py) se calculó con base en el PCC(1 ) (caso a)), siendo C(Px)=(X(Py)+Y(Py))1/2 ,Cuerda desde el PCC(1) al Py. N(Py)=N(PCC(1))+C(Py)*Coseno(A°(Py)) E(Py)=E(PCC/1))+C(Py)*Seno(A°(Py)) Si el acimut A°(Py) se calculó con base en el O2 , Caso b). N(Py)=N(O2)+R2*Coseno(A°(Py)) E(Py)=E(O2)+R2*Seno(A°(Py)) Punto Pz en la L3 de la curva N°3 (Lz=Prog.Pz-Prog. PCC(2)) Si el acimut A°(Pz) se calculó con base en el PCC(2 ) (caso a)), siendo C(Pz)=(X(Pz)+Y(Pz))1/2 ,Cuerda desde el PCC(2) al Pz. N(Pz)=N(PCC(2))+C(Pz)*Coseno(A°(Pz)) E(Pz)=E(PCC(2))+C(Pz)*Seno(A°(Pz)) Si el acimut A°(Pz) se calculó con base en el O3 , Caso b). N(Pz)=N(O3)+R3*Coseno(A°(Pz)) E(Pz)=E(O3)+R3*Seno(A°(Pz))

Page 15: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 15

Se calculan las coordenadas planas de los N puntos del replanteo en cada curva; las cuales junto las coordenadas planas de los puntos principales o notables pasan a formar la planilla general del replanteo y después la cartera de localización. La Fig. 8.3-7 muestra los detalles de acimuts y coordenadas parciales detalladas en este acápite correspondiente a una curva compuesta de tres radios

Fig. 8.3-7 Detalles de acimutes y coordenadas parci ales para puntos notables PC,FC y para puntos inter medios Px, Py,

Pz en la curva compuesta de tres radios.

8.3.8.- CURVAS COMPUESTAS DE ‘’N’’ RADIOS Algunas veces es necesario diseñar curvas compuestas de más de tres radios por que la topografía del terreno así lo exige o el diseño mismo del tipo de proyecto que se encara lo obliga ;como es típico en ramas de enlace, distribuidores de tráficos o intersecciones especiales; en función de lo visto hasta aquí se puede generalizar las expresiones de los elementos geométricos de i=2 radios hasta i=n radios de curvas compuestas que se materializan a manera de un abanico con radios sucesivos.

Page 16: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 16

Fig. 8.3-8 Curva compuesta de ‘’n=4’’ radios en aba nico

Partiendo de esta figura de una curva compuesta de n=4 radios (i=1,2…4) generalizando para i =n Radios Ri, vemos que se puede hallar las coordenadas cartesianas Xi,Yi para los puntos comunes de curvatura PCC(1),PCC(2),PCC(3)…..PCC(n) desde un eje ortogonal en el PC partiendo de conocer la Te y la Ts. , es decir conociendo el PC y el FC, esto se logra trabajando con las Cuerdas ‘’Ci’’ de cada curva y los radios ‘’Ri’’ con sus ángulos deflectores al centro ∆°i, es decir: Curva circular N°1

K1 = 2 ∗ V1 ∗ *+,W E∆�1�2 I X�YKK�1�� = K1 ∗ KWZ E∆�1�2 I = 2 ∗ V1 ∗ *+,W E∆�1�2 I ∗ KWZ�∆�1�2 � [�YKK�1�� = K1 ∗ *+,W E∆�1�2 I = 2 ∗ V1 ∗ *+,W E∆�1�2 I ∗ *+,W E∆�1�2 I Curva circular N°2

K2 = 2 ∗ V2 ∗ *+,W E∆�2�2 I

X-YKK�2�/ = X�YKK�1�� + K2 ∗ KWZ \∆�2�2 + ∆�1�] = X�YKK�1�� + 2 ∗ V2 ∗ *+,W E∆�2�2 I ∗ KWZ�∆�2�2 + ∆�1�� [-YKK�2�/ = [-YKK�1�/ + K2 ∗ *+,W \∆�2�2 + ∆�1�] = [-YKK�1�/ + 2 ∗ V2 ∗ *+,W E∆�2�2 I ∗ *+,W E∆�2�2 + ∆�1�I Curva circular N°3

