93
e I1 MEXICO C EL GAS ASOCIADO A LOS YACIMIENTOS DE C . CARBÓN MINERAL (GAC) e ESPECIALIDAD: GEOLOGÍA e e ( Rafael Alexandri Rionda Doctor en Geología Económica 1 e Pachuca de Soto, Hidalgo, noviembre de 2010 e

El gas asociado a los yacimientos de carbón mineral (GAC)

Embed Size (px)

Citation preview

Page 1: El gas asociado a los yacimientos de carbón mineral (GAC)

e

I1 MEXICO

C EL GAS ASOCIADO A LOS YACIMIENTOS DE C. CARBÓN MINERAL (GAC) e

ESPECIALIDAD: GEOLOGÍA e

e ( Rafael Alexandri Rionda

Doctor en Geología Económica

• 1 • • • • • e

Pachuca de Soto, Hidalgo, noviembre de 2010

e • •

Page 2: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOCIADOA LOS YACIMIENTOS DE CARBÓNMINERAL (A C)

CONTENIDO

RESUMEN 3

AGRADECIMIENTOS 4

1. ANTECEDENTES 5

II. LA FORMACIÓN DEL CARBÓN 6

III. EL CARBÓN EN MEXICO 14

IV. EL GAS NATURAL Y SU CLASIFICACIÓN 18

V. EL CARBÓN COMO GENERADOR DE GAS METANO 25 V.1 Génesis Del Gas 29 V.2 Los Macérales 29 V.3 Propiedades de los Macérales 31 V.4 Gas metano acumulado en los mantos de carbón

(coalbed methane-CBM) 34

VI. MIGRACIÓN DEL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL 40

W. PRUEBAS FISICO QUÍMICAS, PARA LA DETERMINACIÓN DEL CARBONYGAS 54 V11.1 Equipos y tipos de Análisis 55

VII.1 .1 Análisis elemental 55 Vll.1.2 Estructura molecular del carbón 55 VI1.1.3 Pirolisis 57 Vll.1 .4 Pirolisis Flash—Cromatografía en fase gaseosa—Espectrometría

de masa (PY-GC-MS) 60 VI1.1.5 Análisis ¡sotópico 61 V11.1 .6 Análisis a partir del extracto de la materia orgánica 63 V11.1.7 Análisis biomarcadores para ver biodegradación 64 V11.1.8 Análisis isotópico de gas 67

VII.2 Interpretación de resultados de análisis 67 V11.3 Estudios óptimos para definir con mayor certeza el origen del Gas 77

VII .3.1 Condiciones geológicas, estratigráficas, estructurales y espaciales 77 V11.3.2 Métodos analíticos para identificar los tipos de kerógenos y su

porcentaje de predominancia 77 V11.3.3 Modelado geonumérico 77

VIII. MODELADO NUMÉRICO E HISTORIA DE SEPULTAMIENTO 78

IX. CONCLUSIONES Y RECOMENDACIONES 83

X. BIBLIOGRAFÍA 84

ESPECIALIDAD. INGENIERÍA GEOLÓGICA 2

Page 3: El gas asociado a los yacimientos de carbón mineral (GAC)

EL ASOCIADO A LOS YACIM IENTOS DE CARBÓN MINERAL LGA

RESUMEN 1

El origen del carbón mineral se relaciona directamente con la acumulación de restos de

vegetales mayores que se depositan en pantanos o en zonas donde el nivel freático está

en la superficie o muy cerca de ella. Pueden presentarse en litorales, deltas y cuencas

marinas someras cercanas a la costa y que por efecto de sepultamiento son sometidos al

proceso de carbonización. Durante la primera etapa de carbonización una tonelada de

materia orgánica concentrada, genera alrededor de 1,300 m 3 de gas y gran cantidad de

H20 y CO2, se estima que es necesaria una columna de 12 metros de vegetación para

formar un manto de carbón de un metro de espesor (Barker, 2001).

Gran parte del gas generado por el proceso de carbonización es expulsado durante el

tiempo geológico y parte de él es emitido a la atmosfera, mientras que el resto es

almacenado en rocas suprayacentes. Se estima que sólo 1.3% del gas queda atrapado en

los mantos de carbón bituminoso. El gas asociado a los yacimientos de carbón mineral

(GAC) puede ser biogénico o termogénico de acuerdo a su relación genética; y en base a

su posición puede ser no convencional cuando se almacena en los mantos (Coalbed

methane, CBM) y convencional cuando ha migrado y entrampado en rocas porosas.

Existe otra clasificación de gases relacionados con carbón y son: metano en minas de

carbón en producción (CMM) y metano en minas abandonadas de carbón (AMM).

El gas asociado a yacimientos de carbón mineral, se puede encontrar principalmente

como "gas libre" o como "gas adsorbido" en los mantos y como gas que ha sido expulsado

y está atrapado en depósitos convencionales.

Debido a la complejidad y mezcla de gases de diferentes fuentes en una cuenca

sedimentaria, es necesario la combinación de una serie de estudios tanto de campo como

de gabinete, para conocer con alto grado de confiabilidad cuál es el origen del GAC:

primero, es condición necesaria la presencia de carbón en algunas unidades de la

columna geológica, conocer la historia geológica de la cuenca sedimentaria apoyada por

estudios petrográficos, análisis geoqu Emicos (análisis elemental, caracterización e

isotopía) y de ser necesario realizar estudio de biomarcadores.

La herramienta fundamental para estudiar la historia de sepultamiento, así como la

evolución de temperatura y presión de la columna estratigráfica en una cuenca

sedimentaria, es el modelado numérico que permite incorporar datos medidos en campo a

modelos teóricos, incluyendo el espesor de sedimentos erosionados.

ESPECIALIDAD: INGENIERfA GEOLÓGIcA 3

Page 4: El gas asociado a los yacimientos de carbón mineral (GAC)

fl

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

e e C AGRADECIMIENTOS

e Este trabajo está dedicado especialmente a mi esposa Lulú con mi gratitud por su paciencia e incondicional apoyo y a mis hijos Rafael, Jessica y Luli por ser ellos el motor y propósito de mi vida.

e Deseo expresar mi profundo agradecimiento a:

- - Mis amigas, amigos y compañeros del Servicio Geológico Mexicano, quienes

el alentaron con decisión el reto de transformar a ese organismo, partiendo de un radical cambio de actitud profesional;

e C - A los directores de área del Servicio Geológico Mexicano: Alfonso Martínez Vera,

Cuauhtémoc Rodríguez Espinosa y Carlos Francisco Yáñez Mondragón por ser pilares fundamentales en su actual administración;

- A mis compañeros de la Dirección de Minerales Energéticos, por compartir sus conocimientos y experiencia en la materia, durante este nuevo camino que hemos ido aprendiendo juntos.

e Agradezco mucho también el apoyo de mis estimados amigos y colegas:

e e - José Antonio Ceballos Soberanis, Presidente de esta H. Academia de Ingeniería

por su decisivo respaldo;

e - Enrique Gómez de la Rosa, Presidente de la Comisión de Ingeniería Geológica,

por su invaluable ayuda y alentador entusiasmo;

e e - Luis Martínez de la Universidad de Nancy por sus siempre acertadas

recomendaciones profesionales y

e - A los destacados académicos, Adán Oviedo Pérez; Bernardo Martell Andrade y

Carlos Francisco Yáñez Mondragón, por su amable aceptación en comentar mi trabajo y por sus valiosas y enriquecedoras observaciones.

e

e C ESPECIALIDAD: INGENIERÍA GEOLÓGICA 4

e

Page 5: El gas asociado a los yacimientos de carbón mineral (GAC)

ELGAASOOADOAWSYAC!MNTOECARBÓNMERAL(GAC)

ID 1. ANTECEDENTES

le

El gas natural ha venido a ser uno de los mayores recursos energéticos en el mundo durante las últimas cuatro décadas y su importancia económica se estima se incrementará considerablemente en los próximos 20 años, figura 1.

Evolución de lzi energia

¡ -- -

'.lr ' •__iuII1

..................

•:ii:ii: ui 'i:i .....: 11

1 ... .

Figura 1. Evaluación de la energía desde 1850 con pronóstico a 2030.

ID Actualmente, la mayor cantidad de gas es producido por yacimientos convencionales; sin ' embargo, los no convencionales están adquiriendo un importancia relevante, de tal forma

que en EUA se estima que en los próximos diez años, la producción de gas no convencional rebasará a la de gas convencional; así mismo en Canadá, la producción de gas no convencional es alrededor del 40% de la producción nacional. En la tabla 1, se

1 puede observar una síntesis del potencial de gas no convencional en Norte América:

OS EN .11 AiJ'.tl iøui:NAL N CANADA

En produccion 400 .700 Tpc En producción

17 Tpc expIción

1 Tabla 1. Recursos de gas no convencional en Norteamérica, (gas atrapado en los mantos dé carbón). El ' potencial de México corresponde al "gas asociado a yacimientos de carbón mineral' donde se incluye al gas

almacenado en los mantos y el que ha migrado a otras rocas.

e e lo e e --- --------- - -

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 5 e

Page 6: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOCIADOA LOS YA CIMIENTOS DE CARBÓN MINERAL (GAC)

H. LA FORMACIÓN DEL CARBÓN

En promedio el carbón mineral está compuesto de 59% de carbono, 33% de oxígeno; 6% de hidrógeno y 2% de nitrógeno.

El carbón mineral tiene origen orgánico y normalmente es formado in situ; sin embargo, los restos de los vegetales pueden ser transportados y depositarse en las zonas litorales, de deltas y cuencas marinas someras cercanas a la costa.

Se forma por la degeneración o descomposición de plantas superiores terrestres: hojas, madera, cortezas, esporas, helechos, algas, licopodios, fanerógamas y coníferas entre otras (fotos 1 y 2).

La degeneración inicia durante una primera etapa de diagénesis, donde ocurren procesos que van descomponiendo la materia orgánica, debido principalmente, al ataque de las bacterias aeróbicas. En esta fase, los restos vegetales están cubiertos total o parcialmente por agua, donde se produce una primera reducción de volumen de la materia orgánica de hasta un 50%. Cuando las bacterias aeróbicas consumen todo el oxígeno se inicia otra fase donde la descomposición de la materia orgánica restante se efectúa por medio de bacterias anaeróbicas.

1 •.. -

.. •'

•• 'd

• 1

----

Foto 1. Presencia de vegetación mayor con helechos en un ambiente con el nivel freático muy cercano a la superficie.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 6

Page 7: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YA CIMIENTOS DE CARBóN MINE RAL C)

n ;- 3

4

\

WV

Foto 2. Presencia de vegetación mayor con helechos en un ambiente con el nivel freático muy cercano a la superficie.

La acumulación de estos restos de vegetales se realiza en lugares donde el nivel freático está en la superficie o muy cercana a ella, consecuentemente la humedad es sumamente alta, comúnmente se llegan a acumular en pantanos, lagunas, deltas y zonas marinas someras (figura 2).

Bosque Bosque Ca?iss y seco 1 húmedo arbustos

Flora acuática

1 Zona principal de turbificeción

Carbones húmicos 1 Carbones sapropébcos

Figura 2. Ambientes depositacionales para la formación de carbón.

ph

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 7

Page 8: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOCIADOA LOS YAOMIEN TOS DE CARBÓN MINERAL (GAc

De esta manera se llega a formar una masa esponjosa de limos, arenas y arcillas con una gran cantidad de materia orgánica vegetal, que se ve sometida a través de millones de años a condiciones de alta presión y temperatura, provocando cambios bioquímicos por acción de bacterias, tal como se mencionó anteriormente. Se incrementa la presencia de carbono y se pierde oxígeno e hidrógeno. El proceso en general corresponde a una deshidrogenación incompleta, con una cinética relativamente lenta, correspondiente a la eliminación de los volátiles de la materia orgánica por calentamiento en ausencia de aire.

Se producen cambios físico químicos que provocan la maduración del carbón, pasando de turba a lignito. El incremento en presión y temperatura transforma el lignito en carbón bituminoso, éste a su vez da paso a la antracita que es la penúltima en formarse bajo presiones y temperaturas más altas. Por último se puede presentar el grafito (figura 3).

Cuando la materia orgánica es sustituida por minerales se constituyen fósiles, mientras que la carbonización da lugar a un material carbonoso que sigue siendo un compuesto orgánico con algunas cantidades de minerales (cenizas).

TURBA: Materia olganica vegetal parciaiente £

alterada: cuando se quema produce mucho humo y poca energía. Se inicia la formación de gas

gteffic -'-'-

y mauonenergia Generacion

BITUMINOSO: C aibon blando nego u.aclo en la ploc$ucclon de eneigia. Genetacion de gac termeno y peisiste l Desan- sistemas de miciofi -ac tui as ieleats , fa iIitj migraciondelga

ANTRACITA: Carbon negro duro, usado en la produccion de energia. Genetactón de gas tetmogénico.

Moddicdo de Esludio de q as asociadü I caib o n o nC y. ic',rin hrt,rie L JICN 1 . r izo

Figura 3. Evolución del carbón y generación de gas metano

e

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 8

Page 9: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOCIADOA LOS YACIMIENTOS DE CARBÓN MINERAL LGACJL

El gas metano (CAO) se empieza a formar desde la primera etapa de carbonización, generando alrededor de 1,300 m 3 por tonelada de materia orgánica concentrada durante la formación de los diferentes tipos de carbón (maduración). Sin embargo, gran parte de este gas es expulsado a través del tiempo, entrampándose en rocas porosas suprayacentes al formarse una trampa o inclusive puede emitirse hasta la atmósfera (figura 4).

Voi.itili,IaiI Alla MeiIi Seuii meta

Lignito Sub-bituminoso Bituminoso Antracita Grafito uiçi Pwd, Riv,t 11.111,a F IT)I4. 1 II(IH 1 A1,1,,I., , liii

S1T4 ,Jul,u Utah 1-lato,,

Figura 4. Generación de metano (1,300 m 3 por tonelada de materia orgánica desde la turba), con otros gases durante la maduración del carbón, indicando además algunas cuencas de EUA y México con el tipo de carbón

que se presenta.

Las condiciones y características físico químicas de cada tipo de carbón varían en cuanto a su capacidad calorífica, presencia de materia volátil, humedad, carbón fijo y normalmente, caen dentro de un rango específico. En la tabla 2 se muestran los valores característicos para cada tipo de carbón. Por otro lado, la presencia de cenizas es variable en función del tipo de carbón, influenciado por las condiciones de depositación de la cuenca sedimentaria.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 9

Page 10: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOCIADOA LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

RANGO C tIZO Humedad Mateiia Poder c&onfico

VoIat*I (Wkg)

Antracta 86.98 <3 <6 23.33

Bituminoso

A 1

45-88 6-10 10-30 24-35 .bajo,medio, -

atoenoates

Sub o 24 i: 35-45 15-30 30.40 20.21

bituminoso z

LiOnito 25. 42 40 - 60 40. 50 10-20

Li _

- -

Turba <26

Tabla 2. Características de los carbones en base a su rango de maduración.

En síntesis, la carbonización corresponde a la destilación destructiva de sustancias orgánicas en ausencia de aire, para dar un producto sólido rico en carbono, además de productos líquidos y gaseosos.

Se estima que 12 metros de vegetación (materia orgánica de vegetales mayores) logra formar un manto de carbón de un metro de espesor (Barker, 2001).

Desde la acumulación de la materia orgánica hasta la formación de turba, se empieza a generar gas metano de tipo biogénico, el cual en su mayoría es expulsado y puede acumularse en rocas suprayacentes o emitirse a la atmósfera. Lo mismo va ocurriendo durante las siguientes etapas de carbonización hasta llegar al lignito (donde la expulsión del gas continúa hasta en un 93%). Para el caso de carbones bituminosos la expulsión y antracíticos, liberándose alrededor del 5% del gas (Barker, 2001).

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 10

Page 11: El gas asociado a los yacimientos de carbón mineral (GAC)

C ELGASASOCIADOAWSYAaM,ENTOSDECAJ?BÓNMINERALLACJ

Existen dos fases de carbonización:

Evolución del carbono a partir de las plantas mayores para generar turbas y lignitos. Esta es la fase bioquímica o de diagénesis, que se desarrolla bajo condiciones casi normales de presión y temperatura.

Durante la fase catagénica se forman carbones en el rango de carbón bituminoso a carbón antracítico. Esta es considerada una fase metamórfica donde la presión y temperatura son los principales factores de transformación de la materia orgánica.

e Es importante considerar que los efectos de la temperatura, la presión y el tiempo geológico, son determinantes para que se dé la carbonización. De tal forma que el contenido de carbono fijo, aumenta progresivamente con la profundidad de sepultamiento, tal como se muestra en los siguientes datos:

Lignito con 65% de carbono Carbón bituminoso con 80% de carbono

e c. Antracita con 95% de carbono

e, En la figura 5, se pueden observar los contenidos de carbono contra hidrógeno en base al tipo de carbón, de acuerdo a lo que se ha expuesto. El principal cambio que se produce

Ç con los procesos de carbonización es el incremento del contenido en carbono contra material volátil y humedad; así mismo, se presenta la pérdida de oxígeno en forma de

C H20 y CO2 (con valores arriba de 20%) y pérdida en forma de agua e hidrocarburos

e ligeros (desde valores del orden del 5.5% a contenidos entre el 2.5 y el 4%). El contenido en carbono pasa de valores de 65% a más de 95%.

..

.

.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA

e

Page 12: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOC!ADOA LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

oxí "°

1 7

u-

o

o c4

o L_ )

-rj ' u

/ • /

1r7r • Lignito

Carbón /bltt,~i

Carbónoso

0 100

90

Carbono %DAF

http://w.ucImes/users/higueras/yymmfYM9htmI

Figura 5. Contenido en por ciento de carbono contra hidrógeno

Las temperaturas determinadas en laboratorio para la carbonización de la materia orgánica se muestran en la tabla 3.

Carbón Temperatura

De turba a lignito 600 C - 1000 C

De lignito a carbón bituminoso 1000 0 - 200° C

De Carbón bituminoso a antracita 200° C - 300° C

Grafito más de 300° C

Tabla 3. Temperaturas de carbonización

En la figura 6 se presenta un esquema que resume las condiciones explicadas en la formación del carbón en sus diferentes etapas de maduración:

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 12

Page 13: El gas asociado a los yacimientos de carbón mineral (GAC)

i ;

EL GASASOCIADOA LOS YA cIMIEN TOS DE CARBÓN MINERAL (GAÇ)

Figura 6. Procesos de formación para los diferentes tipos de carbón

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 13

Page 14: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

III. EL CARBÓN EN MÉXICO

En México las cuencas carboníferas que mejor se han estudiado son: la Cuenca de Sabinas (figura 7) y la Cuenca Río Escondido; ambas localizadas en el Noreste de México y en conjunto producen el 98% del carbón utilizado en México, tanto en la industria siderúrgica como en la generación de electricidad. El carbón de la Cuenca de Sabinas contiene menor cantidad de ceniza que el carbón de Río Escondido.

10143O'N 100•42CW

H;-: ' -

Aø1.

EXPLICACION

CUENCA SABINAS

SUBCUENCAS *1', ADJUNTAS

ELGAVILAN

7 ,7

j 1,5-'- -

LAS ESPERANZAS

MONCLOVA

,

--

SABINAS

SAL11LLITO-LAMF'ACITOS

- - 1

SAN PATRICIO - 1

SAN SALVADOR Á'

ial •43OW 10042l)W

Figura 7 Subcuencas carboníferas de Sabinas, Coah.

