28
Eo 0421 - RADIOCOMUNICACIONES Conferencia 9: Análisis de Radiopropagación Instructor: Israel M. Zamora, MBA, MSTM Profesor Titular, Departamento de Sistemas Digitales y Telecomunicaciones. Universidad Nacional de Ingeniería I Sem 2015

Lecture 9 analisis radioprop p6

Embed Size (px)

Citation preview

Page 1: Lecture 9 analisis radioprop   p6

Eo 0421 - RADIOCOMUNICACIONES

Conferencia 9: Análisis de Radiopropagación

Instructor: Israel M. Zamora, MBA, MSTMProfesor Titular, Departamento de Sistemas Digitales y

Telecomunicaciones. Universidad Nacional de Ingeniería

I Sem 2015

Page 2: Lecture 9 analisis radioprop   p6

Objetivos

Estudiar los principales aspectos que caracterizan el desvanecimiento en los radioenlaces de microondas.

Presentar algunos métodos para el análisis del desvanecimiento en radioenlaces de microondas.

2I. Zamora Unidad II: Análisis de Radiopropagación

Page 3: Lecture 9 analisis radioprop   p6

Contenido

• Desvanecimiento multitrayecto en radioenlaces• Clasificación

• Desvanecimiento profundo• Rec UIT-R PN530• Método de Mojoli para P0

• Método de UIT para P0

• Desvanecimiento Selectivo• Modelo de rayos• Modelo de signatura• Probabilidad de indisponibilidad total

• Desvanecimiento plano• Desvanecimiento selectivo

3I. Zamora Unidad II: Análisis de Radiopropagación

Page 4: Lecture 9 analisis radioprop   p6

4I. Zamora Unidad III: Radioenlaces terrenales del servicio fijo

Reflexión y Multitrayectoria

Dispersión troposférica(factor k)

Desvanecimiento multitrayecto en radioenlaces

Lluvia

Resulta en desvanecimiento (Fading)

Page 5: Lecture 9 analisis radioprop   p6

Desvanecimiento multitrayecto en radioenlaces

Desvanecimiento:Variación en el tiempo de la magnitud o de la fase (o de ambas) en alguna de las componentes en frecuencias de la señal recibida, debido a cambios en las condiciones de propagación.

5I. Zamora Unidad II: Análisis de Radiopropagación

Page 6: Lecture 9 analisis radioprop   p6

• Potencia recibida nominal Po: valor mediano de la potencia recibida.

• Desvanecimiento: toda disminución de la potencia recibida de señal con relación a su valor nominal.

• Profundidad de desvanecimiento (dB): la diferencia entre ambos valores.

• Expresada como diferencia de potencias F1=Po-P1=20log10 (ro/r1),o a partir de las tensiones (voltajes) de envolvente r0 y r1.

Desvanecimientos:

Duración del desvanecimiento F1

Depresión de Pearson:

mttPPF

ttPPF

,

,

202

1101

121 tt

fPP 0

Desvanecimiento multitrayecto en radioenlaces

6I. Zamora Unidad II: Análisis de Radiopropagación

Page 7: Lecture 9 analisis radioprop   p6

Multitrayecto: atmosféricos y suelo (u otros). Suele ser muy profundo y selectivo en frecuencia (afectan solo una parte de la banda

de frecuencia) Forman ISI. Se modela como Rayleigh o Rice

Centelleo Irregularidades en la troposfera De pequeña intensidad

Factor k Desvanecimiento lento de duración larga, con hasta 6 dB de profundidad El radio de Fresnel depende de la frecuencia, aún así la variación no es significativa

dentro del canal. Por ello se consideran planos (afectan a toda la banda de frecuencia).

También pueden ocurrir desvanecimientos por mecanismos de superrefracción y formación de conductos que desenfocan el haz radioeléctrico.

Este grupo se modela como una gaussiana o expresiones empíricas.

Los desvanecimientos de factor k pueden evitarse mediante alturas de antenas adecuadas.