Page 17: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 17

K3 = 2 ∗ V3 ∗ *+,W E∆�3�2 I

X-PCC�3�/ = X�PCC�2�� + C3 ∗ Cos \∆�3�2 + ∆�2�] = X�PCC�2�� + 2 ∗ R3 ∗ SenoE∆�3�2 I ∗ Cos�∆�3�2 + ∆�2� + ∆1�� Y�PCC�3�� = Y�PCC�2�� + C3 ∗ Seno�∆�3�/2 + ∆�2�� = Y�PCC�2�� + 2 ∗ R3 ∗ Seno�∆�3�2 ∗ Seno�∆�3�/2 + ∆�2� + ∆�1�� Curva circular N°4. FC=PCC(4)

K4 = 2 ∗ V4 ∗ *+,W E∆�4�2 I

X-PCC�4�/ = X�PCC�3�� + C4 ∗ Cos \∆�4�2 + ∆�3�] = X�PCC�3�� + 2 ∗ R4 ∗ Seno E∆�4�2 I ∗ Cos�∆�4�2 + ∆�3� + ∆�2� + ∆1�� Y-PCC�4�/ = Y-PCC�3�/ + C4 ∗ Seno \∆�4�2 + ∆�3�] = Y-PCC�3�/ + 2 ∗ R4 ∗ Seno E∆�4�2 I ∗ Seno�∆�4�2 + ∆�3� + ∆�2� + ∆�1�� Luego generalizando para i=n radios ,se tiene las Abcisas, Ordenadas desde el eje ortogonal en el PC para los puntos comunes de curvatura PCC(i), de la siguiente manera: �-j �k�/ = �-j �k − ��/ + � ∗ lk ∗ (�$B O∆�k�� P . B' F∆�k�� + ∆�k − �� + ∆�k − �� + ⋯ ∆�k − $�H 8.52 "-j �k�/ = "-j �k − ��/ + � ∗ lk ∗ (�$B O∆�k�� P . (�$B F∆�k�� + ∆�k − �� + ∆�k − �� + ⋯ ∆�k − $�H 8.53 8.3.9.- EJEMPLOS DE APLICACIÓN EJERCICIO 8.3.9-1 Por las condiciones del terreno en una carretera primaria surge la necesidad de proyectar una curva compuesta de tres radios en el terreno, cuyos datos son los siguientes:

1) Realizar inicialmente un dibujo a mano alzada (tipo croquis) de los alineamientos de la curva

planteada 2) Hallar los elementos geométricos dela curva compuesta 3) Hallar las Abcisa y ordenadas de los puntos principales PCC(1),PCC(2) y FC 4) Realizar la planilla de coordenadas planas de los puntos principales PC,PCC(1),PCC(2),FC 5) Realizar un dibujo a escala adecuada en un CAD de su aplicación personal donde se puedan

comprobar las coordenadas planas halladas

Curva compuesta : R3>R2>R1

Sobreancho 0,8 m.Ancho de calzada 14,00 ms. Grados Minutos Segundos

Angulo ∆ ∆ ∆ ∆°(1) 45,003 Grados 45 0 10Angulo ∆ ∆ ∆ ∆°(2) 30,257 Grados 30,000 15 25Angulo ∆ ∆ ∆ ∆°(3) 20,000 Grados 20,000 0,00 0

Angulo ∆ ∆ ∆ ∆° 95,260 Grados 95,000 15,00 35Vel.proyecto (Vp) 70,00 Km/h

emax= 8,00 %Sobre ancho: s= 1,50 m.

Prog. PI = 20+200,00 Km.NPI= 1570070,00 m.

EPI= 2630503,00 m.Acimut de entrada Ae°= 130,17 Grados

Page 18: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 18

Solución:

Los otros elementos geométricos internos de las tres curvas en este caso no son necesarios para lo solicitado en este problema, pero se los ha calculado líneas más abajo. Se hallan las tangentes externas de entrada (Te) y de salida (Ts) del PI de la curva compuesta de tres radios cuya condición es R3>R2>R1

ser mayor o igual al mayor valor de Lmin de estos dos criterios :

ELECCION DEL Lemin = 6,64 m.

60,90 ms

Criterio apariencia General Le min = VD/1.8 = 38,89 m>30 Ok.

Longitud sector circular (Desarrollo) de cada curva :Long. Seccion circular (L1) = PI*∆1*RC1/180 = 196,36 m>39.89 Ok.