Los mantos de carbón en la Cuenca de Sabinas son del Cretácico Superior, mientras que en la porción noreste, en las subcuencas de Colombia y Burgos son del Terciario, tal como se muestra en la sección esquemática de la figura 8.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 14

Page 15: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

~CE L FIACCU

8

1 -

AREA DE LA FRACCKN1 - - - -

B

ÁLASALAD M.u*Gta, AI.AOLEDAD ALAALM/IS

Figura 8. Sección mostrando los horizontes de carbón de edad cretácica y terciara

Los mantos de carbón de la Cuenca de Sabinas se presentan en la base de la Formación Olmos casi en el contacto con la Formación San Miguel. En una columna litológica de 25 m de lutitas y areniscas, se alternan varios mantos carbón de espesor pequeño. En la tabla 4 se muestran: dimensiones de las subcuencas, cantidad de mantos identificados y espesores de los mismos.

DIMENSIONES DE LOS MANTOS DE CARBÓN POR SUBCUENCA EN COAHUILA

DIMENSIONES Km

No. DE MANTOS RANGO DE ESPESORES SLJBCIJENCA

RECONOCIDOS cm ANCHO LARGO

SABINAS 24 50 15 10-350

SALTILLITO-LAMPACITOS 21 54 2 35-345

ESPERANZAS 7 31 4 5-156

ADJUNTAS 27 134 6 10-362

SAN PATRICIO 44 02 5 15-90

!BONCLOVA 3.5 28 6 7-154

EL SALVADOR 2 5.5 7 10-70

ELGAVILÁN 1.5 6 - -

Tabla 4. Características de los mantos carboníferos en las subcuencas de Sabinas.

Las principales cuencas carboníferas conocidas en México son: Sabinas, Río Escondido, Colombia - San Ignacio, Ojinaga, Cabullona, Central, Álamos, San Juan Diquiyu y Tlaxiaco, cuyas ubicaciones se muestran en la figura 9.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 15

Page 16: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

Cuenca Ojinaga

¿uIiona Cuenca Río Escondido

Cuenca Central ¡ - Cuenca Sabinas

Cuenca Alamos

Subcuenca San Juan Diquiyu

Subcuenca Tlaxiaco

Cuenca Colomla - San Ignacio

WARIEN

Figura 9. Principales cuencas carboníferas en México.

Fuera de estas cuencas, existen algunos otros reportes de carbón, en diferentes partes del país, tal como se muestra en la figura 10. Las cuencas de Sonora y Oaxaca corresponden a yacimientos del Triásico y Jurásico intensamente deformados, con poca continuidad cuya explotación económica a gran escala sería muy complicada, quedando sólo la posibilidad de su extracción en forma artesanal.

LII Caibon oqn

--Lignito

Cai bou bitumiuoao

-

Regionesuu c aibou

- Lo(a1ldadi (Oil

Figura 10. Localidades de carbón en México

La producción anual de carbón en México es del orden de 17 millones de toneladas y no satisface la demanda interna, por lo que es necesario importar alrededor del 32%.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 16

Page 17: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERJÇAC)

Las características del carbón en las diferentes cuencas de México, se resumen en la tabla 5, donde se muestra: estado, localidad, rango, porcentaje de carbón, materia volátil, ceniza, azufre, refractancia de la vitrinita, humedad y su poder calorífico.

ESTADO LOCALIDAD RANGO CARBON

Jo MATERIA

VOLATILJ0 CENIZA%

AZUFRE HUMEDAD BTUILB

fo h

45.61 16.97 40.43 1 1.26 13.000

Sub- Coahuila CueoxcaFu.nt.s. Rio bItuminosos 32.07 30.5 33.27 0.GA 1.8

4.16 8.246 Escondido Bituminoso

olombia. San Ignacio 32.4 42.6 44 3.5 4.1 11.140

PlozdeLobos 31.11 6.92 0.26 1.05

Oaxaca Plancho de Lobos- El Ituinlnoso,

29.75 6.02 37A 55 0.25 2.5A 3 0.82 4.500 a

Consuelo antracnko 8.100

San Juan Viejo 40.14 10.07 0.28 0.47

Barranca 77.3 4.8 10.6 0.37 8 11.500 Sonora - ituminoso - - - -

antraertico -

Cabullona 67.45 9.92 18.86 0 3.76 9.055

Chihuahua SonP.droCorralltos itm•0s0 27.37 26.75 45.86 0.34 0.6A 1.2 18.2 6.000 antrcrtico

Tabla 5. Características de los carbones en México.

Las reservas y recursos de carbón en México se presentan en la tabla 6, considerando además, la cuenca, tipo de carbón y edad.

TIPO DE RESERVAS DE RECURSOS CUENCA

CARBON EDAD CARBÓN GEOLÓGICOS (SILLONES DE TON) (ILLONES DE TON)

SabInas Sub-blt,.malnoso Celacico 1.337 •-SG4I200t 3.450

Fuentes Rio Esco,idido Bituminoso Alta

Cielacico 1.216 (CFE) 616 Volatilidad

Colombia - San kjnacio LiJrto Bi Hiante Tui cia, ¡o 154 CFE 1968 y LM

252 19861

Mlxteca, Oax. Se,iiIai*racitko Juu asico 60 I rRM 19751 244

Branca, Son. Antracitico Triasico 4.3 0siaz 19791 94.2

Cabullona, Son. BitumInoso Cretácico 80 (Flores Galicia 19231 148

Sal Pecko Corralitos y Ojlnaga Chih.

BitumInoso Cretacico 26 (F G 19381

TOTAL 2,851.3 1 4,830.2

Tabla 6. Cuadro de reservas y recursos de carbón en México.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 17

Page 18: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

IV. EL GAS NATURAL Y SU CLASIFICACIÓN O

Como anteriormente se ha venido explicando, el gas natural generado por carbón (GAC), está formado principalmente por metano con porcentajes variables de hidrocarburos de alto peso molecular. Otra fuente de gas natural es el asociado con depósitos de petróleo, su formación está ligada íntimamente a la generación termal de petróleo (cracking primario) y a la descomposición a alta temperatura del petróleo (cracking secundario).

La clasificación del gas está basada en dos consideraciones:

Mecanismos de generación: gas termogénico o gas biogénico.

Forma de ocurrencia: convencional y no convencional.

La clasificación genética del gas es: gas natural termogénico formado a partir de la descomposición termal (cracking primario) de materia orgánica sedimentaria o por cracking secundario de petróleo y bitumen.

Además del gas termogénico existen cantidades significativas de gas biogénico que se presenta a profundidades someras. Este gas es formado por micro-organismos (bacterias) que consumen la materia orgánica en ambientes estrictamente anaeróbicos. Por otro lado, el origen inorgánico del metano ha sido también postulado; sin embargo, es sólo una pequeña evidencia en grandes yacimientos compuestos con gas de este origen.

La materia orgánica está compuesta de kerógeno que corresponde a la parte insoluble durante la diagénesis y puede dividirse en sapropélico (kerógeno 1 y II) y húmico o terrestre (kerógeno tipo III, carbón), en función al ambiente deposicional y al contenido de macérales.

Los macérales corresponden a restos vegetales macerados pero aún reconocibles, que conforman la parte orgánica del carbón.

Los grupos de macérales son conjuntos con propiedades similares que se pueden diferenciar en muestra de mano (litotipos) o al microscopio (microlitotipos). Existen tres grupos de macérales:

Vitrinita: Es el principal grupo que conforma a la mayoría de los carbones y procede de tejidos leñosos de las plantas. Presenta una densidad, refractancia y contenido de carbono e hidrógeno intermedios con respecto a los demás grupos de macérales.

Liptinita: Aparece en menor proporción que el grupo anterior y procede de partes resinosas y céreas de las plantas. Rico en hidrógeno y materias volátiles y pobre en carbono. Densidad y refractancia muy bajas.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 18

Page 19: El gas asociado a los yacimientos de carbón mineral (GAC)

e e e e

EL GASASOCIADOA LOS YA ÇIMIENTOS DE cARBÓN MINERAfQ

Inertinita: Componente más escaso de los carbones y es prácticamente inerte a lo largo de los procesos de carbonización. Escaso contenido de hidrógeno, muy rico en carbono y máxima reflectividad y densidad.

e

e c

e e e e e e e

Estas condiciones se resumen en la tabla 7, donde se muestra el origen de la materia orgánica, su terminología, maceral predominante y tipo de kerógeno característico.

ORIGEN Terminologías

Acuático Algal Liptmita Tipo 1 Amorfa

Amorfo (Exmita) Tipo II

Terrestre Herbtceo Leñoso Vitrinita

Húmica Tipo III Carbonoso Inertinita

Geología deí carbón y del petróleo. Miguel Llorente, 2000

Tabla 7. Cuadro de tipo de kerógeno, origen y terminología

Los Kerógenos tipo 1 y II producen principalmente aceite y poco gas, en la última fase y mediante cracking del aceite puede generar gas. Por otro lado el kerógeno tipo III (carbón), esencialmente produce gas (tabla 8).

TIPO DE NOMRRE DEL MATERIA GENERADOR DE KERÓG ENO KERÓG ENO ORGÁNICA HIDROCARBUROS

ALGÁCEO ALGAS ACEITE

POLEN Y II LIPTINITICO ACEITEY GAS ESPORAS

PLANTAS CON TODA

III LIGNO-H ÚMICO GAS SU

ESTRUCTURA

IV OXIDADO PLANTAS ESCASO GAS

Tabla 8. Kerógenos, tipo, nombre, materia orgánica que lo conforman e hidrocarburo que generan.

Los tipos de kerógenos son definidos por la relación H/C (hidrógeno/carbono) y 0/C (oxígeno/carbono), o bien, alternativamente, por los valores de los índices de hidrógeno (HI) y de oxígeno (01) a partir de análisis de pirolisis de rock-eval.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 19

e e e e e e e o e

Page 20: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOcIADOA LOS YA CIMIEN TOS DE CARBÓN MINERAL (GAc)

Normalmente el kerógeno tipo III presenta valores moderados de la relación HIC y en los valores de IH; mientras que los valores de lO y de DIC son altos, tal como se muestra en los siguientes diagramas de Van Krevelen de las figuras 11 y 12 y en base a la clasificación de Tissot y Welte (1984).

150

fN

*77

AL -y. Ti • •• u 2

¿1. 1

A

A

AIf . :_•ó - III

C)

D 900

750

o z Uj

60O

450 LU u z

1 oSo 100 150

- *INDICEDE OXIGENO(mg CO2/g org.C)

Figura 11. Diagrama de Van Kre velen

. 1

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 20

Page 21: El gas asociado a los yacimientos de carbón mineral (GAC)

:IPoi 1

800 4 1

// ITIPO III

" 1

Varios carbones. (KEROGENO III)

Lagbaba, Cameron. Cretácico inferior

Lutitas Green River, EUA

Lias, Cuenca París, Francia

Incremento de madu ración

'1 g 1'

o c

0)

KERÓGENOS

' • 1

) 0

"•.

•.3.

u ' 1

u •

O 20 4)

01 Indice de Oxigeno (mg CO2/gCOT) 1

Figura 12. Diagrama de Van Kre velen.

Las características de los gases se pueden resumir en la tabla 9:

Gas seco Líquidos condensables, < 1.3 litros/100 m 3

Gas húmedo Líquidos condensables, <4 litros/100 m 3

Gas asociado Gas libre asociado con petróleo (arriba del depósito de aceite); o parcialmente disuelto en aceite y separado durante la producción

(relación gas/aceite GOR)

Condensados de gas Alto porcentaje de HC de alto peso molecular; como un solo yacimiento critico de petróleo bajo condiciones de reservorio

(ejemplo: 300 bar y 100°C)

Gas no asociado Yacimiento de gas natural puro; gas libre y disuelto en agua

Gas agrio Contiene más de 1 % de H2S

Gas dulce Sin H2S o en muy pequeñas cantidades

Tabla 9. Características de diferentes tipos de gases.

1

1

1

1

1

1

1

1

1 1 ' o 1

1

1

1

1

1

1

1

1

1

1

1

1 1

1 1

1

1 1

1

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 21

Page 22: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOCIADOA LOS YACIMIENTOS DECARBÓNMINERAL (GAC)

Resumen de las definiciones de gas natural:

Gas natural profundo. Se refiere a los yacimientos más allá de las profundidades de perforación convencionales (más profundos de 4,800 m). Tight gas. Recursos de gas natural no convencional que se presentan en

formaciones de areniscas o calizas de baja permeabilidad. Tal permeabilidad es

menor de 0.1 milidarcys (1 mD = 10 5m2) . La extracción de este tipo de gas

requiere técnicas adicionales como fracturamiento o acidificación.

Shale gas. Gas en lutitas, con un ejemplo típico en la Lutita Barnett del Devónico

en EUA. En estas lutitas el gas normalmente se presenta intersticialmente en

capas delgadas que se encuentran interestratificadas con capas gruesas de lutitas

negras. La extracción requiere técnicas especiales y aún cuando se estima solo

una recuperación del 10 %, su potencial es promisorio, de tal forma que existen

alrededor de 55.42 Tpc de recursos en EUA.

Zonas Geopresurizadas. Corresponden a formaciones naturales del subsuelo que

están bajo una inusual alta presión litostática. Estas zonas se forman por una

rápida depositación de gruesas capas de arcillas sobre rocas porosas (arenas,

limo). El agua y el gas presente en las lutitas son expulsados por una rápida

compresión de la arcilla y migran a las rocas de mayor porosidad. El gas se

almacena en lentes de arenas o limos en zonas de muy alta presión. Estas zonas

se localizan entre 3,000 y 7,500 m de profundidad. En EUA estas áreas se

localizan en la región costera del Golfo y se estiman recursos recuperables del

orden 1,100 Tpc.

Hidratos de metano. Los hidratos han sido motivo de una intensa investigación

durante las últimas décadas. Están atrapados en agua congelada la cual envuelve

las moléculas de metano, cuyo origen mayormente es a partir de micro-

organismos. Aun cuando se estiman recursos de 7,000 a 73,000 Tpc, su

extracción esta en investigación.

Gas biogénico. Conocido también como gas de bacterias se localiza en

formaciones someras. Se diferencia del gas termogénico en base a la relación de

metano sobre etano más propano, así como en su composición isotópica. El gas

con una composición isotópica de metano expresada por el deuterio de carbón 13

menor que -60%, se considera de origen microbiano.

Gases asociados a los yacimientos de carbón mineral (GAC). Por transformación

térmica (maduración), la materia orgánica produce considerables cantidades de

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 22

Page 23: El gas asociado a los yacimientos de carbón mineral (GAC)

1 aGASASOCIADOAWSYACNrnSDECARBÓNMERAL(GAC)

metano y bióxido de carbono. El proceso de carbonización puede ser subdividido

1 en varias etapas: diagénesis, catagénesis y metagénesis. Las cantidades de gas

generado durante estas etapas de maduración pueden ser calculadas en forma

aproximada por medio del balance de la masa en función de los cambios

singenéticos de la composición elemental del carbón (relaciones H/C y O/O). 1 Existen métodos de pirolisis para evaluar el potencial de generación de gas de los

1 carbones. Así mismo se generan diferentes composiciones de gases tales como

H2, dióxido de carbono, nitrógeno y metano. En la siguiente grafica de la figura 13,

diseñada por Higgs, 1986, se compara el porcentaje de refractancia de la vitrinita

contra ml/g de carbón orgánico. El metano inicia desde valores de 0.4 a 4 % de 1 refractancia de la vitrinita y entre O a 170 ml/g de carbón orgánico. Con la

interpretación de la gráfica, el contenido de metano y CO2 se estima arriba de 150

m 3/ton (5,297 pc/ton) de materia orgánica, del cual más del 93 % migra a otras

formaciones litológicas adyacentes, suprayacentes o incluso parte puede ser

emitido a la atmosfera.

1 La cantidad de gas generado, desde la acumulación de la materia orgánica hasta

la formación de los carbones, exceden su capacidad de almacenaje (1,300 m 3 de

gas por tonelada de materia orgánica concentrada —carbón-) y de adsorción de los

P mantos, provocando que la mayor cantidad del gas sea expulsado a la atmosfera o

migre a otras formaciones litológicas.

1 1

1 . 1 1 1 1 1 1 1 1 1

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 23 1

Page 24: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

400

Gas total

300 - o

tO

200 rBióxido de carbono o -o

L) 1 0)

Nitrógeno

Reflectanciade la vitrinita

Figura 13. Refractancia de la vitrinita contra carbono orgánico

Las cantidades de gas que permanecen en los mantos de carbón están en función del

tiempo, las condiciones geológicas (sepultamiento, levantamiento, formaciones sello y

porosas, condiciones estructurales, temperatura, presión, entre otros) y el volumen puede

alcanzar hasta 600 pies cúbicos de metano por tonelada de carbón. Los mantos de

carbón generan gases endógenos (metano, CO2, nitrógeno) y adicionalmente existe la

introducción de gases exógenos.

La mayoría de las capas de carbón presentan cantidades significativas de "gas atrapado

en los mantos de carbón" (CBM). El gas que ha quedado exclusivamente atrapado en el

carbón es liberado durante las actividades mineras, por fallas geológicas o bien puede ser

extraído mediante pozos para la desgasificación de las minas de carbón.

V. EL CARBÓN COMO GENERADOR DE GAS METANO

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 24

Page 25: El gas asociado a los yacimientos de carbón mineral (GAC)

Hidrocarburos generados - o

c 01 te lO

o

0l c e, be (e 'e u

-o

o &

Fósiles geoquintkos

EL GASASOCIADOA WS YAQMN TOS DE cARBÓN MINERAL (GA

El gas asociado a los yacimientos de carbón mineral (GAC) inicia su generación desde la

acumulación de la materia orgánica originada de vegetales mayores en la superficie

durante una etapa de diagénesis bioquímica temprana y continúa al acumularse los

sedimentos durante los procesos de diagénesis térmica producto del sepultamiento.

Este gas es sobre todo el resultado de la transformación térmica natural del kerógeno de

tipo III (fig. 14). Esta generación de gas se acompaña de disminución del peso molecular y

continúa durante el sepultamiento hasta alcanzar el cracking secundario de la materia

orgánica.

anos [ Ciclo-Alcar,os Aromáticos CnH2n-12

15 25 35 0 2 4 3 20 30 33

4 A.

2 4 6 13 20 3033

15 25 35 0 2 4 6 13 20 3033

, . 3 ': Ilur r., ru onIc. 11 u r ',niIk ( flurr r.: ut(rrI.:

Gas

4 CH4

[squeina geiii al (le la formación (le hi(hocad)wos en función del sepultamiento (le la roca fuente. la

evolución (le la composidón del hkl,ocarburo se muestra en las inserciones para ti es tipos estuicturales.

las plotundi(lades son solamente indicativas y coiresponden a una inedia pata la loca mesozoica y

l)aleoZoka de la fuente. las prohandidades teales vían según las condiciones geológicas cleteimiriadas:

tipo de kerógeno, historia de profundidad, gradiente geotéimico. (Tpssot&Welte1984)

Figura 14. Generación de hidrocarburos.