7I. Zamora Unidad II: Análisis de Radiopropagación

Desvanecimiento multitrayecto en radioenlaces

Page 8: Lecture 9 analisis radioprop   p6

Desvanecimiento multitrayecto en radioenlaces

Clasificación de los desvanecimientos:

8I. Zamora Unidad II: Análisis de Radiopropagación

Page 9: Lecture 9 analisis radioprop   p6

: factor de actividad multitrayecto (%)

1-: propagación en condiciones normales

Multitrayectos atmosféricos:

“Mes más desfavorable” para estadísticas de:

Climas templados: η “para el año medio” se corresponde con los 3 meses del verano:

Desvanecimiento por multitrayectoria, es el factor dominante para frecuencias por debajo de10GHz.

Por encima de 10GHz, las precipitaciones determinan la longitud aceptable del trayecto.

.desfmes

.. 4/112/3 desfmesdesfmes

Obviamos el suelo y estudiamos: dependencia con distancia, gradiente N, espesor, altura y grado de estratificación

atmósfera. Si existe componente dominante ⇒ Distribución Rice.

Ej: radioenlaces Si no existe componente dominante ⇒ Distribución Rayleigh

Ej: com. Móviles (reflexiones en edificios,dispersión, difracción)

9I. Zamora Unidad II: Análisis de Radiopropagación

Page 10: Lecture 9 analisis radioprop   p6

•Objetivo: Rec UIT-R PN530

Evaluar la probabilidad de que se rebase una determinada profundidad de desvanecimiento F1(dB) p(F>F⇒ 1).

Se predice la duración media de los desvanecimientos Se predice la frecuencia de los desvanecimiento: número de desvanecimientos de

profundidad superior a F por unidad de tiempo.

1. Si F es pequeña, usualmente centelleo F ≈ 2-5 dB se aplica una gaussiana. La probabilidad de rebasar F1 se expresa mediante:

2. Si F es grande, F > 15 dB, se aplican estadísticas derivadas de la función Rayleigh.

GG

FerfFFp

1

1 2

1)(

10I. Zamora Unidad II: Análisis de Radiopropagación

Sea r la tensión o voltaje de la envolvente de la señal recibida. La pdf de r en el modelo de desvanecimiento Rayleigh: 2

2

1)( r

x

R exrp

Desvanecimientos Profundos

1022

10/

11

11

10110

exp1F

rr

F

RR rrpR)FF(p

Page 11: Lecture 9 analisis radioprop   p6

Desvanecimientos Profundos

11I. Zamora Unidad II: Análisis de Radiopropagación

La probabilidad absoluta de que el desvanecimiento sea superior a F1 (dB) incluye la probabilidad de que se ocurra este tipo de desvanecimiento p(R)=η,

RFFp)Fp(F R 11

)(111 FpRFFp)Fp(F GR

La ITU-R proporciona la siguiente relación empírica entre η y P0:

Donde:20r

P

Factor de aparición del desvanecimiento.

Por tanto podemos escribir: 1001

1

10F

P)p(F

Po depende de :• Longitud• Frecuencia• Terreno• Clima

75.002.0exp1 P

Para el caso de desvanecimiento profundo F > 15 dB pG(F) 0, por lo cual la ecuación se reduce a:

100

1021

11

1010FF

r

P)Fp(F

NOTA: Esta expresión la vamos a utilizar para determinar la probabilidad de indisponibilidad

debido al desvanecimiento plano, pTP

100

1

10F

TP Pp

Page 12: Lecture 9 analisis radioprop   p6

Desvanecimiento: Método de Mojoli para P0

12I. Zamora Unidad II: Análisis de Radiopropagación

El valor del factor de aparición del desvanecimiento, P0, para el mes más desfavorable se calcula como sigue,

Donde: f es frecuencia en GHz d es la longitud del enlace en Km a es un parámetro descriptivo del clima. a [.25,4].

Climas templados a=1, Climas secos y montañosos, a=0.25, Climas húmedos o que presentan variaciones térmicas intensas (ej: desiertos), a=4.

b parámetro que incluye la influencia del terreno. Se calcula como: s es la desviación típica terreno sin tener en cuenta el primer y

último km

3

0 343.0

dfbaP

Para terrenos medianamente ondulados con una ondulación s: comprendida entre 5 y 100 m. Terrenos muy accidentados toman valores mayores.