Long. Seccion circular (L2) = PI*∆2*RC2/180 = 211,23 m>39.89 Ok.

Long. Seccion circular (L3) = PI*∆3*RC3/180 = 174,53 m>39.89 Ok. Longitud total de la curva = L=L1+L2+L3 = 582,13 m.

TANGENTES:Tangente T1 = R1*tan(∆°(1)/2) = 103,560 m Tangente T2 = R2*tan(∆°(2)/2) = 108,142 m Tangente T3 = R3*tan(∆°(3)/2) = 88,163 m

En curvas compuestas las longitudes de las curvas deben

Criterio de comodidad

)*128

(04.61

2

PnR

VVLemín −×=

Page 19: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 19

Fig.8.3.9-1 Dibujo a mano alzada de la curva de tre s radios (R3>R2>R1) con los alineamientos en los PI para configurar las

tres curvas circulares internas

De la configuración de la curva y aplicando la ecuación dada para el caso, hallamos la Tangente de salida de la curva:

O3

O2

R2

O1 N

R3

R1

R2

R1 FC

Ae= 130° 0' 0''

PC PCC(2) PI-3

PI-1 PCC(1) P-I2

∆∆∆∆=95,26°

PIN(PI)= 1570070E(PI)= 2360503

Page 20: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 20

Estos resultados han sido confirmados en el gráfico Ej. 8.3.9-1 realizado a escala y que se adjunta más abajo.

En función de las coordenadas halladas del FC podemos verificar las tangentes Te y Ts

Coordenadas planas de los puntos principales En el presente ejemplo, para abreviar los cálculos, a veces no es necesario calcular las coordenadas planas del PI-1, PI-2 o ir a las coordenadas base de los centros O1,O2,O3 para calcular las coordenadas planas de los puntos en cada una de las curvas componentes; aquí se ha calculado directamente las coordenadas planas del PCC(1) con apoyo desde el PC , del PCC(2) con apoyo de las coordenadas del PCC(1) , del PCC(3) con apoyo de las coordenadas del PCC(2) y del Fc con apoyo de las coordenadas del PCC(3), para ello solamente se precisan en cada caso calcular la cuerda y el ángulo deflector del punto final correspondiente en cada curva y calcular los acimut respectivos de las cuerdas. Ci=2*R2*Seno ((∆i)/2) Cuerda de la curva i ϕ°(PCC(i))= ∆°(i)/2 Ángulo de deflexión de los puntos comun es de curvatura PCC(i) y del FC Suponiendo en este caso que no se nos piden las coordenadas planas de los PI-1,Pi-2 y PI-3, o dicho de otra manera se decide optar por la otra alternativa sin utilizar las coordenadas de estos PI.

Ts=C+D+T3 =

Sen(∆°(3))= Sen(20°)= 0,34202091Sen(α°) = Sen(129,743°)= 0,76891656

Sen(β°) = Sen(84,84°)= 0,99594774

Sen(∆°(2))= Sen(30,257°)= 0,50388058

Sen(∆°(1))= Sen(45,003°)= 0,7071451

Entonces reemplanzado datos, hallamos Ts:

Ts=C+D+T3= 212,31+128,64+88,16,3= 429,11 m.

Ts= (�$-∆°���/ E4�+4�+F�4�+4��6�7-∆°���/6�7�∝°� HI

6�7�?°� + ���+���(�$-∆°���/(�$�∝°� +T3

COORDENADAS DEL PCC(1), PCC(2), FC

X (PCC(1)= R1 ∗ SEN(∆°(1) = 176,79 m Y(PCC(1))= R1 * (1- COS(∆°(1)) = 73,23 m

X(PCC(2)= X(PCC(1))+R2 * SEN(∆(1)+∆(2)) - R2*SEN(∆(1))= 280,76 m Y(PCC(2)= Y(PCC(1))+R2*COS(∆(1))-R2*COS (∆(1)+∆(2)) 254,29 m

X(FC)=(R1-R2)*Sen(∆∆∆∆°(1)+(R2-R3)*Sen( ∆∆∆∆°(1)+ ∆∆∆∆°(2))+R3*Sen( ∆∆∆∆)= 295,11 m.