Las proporciones de GAC relativas que se pudieran encontrar en el carbón (dentro de los

bitúmenes) serían entonces las que se pueden observar en la figura 15 antes y después

de que la relación tiempo-temperatura (dada por el sepultamiento), transforme el

kerógeno de tipo III. Cabe mencionar que de todo el gas que se genera por la

transformación de la materia orgánica a carbón de diferentes tipos, la mayoría es

expulsado, logrando permanecer en los mantos de carbón bituminoso una cantidad

ESPECIALIDAD: !NGENIER(A GEOLÓGICA 25

Page 26: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOCIADOA LOS YACIMIENTOS DECARBÓNMINERALjGAC)

mínima de metano (0 a 600 pies cúbicos por tonelada de carbón), por lo tanto, esa gran

cantidad de gas expulsado migra durante las etapas de catagénesis y metagénesis, pues

es el aumento de la presión el que también ayuda a los productos más pesados a

moverse. ¶

1

BITUMEN

ROCA GENERADORA

INMADURA

JRA)

ROCA GENERADORA

1 N MADURA

t PRODUCTOS MIGRADOS

Modific.d d D,rand. 1985

Figura 15. Roca generadora

En petrografía, los bitúmenes se pueden observar con vacuolas o poros dejados por la

pérdida de gas durante la migración. Esto es muy común con el kerógeno III disperso, ya

que su sistema es abierto, en el carbón es común antes de la etapa de la metagénesis,

pues el gas se queda dentro de la roca generadora (carbón) cuando la matriz carbonosa

es todavía plástica y no tiene las microfracturas clásicas ("cleats") que aparecen en la

ventana del gas.

e e

-rn ESPECIALIDAD: INGENIERÍA GEOLÓGICA 26

Page 27: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GA.s ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

D. Stapoc et a!, Geoquímica Orgánica 37 (2006) 152-164

/

,

/ 10•-

/

/ o o > O, /

/ 1

o d10

/

'e 'o

-20

6 13 C 4 (% J VPDB)

Clasificación genética de los gases en capas de carbón donde se pueden distinguir tres campos, de acuerdo con Smith y Phallaser (1996). El diamante negro indica el promedio para el gas del carbón Seelyville. El tamaño del símbolo se relaciona con el error analítico típico. El rectángulo de cerca el símbolo se refiere a la desorción esperada relacionada a la variación isotópica en 613 C de CH 4 y CO 2

Figura 16. Clasificación genética del gas de carbón

La diferencia entre los hidrocarburos generados en estas dos etapas, se puede establecer

utilizando las proporciones relativas de isótopos del carbono y las de CO2 que provienen

de la diagénesis de superficie, con respecto al Delta C13 del gas del carbón térmico como

se muestra en la figura 16. Las muestras son analizadas para DeIta 13 CVPDB en 002 y CH4

mediante cromatografía de gases con horno de combustión y horno de reducción,

acoplada mediante una interfase a un Espectrómetro de Masas (GC-C-IRMS) con una

certidumbre de 0.3%. (Fig. 17).

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 27

Page 28: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GA.s AsocIADo A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

mi

1000 Bacteriano

1

+ 100

u lo Térmico

-90 -80 -10 -60 -50 -40 -30 -20 -lO

13 r C

ç l '-' 'H4 o! 10OO

Origen de los gases de acuerdo a su composición molecular (C 1 C2 +C 3 ) y composición de isotopos 613 C

de metano de acuerdo a Bernard et al 1978

Figura 17. Composición de los gases para determinación de su origen

La figura 17 muestra lo compleja que puede ser la interpretación isotópica del origen del

GAC, en particular si se toma en cuenta que en la historia geológica se presentan muchos

factores relacionados con volcanismo, circulación de fluidos, clima, bacterias, microbios e

interacciones gas-agua-roca, que pueden modificar los isótopos del carbono y las

proporciones de los otros gases asociados al metano. Esta figura muestra la posición de

los datos isotópicos intermedia entre el origen biogénico y termogénico, debido a la

mezcla de ellos y/o de otros fenómenos adicionales que puedan modificar el valor de

estos isótopos.

Para conocer con certeza cuál es el origen del GAC, primero se necesita conocer la

historia geológica que sufrió la materia orgánica, kerógeno tipo III, que lo formó,

considerando el análisis geológico de la cuenca, donde se incluye ambientes de

depositación, litología, estratigrafía secuencial, condiciones estructurales, entre otros.

Esto efectivamente no es fácil y necesita estudios científicos sofisticados que consideren

la cronología de circularon de todos los fluidos en la cuenca y la cronología de diagénesis

de todas las formaciones que pudieran intervenir durante la expulsión y migración del gas.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 28

E

Page 29: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOC!ADOA LOS YACIMJEN TOS DE CARBÓN MINERAL (GA C)

El origen del gas en los sedimentos puede ser de diversas fuentes y sus contribuciones

respectivas pueden ser muy variables (figura 18). El GAC es por definición de origen

orgánico y sus fuentes pueden ser biogénicas y termogénicas a partir de kerógeno tipo III.

4 CH4

PROF. CH4 Ç

TEMP.

6

ir:

10

200

400

24 700

Seccion transversal esqL cmatica de la CUfteZd de la Tierra, qc'e muestra el origen, la migración, y la acumulacion de metano.

Orígenes de metano incluyen Li conversión de materia orginica por microorganismos (biogónesis) descomposición tórmics

de la materia orgcinica enterrada (termogdnesis) y el acento en los procesos corticales (abiogdnesis(. El metano migra hacia

arriba a traves de los poros y frac toras de la roe a y, o bien se acumulo en capas impermeables o, evento almente, llega a la

uuperfirie y se disipa en la atmósfera

Figura 18. Sección esquemática de la corteza terrestre

V.2 Los Macérales

Los diferentes constituyentes orgánicos que forman la materia orgánica sedimentaria

sólida (en particular en los carbones; Van Krevelen, 1993) son llamados macérales. Los

macérales pueden observarse en microscopia óptica en reflexión y transmisión y pueden

ser asimilados a partículas orgánicas con propiedades físicas y químicas diferentes. Su

asociación y su diversidad confieren una heterogeneidad macroscópica y microscópica

(Alpern y Lemos de Sousa, 2002) de sus propiedades industriales.

C Los macérales tienen un origen principal a partir de los tejidos de las plantas, las algas,

e esporas, los polen, las resinas, que fueron preservados, degradados y reciclados de una

manera diferente durante las etapas de las diagénesis de superficie y térmica. (Buillit,

e 2000; Buillit et al., 2002 en Martínez, L. 2008). Cada maceral tiene una composición

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 29

Page 30: El gas asociado a los yacimientos de carbón mineral (GAC)

hvw id

doy-

- 0

EL GAS ASOCIADO A LOS YA CIMIENTOS DE CARBÓN MINERAL (GAC)

química elemental diferente y pueden observarse en microscopía óptica en luz reflejada y

fluorescencia (figura 19).

)

El

Vitrinita de carbón de la Cuenca de Sabinas, kerÓgeno tipo lii

Figura 19. Microfotografías de macérales

Los macérales definen el comportamiento de la materia orgánica sólida y están 11

clasificados en tres grandes grupos (figura 20):

- Las vitrinitas provienen de antiguos tejidos leñosos (madera, vegetales

mayores). Éstas se presentan en forma de gel que forma el cementante de

otros macérales.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 30 tá-

Page 31: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADOALOS YA CIPVFNTOS DE cARBÓN MÍNERAL (GA C)

- Las inertinitas provienen de partes de plantas alteradas o degradadas

intensamente por la oxidación (por ejemplo de antiguos incendios de bosques),

éstas aparecen con las formas de deshechos o pedazos de tejidos leñosos

opacos no fluorescentes ni anisótropos a la luz reflejada polarizada.

- Las Exinitas (liptinitas) están formadas por esporas, cutículas y productos de

secreción de los vegetales superiores (aceites y resinas).

GRUPOS DE MACÉRALES DEL CARBÓN

Figura 20. Macérales del carbón

V.3 Propiedades de los macérales

Las propiedades de los macérales cambian por efecto de la evolución

térmica durante el sepultamiento. Los Parámetros clásicos más comunes se

muestran en la (figura 21).

El poder reflector de la Vitrinita Ro, puede orientarse (Rmax, Rmin) creando

una anisotropía cuando se mide en luz polarizada, este fenómeno ocurre cuando

el carbón entra en la ventana del gas.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 31

Page 32: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

Contenido de materia volátil. Las materias volátiles disminuyen en cada uno

de los macérales con su respectivo % de carbono. En esta etapa la liptinita es muy

difícil de identificar, pues desaparece prácticamente transformándose y

mezclándose químicamente con la vitrinita y la inertinita (entre 1.5-2.0 de % Ro).

. Pérdida de porosidad. En esta etapa la porosidad, dureza y plasticidad del

carbón disminuyen.

u olta vol L medio vol baja vol

Carbon cfe cEirbón bitu boso

5 , -

Fig. .5-

0 0.5 10 15 20

% Rmax vitrinita

rendimiento voftitil(wf%) 60 50 40 30 20 12

1 1 1 II 70 80 83 90

carbón (wt%)

Figura 21. Parámetros típicos de los macé ra/es.

En la literatura científica sobre los carbones se reporta una variación de los isótopos del

carbono y del hidrógeno para cada uno de los macérales, los carbones sapropélicos

muestran una negatividad máxima que refleja la influencia acuática de este tipo de carbón

(figura 22).

3 ,

2

2

E 1

1

o

ESPECIALIDAD: INGENIERÍA GE0LÓGIC4 32

Page 33: El gas asociado a los yacimientos de carbón mineral (GAC)

ELGASASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL(GA

-70

o

-80

-90

Lo

o

-100

am

-120

-130

¡flerUnte o

• o o

Vitrnfle o Ø

o O Exinite

o I1 O

A

A Carbones

A

sapropélicos A

• • SCHÁA2ICOIF C1S831

-26 -25 -2 -23 -22

5 13 Cp08(%0)

Figura 22. Variación en los isótopos de carbono.

A modo de resumen, se presenta la tabla 10 con los datos sobre la madurez de los

carbones, la posibilidad de generación de gas, el por ciento de la refractancia de la

vitrinita y el tipo de carbón.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 33

Page 34: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

Maduro medio

Maduro tardío

Post Maduro

GENERACIÓN REFLECTANCIA DE DE GAS VITRINITA Ro

Gas biogénico 0.2 a 0.35

Zona detransición. gas o 35a0 5 húmedo y bitúmen soluble

Migración del orden deiS % 1 0.5 a 0.75

Transición a gas húmedo y 0.75a1.3

condensado.

Gas húmedo atase principal 1.3a3.0

de gas seco

MADUREZ

Inmaduro

Maduro temprano

RANGO DE CARBÓN

Turba. lignito

Lignito. sub• bituminoso

Sub-bituminoso. bituminoso alto

volátil

Bituminoso alto volátil, bituminoso

de medio a bajo volátil

Bituminoso de medio a bajo volátil. sub- antracítico. antracitico

Fugro Robertson, 2005

Tabla 10. El carbón y la generación de gas en función a su madurez y refractancia de la vitrinita.

V.4 Gas metano acumulado en los mantos de carbón (coalbed methane -CBM-)

El gas metano se acumula en el carbón de dos formas principales como "gas libre" o

como "gas adsorbido":

El gas libre se concentra entre los espacios de los microporos del propio carbón

El gas adsorbido se concentra en las paredes de los microporos y en las

microfracturas ("cleats") que se forman dentro del propio carbón.

Las microfracturas ("cleats") corresponde a un sistema más o menos ortogonal que se

desarrolla durante los procesos de maduración de los carbones, las cuales pueden

identificarse megascópicamente, tal como se observa en la figura 23, donde se compara

una fotografía de una muestra de carbón de Alberta, Canadá con un esquema donde se

ejemplifican estas estructuras.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 34

Page 35: El gas asociado a los yacimientos de carbón mineral (GAC)

*-

(1 4~ w

L.

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARSÓN MINERAL (GAC)

ísistema del "cleats"

Foria básica desarrollada a

partir de un sistema de "cleats"

a-Es-~ M

— 1

záúéa

Figura 23. Presencia de micro fracturas ("cleats") en el carbón

En la figura 24 se muestra una microfotografía donde se observan los microporos de un

ejemplar de carbón, mientras que en la figura 25 se representa en forma esquemática la

ubicación de la presencia del gas en el carbón.

Figura 24. Microfotografía de carbón

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 35

Page 36: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YA CIMIEN TOS DE CARBÓN MINERAL (GAC)

Migración de gas dentro del manto de carbón

il- 11

Gas libre en los microporos

lo 0

__1

100 1

Presencia de ciets que facilitan la migración fuera de los mantos de carbón

Gas adsorbido

20~ IkJ ó? 1 Adalla^

C E

Figura 25. Representación esquemática de la ubicación de gas metano en carbón.

El gas formado durante la etapa de carbonización puede expulsarse o acumularse dentro

de los propios mantos de carbón. La expulsión se lleva a cabo mediante cambios de

presión y cuando el volumen supera la capacidad de almacenamiento de los mantos,

principalmente en los rangos de turba y lignito (se expulsa hasta un 93% del gas).

En las etapas de sub-bituminoso a bituminoso el gas metano podrá migrar lateralmente y

hacia arriba, dentro del propio manto, dependiendo de la microporosidad y microfracturas

("cleats"), considerando los cambios de presión. La migración fuera de los mantos de

carbón se produce principalmente por la presencia de las microfracturas combinadas con

fallas o fracturas regionales. Durante estas fases de carbonización, la migración es lal

mínima y se estima aproximadamente en un 5%.

Cabe mencionar que durante los trabajos de extracción de carbón mineral, se inicia una

liberación del gas metano que puede acumularse dentro de las obras mineras

subterráneas, produciendo altos riesgos a los mineros, por su explosividad. Por lo cual se

requiere llevar un estricto control de los contenidos en el aire, necesitando la

desgasificación de las zonas carboníferas antes de iniciar la explotación del carbón.

Martínez (2008), determina la cantidad de gas metano que ha permanecido en los mantos

de carbón de la Cuenca de Sabinas, comparándola con las Cuencas de Lorraine, Francia;

Asturias, España; San Juan, EUA y Warrior, EUA. La coincidencia en cuanto a volumen

de gas en los mantos es notoria entre las Cuencas de Sabinas y Asturias (figura 26).

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 36

Page 37: El gas asociado a los yacimientos de carbón mineral (GAC)

CARBóN

Los contenidos actuales de gas metano en los mantos carboníferos de las Cuencas de

Sabinas y Asturias, varían de un poco más de 200 a 620 pies cúbicos de gas por tonelada

de carbón. Las otras tres Cuencas, varían de unos cuantos pies cúbicos a 550.

1000 $ (vii)

o oo (vfl)

:::

:U1\

.100 .4

1 (i 1 ,I í 1

-.00. 1 u

Comparación de Cijenc, en contendo

de c inetno

1 !'.Ro (vil.)

'rif O

SAN JUAN

LORRAINE -

- WARRIOR

05 0 oRo (vi()

14 ReIacón atómica

Figura 26. Comparación de contenido de gas metano en carbones de diferentes cuencas.

En la Subcuenca Saltillito, Coah., se ha definido una variación notoria del contenido de

gas metano entrampado en los mantos de carbón relacionado con la profundidad, de tal

forma que, en términos generales a la profundidad de 100 m, el carbón tiene un contenido

de gas del orden de 109 a 389 pies cúbicos por tonelada de carbón; mientras que a 200

m, el contenido varía de 221 a 553 y a la profundidad de 300 m, el contenido es de 397 a

639 pies cúbicos de gas por tonelada de carbón. En la figura 27 se grafican los valores

encontrados de variación de contenido de gas con respecto a la profundidad.

ESPECIALIDAD: INGENIER (A GEOLÓGICA 37

Page 38: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

700

600

500 o

400

CL 300

200

100

0- o

. 553

233 259

192 1 221

• 109

100 200 300 400

Prof undiclad Metros

U 639

U 573

U 397

Figura 27. Gráfica de contenidos de gas en mantos de carbón en Saltillo, Coah.

Algunas carecterísticas comparativas entre los carbones de la Formacion Olmos en la

Cuenca Sabinas y la Formacion Wicox de la Costa del Golfo de México en EUA, se

muestran en la tabla 11.

Caiacteiistkas Carbones Wilcox en la costa del Golto de México Suhcuenca de Sahinas, Coahuila

RANGO Li2nitosv suL-bltuminoso a bituminoso a prcfundidad Bituminoso de volalidad media mlna la Esmeralda)

Ro 0.58% 1.27%

CONTENIDO 0 a 150 pc/ion arriba de 450 my 1 oJ_a_JUUpclton_a_prolundidad

220 a 300 pc,ton

CALIDAD 9596% de metano y 1 a 2% de CO) 98 1% de rritano 0.5 % Cc 2. etari. propano, ¡sobuteiio

ESPESORES Masde 30 mantos y espesores mayores de 6 ni Doble manto con 4.1 m

PERMEABILIDAD ii 3a 18 nid 3 3. 6 red

ORIGEN Bio.niiicoprinuipaltíierite. Mez•Ja cori teiiiuo•tiico Meda de bicigénico uuii termoyiao

RECURSOS 7.6 Tpo 0.9a 1,18 Tpo. Subcuenca Sabinas

Tabla 11. Comparación de carbones de la Fm. Olmos con la Fm. Wilcox

Finalmente, en la siguiente figura 28 se muestra la comparacion de gas entrampado en

los mantos de carbón (coalbed methane) contra el gas entrampado en areniscas (gas

convencional), mostrando inclusive la gráfica característica de produccion contra tiempo

de un pozo que extrae gas no convencional y convencional.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 38

Page 39: El gas asociado a los yacimientos de carbón mineral (GAC)

ELGASASOCIADQALOSYAOMIENTOSDECARBÓNMINERAL(6AC)

COALBED METHANE

GENERACIÓN

• Las ten: i

- Biogenu

Termogenif • E pwi u

í1)JL) geULIw y IH aWu

ACUMULACIÓN

U u -t atrapuu nucutar

Normalmente no requiere, a mpa LaneraIrientp la pre < ft

GAS CONVENCIONAL

p'rh,rn AP'JAII

enicc

una l utita a

•- 'Gas

Agu Lrn

Gas

lo, sll,oh.t ni;

Twnipu

Figura 28. Comparación entre gas convencional y gas almacenado en mantos de carbón

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 39

Page 40: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOCIADOALOS YA CIMIEN TOS DECARBÓNMINERAL(GAÇ)

VI. MIGRACIÓN DEL GAS ASOCIADO A YACIMIENTOS DE

CARBÓN MINERAL

De acuerdo a Barker (2001), la generación de gas metano durante la formación de carbón

se ha calculado en 1,300 m 3 de metano por tonelada de materia orgánica. Asimismo, se

ha determinado que 12 metros de materia orgánica logran formar un metro de carbón

bituminoso, con gas que permanece en una cantidad mínima entrampado dentro de los

propios mantos. Por ejemplo en la Cuenca de Sabinas, Coah., existe un promedio de 285

pies cúbicos de metano por tonelada de carbón bituminoso, variando el contenido desde

100 hasta 600 pies cúbicos.

Gran parte del gas que se genera durante las etapas de maduración del carbón es

expulsado y migra a las rocas suprayacentes o es emitido a la atmósfera.

La migración de gas asociado a los yacimientos de carbón mineral inicia desde la misma

acumulación de materia orgánica de vegetales mayores. Empieza con gas metano de tipo

biogénico y concluye con gas termogénico. Aún en una etapa de carbón maduro, parte del

gas biogénico se mantiene mezclado con el termogénico en los mantos carboníferos.