3.1

15

sb

Objetivo: predicción de la probabilidad de desvanecimiento, para el peor mes del año en cualquier parte del mundo

Page 13: Lecture 9 analisis radioprop   p6

Desvanecimiento: Método de Mojoli para P0

13I. Zamora Unidad II: Análisis de Radiopropagación

27.03

15

4

4.2048.025.03.0

3

0

P048.0

15

1553.1

b

Ejemplo 1: Determine el factor de actividad de multitrayecto y la probabilidad de indisponibilidad (interrupción) por desvanecimiento plano, de radioenlace que cubre una distancia de 15Km, operando a la frecuencia de 2.4Ghz, y margen bruto de desvanecimiento del orden de los 41dB. Considere todos los otros factores que inciden cuando el radioenlace ha sido implementado en la región del pacífico del país. La base del terreno muy irregular, siendo la ondulación promedio de 155m.

%)21.7(0721.0)27.0(2.0exp1 75.0

%)0021.0(000021.01027.0 10

41

TPp

Solución: En este caso se requiere encontrar (factor de actividad del multitrayecto) y pTP (probabilidad de indisponibilidad por desvanecimiento plano). Para ello, primero hay que encontrar P0 (factor de aparición del desvanecimiento), considerando que para el escenario del enlace a=0.25 (clima seco), mientras encontramos b, para un valor medio de ondulación (s=100m), como sigue:

Ahora hallamos:

Entonces, (factor de actividad del multitrayecto) es:

Y pTP (probabilidad de indisponibilidad por desvanecimiento plano), se obtiene considerando que M F F=M= 41dB:

Page 14: Lecture 9 analisis radioprop   p6

Cálculo de la probabilidad de desvanecimiento: Métodos 1 y 2 propuesto en Rec 530 ITU-R

Objetivo: predicción de la probabilidad de desvanecimiento, para el peor mes del año en cualquier parte del mundo

Dos métodos

Método 1: Para pequeños porcentajes de tiempo Para grandes profundidades de desvanecimiento No se utiliza el perfil del trayecto Útil para la planificación inicial o solicitud de licencia de un radioenlace

Método 2 Para cualquier profundidad de desvanecimiento, mezcla de:

Método para desvanecimientos profundos Interpolación para desvanecimientos poco intensos

14I. Zamora Unidad II: Análisis de Radiopropagación

Se desarrollará el método 1.

Desvanecimiento: Método de UIT para P0

Page 15: Lecture 9 analisis radioprop   p6

15I. Zamora Unidad II: Análisis de Radiopropagación

Método 1 de la Rec. 530 ITU-R. Validez: desde fmin=15/d(GHz) hasta 45 GHz Error: 5.2dB a 7.3 dB

Se siguen los siguientes pasos:1) Cálculo del valor geoclimático del trayecto, K, en el mes más desfavorable

A partir de datos de desvanecimientos en la zona O estimándolo con:

Donde:dN1: valor del gradiente para los 65 m inferiores de la atmósfera, no superado durante el 1% del tiemposa: rugosidad del suelo.

42.0003.09.3 110 adN sK

Para una estimación rápida se puede utilizar:

1029.02.410 dNK 2) Se calcula el ángulo de inclinación del trayecto |εp| (mrad) y la altura

mínima hL mediante: dhhp /21 21,min hhhL

donde h1y h2 son las alturas de las antenas en m sobre el nivel del mar y des la longitud del trayecto en km.

Desvanecimiento: Método de UIT para P0

Page 16: Lecture 9 analisis radioprop   p6

16I. Zamora Unidad II: Análisis de Radiopropagación

donde f está en GHz y d en km.

Para una estimación rápida se puede utilizar

usando el valor aproximado de K

3) El valor de la probabilidad p(F), en %, es

(%)101)( 10/00085.0032.097.02.3 Fhfp

LdKFp

(%)101)( 10/001.0033.02.13 Fhfp

LdKFp

Desvanecimiento: Método de UIT para P0

100

1

10)(F

TP PpFp

Donde:

Por lo que: (%)101 00085.0032.097.02.30

LhfpdKP

Page 17: Lecture 9 analisis radioprop   p6

17I. Zamora Unidad II: Análisis de Radiopropagación

La aparición de trayectos múltiples en sistemas de banda ancha da lugar a la existencia de un fading selectivo en frecuencia, que provoca distorsión en la señal (ISI).