Y(FC)=R1*(1-Cos(∆°(1)+R2*(Cos( ∆°(1))-Cos( ∆°(1)+ ∆°(2))+R3*((Cos( ∆°(1)+ ∆°(2))-Cos( ∆°)) Y4-Y3=R2*Cos(∆°(1))-R2*Cos( ∆°(1)+ ∆°(2))=00*Cos(45,003°)-400*Cos(45,003+30,257)= 181,09Y2-Y1=R3*(Cos(∆°(1)+ ∆°(2))-R3*Cos( ∆°))=500*Cos(45,003+30,257)-500*Cos(95,26) = 173,05

Y(FC)=Y(PCC(1))+(Y4-Y3)+(Y2-Y1) =73,23+181,09+173,05 = 427,37 m.

Page 21: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 21

Fig. Ej. 8.3.9-2 Detalle final de la curva compuest a de tres radios (R3>R2>R1) con elementos geométric os y coordenadas

planas de los puntos principales

COORDENADAS DEL PC :N(PC) = N(PI)+Te*Coseno(180°-Aeº)= 1570285,72 mE(PC) = E(PI)+Te*Seno(180°-Aeº) = 2630247,46 m

COORDENADAS DEL PCC(1)C1=2*R1*Seno((∆1)/2)=2*250*Seno(45,003/2)= 191,35 m.

ϕ°(PCC(1))= ∆°(1)/2 = 45°/2 22,50 Grados

N(PCC(1)) = N(PC)+C1*Coseno(Aeº- ϕ°ϕ°ϕ°ϕ° ((((PCC(1) )= 1570227,64 m

E(PCC(1)) = E(PC) +C1*Seno(Aeº- ϕ°ϕ°ϕ°ϕ° (PCC(1)) = 2630429,78 m

COORDENADAS DEL PCC(2):C2=2*R2*Seno((∆2)/2)=2*400*Seno(30,257/2)= 208,79 m.

ϕ°(PCC(2))= ∆°(2)/2 = 30,257/2 = 15,13 Grados

N(PCC(2)) = N(PCC(1)) +C2*Coseno(Aeº- ∆∆∆∆1- ∆∆∆∆2/2)= 1570298,92 m

E(PCC(2)) = E(PCC(1))+C2*Seno(Aeº- ∆∆∆∆1- ∆∆∆∆2/2)= 2630626,03 m

COORDENADAS DEL FC:C3=2*R3*Seno((∆3)/2)=2*500*Seno(20/2)= 173,65 m.

ϕ°(PCC(3))= ∆°(3)/2 = 20/2 = 10,00 Grados

N(FC) = N(PCC(2))+C3*Coseno(Aeº- ∆∆∆∆1-∆∆∆∆2-∆∆∆∆3/2)= 1570421,90 m

E(FC) = E(PCC(2))' +C3*Seno(Aeº- ∆∆∆∆1−∆−∆−∆−∆2-∆∆∆∆3/2) = 2630748,63 m

Page 22: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 22

PROGRESIVAS O ABCISAS (m) (Km) Prog. PI = 20200 = 20200 20+200,00 Prog. PC = Prog. PI-Te = 20200-334,42 = 19865,58 19+865,58 Prog PCC(1)= Prog PC+L1 = 19865,58+196,36 = 20061,94 20+061,94 Prog. PCC(2)= Prog. PCC(1)+L2 = 20061,94+211,13 = 20273,17 20+273,17 Prog. FC= Prog. PCC(2)+L3 = 20273,17+174,53 = 20447,71 20+447,71 L=Prog. FC - Prog.PI =20447,71 - 19865,58=582,13 m. Cartera de localización Para efectos comparativos, en el presente ejemplo retomamos para el replanteo por deflexiones el método del Grado de curvatura con cuerda unidad para obtener la deflexión por metro ϕ(°/m); deflexión por subcuerdas de tal manera de trabajar con progresivas enteras de los puntos con estacas intermedias en cada curva a excepción de los principios y final de cada curva que tienen progresivas fijas invariables. Elección de la cuerda unidad Para la elección de la Cuerda Unidad ( ci ) de las curvas circulares internas con una aproximación a su arco similar de 5 cm como máximo, en función del radio (Ri) respectivo se aconseja tomar como guía los valores del siguiente cuadro. RADIO (Rc(m)) CUERDA UNIDAD (c(m)) 32 – 67 5.00 67 – 143 10.00 > 143 20.00 Tal como se vio anteriormente en el replanteo por deflexiones de curvas circulares es también recomendable hacer el chequeo previo del arco o cuerda del replanteo en función del arco máximo permitido (lmax) similar a su cuerda con un error de 1/5000 , lmax= 0,07*Rc (m) de tal manera que siempre c=l <=lmax Elección de la cuerda unidad de las tres curvas circulares internas Curva N° 1 R1=250 m. < 67 m l 1 max=0,07*250=17,5 m., luego se asume c1=10 m.<17,5 Curva N°2 R2=400 m. >143m l 2 max=0,07*400=28 m., luego se asume c2=20 m. <28 Curva N°3 R3=500 m. >143 l 3 max=0,07*500=35 m., luego se asume c3=20 m. <35 Como se aprecia se ha elegido cuerdas unidad enteras y múltiplos de diez siempre menores al arco máximo (lmax).