Aún durante la etapa de la formación de lignito, se expulsa alrededor del 93% del gas que

se genera y es más común que este tipo de gas quede entrampado en las rocas

suprayacentes, considerando las condiciones diagenéticas de las rocas presentes en la

cuenca sedimentaria.

Cuando el carbón se encuentra dentro de un estado de madurez que corresponde a un

carbón bituminoso la expulsión del metano es menor y se presenta bajo tres condiciones:

Con la presencia de fallas y fracturas.

Durante la explotación del carbón.

Cuando se realiza la desgasificación de los mantos de carbón.

De tal forma que dentro de un sistema de fracturación, el gas atrapado en los mantos de

carbón (coalbed methane —CBM-) la migración de GAC, se caracteriza por medio del

desarrollo de 'cleats" (Fig. 29).

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 40

o

Page 41: El gas asociado a los yacimientos de carbón mineral (GAC)

e e o e e

o

o o

e o e e e e 1

e

e e

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC

metan #509 h1,ottw r,,n.I CondkO.sde obrei.,i

4' Formación de "CLEATS"

? '

ÍL '

Fig. 28

1 1

•. •

i ' - - ' %qlIPIII,,lI. fui. osups ro pl ilesa,, OlE.,

Os uIaah

Figura 29. Formación de micro fracturas, "cleats" en el carbón.

Los procesos más importantes son los de migración primaria y secundaria, en ese caso

se utilizan los diagramas tomando como base el utilizado en un sistema petrolero

modificado para tomar en cuenta la presencia en el carbón con GAC, como lo muestra la

figura 30.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA Ti

Page 42: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOCIADOALOS YACIMIENTOS DE CARBÓN MINERA AC)_______________________________

70 60 50 40 30 20 ' ESCALA DE

TIEMPO MESO. CENOZOICO GEOLÓGICO(MA)

EVENTOS DE CRET. TERCIARIO CUAT. SISTEMAS

GASIFEROS TARDÍO PALEO.I EOCENO OUGO. MIOCENO kb000I

FM FMFORT FMWAtATCH FM WHITE FMARIKAREE UNIDAD DE ROCA LANCE UNION Rl VER

ROCA FUENTE Y ROCA

ENCAJONANTE

Lutitasyylimolitas ricas en esmectita ROCA SELLO W.

ROCA SUPRAYACENTE

Estratificación compactación y pliegues FORMACION DE LA TRAMPA

Gisracis, iniy,,rados y iniacios gas ?a srdnr' u)n L, sirios is ra,tsrri) GEN ERACIÓN MIGRACIÓN Y dur,irst O etapa tsnpraria. Oé ?iO(ftSil, II gra Oil y 05551001 SIS gas btriiio liraStO ,

atrapo rds,llttiiaIo por agija ineteórica ACUMULACION

Gas Bacteriano derivado principalmente de la reducción del

CO yen menor grado por la fermentación metulica FU ENTES DE METANO

Etapa temprana ("gas Etapa tardía ("Cas nuevo")

Inicia viejo') generación de generación de gas bac riano

generación de a:iteriaen•

EVENTOS CRÍTICOS ___

eas bacteriano de gas termogenico Hiatus y recarga de

agua subterránea

Orogenia Laramide

tI

Tabla de eventos que muestra el tiempo geológico y la evolución de los procesos relacionados con las vías metano génicas y la generación de gas bacteriano, migración, acumulación, captura y sellado en capas de carbón y canales fluviales de arenisca en la Formación Fort Union y Wasatch en la Cuenca

Powder River, Wyoming y Montana.

Figura 30. Migración primaria y secundaria

Dentro de este sistema, la migración del GAC puede ir acompañada de reacciones entre

todos los gases, incluyendo CO2, que resultan de las transformaciones sulfato-reducción a

baja (BSR) y alta temperatura (TSR). En esta cronología los momentos críticos serían

cambios en presión y temperatura producto de levantamientos y erosión.

La migración del GAC, comienza en principio por medio de una microfacturación

tectónica, esta puede desarrollarse fácilmente cuando la transformación diagenética del

carbón se acerca a la ventana del gas (metagénesis). En efecto, en este momento la 4 porosidad primaria disminuye y la porosidad secundaria comienza a formarse

acompañada del cracking secundario. Esto fractura la matriz carbonosa formada

principalmente de vitrinita desarrollando un sistema de "cleats", esto favorece la expulsión ft

1,

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 42

Page 43: El gas asociado a los yacimientos de carbón mineral (GAC)

EL s ASOCIADO ALOS YA CIMIENTOS DE cARBÓN

del gas, considerando que ocurre a profundidad, puede alimentar la carga de almacenes

naturales convencionales, sobre todo si existen trampas estratigráficas en la cuenca.

La circulación del agua es importante ya que puede ayudar a la expulsión del GAC de las

capas de carbón, sobre todo si el agua tiene las condiciones de solubilidad necesarias

para disolver el gas.

El análisis isotópico del gas permite conocer la importancia del medio de confinamiento

utilizado en la pirolisis (Figura. 31) para simular la maduración, la expulsión y la migración.

Estos resultados se pueden utilizar para interpretar las variaciones de estos isótopos

durante ese proceso.

Figura 31. Análisis isotópico del gas.

A partir de datos obtenidos por medio de la experimentación en el laboratorio, es posible

determinar un modelo cinético de degradación de la materia orgánica. A pesar del gran

número de modelos cinéticos que se tienen actualmente del mundo entero, es preferible

realizar un modelo cinético específico de cada una de las rocas generadoras encontradas

en la cuenca (Fig. 32).

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 43

Page 44: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

E]

Pirolisis Rock Eval

dHCIdT

£dT

u n

j n II

u

LL [ El [1 Eact

II II II II

II II 1

lt

PiroIiss Rock Eval + trampa selectiva

dHCIdT CIS

CrC14 u

LL

a) n

Eact

, fl II u fl a) II II

Pirolisis de Autoclave

cI5

. •: •. •• 'e. 5 .

o c 2-c5

Parámetros cineticos de fisuras secundarias

C15+ —tiCS.C14+bC2.C5

C6.C14 —.cC2.C5+dCH4

Etc....

Figura 32. Diagrama de flujo del método de calibración para modelos composicionales de cracking

primario y secundario (Ungerer, 1990, en Martínez L., 2008).

Las diferencias entre los modelos cinéticos obtenidos para los kerógenos clasificados en

la misma categoría, que provienen de diferentes partes del mundo, pueden tener

diferencias considerables en composición y formación, provocando errores en los

resultados del modelado.

Los modelos más simples diferencian globalmente aceite y gas; sin embargo, los

modelos más complejos diferencian los compuestos por familias (ejemplo: CH 4 , C2-05, C6-

C 14 , 015+). De esta manera es posible simular la generación de cada uno de estos

compuestos.

A partir de resultados de maduración artificial (abierta o confinada), es posible establecer

un modelo cinético, calculado por mínimos cuadrados las diferencias de residuos con

respecto a la media entre los datos simulados y los datos medidos en el laboratorio. Los

parámetros cinéticos son así ajustados hasta que la calibración obtenida sea la mejor

posible.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 44

Page 45: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASA OCIADO A WS YA CIMN TOS DECARBÓN MERAL

Esta etapa es importante, ya que en ella se van a determinar los resultados de la

generación de gas a partir del carbón. También es posible utilizar otros modelos cinéticos

de varios autores, tales como: Behar et al., 1997; Vandenbroucke et al., 1999 ; Pepper y

Corvi, 1995.

Paralelamente a la génesis de gas, el modelo va a simular la expulsión y la migración de

diferentes compuestos generados. La expulsión define el conjunto de fenómenos gracias

a los cuales el gas puede ser expulsado de la roca generadora, para este caso carbón. La

migración, entonces, se refiere a la movilidad de estos compuestos de la roca generadora

hasta la roca almacén.

¶0

. . . ¶8.

E 100

160 J . 200•

450

14C (C1 CW i.ççTOC

4 eAKXEN

L)

x 7 .

•. : • — .•. . .

o

$1 TOC (m. 14CJ9 OC)

5oa *

- LA LUNA

Bo 1Ç30040O FOUITOC (m HCITOC)

c o

P*S BAS4 Ua*4c (TOC1*)

.2C(

:2

1

—, 4G* •----.------. -

loo O $0 100 150 200 O 300

51 1TC(9H09TOC)

Figura 33. Ejemplos de relaciones entre Si y TOC para diferentes rocas generadoras (Burrus, 1997 en

Martínez, L. 2008)

Los fenómenos de la expulsión son explicados de diferentes maneras (Burrus, 1997;

ESPECIALIDAD: INGENIERÍA GEoLÓGIcA 45

Page 46: El gas asociado a los yacimientos de carbón mineral (GAC)

ELG.4sAsocIAooA LOS YA CIMIENTOS DE CARBÓN MINERAL (GA cj

Ungerer, 1990, en Martínez, L. 2008) Figura 33. Uno de los métodos más utilizados

consiste en considerar que la expulsión está controlada por la intensidad de la saturación

de la roca generadora o contenido de kerógeno en la roca generadora. Se habla en ese

caso de llegar al comienzo de la expulsión.

El cracking secundario y formación térmica del gas representa el conjunto de fenómenos

por medio del los cuales los productos de la transformación térmica primaria del kerógeno,

por efecto del incremento de temperatura, se transforman en compuestos más simples

hasta llegar al metano.

Y. Shualet aL/Geoquímica Orgánica 37(2006) 932-943 -

e 2 K MW~ 1 .X1 (Ci •• rls4. 1 * 1 Itt 1 2 22 1*

2 1.t*(.al %} • (42 É 2 )( nun(. II, a *

¡9 - * 1 1 i 1 . t

—C--- 2K hu(ol Cl 2 •

* u2*2i1I3)

4 e

, * . L *

2,41 024 142) -Ajo (SI) 44) 5)24 U 2224 Ç,sI

12ft1dd,2T0 C)

fernperatura eoLo los rendimientos de metano O - 2Krn,icul calculados VIS temperaturas a 2 k/ 0, y 2 k 1 nOn Lasas

2 K1m*gcaaI 13) de calentamiento. proporciones similares de

• connversidn (96.5) se calculan para el nrnetano a pan dr de tres dilerentes carbones C a 600 en k / h la velocidad

loo * 2

de calenntamiento (a). (os datos originales de la lasa de ¿1 a • genleracron de ruetamno se muestra en la b y el

1 rendimiento acumulado calculado se tiluesLrí en la c. * *

; Los pdranmetn os Íaninacocinticos y los datos son

adoptadosde Cramen etal. al . (2001) (hi 4 14

Figura 34. Parámetros cinéticos para varias cuencas.

Ii El cracking primario son reacciones paralelas y simples, donde un compuesto da un

producto. Se define una tasa de conversión, gracias a la cual se fija la cantidad del

compuesto inicial que puede sufrir la transformación química secundaria. Los parámetros

cinéticos que permiten describir estas reacciones deben ser también integradas al

modelo.

Estos parámetros cinéticos para los carbones se encuentran también en muchas cuencas

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 46

Page 47: El gas asociado a los yacimientos de carbón mineral (GAC)

.' E ) » r: o N \\

1,

MINERAL

del mundo (figura 34); sin embargo, es preferible medirlos en laboratorio para cada

cuenca que se estudia (Alsaab, 2007, figura 35). El cracking secundario es un fenómeno

importante, sobre todo en las cuencas de gas ya que puede tener un impacto

determinante en el resultado final de un estudio evaluativo.

Dani ALSAAB - Geología y Gestión de los Recursos Minerales Energéticos

Nw

4cO

7LX

Figura 35. Estudio de A/saab.

Los modelos isotópicos toman en cuenta los balances de los flujos de carbón de

compuestos simples (figura 36). En los cuales el fraccionamiento isotópico se realiza

teniendo en cuenta factores termodinámicos alpha que consideran intercambios de un

solo átomo o átomos equivalentes por ejemplo del CH 4 , CO2 , CO, CaCO3 , Cgraíito, Cdiamante

y HCN (Galimov, 2006, en Martínez L. 2008).

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 47

Page 48: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YACIMIENTOS OE CARBÓN MINERAL (GAC)

E. M. Galimov / Geoquímica Orgánica (2006) 1200-1226

' 3c0= -5 %

Carbon reciclado _-

As

As

+ Co1. C cari,. 6' 3CO3g = -22 %o

¿ 3Ccari,. O %

Equilibrio ¡sotópico en un estado constante de los flujos de carbono en la exosfera de la Tierra; "La destilación con reflujo total"

Figura 36. Equilibrio isotópico.

Donde por ejemplo AX y BX serian el CH4 y el CO2 que contienen el elemento X (carbono

de intercambio).

.

.

.

o á

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 48

Page 49: El gas asociado a los yacimientos de carbón mineral (GAC)

sc.

lo

46 CH.

3

1[] h1

40 35)

301 C,H.

9i._ÁJL so

-50.54-03 -46 .42 -36 .34 .30.28 -22 -lO -14

CH.

isc

40 50 20

-50-04-53-46-42-30-04-30-26-23-10-14

C.H-.

461 la

20

513i

LILL -06-34-58-46-42-30-34-30-28 -22-18.14

O auh*un uuI.cpu vnlcu5por rriI_ll>I3/

lic ,laluilii,ui dito hiiuiin ui ti_ihie i_liIMuiiil,i

c- i,iuiuuuiuiii,ii u') calor.,) o-oc, 4 1 .1 liii

Ii_u it) ucd IuraI.uu ._il iili_i , iUiu huIpil h,u.uuu ti-

liii) II_sic, tille, Iii ti ji .7)1..)

Oil pIo.,L,rOflfl 6,,,!. L,rci.e 2!,

20 ¡

i] 22 po

I,u.i,-iuc u ulu.c('itun. 1 111111

lite ._uuIi, 1.51.1)0 i.fllp.iuu.n. It ,íI-proric kerogcru

li keru.0cn uI urcrnhuuucau 1 llena dista vítor 6..uug vn.)

O arboil l.tulsupc cuirnpo,ull.uns nl I»drstca;bon (ruin p314'-

iv.is ei lfliCllIi un cu.,ii ¿md maulle ki-ropon

1 Iiuiluu;c ,uIIue.I'.j'I)131 Rcuui.u,k

181 hannHlounPropacc

34)) - -356 -27.6 -26,2 ( ouulinid pa thai tul

4111 .-5SS --20 -25.7 IO III Ontoicu. tu 421 -06.3 --274 -34.9 2*! 8/II Iltut .uudv

442 -561) -26..) -220 4114 -33.7 -20.3 -211.7 01)0 —07.6 —21.9 —11*4

52' .475 - Sil)) - 56.)) (kn.euj. i,olhnru,uaI 544) -46 8 -- SItj - '63 jr.io.l. te. 0) *5 5ie 1

575. --431 57.7 --306 kntogcui Hna.mn clii

418) 4'4 - 17 - 54) 1 1)449) 44)) - lI. 1 - 52.7 —19.))

844* —11 6 -. 76 7 (hnnd. i,uullunonrnl

4511) _.34 '44 . '1') uauoluti-.4 iiiul liii ii

III. '1 'iii 3 i

1 1 1 1 1 1 1 1 1 1 1

1 1

ELGASASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

) -R. tutu II it 5 o, v 33 :16l /33') 131 5

1 1 1 1 1

Figura 37. Diagramas de diferentes autores.

Considerando no solamente ese tipo de resultados, otros autores proponen los diagramas

que se utilizan actualmente. Éstos se grafican a partir de modelos (figura 37), o bien de

una manera empírica por medio de medidas que fueron realizadas en las cuencas

sedimentarias (Fig. 38).

1 1 1 1 1 1 1 1

1 1

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 49

Page 50: El gas asociado a los yacimientos de carbón mineral (GAC)

Los ptrones conocidos de lot curcasce ca tonci Upad,' Isótopos

tttrat1os (a: sin alOtar (UI 111C.Ii. kdo coo gas biogcne:ica (:1 la ooudnjon (a,o(cI aria. (d) (ir togas dic retarlo 1 :(rtusioii

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

Y,-R Zou et aif Geoquímica Orgánica 38 (2007) 1398-1415

•' N 1

.1 • 1

F'L •

•',\'. '•",\

1 k

1 j sil 1

:

Curvas araster silLas de hútopus de iiátluiui es fluidos oid 1 eduucioti ik sulfato

terrno3lrnrrcos (TSR). caras Ile tas: la canto de rotopos de caroiro de TSP (datos

despu9$ de Mache), 2001) cuadradot so idos:. un case rin (a curva cte Isotopos

caratterisucat res liantes de TSR (tcntaco despods de Krcuse el a 1398): ca(ulos sCiptos: colnonstclones de sOlapo; de caiLcito cte irickasoses f urdas (datos

despues le qrtv Ifleo y Ho, 2007) uo de inclusiones titadas cae no el arco de gas

deitarto del carona y los otro' das 'e erniuntran botín del are,) de ISR tanto

gas y el carlo-os ISH deiioaitios durante la hiçlvr ge:) iogrra se registrar- en ol lr1tiidro rr-rnpnsrrinnes iflílirsinn de rsfltnpns

Figura 38. Experimentos empíricos en diferentes cuencas

Los estudios más clásicos toman en cuenta los bio-marcadores de los aceites, tasa de

transformación del kerógeno o poder reflector de la vitrinita que pueden mostrar el origen

y fenómenos diagenéticos que sufrió la roca generadora sin considerar las interacciones

con agua o roca (Fig. 39).

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 50

Page 51: El gas asociado a los yacimientos de carbón mineral (GAC)

1.0 '

sin

q

o

el c

a.

3

1

/ 1' OILS c'

20 H

3,9

ELGASASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

Y ,....:. :-.-- ,', iI-tr fr.' .r..-.v •..'.e. c-1r, e. 1f

r... -p - -, ' 5.IC-IC52

R, %

0.41 •° '? ? .20 cc. %.

1 II III

1' o

0

o 008 o'

1 io

'1 o

tb

S 0

10

t 'StaN.aL 1975

SWrl.l.. 1975

Da .1 iL 1W 3 6 9 o ,'c4.12I9 p4un.

PhytanelnC,, Trafo,maboi rabo (%) He

tzangrenefica de a eites y Crw'rlcc de cIonc de Iii frciccdc.n

Irberreider .irrrrwete ci trcinr1,rrcrrdon ele l-eroeire deere de brtunenec en tCr muros eJe r admos de

et 2d'C't C,, errrci frciioo rnsolcibI en Pr Istmo (1 1 , y í t.rnc. 1:1. de muerdodøfl 1 as

'e ntny mer.syl'mlIe n .licl-:.rymietn.. ('t,l 5 riteS mtC ate gori.cis 'le ''lcr nacer el el (19) l, I fro. (d.c1.,-.'Icf.l s- creee

me y le e le le

Figura 39. Diferentes parámetros.

Investigaciones recientes muestran que esas interacciones pueden ser muy importantes

en la formación del gas (Figuras 40 y 41).

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 51

Page 52: El gas asociado a los yacimientos de carbón mineral (GAC)

Et GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC) 1

Lvolucion qulmica del kerógeno y petróleo durante la maduración termal en la cuenca

sedimentaria

a b c

54J o

(udos oI'aii41o(

z

1(1

0.5

o

c 4

AM

0(41) (((0 OIt) 015 020 025

O/( Atoiio Pi oducoon Pi oducuon rnI,1tI.,1 iel,itt.i

a)E - l.i1r.4.i. .I., Vaiill.(. I-I1r(1li.tI,iIt..(Itl;<.(1 JtIltI( -.loI I'(I(y..I,; loij..,-Ior:• : p:-ollr-It 1 II III 1 llIo.ollt_i d. ,n_1(kIro: .,i1r.1 ,'. It .1111,: (.oro.i

,I(rlflI(V'o, oI,ip1,II...I.:.r (.1tIlZiI vi t.oInpr .iIuu .