Existen varios modelos que caracterizan la función de transferencia del canal: Modelo de rayos (2, 3, general) Modelos polinómicos Modelos paramétricos

Para la predicción de interrupciones se han aplicado varios enfoques en función del modelo de canal y de la caracterización de los equipos: Método del margen neto contra los desvanecimientos Métodos de las curvas de signaturas Métodos que utilizan la distorsión lineal de amplitud.

Desvanecimiento Selectivo

Page 18: Lecture 9 analisis radioprop   p6

18I. Zamora Unidad II: Análisis de Radiopropagación

Modelos de Rayos El modelo general de rayos ofrece una función de transferencia:

N

i

ji

iieaH0

)( ai es la amplitud es el retardo i es la fase del rayo i-ésimo.

El modelo mas sencillo es el de tres rayos simplificado:

)(1)( 1221

3

0

21

jj

i

ji eaeaeaH ii

2/2/2/1)( BBebaH j , 0

notch

Un rayo directo de amplitud 1, un rayo de amplitud b con retardo >0, y un factor de proporcionalidad a.

b < 1, fase mínimab > 1, fase no mínima.

Desvanecimiento Selectivo: modelo de rayos

Page 19: Lecture 9 analisis radioprop   p6

19I. Zamora Unidad II: Análisis de Radiopropagación

o Se tiene así para : 0,1

)(

mepm

o Suponiendo que b y son estadísticamente independientes, la fdp de b y son de tipo exponencial.

o Para m se ha propuesto el valor :

)(),(50

7.03.1

Kmdnsd

m

o Para b, la función de densidad es:

depende de d, f, tipo terreno y clima.

10,1

)(

be

bpb

Desvanecimiento Selectivo

Page 20: Lecture 9 analisis radioprop   p6

20I. Zamora Unidad II: Análisis de Radiopropagación

Desvanecimiento Selectivo: modelo de signatura

Modelos de Signatura o Firma La signatura o firma de un receptor en un radioenlace digital es una

caracterización de los equipos, para un modelo de canal determinado. Para el modelo de rayos, la signatura es la curva del valor máximo de

desvanecimiento en función de f0 a partir del cual se sobrepasa una proporción de errores determinada.

• La signatura de un Rx, para el par (BERo,) → B(fo )

• La resistencia al desvanecimiento selectivo será mayor cuanto mas estrecha y baja sea la curva de signatura.

• La zona interior a la curva supone una BER mayor que para la que se ha obtenido la curva. La zona exterior, es para una BER menor.

Page 21: Lecture 9 analisis radioprop   p6

21I. Zamora Unidad II: Análisis de Radiopropagación

Comentarios acerca de la signatura

Interesa signatura estrecha y baja La altura depende de la modulación,

si existe o no igualación, y de . La anchura no depende de y sí de la

modulación y ecualización. Generalmente se muestra para =

6.3nsg La signatura de equipos modernos es

casi cuadrada

Probabilidad de indisponibilidad debido al desvanecimiento selectivo

oppTS

, es la probabilidad de desvanecimiento multitrayecto (ya

visto antes) p(o/), es la probabilidad de desvanecimiento selectivo,

condicionada a desvanecimiento multitrayecto

Desvanecimiento Selectivo: modelo de signatura

Page 22: Lecture 9 analisis radioprop   p6

22I. Zamora Unidad II: Análisis de Radiopropagación

La probabilidad p(o| η) se puede calcular a través de la signatura, como:

C: Factor Constante pb(1): Valor de la pb de b para b=1. Se toma de una tabla (ver abajo). k: Signatura normalizada, constante que depende de la signatura.