Page 23: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 23

REPLANTEO CURVA N°1

c1=10 m. Cuerda unidad

Grado de curvatura:G1°=2Arcsen(c 1/2R1)= 2*Arcsen(10/(2*250)= 0,040002667 Radian

2,291978637 Grados.

Deflexion por metro c1=1 m.: ϕ1(°/m) =G°/2c 1=2,29197/2 = 1,145989319 Grados/m.

Deflexion por cuerda de ϕ°c1=10 m : ϕ(°/m) =G°/2c =2,29197/2 *10 = 0,114598932 Grados/m.

Prog.PC=EO=19+865,58 Km. , Deflexion ϕϕϕϕ°= 0°Prog. E1= 19+870 Km.

Subcuerda adyacente al PC :l1=19870,00-19865,58 = 4,42 m.

Deflexion por subcuerda: ϕc1°=l 1(m)*ϕ(l1)° =4,42m* 0,114598°/m= =0,506527279 °

Deflexion equivalente a la de subcuerda : ϕ°(E1)=28,65*L1/R1=28,65*4,42/250= 0,506532 °……………………………Prog. E(n-1)=20+060,00 Km.Subcuerda adyacente al PCC(1) :l2=20061,94-20060 = 1,94 m.

Deflexion por subcuerda: ϕ2°=l2(m)* ϕ(l2)° =1,94m* 0,114598°/m= =0,222321928 °

Deflexion equivalente a la de subcuerda : ϕ°(E1)=28,65*L1/R1=28,65*1,94/250= 0,222324 °Prog. PCC(1)=20+061,94 Km.

REPLANTEO CURVA N°2

c2=20 m. Cuerda unidad

Grado de curvatura:G2°=2arcsen(c 2/2R2)= 2*arcsen(20/(2*400)= 0,05000521 Radian

2,865080775 Grados.

Deflexion por metro c2=1 m.: ϕ(°/m) =G2°/2c 2=2,29197/2 = 1,432540388 Grados/m.

Deflexion por cuerda de ϕ°c2=20 m : ϕ(°/m) =G°/2c 2 =2,29197/2 *20 = 0,071627019 Grados/m.

Prog.PCC(1)=20+061,94 Km. Prog. entera siguiente 20+070

Subcuerda adyacente al PCC(1) :l2=20070-20061,94 = 8,06 m.

Deflexion por subcuerda: ϕ2°=l 2(m)*ϕ(l2)° =8,06 m* 0,0711627°/m= =0,577313776 °

Deflexion equivalente a la de subcuerda : j°1=28,65 *L2/R2=28,65*8,06/400= 0,5772975 °……………………………Prog. E(n-1)=20+270,00 Km.Subcuerda adyacente al PCC(2) :l2=20273,18-20270= 3,18 m.

Deflexion por subcuerda: ϕ2°=l 2(m)*ϕ(l2)° =3,18m* 0,114598°/m= =0,227773922 °

Deflexion equivalente a la de subcuerda : j°2=28,65 *L2/R2=28,65*3,18/400= 0,2277675 °Prog. PCC(2)=20+273,18

Page 24: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 24

Recordemos que en cada curva interna a partir del punto inicial o estación del instrumento como en el PC, el PCC(1) y el PCC(2) para obtener el ángulo de deflexión de los puntos con estacas de progresivas enteras se suma a la deflexión anterior acumulativamente la deflexión por metro en cada curva. Como por ejemplo: Deflexiones para las Estacas con progresivas enteras E2, E3, E4 en la Curva N°1 ϕ(E2)= ϕc1°=l 1(m)*j(l1)° =4,42m* 0,114598°/m= 0,50650°