(¡k¡? mitie I_.lI -, 1lI, .411('ntoruc_..ii l-:-s.,-:lon.1nto; E., ,.n.i .1 1 1:10 1_;I1I: 01 lo r':. no iuo. lo Ii.; I.,I.:i1.,)tIloi:.l.,:.I.,(.,. - 1,ail la 1I.aIa,.ili(.ln'.r (lit 1: lIl.(l_l.:n ol olJI1.,ot.:. l. Iaii.al,r.: b

lo :,lt01 0:1ro .I Ir:. o.:lu 1-:: 0 l.0flI 1 0;1.olcr .o,Io; trilito .l rIt10 ri0tior1tcplcroo ,::I, lri.i..ii, oII-.htriui • r. II» I)j,I.4llIri 110 -.4 -2'. 1' -- iIIn,Ir:ryin:' .,I , l.:;p.:..JlI:t. 1 ; , t.,Ia.i.:.I.:.(,aI.I1a :to (lo

2. 1:41 çiFl.,1;.,I., Ii'iour .uo -o Iiiniti..laj..r.i lo_tilo '_io do uio-l.ø o:ion-.-:'ui.- olnuo_0 •oIl 41

l?(Ial'52IliIi..0I_I412j.4.(1I.ol. _J,oIt_oI .ol I.,- I-:n- - oir-. Igoil-:- I1o(oa1i(.ol.a( ol_if41,fllo(I_0l lo I.i,lrr-aiI..io:.....

: oo .l.l,, 1-;. rl i?-:tiIllIorut-.- .J._ 1111 lIoluto .l_ .,.l , . rI. .--s-l.:-:-.1t:r..-'uuuuoiu-I.r:I 110 tIlo

Figura 40. Evolución química del kerógeno.

O Wooct»no 4 SWTaxa3 -140C

WiIcon _.. . -4 - 125-210 C

lO\

8 * <\ US Gui! Co,t11

--8 - u' 29--86 C (-)

6 lIS G:jIl ( -oast TusaIoo& 1 100-170 -C

-. _ 2 ._200C O -

• 0 01)

• o -16-

19! 133 92 61 37

-20 1_ --------------- 1

Toitipei sitJi sI ah. uIatla l

-24 --------- J_._. 1

14 16 16 2022 24 6 28 30 32 34

lOitlill)I('. iii-' .4111.1111. yt)Xi4'lI(_l (lo Iii. 1 i'iiiu'iiliis III' (.411(411.4111 4111 1,1 ( ool.i 4101 ' -ii.ilío (II 11:1(11 iii

Selillientarla , :.clpfl, iIIO 414' (4 1_a t$hi)4I4'I14( (1414 (Ci I4'itI4' leA , ( iii ti ili'iiitiiii, 1(411 (14° ¿4 ( 1,1(11(1 tui.

1113001 (01(11111(1(10(11k (IlIOKIl) (le calboliú •:ouitiiite (kl r-.ailoo oiiI(j.((o iÍsOt-)I)kallI4'lito •'lli1iol)ie(j($i,u 1141

Al 1,141111 a tl-'1111151 .ilill ,i,t cii ,-lna', .4 ¿(Ji) - .4 ',t da tIc l 4-'IIII - l-'i .41(11,4 ,41 Uit .411 11111(1 1 s.iliiiitIPiltlii ti '°(liiiIiltl It,

0 tia(-iiiiaili0i t°l 1 41(11 ,it(1P li II.I ((Ial 14)1) (141 4 41lfll'liklS (I4°I,.4I Iflhit,itl( ile .iiI.iO 1(1414 ,iS ili° la 14(1 111.1 11111 (II-' la

ti:sl,i (1411 (.,nIt.:- (au.atII iza(li pol el c4(1)tí'l:((l1, 1 II al & ..- 11411 l_a telullIcratilI a'. takiiid,io son

41I1eI .411114° )t41 4 t(u((,iIit ((411 1,15 tl° l(liii-'I allul .0 iiietltti,i, 41(1 ci 1(411(1(1 (1411 1441 120 (11(111 atla', .ii I.iclo tIc (.4(1,1

liii. .14 11111.

Figura 41. Evidencia de la generación de productos de alteración orgánicos oxigenados en

niveles profundos dentro de la cuenca sedimentaria.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 52

Page 53: El gas asociado a los yacimientos de carbón mineral (GAC)

GAC a la atmosfera

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓNMINERAL(GAC) -

La ejemplificación en forma esquemática de la carbonización, generación de gas metano,

expulsión y migración bajo condiciones de sepultamiento con el consiguiente aumento de

presión, temperatura y disminución de volumen se muestra en la figura 42.

Vegetacion Mayor

GACaaatmosfera

:

Y'rn

WIL

1300 m' g1s/ton

45,904pc/ton

Que 3 _

m Reccionde)elY

1

0-600 pc/ton,tsgnito Carbón Bituni,ro

0-600 pc, 1.3.

5%GAC. expulsado

Acumulacion de GAC en rocas porosas

Expulsiony migracion de GAC

Figura 42. Proceso de carbonización con disminución de volumen y expulsión de gas asociado a los yacimientos de carbón mineral.

De la figura anterior, se puede graficar la evolución de los tipos de carbón, así como los

contenidos de GAC y reducción de volumen, tal como se muestra en la figura 43.

pp.p.

0-100 pc/ton Grf,to

Antracita

ESPECIALIDAD: INGENIERÍA GEOLÓGIcA 53

Page 54: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAs ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

Comportamiento de GAC (expulsión y migración) y reducción de volumen de la materia orgánica en los procesos de carbonización

l300m' 45.903 PC

Proceso de carbonizadón

93 deIGAC es espulsado.

12 m

E A ' i ls 1 Parte se emite a la E c ., i, atmostera y el

resto se almacena 4 ¡ 4 comogas 0

convencional 5 del CC es pulsado

y almacenado como gas Convencional 5)

' GOOpc ini -- ---

Acumulacionde Turba Lignito Carbon Bituminoso Antracita Vegetales mayores

Aumeiito de: tiempo. presión. temperatura, sepultamieno. concentración del carbono uisniinucion cJe: (iAC. otros gases. volumen. espesot

4 Expulsión de gas

Figura 43. Representación gráfica de la evolución de los diferentes tipos de carbones, con las condiciones cambiantes de volumen y espesores.

VII. PRUEBAS FISICO QUÍMICAS PARA LA DETERMINACIÓN DEL CARBÓN Y GAS

Existen una serie de análisis de laboratorio para determinar las características del gas y

del carbón; sin embargo, es necesario mencionar que un solo análisis no es determinante

para establecer las condiciones de génesis del gas. Es recomendable contar con más de

un criterio para realizar una interpretación confiable.

Tales condiciones se describen en este capítulo, la primera parte muestra los equipos y

tipos de análisis que se pueden realizar; la segunda corresponde a la interpretación que

se puede efectuar con estos resultados y en base a reconocidos autores. Se concluye la

necesidad de realizar una serie de estudios que den mayor certeza a los resultados.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 54

Page 55: El gas asociado a los yacimientos de carbón mineral (GAC)

EA5 WACIMNmSDECARBÓNM!NERAqGAC -

VII. 1 Equipos y tipos de análisis

VI1.1.1 Análisis Elemental

La composición O, H, O de cada uno de los macérales varía durante la formación y

expulsión de los bitúmenes, lo que muestra que la cinética de su transformación es

también diferente, es por esto que su distribución espacial dentro del carbón y en la

superficie de contacto entre los macérales puede tener un impacto importante en su

capacidad para reaccionar.

La inertinita tiene un rol poco importante en la formación del gas; sin embargo, por su

porosidad juega un rol importante en la migración del gas durante la expulsión.

Los kerógenos ricos en material orgánico inerte se agrupan en el kerógeno tipo IV en el

diagrama Van Krevelen, el cual se reporta como un grupo sin interés en la formación de

gas. Las propiedades físicas de este grupo son completamente diferentes a las de los

otros tres tipos de kerógenos y su relación atómica H/C es la más débil.

VII.1.2 Estructura molecular del carbón

La estructura molecular del carbón evoluciona durante su maduración en función de tres

parámetros que aumentan con el sepultamiento:

- Temperatura

- Tiempo

- Presión

C El estado de evolución térmica del carbón bituminoso comprende las ventanas del aceite

y del gas. El rango del carbón implica un sepultamiento que permitió que la temperatura y

presión no solamente transformaran las moléculas de origen, desde turba hasta carbón

bituminoso, también transformó el sedimento en roca sedimentaria. Estos fenómenos

C

implican pérdida de agua, reducción de porosidad y permeabilidad. La pérdida de agua va

acompañada de todo tipo de fluidos presentes, donde se incluye al metano, que durante

e

los procesos geológicos de carbonización se llegan a generar. Estas condiciones de

sepultamiento, cambios de presión, temperatura y condiciones físico químicas van C disminuyendo el volumen de materia orgánica hasta en 12 veces para constituir los

e e e ESPECIALIDAD: INGENIERÍA GEOLÓGICA 55

Page 56: El gas asociado a los yacimientos de carbón mineral (GAC)

.

EL GASASOCIADOA LOS YA CIMIEN TOS DE CARBÓN MINERAL (GAc

mantos de carbón y durante toda la vida geológica, el gas metano generado está siendo

expulsado al superar el volumen a la capacidad de almacenamiento; parte de este gas

migra y se entrampa en rocas porosas suprayacentes que logren constituir un reservorio y

otra parte es emitido a la atmósfera.

Esto permitió que el carbón sea muy compacto y la estructura de sus moléculas 01

poliaromáticas se orienten, a la escala molecular, en la dirección de la estratificación y

sepultamiento (figura 44).

lo

( el

hr— J

Linee,,, ,h uC1 rs:e mal., nl, e', de Sa bu rl. np Sucia .irha) y le :;( ruin rl- alto ,-n.-,r ('ras (hupa), esta ultimo cor ar - eg o tipeo

tut)yanatoo de a; umrdades de compuestos a:cmatruis uimhra) '1 - Nriattew de ipuo 1 - II crynuitro de mo undades ce courpuestcs

aromyteor. .a donaetro de la rupu Ymgjda de bu unidaces de :onrpue tsr ir yn st coculas utegcu rndmcan Jefect'ui Ipon ejemplo,

o atores,; al rnsmg:n dc Pa: ca sas aromat ca:, haciendo que tanpa'i tmra:Lma de Ss, zar (D2 , pa.; dcühc: :0 et al 10801

Figura 44. Orientación de moléculas del carbón respecto a la dirección de estratificación y sepultamiento.

La evolución térmica del carbón producida por el efecto combinado de temperatura y

presión, se puede cuantificar por medio de las relaciones atómicas H/C y OIC, y graficar

utilizando diagrama Van-Krevelen, considerando su transformación y la consecuente

pérdida de productos formados durante esta etapa de diagénesis, es decir la pérdida de

CH4, CO2, H20 e HC (figura 45).

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 56

Page 57: El gas asociado a los yacimientos de carbón mineral (GAC)

C ELGASASOOADOALOSYAOMWJ'ITOS DE cARBÓN MINERALJc)

• .c(

0 ,3_ OS 7

L t

- ______ E

- --- - - •0*707

_ 1 A1l

H-13 Karlsefnj Eastcan et al. En alta mar de Labrador . progreion anorrral de reflectancia de la vitrinita-luminite

dependendo de la zona de la profurdidad de la

etahUidjd hasta de 2200 de cerca m, zora progreión 1_• normal por cehajo de esta calificacicn. Despuis de Hroux

Figura 45. Evolución térmica del carbón.

El efecto de la presión al ordenar las moléculas se refleja en un aumento del poder

reflector de la vitrinita y su correspondiente anisotropía (Rmax, Rmin). Esta anisotropía

coincide con la etapa cuando el gas comienza a formarse en la estructura del carbón.

VII.1.3 Pirolisis

e La pirolisis realiza un análisis secuencial de los productos; primero se analizan los

C bitúmenes generados durante el sepultamiento y/o migrados, posteriormente se analizan

los bitúmenes que se formen durante la pirolisis. Con los resultados del análisis se

C elabora un modelo a partir del cual se infieren las transformaciones ocurridas en la cuenca

C sedimentaria. El análisis típico se realiza mediante un equipo Rock Eval, figura 46.

0

e - ----- ESPECIALIDAD: INGENIERÍA GEOLÓGICA 57 e

Page 58: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOCIADOALOS YACIMIENTOS DE CARBÓN MINERAL (GAC) -

4

4

Figura 46. Equipo Rock Eva! 4

El método de pirolisis Rock-Eval (Espitalié et al.,. 1985) es una técnica en medio abierto. 4

La muestra es calentada según una programación de temperatura bien definida: primero

una isoterma a 30000 durante tres minutos seguida por un incremento de 25 0 C/mm, hasta

alcanzar a los 600°C ó 750°C.

Según el método de análisis que se selecciona, los fluidos producidos son transportados 11

por un flujo de helio hacia un detector de ionización de flama, que los cuantifica en función

del tiempo de pirolisis. Al final de la pirolisis, las muestras pasan a una combustión en aire

de 300°C a 850°C. Esta etapa de oxidación permite la liberación del residuo de carbono

orgánico.

Los espectros obtenidos forman cuatro picos identificados como Si, S2, S3 y S4 (figura

47)

- SI: hidrocarburos libres (gas y aceite de C 1 -C35 ) volatilizados entre 100°C y '

300°C durante la isoterma de temperatura.

- S2: este pico corresponde a los compuestos con hidrocarburos provenientes del

cracking del kerógeno de 300°C a 600°C (resinas y asfáltenos). Corresponde a la

cantidad total de aceite y de gas que el kerógeno puede producir durante la

pirolisis. S2 es llamado potencial petrolero residual.

S3: representa la cantidad de 00 2 y de CO atrapados por separado durante el

cracking del kerógeno entre 300°C y 390°C.

ESPECIALIDAD:

Page 59: El gas asociado a los yacimientos de carbón mineral (GAC)

aoIMN BÓNGAq

- S4: es el 002 y CO producido por la oxidación de la materia orgánica residual

durante siete minutos a 600°C.

- El porcentaje de error es en promedio de 5% para S2 y de +1- 3°C en los valores

del Tmax (Lafargue et al., 1998).

- COT: Por ciento de carbono orgánico total. = (S1+S2) x 0.083 + (S300 2 x 12/440)

+ (S300 x 12/280) + (S4002 x 121440) + (S400 x 12/280)

- Tmax: Temperatura (en °C) medida en el máximo del pico S2 (- 40°C)

- IH: Índice de hidrógeno, en mgHC/gCOT donde HC= hidrocarburos = S2/COT

- lO: Índice de oxígeno, en m902/9COT (corresponde a lO RE6 definido por

Lafargue et al. (1998) = ((S3002 x 100)! COT) x 32144 + ((S300 x 100)/COT) x

16/28

- IP: Índice de producción = S1I(S1+S2). Es la relación entre hidrocarburos libres y

total de hidrocarburos obtenido por pirolisis. Los resultados obtenidos son función

de la naturaleza de la materia orgánica, así por ejemplo los hidrocarburos que

produce un kerógeno tipo III (carbón) corresponden de 15 a 30% de su peso. Un

kerógeno tipo 1 (Lacustre) produce al contrario 80% de su peso (Espitalié et al.,

1985a).

.[Gas so

Hidrocarburos

libres si

[Accto¡

Materia

orgánica

total

52

Fracción Tmax

pirohzada 53

HC

Libres HC

Formados

CO 2 Pirólisi

co Oxidación

S2 53 54

'-Kerógen]

Fracción

Residual 54

Figura 47. Esquema de las mediciones analíticas del Rock Eval.

ESPECIALIDAD: INGENIERÍA GEoLÓGIcA 59

Page 60: El gas asociado a los yacimientos de carbón mineral (GAC)

A O, AIkylbczéncs * nAkani

EL GASASOcIADOA LOS YA CIMIENTOS DE CARBÓN MINERAÇAÇ

El análisis cromatográfico del extracto por pirolisis permite diferenciar el origen de la

materia orgánica (figura 48)

5 20 35 50 65 Tiempo dt r*naon.mIr,

B e ¿

1

*

111Li1 LLi1L 11

B, MkyI-bcnzncs

N, MkyI.aiic

4, A&y.pheros * nAlcanes (i nombte de carbone

ddachainealkyl)

y

t t t 1 i t - ••---f-- l 1 1 S 20

Tiempo d, rtncion 'mii

JA.- Pirogranios (modelo íulls(an) lara una alginita (Kruge et al., 1996) B.- Un carbón de Mahakam (Mansuy, 1995)

Figura 48. Pirolisis

Vll.1.4 Pirolisis flash - Cromatografía en fase gaseosa - Espectrometría de

masa (Py-GC-MS)

La estructura de los kerógenos se estudió por medio de la pirolisis flash (fig. 46) ya que la

estructura macromolecular del kerógeno no permite un análisis cromatográfico directo, por

lo tanto es necesario romper las grandes moléculas para que la cromatografía en fase

ESPECIALIDAD: INGENIERÍA GEOLÓGICA - - - - 60

Page 61: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOOADOAWSACIMIENTOSDECARBÓNMYVERAL(GA

gaseosa, espectrometría de masa, pueda ser utilizada para separar e identificar los

fragmentos generados, la naturaleza de estos fragmentos permite conocer con mayor

detalle la estructura del kerógeno.

Vll.1.5 Análisis isotópico

Diferentes fracciones, aromáticas saturadas, pueden ser analizadas utilizando sus

isótopos. Un «Analyseur CHN-Spectrométre de masse isotopique» (figura 49), se utiliza

para realizar el análisis global.

La combustión flash se efectúa por medio de un analizador "CHN NA 1500 Serie 2 Carlo

Ebra": la muestra es depositada en el horno de combustión hasta alcanzar 10200 C en

medio oxidante. La presencia de óxido de cromo permite aumentar la temperatura de

combustión entre 1600 0 - 1700° C.

1

Figura 49. Espectrómetro de masas

Los diferentes gases generados (CO2, H20, óxidos de nitrógeno, etc.) son transferidos

por un gas vector (helio) dentro de una trampa triple "tripletrap", enfriada por medio del

nitrógeno líquido, esto permite capturar el CO2 y eliminar tanto el helio como los gases

generados por la combustión. El recalentamiento de la "trip/etrap" permite transferir el

CO2 hacia el espectrómetro.

La abundancia de masas 44, 45 y 46 puede permitir en este análisis determinar las

relaciones isotópicas 13C/12C y 14C/12C. El 613C, es calculado tomando una referencia

International (PDB: Pee Dee Belemnite) y se determina según la siguiente fórmula:

= 1000 .

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 61

Page 62: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

Existen diagramas que toman en cuenta otros aspectos interesantes como los isótopos

del hidrógeno (figura 50), o las proporciones relativas dentro de la catagénesis y/o

metagénesis de otros gases como el etano, propano y butano generados por diversos

fenómenos que ocurren durante la historia geológica de la cuenca y que están

íntimamente relacionados con el origen del gas.

110

100

90

-30

o -70

Lo

o c -50

a) -50

-10

bacteria! Reducc!dri CO,!