Existen valores típicos para distintos Rx, con y sin ecualización, según el esquema de modulación

O se calcula a partir de la curva de signatura del receptor < τ 2>: varianza del retardo del eco. Ts, periodo de símbolo

El proceso queda:

1) Factor de actividad multitrayecto:

2) Se elige el valor de pb(1):

22 /)1( sb TkpCop

75.002.0exp1 P

Desvanecimiento Selectivo: modelo de signatura

Page 23: Lecture 9 analisis radioprop   p6

23I. Zamora Unidad II: Análisis de Radiopropagación

3) a. Se toma valor típico de la signatura normalizada, k, de:

3) b. O se calcula a partir del ancho W(MHz) y alto BC(dB) de la signatura, con:

4) Si se supone el retardo distribuido exponencialmente,

m es el valor medio del retardo, con:

5) Finalmente, se calcula:

)(),(50

7.03.1

Kmdnsd

m

20/10 CBsBsA

TKTMHzWK

y

Ts y en seg

22 2 m

2

2

2)1(s

mbTS T

kpCp

Desvanecimiento Selectivo: modelo de signatura

Una aproximación práctica propuesta por Mojoro considera

C=1 y C·pb(1) ·2 = 4.32

2

2

32.4s

mTS T

kp

BA KKk Entonces:

Page 24: Lecture 9 analisis radioprop   p6

24I. Zamora Unidad II: Análisis de Radiopropagación

Desvanecimiento total: Plano mas Selectivo

Para determinar la indisponibilidad o interrupción total por desvanecimiento, se suman los porcentajes de indisponibilidad de cada vano

También se usa la expresión más restrictiva:

Se distingue entre radioenlaces de Pequeña capacidad y Media/Alta. Pequeña capacidad (< 34Mbps) → Sólo Desvanec. Plano

o Probabilidad de que el desvanecimiento sea mayor que F=M3, donde M3 es el margen de enlace correspondiente a una tasa de errores de bit BER=10-3.

o Para un factor de aparición de desvanecimiento Po

Capacidad Media/Alta (> 34Mbps) • Se consideran ambas contribuciones pTP y pTS.

TSTPTT ppp • Desvanecimiento plano• Desvanecimiento selectivo

5.1/22/2/ ,

TSTPpppTT

100

3

10M

TPTT Ppp

NOTA: En la unidad III se profundizará sobre este tema en el contexto de la evaluación de la disponibilidad y calidad de un radioenlace.

Page 25: Lecture 9 analisis radioprop   p6

25I. Zamora Unidad II: Análisis de Radiopropagación

Ejemplo 2: Considere los datos y resultados del ejemplo 1 para este ejemplo, pero además asuma que el radioenlace utiliza polarización vertical, para una transmisión de información de 140 Mbits/s, utilizando modulación 16 QAM, con ecualización.

Solución: Partimos que conocemos el valor de (factor de actividad del multitrayecto) y pTP (probabilidad de indisponibilidad por desvanecimiento plano). Resta determinar la pTS (probabilidad por desvanecimiento selectivo) para lo cual necesitamos encontrar el valor de k (signatura normalizada) y m (tiempo medio de retardo).

En el caso de k, dado que conocemos la modulación y disponemos de una tabla para el caso con ecualización tomamos el valor correspondiente:

Desvanecimiento Total: Plano mas Selectivo

(ns)...

m 146050

1570

31

3.0k

Ahora, determinamos m como:

Page 26: Lecture 9 analisis radioprop   p6

26I. Zamora Unidad II: Análisis de Radiopropagación

En vista que no tenemos mas detalles del caso de análisis, utilizaremos la expresión propuesta por Mojoro para determinar pTS, tomando el valor de =0.0721 del ejemplo 1, y para Ts (tiempo de duración de un pulso digital) en un esquema 16 QAM, , tenemos:

Desvanecimiento Total: Plano mas Selectivo

%)002344.0(00002344.0

00000244.0000021.0

TSTPTT ppp

%000244000000244.057.28

146.03.00721.032.4

2

.pTS

nsMbpsR

M

RT

bss 57.28

140

16loglog1 22

Entonces, pTS es:

Puede verse que para la frecuencia dada (2.4GHz) pTP es mucho mayor que pTS por lo que el resultado es básicamente el mismo que pTP. No obstante, se obtenemos el valor exacto tenemos:

Page 27: Lecture 9 analisis radioprop   p6

• Lectura Obligatoria• Transmisión por Radio

• Capítulo 3Sección 3.18

• Capítulo 5Sección 5.9

• Lectura Recomendada

• Ninguna.

27I. Zamora Unidad II: Análisis de Radiopropagación

Page 28: Lecture 9 analisis radioprop   p6