ϕ(E3)= ϕ(E2)°+ G°/2c 1 =0,50650+1,1459 = 1,65249°

ϕ(E4)= ϕ(E3) °+ G°/2c 1 =1,65249+1,1459 = 2,79848°

REPLANTEO CURVA N°3

c3=20 m. Cuerda unidad

Grado de curvatura:G3°=2*Arcsen(c 3/2R3)= 2*Arcsen(20/(2*500)= 0,040002667 Radian

2,291978637 Grados.

Deflexion por metro c2=1 m.: ϕ(°/m) =G3°/2c 3=2,29197/2 = 1,145989319 Grados/m.

Deflexion por cuerda de ϕ°c2=20 m : ϕ(°/m) =G°/2c 2 =2,29197/2 *20 = 0,057299466 Grados/m.

Prog.PCC(2)=20+273,18 Km.Prog. entera siguiente 20+280

Subcuerda adyacente al PCC(2) :l1=20280-20273,18 = 6,82 m.

Deflexion por subcuerda: ϕ3°=l 3(m)*ϕ(l3)° =6,82 m* 0,057299°/m= =0,390782358 °

Deflexion equivalente a la de subcuerda : ϕ°1=28,65*L3/R3=28,65*6,82/500= 0,390786 °……………………………Prog. E(n-1)=20+440,00Km.Subcuerda adyacente al PCC(2) :l2=20447,71-20440,0= 7,71 m.

Deflexion por subcuerda: ϕ2°=l 2(m)*ϕ(l2)° =3,18m* 0,114598°/m= =0,441778882 °

Deflexion equivalente a la de subcuerda : ϕ°2=28,65*L3/R3=28,65*7,71/500= 0,441783 °

Prog. FC=20+447,71 Km.

Page 25: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 25

8.3.10.-EJERCICIOS PROPUESTOS EJERCICIO 8.3.10-1 Para una curva compuesta de tres radios (R2>R3>R1) presentada en la Fig. Ej. 8.3.10-1, con los siguientes datos: ∆°(1)= 39,3110° ∆°(2)= 18,5408° ∆° =106,3713° T3 = 56,18 m. R1 = 42,50 m. R2 = 159,60 m. Progresiva del PI = 6+323,45 Km.

PLANILLA DE LA CARTERA DE LOCALIZACION DE LA CURVA COMPUESTA DE TRES RADIOS (R1>R2>R3)-Ej.8.3.9-1

ESTACION PROGRESIVA DEFLEXION: ϕϕϕϕ°(Ei) ELEMENTOS GEOM. ACIMUT A° OBSERVACIONES

PC=E1 19+865,58 0,00000E2 870 0,50650 130,17E3 880 1,65249 Rumbo:E4 890 2,79848 S 49,83 ° EE5 900 3,94447E6 910 5,09046E7 920 6,23645 ∆°(1)=20,60E8 930 7,38244 R1=250 m.E9 940 8,52843 G°1=2,29197°

E10 950 9,67441 c1 = 10 m.

E10 960 10,82040 C1=191,35 m.E12 970 11,96639 F1=19,03 m.E13 980 13,11238 E1=20,60 m.E14 990 14,25837 T1=153,06 m.E15 1000 15,40436 L1=196,40 m.E16 1010 16,55035E17 1020 17,69634E18 1030 18,84233E19 1040 19,98832E20 1050 21,13431E21 1060 22,28030

PCC(1)=E22 20+061,94 22,50807 85,167E23 70,00 0,57731 Rumbo:E24 90,00 2,00985 ∆°(2)=30,257 Grados N 85,167 EE25 110,00 3,44239 R2=400 m.E26 130,00 4,87493 G°2=2,86508°

E27 150,00 6,30748 c2= 20 m.

E28 170,00 7,74002 C2=208,79 m.E29 190,00 9,17256 F2=13,86 m.E30 210,00 10,60510 E2=14,36 m.E31 230,00 12,03764 T2=108,14 m.E32 250,00 13,47018 L2=211,2 m.E33 270,00 14,90272

PCC(2)=E44 20+273,17 15,13049 54,910E45 280,00 0,39078 ∆°(3)=20 Grados Rumbo:E46 300,00 1,53677 R3=500 m. N 54,91° EE47 320,00 2,68276 G°3=2,29197°

E48 340,00 3,82875 c3=20 m.