Tr nsi vr'

y F('rfr,L'r,t() Lid (1 Míxto citrnc sfé rico

tipo metilo 01 1

Térmico TT (m

TT(h)

-15(1 -300 -250 -»J3 -1J -1(0 -50

5 13 D Metano (%) OiiídeIos gasasde teior Arri,sraiIe a eiJ.ou s.i ai0oiio1 ptop.jrciuiIs de i61opus deliidrúgeriodel

metano. (Liespues de V.I'iticar, 1004)

Figura 50. Diagrama para la interpretación de origen de gas, mostrando su complejidad.

En la figura 51 se ratifica la complejidad para realizar la interpretación isotópica del origen

del GAC. Se pone de manifiesto que la participación de múltiples factores existentes en

una cuenca sedimentaria, pueden modificar el valor medido de los isótopos del carbono e

hidrógeno.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 62

-1,

Page 63: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

M.J. Kotarba, M.D. Lewan / Geoquímica Orgánica (2004)615-646

00

1 -1I) - rn

t)

+

= II) .

Li

1 Li

11

Li

- r1IGR4cIoN

t °4oÓ MI c,RA( ION

METANO MICROBIAL - £4

'fi, 'liiIri.:l,

¿NTÇS frFPi F. 4€PR(NFS

£ A 12 uIirin.:It,fiini

I V • MIXTc'

ÇIlirrÇ - - — 1 1 1 i

-40

6 13 C (CH4) (%) d4 Eri rrar eI i & C ¿CH 1 ) V.s. CH,1 / C 2 H 5 +C 1 H8 pres.nt-ad.: por \'Vhutica,. 1990 p' a (as n c a:a d ai bon y

Hidropur cIii d.r la r:.rr a arl,onuf.rra dl SiIiano Inferior y la CUnc a arbonufra Itiblin y Blchatov, y Tui ov:.

Figura 51. Esquema donde muestra lo complejo de la interpretación del origen del gas.

V11.1.6 Análisis a partir del extracto de la materia orgánica

Los biomarcadores acíclicos y cíclicos (Volkman y Maxwell, 1986; Simoneit, 1986, en

Martínez L., 2008), permiten conocer la evolución de la materia orgánica, ya que

conservan información relacionada con su origen y evolución en la cuenca, a pesar de

estar sometida a procesos de maduración.

La distribución de los alcanos proporciona información sobre el origen de la materia

orgánica (Figura 52), por ejemplo la abundancia de alcanos ligeros (C15 a C19) indica

que el origen de la materia orgánica es principalmente proveniente de algas, típica de

medios lacustres o marinos (Han y Calvin, 1969; Gelpi et al., 1970; Tissot y Welte, 1992,

en Martínez L, 2008).

Al contrario, una distribución marcada por una fuerte predominancia de alcanos de

numero de átomos de carbono impar (023 a C33) es característico de ceras cuticulares

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 63

Page 64: El gas asociado a los yacimientos de carbón mineral (GAC)

Mor stra minador. - II Mustra,nrad,,ra

Cor'ipuet ,f*KQ

, c tI e Mu .Jura

EL GAS ASOCIADO A LOS YACiMIENTOS DE CARBÓN MINERAL (GAC)

heredadas de vegetales superiores (Eglinton y Hamilton, 1963; Tissot y Welte, 1992; Bray

y Evans, 1961, en Martínez, L. 2008).

mal

Tnpud.

Maduradon

tIrnd(a

b Mue tra madura

Cor,Ie ts airíatm 5

rd.nuon,rnu. Ts.mpo d.

I 4 adur a ion M ¿udu, a< ion

termica t.r,nica

df ruar tra ,iu.iuu a

u-, • T,it.íi

•ø1 1 d1k* 1 •""" o qdot

u Ira r,adu, a

fracio,, da

)

Tíqiiipo h T.rnpo da ,.t.noo,,nuv T..n,po a. ;d.noon,muy

Croinatografsa (leuna ibillesil a inmaduia (ac,e) y madura (b,(1f) Proveientes(IeI [)elta de Mahakam (Manuy, 1995)

Figura 52. Distribución de a/canos.

V11.1.7 Análisis de biomarcadores para ver biodegradación

La figura 53 muestra un esquema de cromatogramas que permite establecer ¡a relación

original de aceites generados en la roca generadora, migrados al almacén y

biodegradados en el almacén (Michels, 2005, en Martínez L., 2008).

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 64

Page 65: El gas asociado a los yacimientos de carbón mineral (GAC)

EL S O

- *Tk 1.1 I[.ih Ecl I'I.11Jk!d1&.IDE SISTEMAS PETROLEROS

RESERVORIO

? biodegradado

iii h 1 dli 1

ACEITE Ae,ie WI lIl(l'I1b ,do

JLLi , ti L_Lt4L

" 1 ROCA

MADRE

Anhur(e (1( Dpositi ..

Figura 53. Cromatogramas

Los biomarcadores son afectados y degradados por las bacterias, el análisis molecular de

éstos en el almacén, permite conocer la importancia de la biodegradación (figura 54).

IiXe,I:llvl le -- --

2

" L- —fl :

(6) DEN

9

1 AiZTldtfliIl1 ,)IlO fl-dlCdIlO4IO3

2 = AjI minto g9 nel al de k n-akanos

ind'> 1910 trazas de n-.kan

4 = IldI d.? rI-licanol. ¡101)1 onoid.rs a,dicos .5to inI actoS

= I)0prfl9id.) a<r(Ii<o ¡istaitos

Est9ianos iIciaInienl.e dgi adados 7 = Etoi anos degtadadcs, diesteranos intactos

8 =Hopanes i)ai(IaIflente sic giadados

9 = Hopan?) 4iisent4 s che CililO) it a(ld95

al rin aticr _ al r;Ic.

La evolución molecular de un aceite maduro con el aumento de

la blodegradación

Figura 54. Biomarcadores

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 65

Page 66: El gas asociado a los yacimientos de carbón mineral (GAC)

Aeite biodegpa(la(lo

ítación

(le satui .ulos

Tsitirpaiio ponS ackiko

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAJJAC)

El Carbon Preference Index (C.P.l.), permite determinar de forma cuantitativa la

predominancia de los n-alcanos con número de átomos de carbonos impares sobre los n-

alcanos con número de átomos de carbones pares. Esta relación fue propuesta por Bray y

Evans (1961, en Martínez, L. 2008) y se limita a las parafinas conteniendo de 24 a 34

átomos de carbono:

v c .

+,. nv'c 12n16

Los valores de C.P.I. elevados (muy superiores a 1) son característicos de vegetales

superiores (kerógeno tipo III); sin embargo, la distribución de los n-alcanos y de los

valores de C.Pl. son muy sensibles a los procesos de maduración térmica.

La desaparición de la imparidad de los n-alcanos por biodegradación (figura 55) y la

producción de n-alcanos más ligeros durante la maduración puede ser un factor de error

en la interpretación del origen del kerógeno.

Aceite s.4111(L4l)le Aceite altidsble Ti iteipanos fiacción (le sahosados pentaciclicos

(iii/Z19I)

cn Tite.panos

iet4dhcos

2 3 2

Biodegradación Biodegradación

Aceite l)io(legi adado

Ti iteil)ano.pentaciclicos (,ii/z-191)

.4 2

!

J - = L)4 L.J VJkJJ

as fl 4 Si SS $0 5$

65 70 4tIt.fl,JOh.fflhS, tsnapø 4. d,So,, , n,,V.

Evolución molecular de un aceite de maduro con el aumento de la biodegradación

Figura 55. Biode gradación

ESPECIALIDAD: INGENIERÍA GEOLÓGICA -66

Page 67: El gas asociado a los yacimientos de carbón mineral (GAC)

ELGASASOaADOAWSACIMIENTO5DECARBÓNMERALG

V11.1.8 Análisis isotópico del gas

ID El gas migrado se puede encontrar en el extracto clorofórmico, los isótopos de éste

permite situarlo en una posición similar al termogénico. Los isótopos del carbono de los

S bitúmenes y aceites varían muy poco entre ellos como lo muestra la figura 56.

M. J. Kotarba et al.! Geoquímica Orgánica 38 (2007) 143 1-1456

BITUMENS OILS C%,)

. .34 •P2 30 •2 26

u:..

Ui.

r;tr.

BITUMENS fl e •. 1 - --

u ci 1 1 0 £ f

opLs : ~M~ Pock • ,.. .............

• «LP., :%s.flp 0... - . ir -"•' -; , ¿

______

1

d. ¡soto 05 k bi tun.3 y k { Borislv-Pokitty& Ib '4oI. y (( SiIsino

Figura 56. Variación de gas migrado de los isótopos de carbono.

V11.2 Interpretación de resultados de análisis

En esta segunda parte del capítulo se presenta una serie de interpretaciones de los

resultados del análisis de muestras sólidas y de fluidos con la finalidad de caracterizar al

gas y al carbón.

El metano es formado tanto en la maduración térmica de carbones y kerógeno en zonas

profundas de cuencas sedimentarias o debido a la actividad microbiana en suelos, a

e e e e e e e e e e e

e

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 67

Page 68: El gas asociado a los yacimientos de carbón mineral (GAC)

.

EL GAS ASOCIADO A LOS YA CIMIEN TOS DE CARBÓN MINERAL±GAC)

temperaturas entre 75 - 85°C. Se distinguen diferentes tipos de metano por la

composición de los isótopos de carbono en combinación con su composición molecular.

Por ejemplo, el gas termogénico es isotópicamente pesado y húmedo cuando está

asociado con aceite, o seco cuando ha sido generado por carbones maduros.

El gas producido por micro-organismos o biogénico es isotópicamente más ligero y casi

no contiene hidrocarburos C+2.

La caracterización del metano se puede realizar en base a una variedad de diagramas en

los cuales se grafica la composición del gas, así como la composición isotópica del

metano, etano y propano.

El diagrama de Bernard de las figuras 57 y 58 es el más ampliamente usado a nivel

mundial para la clasificación de gases. La relación de metano (C 1 ) sobre etano más

propano (C2 + C3) es graficado contra §13 C del metano. Los gases biogenicos pueden y

ser fácilmente diferenciados de los termogénicos, el primero tiene menos etano y

propano, el metano es isotópicamente más ligero (disminución de 13C; § 13C con valores

entre -60 y -100 %). Puede existir mezcla de gases, tal como se indica y es una condición

muy común en la mayoría de las cuencas sedimentarias del mundo, por ejemplo en la

Cuenca de Sabinas, se ha definido la presencia de tres diferentes gases: gas profundo,

gas somero y un tercer gas producido en forma inorgánica, complicando aún más su

caracterización (Martinez, L., 2008).

..

.

.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 68

Page 69: El gas asociado a los yacimientos de carbón mineral (GAC)

o 4 N

o rl

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

DIAGRAMA BERNARD

100000

- Reducuán Met lo tpo

10000 (0 fermentación

Kerógenofl

1000 Biogénico "

10 O yI( 1 jcIÓ IpOr ' .

niicro-organisinos

10

-

Termo Kerógeno III - génico

-100 -90 -80 -70 -60 -50 -40 -30 -20

Potencialde mezcla:Iíneas

100000

Bacterial o

biogénico 10000

1 00()

100

10

Termogénico

90

50

'o

lerresir.

marino

+ rs

5

1@ -So -60 -40 -20

metano (960)

Figuras 57y 58. Diagrama de Bernard.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 19

Page 70: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOCIADOA LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

Además de las graficas arriba señaladas, existen varias metodologías para determinar la

caracterización de los gases, mediante esquemas similares donde se utilizan

prácticamente los mismos parámetros, así se tienen algunos autores entre los que

destacan: Whiticar y Faber(1986) Whiticar at al (1990, 1994, 1996); Chung y Sackett

(1979); diagrama de maduración de James (1983); Clayton y Killops (1991); Schoell

(1980, 1988); Bernery Faber (1988); Lorant et al (1988).

Aún cuando existe un sinnúmero de autores que han desarrollado gráficas para

caracterizar diferentes tipos de gases, el diagrama de Bernard sigue siendo el más

aceptado a nivel mundial. Todos ellos hacen uso prácticamente de los mismos

parámetros y llegan a resultados similares.

La mezcla de gases de diferente origen afecta la composición de gases asociados a

yacimientos de carbón mineral, de tal forma que la relación de mezcla, composición,

condición final y el tiempo en que se dan los procesos de mezcla, son especulativos.

Estas condiciones dificultan determinar en forma confiable la génesis de los gases, por

ejemplo, en seguida se presentan varios casos donde los resultados de los análisis con su

consecuente interpretación muestran condiciones diferentes, aún cuando geológicamente

se conoce que los gases están asociados a yacimientos de carbón mineral (GAC).

En publicaciones recientes que tratan problemas relacionados con gases, claramente

relacionados con carbón mineral, en yacimientos mundialmente conocidos, se ha

encontrado que isotópicamente no concuerdan las interpretaciones realizadas. Algunos

ejemplos clásicos son:

a. Hosgrmez, et al (2002). Estudio realizado en gases asociados a carbón en la

Cuenca de Zonguldak, Turquía, reveló que, prácticamente ningún gas analizado

cae dentro del campo de gas termogénico del diagrama de Bernard, figura 59.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 70

Page 71: El gas asociado a los yacimientos de carbón mineral (GAC)

ELGASASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

-

fit icrericil (Biogénico)

rTermogénico

1000

3)

ç_) lo

-90 -8() -70 -60 -50 -40 -30 -20 -10

& 3C114 (%o)

Figura 59. Diagrama de Hosgórmez, con muestras de carbón en Turquía.

b. Thielemann, et al (2004). Determinó la composición de gases en minas de carbón,

tanto activas como abandonadas, en la Cuenca Ruhr en Alemania, comparando

los resultados y datos con otros estudios. Mediante el diagrama de Schoell resume

los datos de varios estudios (figuras 60 y 61). Sólo los datos composicionales de

Gerlin at al (1995, en Littke, R., 2008), caen dentro del campo de gas

termogénico húmico, definido por Schoell en 1983.

Los gases de todos los demás estudios caen en el gas termogénico, gas biogénico

(reducción CO2) o en áreas de mezclas; sin embargo, todos ellos están

definitivamente asociados con carbones.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 71

Page 72: El gas asociado a los yacimientos de carbón mineral (GAC)

ELGASASOCIADO A LOS YACIMIENTOS OE CARBÓN MINERAL(GAC)

-110

.90 o- UI

-70

a) E

.30

.101-

-400

• Cuenca fluhr D Lornmenrzheim, Ruhr • Gerlin, Alemania norte O Ko:arba, Polonia

Dusaç Cuenca Cam'.incBIgica

A Smith y Pallsser, Australi__ O2-Reducción O Hosgórmcz, Turquía

- --- /mez /

Fermentació_ -

-Termogénict oj

TT(m)

-300 -200

8D-metano %o VS. SMOW) -100

E:j:Madurez. terrestre, RVO.5-25 14 O berlin, gas natural, Norte de Alemania

1 o tuencaHuhr • Whiticar

QWhisIabe

2.59 o

_

metano biogénico

o o

Muestre1

0

DeSOt

000j000

1 iit,00I 000 0 <:50W

O3/2OU3I

-28 -26 -24 -22 -20 -IS

8 13 C-Etano (%o)

Figuras 60y 61. Gráficas de Schoell del estudio de Thielemann.

c. Kotarba, 2001. Realizó un estudio detallado sobre la composición de gases de

carbón de las Cuencas Upper Silesian (USCB) y Lublin en Polonia (LCB). En la

siguiente gráfica se presentan los diagramas de Bernard (figura 62) y Schoell

(figura 61) los que indican que, prácticamente, ningún dato graficado cae en los

campos clásicos de gases a partir de carbón termogénico o kerógeno III, ni aún en

el campo típico de mezcla. El autor menciona textualmente ". . ..recientes

investigaciones en geoquímica orgánica apuntan a una serie de incertidumbres en

las interpretaciones de datos de isótopos estables para gases asociados con

carbones.... Estas incertidumbres están conectadas con los diferentes

-10

-20

-40

-50

60

ESPECIALIDAD: INGENIERÍA GEOLÓGICA -* 72 ti

Page 73: El gas asociado a los yacimientos de carbón mineral (GAC)

ELGASASOCIADO A LOS YA CIMIENTOS DE CARBÓN MINERALfGA cj

mecanismos de generación de gas a partir de los diferentes tipos de

macérales/kerógenos de materia orgánica húmica, tanto a partir de la concentrada

en mantos de carbón como en la dispersa, además de la presencia de gases

durante procesos secundarios, físicos y químicos (tales como adsorción, difusión y

oxidación) que se presentan durante la migración y o mezcla".

iO4 u +

' IV 1r3

u r 102

u

V1'

(5

_______ 1 I £ 1

Á MIGRACIÓN

00 MIGRACIÓNr

- BIOGENICO k000

0J' /

- co, ,0' r --- - -' -

MEZCLA • If

- GASES

jtJscB}1 TERMOGÉNICOS

LCB_____ 1

-80 -70 -60 -50 -40 -30

6' 3C (CH 4 ) (%o) BERNARD

Figura 62. Gráfica de Bernard en el estudio de Kotarba.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 73

Page 74: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YACIMIENTOS DE CARBÓN MINERAL (GAC)

o

-60

u

c -40

-

TRANSICIÓNT

- FERMENTACIÓN MEZCLAq

o

CO

Lo uscn] ¿1cn

-350 -250 -150

D (C144) (%) SCHOELL

Figura 63. Gráfica de Schoell en el estudio de Kotarba.

Como se ha mostrado en estudios recientes sobre la caracterización y clasificación de

gas asociado a carbones, mediante análisis isotópicos, la incertidumbre que existe

para definir su génesis, aún cuando geológicamente se definen como gases de

carbón, llevan a considerar que estos estudios por sí solos, no son determinantes para

definir su origen, razón por la cual es necesario la conjunción de varios estudios

adicionales para que los resultados sean confiables.

Aún cuando existen una serie de métodos de diferentes autores para clasificar los

gases naturales, sólo se puede concluir que es relativamente sencillo y determinante,

diferenciar los gases termogénicos de los biogénicos y ambos pueden ser generados

por carbón (kerógeno III) y por kerógenos 1 y H.

Cabe mencionar, que los gases termogénicos generados a partir de kerógenos, son

los que integran las mayores reservas de gas en el mundo y puede ser subdividido en

función a los datos isotópicos y de composición del carbono e hidrógeno.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 74

Page 75: El gas asociado a los yacimientos de carbón mineral (GAC)

e EL CARBóN

De esta manera, el uso de algunos de los diagramas aquí expuestos podrán dar una

idea muy clara para diferenciar los gases de origen del kerógeno III (carbón) con los

generados por los kerógenos 1 y H.

Los gases termogénicos generados por carbón (kerógeno III), se caracterizan por

valores altos § 13C en el metano, que podrían variar entre -30 y -20% lo que implica

e que el metano es isotópicamente pesado, por otra parte los gases termogénicos

originados por kerógenos 1 y II tienden a valores más negativos de § 13C, del orden de

-55 a -30 %, en el metano, por lo tanto la firma de los isótopos de carbono es más

ligero. Algunos diagramas para caracterizar los gases muestran una ligera

sobreposición, lo cual ha sido corroborado en estudios recientes, como se menciona

e en este trabajo.

Por ejemplo, a partir de datos experimentales combinados con datos de campo de los

e grandes yacimientos de gas en Siberia Occidental, indican metano generado a partir

de carbón (kerógeno III), con una firma del isótopo de carbono bastante similar a la del 1 gas generado por kerógeno tipo 1 y H.

Por otro lado, Bernard y Faber (1988, en Martínez, L. 2008), han sugerido, además,

que el isótopo de carbono del etano puede ser utilizado para diferenciar gases

e termogénicos de diferentes orígenes, por ejemplo el gas derivado del carbón

e (kerógeno III) puede dar un isótopo pesado mientras que para el gas a partir de

kerógeno 1 y II, es más ligero.

Es obvio que existen algunas dudas con respecto a una exacta definición de los

límites entre los gases derivados a partir de diferentes tipos de kerógenos.

e Investigaciones recientes concluyen que aún no es posible definir límites claros en el

e origen del gas, ya que por ejemplo: gases con una firma isotópica más negativa del

§ 13C (-55 y -30 %) derivados del cracking térmico a partir de kerógenos 1 o II, pueden C también ser generados por un cracking térmico del kerógeno III (carbón), condición

e que afecta la confiabilidad.

- En gran parte de lo anterior, se debe al proceso de mezcla de diferentes tipos de

1 gases que ocurre en cuencas sedimentarias, este hecho disminuye la posibilidad para

e definir un claro marcador del gas asociado al carbón (kerógeno III), aún cuando la

e migración y maduración queda registrado de forma clara en la firma isotópica.

e ESPECIALIDAD: INGENIERÍA GEOLÓGICA 75 e

Page 76: El gas asociado a los yacimientos de carbón mineral (GAC)

ELGASASOCIADOALOSYACIM!ENTOSDECARBÓNMINERJAC) -

11

Adicionalmente la presencia de gases exógenos en los mantos de carbón indica la

naturaleza dinámica de estos yacimientos de gas y confirman la necesidad de más

investigación científica acerca de estos complejos sistemas.

Resumiendo, del análisis realizado en base a los diferentes autores y gráficas

diseñadas para la diferenciación de la génesis de los gases, se puede manifestar lo

siguiente:

El conocimiento sobre el origen del gas y su distribución en y alrededor de

carbones requiere de más estudios detallados de cuencas particulares. Por lo

tanto no se deben considerar estudios individuales o de un solo tipo o técnica,

como determinantes.

Para definiciones de operación, en la producción comercial de gas, tales como:

distancia de los reservorios de gas con respecto a los mantos de carbón;

producción a partir de los mantos de carbón; producción en rocas o capas

adyacentes a los mantos y desgasificación durante las operaciones mineras del

carbón, es recomendable utilizar los términos de gases asociados a los

yacimientos de carbón mineral (kerógeno III) y otros gases.

Es indudable que el aprovechamiento del gas atrapado en los mantos de carbón,

en las rocas adyacentes y el gas de minas abandonadas es necesario, desde el

punto de vista económico y de seguridad e integridad de los mineros.

Si el metano isotópicamente pesado (valores de § 13C entre -30 y -20 %), se

pudiera considerar como de origen exclusivo a partir de carbón (kerógeno III), se

necesitarán investigaciones adicionales, tales como reinterpretar y revisar los

yacimientos de gas en el mundo y sus rocas generadoras mediante trabajos de

campo y de experimentación, que soporten esta condición, para así proponerla

como único método de identificación.

Para determinar de manera confiable la génesis de gas, será necesario realizar

una serie de estudios de campo, gabinete y laboratorio complementarios y

relacionados entre sí.

e e n

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 76

Page 77: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GA ASOCIADOALOS YAaNVEN TOS DE cARBÓN MERAL (GAq

V111.3 Estudios óptimos para definir con la mayor certeza el origen del gas

VII.3.1 CONDICIONES GEOLÓGICAS, ESTRATIGRÁFICAS, ESTRUCTURALES Y ESPACIALES

Definición y delimitación de la cuenca sedimentaria, determinación de los

depocentros y ambientes de depósito

Estudios de estratigrafía secuencial

Condiciones físico químicas de las rocas sedimentarias

Condiciones estructurales a través del tiempo geológico

Determinación de materia orgánica concentrada (carbón) y dispersa

Presencia de gas en mantos de carbón, en rocas adyacentes y en rocas

suprayacentes a los mantos.

VII.3.2 MÉTODOS ANALÍTICOS PARA IDENTIFICAR LOS TIPOS DE KERÓGENOS Y SU PORCENTAJE

DE PREDOMINANCIA

Microscopía

Petrografía orgánica

Microscopía electrónica

Geoquímica

Análisis elemental (CHO)

Pirolisis (Rock eval)

Isotopía y composición

VII.3.3 MODELADO GEONUMÉRICO

a. Geo químico y geométrico

Lo ideal es contar con todos los estudios a fin de tener resultados realmente confiables en

la definición de la génesis del gas asociado a los yacimientos de carbón mineral (GAC).

Los estudios mínimos que se deben considerar para un análisis confiable sobre la génesis

del gas son: todos los temas relacionados en el punto uno; los del punto dos podrían

quedar sólo con petrografía orgánica, análisis elemental e isotopía (que incluye la

composición del gas); el punto tres podría no ser necesario.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 77

Page 78: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOCIADOALOS YA CIMIENTOS DE cARBÓN MINELGA

VIII. MODELADO NUMÉRICO E HISTORIA DE SEPULTAMIENTO

Modelar la historia del sepultamiento, por ejemplo en el caso de la Cuenca de Sabinas,

Coah., permite reconstruir la evolución de presión y temperatura, a la cual estuvo

sometida la columna litológica, estrechamente ligada a las hipótesis concernientes a la

evolución del flujo de calor e importancia del espesor de sedimentos erosionados durante

procesos de levantamiento de la cuenca. La evolución de la presión en el seno de los

sedimentos controlaría (al menos en parte) el fracturamiento de las rocas, esto puede

jugar un papel determinante durante la expulsión y la migración del gas.

Para realizar el modelado y estar en condiciones de calcular la presión litoestática que

ejercen las rocas suprayacentes, es necesario establecer la composición litológica

(idealizada), con base en mezcla de litologías puras con propiedades físicas bien

estudiadas, por ejemplo:

• Formation- Shale- Siltstone-Sandstone- Limestone- Dolomite- Man- Coal- Evaporite

• Wilcox - 20 - 50 - 30 - O - O - O - O - O • Midway - 50 - 20 - 30 - O - O - O - O - O

• Mendez - 60 - 40 - 0 - O - O - O - O - 0 • Navarro - 15 - 10 - 5 - 50 - O - 20 - O - O • Taylor - 5 - 10 - 15 - 50 - O - 20 - O - O • Escondido - 60 - 20 - 15 - 5 - O - O - O - O • Olmos - 70 - 10 - 8 - O - O - O - 12 - O

• San Miguel 30 - O - 70 - O - O - O - O - O • Upson Clay 97 - O - 3 - O - O - O - O - O • Austin 30 - O - O - 50 - 10 - 10 - O - O • Eagle Ford 40 - O - O - 60 - O - O - O - O • Monclova O - O - O - 1 - O - O - O - O • Buda 0-0-0 - 1 -0 -0-0-0

El marcador térmico más utilizado, durante el modelado de la Cuenca de Sabinas, es el

poder reflector de la vitrinita (%R). La evolución de este parámetro se puede simular al

utilizar diferentes modelos cinéticos que forman parte de las librerías de los software de

modelado; sin embargo, el más comúnmente utilizado para Sabinas es el modelo

Easy%R (Sweenay y Burnham, 1990, en Martínez L., 2008) y son calibrados utilizando

mediciones de poder reflector de la vitrinita, en muestras representativas.

Debe ponerse atención especial a los valores de grado de madurez, determinados y

utilizados en este tipo de estudios, ya que es frecuente que algunas mediciones se

reporten como medidos sobre vitrinita cuando son tomados en otro tipo de material (He,

2002, en Martínez L., 2008). Este tipo de error induce problemas, ya que son utilizados

como calibradores.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 78

Page 79: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADOA LOS YACIMIENTOS DE CARBÓN MsNERALJGAÇ)

Con base en el grado de madurez de la vitrinita, Piedad Sánchez (2004), mostró que en la

Cuenca de Sabinas existen variaciones de %Ro que cambian con la profundidad:

Más fuerte:

Al NW, en el nivel -400

Al NE, en el nivel -700 m.

Al SE, en el nivel -2200 m.

De acuerdo con el autor los flujos de calor sugieren que son independientes de la

tectónica regional ya que atraviesan estructuras regionales, figura 64.

Unfl ,Il,,Il., bltn d. $.W,ss

ti 4iT r

Ion, InnIo,,,,,

4,,,, fr B,,,nI,, do l,nhIn,, I'IOdn,,

-

IOhlnIh,lIn. 4, R 4',) .I.,k 110.1., 'ø1. do,,, lo Il,,nI,, 4, ),,l,In,, Pf.dn,, Noto,,.

Figura 64. Flujos de calor en Sabinas, Coah.

El modelado utiliza modelos cinéticos por reacciones parciales que permiten simular la

generación de hidrocarburos (aceite y gas), integrando el cracking secundario de los

compuestos generados por el cracking primario. Estas reacciones se derivan de la

ecuación de Arrehnius:

dXldt = X A exp(-Ea/RT).

Donde:

dX = fracción del reactante convertido.

A= factor preexponencial (s 1 ).

Ea = energía de activación (cal/mol); R = constante de los gases perfectos

T = Temperatura (K)

t = tiempo (s).

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 79

Page 80: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOCÍADOA LOS YA CIMIEN TOS DE CARBÓN MIÍVERAL(GA)

Si la evolución de la temperatura en función del tiempo es conocida, la ecuación permite

calcular la fracción de reactante convertido para un intervalo de tiempo dado. La

conversión de una fracción implica que el potencial IH de la muestra de referencia se

reduzca en la misma proporción. Así, para una misma historia térmica y para una energía

de activación dada, se puede determinar la fracción de reactante convertido

En la literatura especializada existen y se pueden encontrar gran cantidad de modelos

cinéticos (ejem., Behar et al., 1997). Sin embargo, si existen las condiciones adecuadas,

es preferible desarrollar un modelo para cada tipo de roca generadora, carbón para el

caso de Sabinas.

Tanto el flujo de calor como el espesor erosionado van a controlar de manera diferente los

perfiles calculados de los marcadores térmicos: una anomalía térmica positiva estará

representada por un incremento puntual del flujo de calor y se manifiesta como una

curvatura que se separa del perfil que corresponde al comportamiento teórico o

calculado; por otra parte, si el efecto de la erosión, afecta a la profundidad máxima de

sepultamiento, se reflejara como un desplazamiento entre la curva real y la teórica en

función de la profundidad.

La forma general de la curva de evolución del flujo de calor fue determinada de los datos

de termicidad obtenidas por Allen y Allen (1989), para cuencas conocidas con historias

similares a la Cuenca de Sabinas.

Los flujos de calor para la Cuenca de Sabinas, durante la fase de rift, son del orden de

100 miWcm 2 . Los valores actuales, determinados a partir de los perfiles de temperatura

medidos sobre 20 pozos (Leu et al., 2001; Sachsenhofer et al., 2002, en Martínez L.,

2008), indican que el flujo de calor en la Cuenca de Sabinas es del orden de 60 mW/m 2 .

Con la hipótesis de un flujo de calor no perturbado, el valor actual se utilizó como

referencia para la curva de evolución, aplicando una gamma de flujos de calor entre 50 y

65 mW/m 2 , figura 65. 1,

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 80

Page 81: El gas asociado a los yacimientos de carbón mineral (GAC)

ELG.ASASOcIAD0 A LOS YACIMIENTOS DE CARBÓN MINERAL(GAC)

Sweeney&Burnhem(1 990) EASY%Ro %RoJ

Án IMM moncioval - Dt,oIt 0001 .00 2.00 3.50

145 100 0 0

-o 125 00

Pg Nt Aost,n 1000

1000 teeIouo

Up6er Tan Ian

L. Voger MS 2000

2000 10000 jeIolooJ

4000

- - • Sweeney8ournham(1 990)_EASY%Ro - -1oerto_Oel

6027 • huerta

Figura 65. Ejemplo de historia térmica para la Cuenca de Sabinas, obtenido en PETROMOD IDTM y de la comparación del perfil del %Ro calculado tomando en cuenta la historia térmica y los valores medidos en

las muestras (Menetrier, 2006).

Tomando información de pozos de Pemex y utilizando un modelo para kerógeno tipo III

(Behar et al 1997), los hidrocarburos generados sufrieron un cracking primario

relacionado con el sepultamiento y un cracking secundario relacionado con las anomalías

térmicas. Figuras 66 y 67.

Ae IMe) moncove1 . Detet*

o

1co

4000

6026

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 81

Page 82: El gas asociado a los yacimientos de carbón mineral (GAC)

ELGASASOCIADO A LOS YACIMIENTOS DE CARBÓN M!NERALJGAC)

1

1 IfLFMJ

v(x8MJ

Figuras 66y 67. Evolución de la madurez en función de/tiempo (azul: inmaduro; verde: ventana del aceite; rojo: ventana del gas), y Evolución de las cantidades de hidrocarburos (aceite y gas) generados por la Formación La Casita. El modelo tomó en cuenta el cracking secundario de los hidrocarburos formados.

a a a a a a

1

a e e e

se e e e e e e e a e

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 82

Page 83: El gas asociado a los yacimientos de carbón mineral (GAC)

IX. CONCLUSIONES Y RECOMENDACIONES

La formación del carbón requiere condiciones especiales en zonas litorales, mixtas o

marinas someras, donde la mayoría de materia orgánica corresponde a vegetales

mayores que son depositados en agua o donde el nivel freático esta casi en la

superficie. La vegetación es reducida hasta 12 veces en volumen para conformar los

mantos de carbón.

Durante la carbonización de la materia orgánica, se llega a generar 1,300 m 3 de gas

por tonelada de materia orgánica. El metano generado es expulsado y migrado

durante la evolución de la madurez del carbón, logrando permanecer alrededor del 1.3

% gas almacenado en los mantos de carbón como coalbed methane.

El total de metano que se genera se presenta como: gas expulsado durante las etapas

de carbonización que podría entramparse en rocas porosas como gas convencional,

otro se emitiría a la atmósfera y el restante permanecerá en los mantos de carbón.

El proceso de expulsión ocurre durante las diferentes etapas de maduración del

carbón; en las primeras etapas se expulsa gas biogénico acompañado de agua, CO2,

y otros gases; cuando el carbón alcanza el grado de carbón bituminoso se expulsa

gas termogénico acompañado de bitumen y otros gases.

El Gas Asociado a los Yacimientos de Carbón Mineral (GAC) incluye a las dos

principales clasificaciones de gas relacionados con la forma de ocurrencia:

Convencional. Gas almacenado en rocas con alta permeabilidad.

No Convencional. Gas almacenado en rocas con baja permeabilidad

(Coalbed methane, CBM)

C 6) La determinación de los análisis para definir la génesis de gas asociado a yacimientos

de carbón mineral (GAC), se traduce en una serie de estudios que no se restringen

exclusivamente a isotopía, debido principalmente a la presencia de mezclas de

Ç diferentes tipos de gases que se presentan en las cuencas sedimentarias y que son:

C • CONDICIONES GEOLÓGICAS, ESTRATIGRÁFICAS, ESTRUCTURALES Y ESPACIALES

e

• MÉTODOS ANALÍTICOS PARA IDENTIFICAR LOS TIPOS DE KERÓGENOS Y SU PORCENTAJE

DE PREDOMINANCIA

. MODELADO GEONUMÉRICO

e e -

EsPEcIALIDAD: INGENIERÍA GEOLÓGICA 83 e

Page 84: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YA CIMIENTOS DE CARBÓN MINERAL (GAC)

X. BIBLIOGRAFÍA

ALPERN B (1969) Le pouvoir réflecteur des charbons français. Société Géologique du

Nord. 145-166.

ALPERN B. (1984) Pétrographie des charbons et gazéification «in situ », Buli. Soc. Géol

France, (7), t. XXVI, n°5, p. 739-756.

ALPERN B. y LEMOS DE SOUSA (1970) Sur le pouvoir réflecteur de la vitrinite et de la

fusinite des houilles. C. R. A. S..v. 271.956-959.

ALPERN, B., LEMOS DE SOUZA, M.J., (2002). Documented international enquiry on solid

sedimentary fossil fuels; coai: definitions, classifications, reserves-resources, and

energy potential. International Journal of Coal Geology. Vol. 50

AGUEDA J.A., BAHAMONDE J.R., BARBA F.J., BARBA P., COLMENERO J.R.,

FERNANDEZ L.P., SALVADOR C.l., Vera C.; 1991 : Depositional environments in

Westphalian coal-bearing succesions of the Cantabrian Mountains, northwest Spain.

Builetin Société Géologique du France. Vol. 162, No. 2, pp. 325-333.

ALER J. and BRIME C.; 1985: Deformación y metamorfismo en la parte sur de la Cuenca

Carbonífera central (NO. de España). Compte Rendu Dixiéme Congrés International

de Stratigraphie et de Géologie du Carbonifére. Madrid. 1983. Vol. 3, pp. 541-548.

ALLEN and ALLEN, 1990. Basin analysis: Principies and applications, Blackwell Scientific

Publications.

ALONSO O.E., BRIME C. ; 1990: Mineralogy, geochemistry, and origin of the underclays

of the Central Coal Basin, Asturias, Spain. Clays and Clay Minerals. Vol. 38, No. 3, pp.

265-276.

ALVAREZ-MARRON J.; 1995: Three dimensional geometry and interference of fault-

bend folds: Examples from Ponga unit, Variscan Belt, NW Spain. Journal of Structural

Geology. Vol. 17, pp. 549-560.

ALSAAB, D., ELlE, M., IZART, A., et al. (2007): Comparison of generative capacities for

bitumen and gas between Carboniferous coals from Donets Basin (Ukraine) and a

Cretaceous coal from Sabinas-Piedras Negras Basin (Mexico).

1,1

*

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 84

Page 85: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GASASOCIADOALOS YACIMIENTOS DE CARBÓN MINERAL

ARBIZU M., Aher J., MENDEZ-BEDIA 1.; 1995: Rasgos geológicos de la región del Cabo

Peñas. In: Aramburu C., Bastida F. Geología de Asturias. Ediciones TREA. Spain,

pp. 231-246.

ASTM ( 1991 ) 1991 Annual Book of Standars, Pt 26- Gaseous fuels; coal and coke;

atmospheric analysis: Philadelphia. PA. American Society for Testing and Materials.

BARKER C.E.,SCOTT A. R., DOWNEY R. A., (2001) Coal Bed Methane: From prospect

to production. Short Course presented at: American Association of Petroleum

Geologist Annual Convention, Denver, Colorado

BARTIER D.; 1997: Contróle lithologique et diagenése des minéraux argileux dans le

crétacé inférieur Basco-Cantabrique (N. Espagne). Thése. Doctorat. Université Des

Sciences et Technologies de Lille. 147 p.

Behar F., Vandenbroucke M., Tang Y., Marquis F., Espitalié J. .(1997) Thermal cracking

kerogen in open and closed systems: determination of kinetic parameters and

stoichiometric coefficients for oil and gas generation. Organic Geochemistry. Vol. 26

(5-6)

BELIN-GEINDRE S. , PRADIER B., MARTINEZ L. & FENNOUH A.(1994) - Image

analysis apphied to the characterization of petroleum source rocks. Conferencia

huesped, Memorias del 1 Congreso Internacional en Materiales, 5 - 7 octobre, Saltillo,

S Coahuila, Mexico, Pub. Especial del ITS.