E49 360,00 4,97474 C3=173,65 m.E50 380,00 6,12073 F3=7,60 m.E51 400,00 7,26672 E3=7,71 m.E52 420,00 8,41271 T3=88,16 m. Rumbo:E53 440,00 9,55870 L3=174,5 m. N 34,91° E

FC=E54 20+447,71 10,00048 34,910

Estacion en el PC

Estación en el PCC(1)

Estación en el PCC(2)

FC

Page 26: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 26

Coordenadas planas del PC: N(PC)=1677734 , E(PC)=9232211

Fig. Ej.8.3.10-1 Curva de tres radios: R2>R3>R1

Se solicita:

1) Hallar las tangentes de entrada (Te) y de salida (Ts), abcisas y ordenadas de los puntos principales, elementos geométricos de las tres curvas internas.

2) Hacer el replanteo por deflexiones de todos los puntos de la curva para ser materializados 3) Hacer la planilla de coordenadas planas de todos los puntos replanteados de la curva 4) Hacer la cartera de localización de la curva 5) Realizar un dibujo a escala adecuada con los resultados obtenidos de la curva.

EJERCICIO 8.3.10-2 Para el caso particular de la curva simétrica de tres radios donde el R1=R3 (Gráfico Ej. 8.3.10-2) procurando que el R2=Rma se solicita diseñar dicha curva con los siguientes datos:

Page 27: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 27

Gráfico 8.3.10-2 Curva simétrica de tres radios (R1 =R3 ,R2=Rma)

∆° =95,1340° ∆°(1)= ∆°(3)=17.8277° ∆°(2)=59.4786° R1=R3=286.91 m. R2=46,65 m. Prog. PI=5+678,67 Km. Coordenadas planas del PI : N(PI)=2567783.41 , R(PI)=1788999.081 ac= 7,20 m Ancho de calzada de dos carriles s =0,80 m. Sobreancho emax=8% Peralte máximo Ae°=42.4325° Acimut de entrada al PI Se solicita.

a) Hallar las distancias O-O3 y O-O1 que cumplan las condiciones estipuladas de radios b) Hallar las tangentes de entrada y salida Te y Ts como los demás elementos geométricos de

cada curva c) Hallar las coordenadas planas del PC,OI-1,PCC(1),PI-2,PCC(2),PI-3,FC como de los centros

O1,O2,O3. d) Hallar la cartera de localización de la curva

Page 28: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 28

EJERCICIO 8.3.10-3 Dadas las tangentes de entrada y de salida Te, Ts para una posible curva de tres radios donde el R1>R3>R2 sin variar el PC y el FC realizar un análisis comparativo del diseño con una curva espiral-círculo-espiral asimétrica, verificando cuál de ellas se ajusta más al terreno ocasionando menos corte o terraplén y menos pendiente en la rasante ( Fig. 8.3.10-3).

Fig.Ej.8.3.10-3 Planimetría con alineamientos al PI con puntos obligados del PC y FC

Datos: Ae°= 50,8969° Acimut del alineamiento de e ntrada al PI ∆° = 69.8452° Ángulo deflector central en e l PI Te =436,06 m. Tangente de entrada Ts =321,02 m. Tangente de salida emax=6% Peralte máximo b =2% Bombeo de la calzada s =1.20 m. Sobreancho

Page 29: Curvas compuestas  horizontales de tres radios

Estudio y Diseño Geométrico Vial Aplicado a Proyectos Camineros-Ing. Juan Carlos López Aparicio

U.A.G.R.M Cátedra de Vias de Comunicación II –CIT.222 Ing. en Agrimensura –St. Cruz Bolivia N° 29

Prog.PI = 3+234,67 Km. N(PI) =9934.94 Coordenada plana Norte del PI E(PI) =70116.71 Coordenada plana este del PI Se solicita además:

a) Perfil longitudinal del terreno de la curva elegida del OC al FC con la rasante adecuada proyectada

b) Detallar las ventajas de la curva elegida c) Hallar las coordenadas planas de los puntos notables de la curva d) Realizar la cartera de localización de la curva e) Dibujar la curva en la planimetría dada