BIEG G., BURGER K.; 1992: Prehiminary study of tonsteins of the Pastora Formation

(Stephanian B) of the Ciñera - Matallana Coalfield, northwestern Spain. International

Journal of Coal Geology. Vol. 21, pp. 139-160.

BLANC Ph. (1989) Structure moléculaire des charbons: évolution en fonction du rang et

du type. Thése de Doctorat. Université Louis Pasteur. 228p.

BURNHAM, A.K. and SWEENEY, J.J., 1989. A chemical kinetic model of vitrinite

maturation and reflectance. Geochimica et cosmochimica acta., 53: pp 2649-2657.

CARRASCAL MIRANDA E.R., MARTINEZ L. & SUAREZ RUIZ 1. (1994) - Estudio por

microscopia óptica y electrónica de los carbones de la cuenca Alto Chicama (Cretácico

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 85

Page 86: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YA CIMIEN TOS DE CARBÓN MINERAL(GAC)

15

Inferior), Resúmenes Extendidos del VIII Congreso Peruano de Géologia du 20 au 22

dejuillet 1994.

CARRASCAL MIRANDA R., SUAREZ-RUIZ 1. & MARTINEZ L. (1996). - Analysis of the

evolution and rank distribution of coals from OYON Basin (Upper Jurasic) of Peru.

Congreso Geologico de Espana, 1-5 de julio, Madrid, Espana, GEOGACETA, 20(3),

1996, pp.651-654. Ir

CASTALDO R.A. DEMKO T.M. LIU Y.J. (1991) A mechanism to explain persistent

alternation ofclastic and peat-accumulating swamps in Carboniferous séquences. Biill.

Soc. géoL France, 1.162, 2, 299-305 1 \VILR R. (1991 ) Rapport interne CPM (Ti

19191/RJa), Forbach, France. .11

CHEN J., QIN Y., HUFF B.G., WANG D., HAN D., HUANG D. 2002. Geochemical

evidence for mudstone as the possible major oil source rock in the Jurassic Turpan -11

Basin, Northwest China. Organic Geochemistry. Vol. 32 (9) >11

CHUNG, H.M., SACKETT, W.M., (1979) Use of stable carbon isotope compositions of

pyrolytically derived methane as maturity indices for carbonaceous materials.

Geochimica et Cosmochimica Acta, 43(12), 1979-1 988.

CLAYTON, C., (1991) Carbon isotope fractionation during natural gas generation from

kerogen. Marine and Petroleum Geology, 8(2), 232-240.

COLMENERO J.R., PRADO J.G.; 1993: Coal basins in the Cantabrian Mountains,

northwestern Spain. International Journal of Coal Geology. Vol. 23, pp. 215-229.

DISNAR, J.R., 1986. Détermination de paléotempératures maximales denfouissement de

sédiments charbonneux á partir de données de pyrolyse. Comptes rendus de

l'Académie des sciences.Série 2. Sciences de la terre et des planétes., 303(8): pp 691-

696.

EGUILUZ DE ANTUÑANO, SAMUEL (2001). Geologic Evolution and Gas Resources of

the Sabinas Basin in Northeaster Mexico. AAPG Memoir 75. pp. 241 - 270.

ESPITALIE. J.. DEROO. G. ci MARQUIS F. (1985) La pyrolyse Rock-Eval et ses

applications Rey. IFP, 19S5,40. 563 - 783.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 86

Page 87: El gas asociado a los yacimientos de carbón mineral (GAC)

ESPITALIE J., UNGERER, Ph., IRWIN, 1. and MARQUIS, F., 1988. Primary crackirig of

kerogens. Experimenting and modeling Ci, C2-05, C6-C15 and 015+ classes of

hydrocarbons formed. Organic geochemistry, 13(4-6): pp 893-899.

FARIAS P., MARQUINEZ J.; 1995: El relieve. In : Aramburu 0., Bastida F.: Geología de

Asturias. Ediciones TREA. Spain, pp. 163-1 72.

FAURE P.; 1999 : Application des techniques de géochimie organique pétroliére á 1' étude

des problémes environnementaux: Polluants organiques, inertage et stockage des

déchets. Thése Doctoral. lnstitut National Polytechnique de Lorraine. 291 p.

FUENTE ALONSO P., SAENZ DE SANTA MARIA BENEDET J.A.; 1999: La tectónica y

microtectónica de la Cuenca Carbonífera Central de Asturias. pp. 121-140.

GARCIA-VALLES M., PRADO J., VENDRELL-SAZ M.; 1994: Maceral distribution in

Garumnian coals and paleoenvironmental implicatiosn in the central Pyrenees, Spain.

International Journal of Coal Geology. Vol. 25, pp. 27-45.

HOSGÓRMEZ, H., YALCIN, M.N., CRAMER, B., GERLING, P., FABER, E., SCHAEFER,

R.G., MANN, U., (2002) lsotopic and molecular composition of coal-bed gas in the

Amasra region (Zonguldak basin—western Black Sea). Organic Geochemistry, 33,

e 1429-1 439.

e JAMES, A.T., (1983) Correlation of natural gas by use of carbon isotope

distribution between hydrocarbon components. AAPG Bulletin, 67(7), 1176-

- 1191.

JIMENEZ A., MARTINEZ-TARAZONA R., SUAREZ-RUIZ 1.; 1999: Paleoenvironmental

conditions of Puertollano coals (Spain): Petrological and geochemical study.

International Journal of Coal Geology. Vol. 41, pp. 189-211.

JIMÉNEZ A., SUÁREZ-RUIZ 1. & MARTINEZ L. (1996). - Parámetros petrográficos

aplicados al estudio de la génesis del gas en carbones de las cuencas de Lorrain

(France), Warrior et San Juan (U.S.A.). Congreso Geológico de España, 1-5 de julio,

Madrid, España, GEOGACETA, 20(3), 1996, pp. 742-745.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 87

Page 88: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADO A LOS YA CIMIENTOS DE CARBÓN MINERfGA Ç)

4,

JIMÉNEZ A.(1995) Estudio del Grupo Vitrinita en Carbones de distinto rango.

Determinación de sus propiedades y relaciones con su génesis. Tests Doctoral. Unv.

Salamanca. 255p.

JULIVERT M.; 1967: La ventana del Río Monasterio y la terminación meridional del

Manto de Ponga. Trabajos de Geología. Universidad de Oviedo. Vol. 1; pp. 59-76.

HAROUNA M., DISNAR J.R., MARTINEZ L., TRICHET J. (1993) - Discrepancies between

different organic maturity indicators in coal series affected by an anormal thermal event

(Visean, Niger). Chemical Geology, 106, (3-4), pp 397-413

KWIEC1NSKA B.. HAMBURG G. AND VLEESKENS J. (1994) SEM Study of natural

cokes and associated minerais. Résumés du IX - Colloque International de

Pétrographes Organiciens Francophones, Elf Aquitaine Production. Pau. France, 293-

299.

KNIGHT J.A., BURGER K., BIEG G.; 2000: The pyroclastic tonsteins of the Sabero

Coalfield, north-western Spain, and their relationship to the stratigraphy and strucyural

geology. International Journal of Coal Geology. Vol. 44, pp.187-226. 4

KOLLMEIER J.M., VAN DER PLUIJM B.A., VAN DER VOO R.; 2000: Analysis of

Variscan dynamics; early bending of the Cantabria-Asturias Arc, northern Spain. Earth

and Planetary Sciences Letters. Vol. 181, pp. 203-216.

KOTARBA, M.J., (2001) Composition and origin of coalbed gases in the Upper Silesian

and Lublin basins, Poland. Organic Geochemistry, 32(1), 163-1 80.

LAFARGUE E., MARQUIS F., Y PILLOT D. (1998): Rock-Eval 6 applications in

hydrocarbon exploration, production and soil contamination studies. Oil and Gas

Science Technology - Revue de l'IFP.

LAW B.E. (1992) Thermal Maturity Patterns of Cretaceous and Tertiary Rocks, San-Juan

Basin, Colorado and New-Mexico. AAPG Biifl.. Vol 104, lss 2. pp 192-207.

LEVINE. J. R. (1993) Short Course 'Exploring coalbed méthane réservoirs". March 16-17,

lnstitut Français du Pétrole. Rueil Malmaison. France. 256p.

itV

ESPECIALIDAD: INGENIERÍA GEOLÓGICA -88

Page 89: El gas asociado a los yacimientos de carbón mineral (GAC)

ELGASASOCIADOALOSYAaMIENTQSDECARBÓNMINERAL(GAC)

LEYVA F., GRANADOS L.F., SOLOVIEVA M.N., LAVEINE J.P., LYS M., LOBOZIAK 5.,

MARTÍNEZ-DÍAZ C., BROUSMICHE O., CANDILIER A.M., GARCÍA-CORTÉS A.;

1985: La estratigrafía del Carbonífero Medio en el área Los Tornos-Villoria-Colladona

(Sector oriental de Cuenca Central). Congres du Carbonifere 1983. Madrid. Vol. 1, pp.

231-248.

LITTKE, R., KROOSS, B.M. (2008) Best practices for identification of unconventional gas

and gas derived from type III kerogen. Informe inédito para el Servicio Geológico

Mexicano.

LORANT, F., PRINZHOFER, A., BEHAR, F., HUC, A.-Y., (1998) Carbon isotopic

and molecular constraints on the formation and the expulsion of thermogenic

hydrocarbon gases. Chemical Geology, 147, 249-264.

MARTINEZ L., SUAREZ-RUIZ 1 & JIMENEZ A. (1996). - Application of Geochemical and

Petrographic Parameters to the Study of Gas Genesis in Coals. 5th Latin American

Congress on Organic Geochemistry, October 6-10, Cancún México) 1996. pp 195-1 97

MARTINEZ L, FENNOUH A., BELIN-GEINDRE S. & MARTINEZ-ORTEGON R. (1994) -

Aplicacion de el analisis d'imagenes a el estudio petrografico de la migracion primaria

de los hidrocarburos: Utilizacion de la simulation numerica PETROIL, Memorias del 1

Congreso Internacional en Materiales, 5 - 7 octobre, Saltillo, Coahuila, México, Pub.

Especial del ITS. pp 546-574.

MARTINEZ L.I (1982) - Comportement de la matiére minérale des charbons lors de leur

traitement mécanique et thermique. Thése de Docteur lngénieur, Université d'Orléans,

France 192p.

MARTINEZ L. & BARANGER R. - (1992) - Evolution thermique de la vitrinite dans le fora-

ge BALAZUC-1 (GPF)., rapport interne CGS, Strasbourg, France, lOp.

MARTINEZ L., PETERMAN y., MARTINEZ-ORTEGON R., (1993a) - Etude par le modéle

EXPOIL de la genése et de lexpulsion des hydrocarbures d'une roche mére du bassin

de Paris maturée artificiellement, Résumés du IX - Colloque International de Pétrogra-

phes Organiciens Francophones, Elf Aquitaine Production, Pau, France.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 89

Page 90: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADOALOS YACMIENTOSDEARBÓNMINERAL (GAcL --

MARTINEZ L. (1993) - La migration primaire des hydrocarbures: Etude ¡ntégrée de

pétrographie et géochimie organique des roches méres argilo-détritiques, Thése de

Docteur-és-Sciences, Université d'Orléans, France 192p.

MARTINEZ L., CONNAN J., BREVARD 0., SAHUQUET B. & MARTINEZ-ORTEGON R.,

(1993b) - Etude de la migration primaire des hydrocarbures en laboratoire: Le modéle

Expoil, BulI. Centres Rech. Explor.-Prod. Société Nationale Elf-Aquitaine), Vol. 181

Pub. Spec., pp37-59.

MARTINEZ-DIAZ C., GRANADOS L.F., LEYVA F., LAVEINE J.P., SOLOVIEVA M.N.,

REITLINGER E.A., GERVILLA M., LOBOZIAK S., BROUSMICHE C., CANDELIER

A.M., PENDAS F., HORVATH V.; (1985): Aportaciones a la cronoestratigrafía del

Carbonífero Medio de Asturias y Nuevos datos para un intento de correlación de las

escalas marinas y continentales. Congres du Carbonifere 1983. Madrid. Vol. 1, p. 269-

MARTINEZ L; (2008) Estudio del Gas Asociado al Carbón Mexicano. Informe inédito para

el Servicio Geológico Mexicano.

MONTHIOUX M. (1986)- Maturations naturelle et artificielle d'une série de charbons

homogénes. Thése d'Etat. 33 1 p

MLJKHOPADHYAY..K. and HATCHER, P.G.(1993) Composition of Coal. In Hydrocarbons

from Coal (Law B. E. and Ricc D. R.). AAPG Studies in Geology. . 38, 79-113.

NICOLAS, G., PRADIER, B. and VANNIER-PETIT, F., 1997. Reconstitution des

environnements de dépót des sédiments organiques de plaine deltaique. Application á

rétude sédimentologique du groupe Brent (Mer du Nord). Bulletin du Centre de

Recherches Elf Exploration Production, 21(1):pp 249-264

PASH1N J. C. (1991): Regional analysis of thé Black Creek-Cobb coalbed-methanc target

interval, Black Warrior basin. Alabama. Alabama, Geological survey Bulletin, 145,

127p.

PASH1N J. C. (1994) Coal-body geometry and synsedimentary detachment folding in

Oak-Grovc coalbed methane Black Warrior basin, Alabama, AAPG BulI., 78(6), 960-

980.

pi

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 90

Page 91: El gas asociado a los yacimientos de carbón mineral (GAC)

PIEDAD-SÁNCHEZ, N. (2004): Prospection des Hydrocarbures par une approche intégrée

de pétrographie, géochimie et modélisation de la transformation de la matiére

organique: Analyse et reconstruction de I'histoire thermique des Bassins Carbonifére

Central des Asturies (Espagne) et Sabinas - Piedras Negras (Coahuila, Mexique).

Thése PhD. Université Henri POINCARE Nancy 1, Faculté des Sciences, UMR CNRS

G2R17566, Ecole Doctoral RP2E, Vandoeuvre les Nancy CEDEX,France. 256 p.

QUEROL X., CABRERA LI., PIKEL W., LOPEZ-SOLER A., HAGEMANN H.W.,

FERNANDEZ-TURIEL J.L.; 1998: Geological control on the coal quality of the

Mequinenza subbituminous coal deposit, northeast Spain. International Journal of Coal

Geology. Vol. 29, pp. 67-91.

SCHALFFER R. G.. SCHENK H.J. y LITTKE R. (1995) The origin of the West-Siberian

gas accumulations Reaction kinetics of gas formation. In Organic Geochemistry:

Developments and Applications to Energy, Climatic. Environment and Human History.

17th International Meeting on Organic Geochemistry. 1126-1128.

SCOTT A.R., KAISER W.R. y AYERS W.B. (1994) Thermogenic and secondary biogenic

gases, San Juan basin. Colorado and New Mexico. Implications for coalbed gas

producibility, , AAPG BiiII., 78,8, 1186-1209.

SCHOELL, M., (1983) Genetic Characterization of Natural Gases. Bulletin of the American

association of Petroleum Geologists, 67(12)

SMITH, J.W., PALLASSER, R.J., (1996) Microbial origin of Australian coalbed methane.

Bulletin of the American Association of Petroleum Geologists, 80(6), 891-897.

SPEARS. D. A. (1987) Minéral mattcr in coals, with special reference to the Pennine

Coalfields. In: Scott (Ed.). GeoI. Soc. Symp. on Coal and Coal Bearing Strata. Edham,

Surrey, 171-185.

SAENS DE SANTA MARIA J.A., LUQUE C., GERVILLA M., LAVEINE J.P., LOBOBOZIAK

5., BROUSMICHE C., COQUEL S., MARTINEZ-DIAZ C.; 1985: Aportación al

conocimiento estratigráfico y sedimentológico del Carbonífero productivo de la Cuenca

Central Asturiana. Congres du Carbonifere 1983. Madrid. Vol. 1, p. 303-

ESPECIALIDAD: INGENIERÍA GEOLÓGICA 91

Page 92: El gas asociado a los yacimientos de carbón mineral (GAC)

EL GAS ASOCIADOAWS YA CIMIENTOS DE cARBÓN MINERAL(GAÇ)

SUAREZ RUIZ 1., & MARTINEZ L. (1989) - Pétrologie Organique de roches méres: Etude

pétrologique et géochimique des échantillons de la région de Cantabria (Espagne)

pyrolyses en milieu ouvert, Résumés de communications du VI - Colloque des

Pétrographes Organiciens Francophones, Instituto Nacional del Carbón, Oviedo,

Espagne, pp 27-42.

SUAREZ-RUIZ 1., MARTINEZ L., BERTRAND Ph., PRADO J.G., DISNAR J.R. (1994):

Influence of rock particle size on the artificial thermal evolution of kerogen. A

petrographic an geochemical study. . International Journal of Coal Geology. Vol. 25,

pp. 47-64.

TEIXELL A.; 2000: Geotectónica de los Pirineos. Investigación y Ciencia. Septiembre,

pp. 54-65.

THIELEMANN, T., CRAMER, B., SCHIPPERS, A., (2004) Coalbed methane in the Ruhr

Basin, Germany: a renewable energy resource? Organic Geochemistry, 35, 1537- 4

1549.

TISSOT, B., WELTE, D.H., (1984) Petroleum Formation and Occurrence. Springer, Berlin,

Heidelberg, New York.

WAGNER R.H. ; 1971 : Account of the International Field Meeting on the carboniferous of

the Cordillera Cantábrica, 19-26 Sept. 1970. The Carboniferous of Northwest Spain. '

Part 1. Trabajos de Geología. 3. Facultad de Ciencias, Universidad de Oviedo, pp. 1-

39.

WAGNER R.H., WINKEL PRINS C.F. ; 1985 : The cantabrian and Barruelian stratrotypes: Ii

A summary of basin development and biostratigraphic information. In: Lemos M.J.,

Wagner R.H.: Papers on the Carboniferous of the Iberian Peninsula (Sedimentology,

stratigraphy, palaeontology, tectonics and geochronology). An. Fac. Ciénc., Porto,

Suppl. Vol. 64 (1983), pp. 359-410.

WEIL.B., VAN DER VOO R., VAN DER PLUIJM B.A., Parés J.M.; 2000: The formation

of an orocline by multiphase deformation : A paleomagnetic investigation of the

Cantabria - Asturias Arc (northern Spain). Journal of Strctural Geology. Vol. 22, pp.

735-756.

ESPECIALIDAD: INGENIERÍA GEOLÓGICA

92

Page 93: El gas asociado a los yacimientos de carbón mineral (GAC)

e C EL GAS AsociADOAWS YA CIMIENTOS DE CARBÓN MINERAL (GA

WHITICAR, M.J., (1990) A geochemial perspective of natural gas and atmospheric

methane. Organic Geochemistry, 16(1-3), 531-547.

WHITICAR, M.J., (1994) Correlation of natural gases with their sources. In: L.B. Magoon,

W.G. Dow (Eds.), The petroleum system - from source to trap, 60 (Ed. by L.B.

( Magoon, W.G. Dow), pp. 261-283. Amercian Association of Petroleum Geologists

e £ WHITICAR, M.J., (1996) Stable isotope geochemistry of coals, humic kerogens and

C related natural gases. International Journal of Coal Geology, 32(1-4), 191-215.

e ..

.

•.

e ESPECIALIDAD: INGENIERÍA GEOLÓGICA 93 e