12
MÉTODOS DE COMPENSACIÓN DE POLÍGONOS I. OBJETIVOS Conocer los métodos para la aplicación del cierre de poligonales. Tomar en cuenta los procesos utilizados en cada método. II. DESARROLLO DEL TEMA 2.1. TIPOS DE POLIGONALES Las poligonales pueden ser clasificadas en: a. Poligonales cerradas: Cuando el ultimo vértice coincide con el primero, es decir si los extremos son concurrentes, pudiendo realizarse control de cierre angular y lineal, ofreciendo la ventaja de poder verificar en el terreno la bondad de las mediciones angulares comparando las sumas de los ángulos internos o externos medidos, con aquella teórica establecida por dos conocidos teoremas de la geometría plana: int. 180º (n - 2) ext. 180º (n 2) b. Poligonales abiertas o de enlace con control: en las que son conocidas las coordenadas de los puntos inicial y final y la orientación (rumbo) de las alineaciones inicial y final, siendo entonces posible efectuar también los controles de cierre angular y lineal. Se conocen como poligonales doblemente vinculadas y doblemente orientadas. c. Poligonales abiertas en las cuales no es posible establecer el control de cierre angular, ya que se conocen las coordenadas del punto inicial y final pero no las dos orientaciones de las alineaciones, se podrá efectuar el control de cierre lineal. d. Poligonales abiertas aisladas (no vinculada) cuando no se han referido a puntos de coordenadas conocidas, es decir el sistema de referencia es arbitrario, haciendo imposible establecer los controles de cierre. 2.2. MEDICION DE ANGULOS La misma se ejecuta con teodolito o con estación total, siguiendo alguno de los métodos conocidos, un número de veces determinado por la precisión que se persigue en el trabajo y la del aparato usado. Se debe prestar gran atención a la bisección de las señales colocadas en los vértices cuando las longitudes de los lados de la poligonal sean pequeñas. Es de especial importancia, para evitar incertidumbre y errores, establecer previamente cual, de los dos ángulos que formen parte de cada vértice se desea medir. Por ejemplo: en las poligonales abiertas se podrá decidir medir en cada vértice el ángulo que el lado precedente debe rotar en sentido de las agujas del reloj en torno al vértice para ir a coincidir con el lado sucesivo. Si la poligonal es cerrada se podrá convenir en medir los ángulos internos o bien los externos.

Metodo de compensacion de poligonos

Embed Size (px)

Citation preview

Page 1: Metodo de compensacion de poligonos

MÉTODOS DE COMPENSACIÓN DE POLÍGONOS

I. OBJETIVOS

Conocer los métodos para la aplicación del cierre de poligonales.

Tomar en cuenta los procesos utilizados en cada método.

II. DESARROLLO DEL TEMA

2.1. TIPOS DE POLIGONALES Las poligonales pueden ser clasificadas en:

a. Poligonales cerradas: Cuando el ultimo vértice coincide con el primero, es decir si los

extremos son concurrentes, pudiendo realizarse control de cierre angular y lineal,

ofreciendo la ventaja de poder verificar en el terreno la bondad de las mediciones

angulares comparando las sumas de los ángulos internos o externos medidos, con

aquella teórica establecida por dos conocidos teoremas de la geometría plana:

int. 180º (n - 2)

ext. 180º (n 2) b. Poligonales abiertas o de enlace con control: en las que son conocidas las coordenadas

de los puntos inicial y final y la orientación (rumbo) de las alineaciones inicial y final,

siendo entonces posible efectuar también los controles de cierre angular y lineal. Se

conocen como poligonales doblemente vinculadas y doblemente orientadas. c. Poligonales abiertas en las cuales no es posible establecer el control de cierre angular,

ya que se conocen las coordenadas del punto inicial y final pero no las dos orientaciones

de las alineaciones, se podrá efectuar el control de cierre lineal.

d. Poligonales abiertas aisladas (no vinculada) cuando no se han referido a puntos de

coordenadas conocidas, es decir el sistema de referencia es arbitrario, haciendo

imposible establecer los controles de cierre.

2.2. MEDICION DE ANGULOS La misma se ejecuta con teodolito o con estación total, siguiendo alguno de los

métodos conocidos, un número de veces determinado por la precisión que se persigue

en el trabajo y la del aparato usado.

Se debe prestar gran atención a la bisección de las señales colocadas en los vértices

cuando las longitudes de los lados de la poligonal sean pequeñas.

Es de especial importancia, para evitar incertidumbre y errores, establecer

previamente cual, de los dos ángulos que formen parte de cada vértice se desea medir. Por ejemplo: en las poligonales abiertas se podrá decidir medir en cada vértice el

ángulo que el lado

precedente debe rotar en sentido de las agujas del reloj en torno al vértice para ir a

coincidir con el lado sucesivo.

Si la poligonal es cerrada se podrá convenir en medir los ángulos internos o bien los

externos.

Page 2: Metodo de compensacion de poligonos

2.3. MEDIDA DE LOS LADOS DE UNA POLIGONAL La medida de ellos puede efectuarse: directa o indirectamente. El medio directo más común es aquel que se efectúa con las cintas de acero secundadas

por las fichas, consiste en la comparación de la longitud del lado con una unidad de

medida en sucesivas aplicaciones del instrumento usado (cinta) recorriendo la distancia

en toda su extensión. La medida de los lados, se deberá reducir al horizonte, si la precisión del trabajo lo

exige. Cada lado debe ser medido dos veces, una vez en ida y otra en vuelta, con el fin

de evitar un posible error grosero.

El método indirecto más común en la actualidad es el uso de la estación total o los

distanciómetros electrónicos, que se utilizan en cualquier tipo de terreno y que alcanzan

altísimas precisiones.

2.4. METODOS PARA LA COMPENSACION DE POLOGONALES

CERRADAS

En el caso de una poligonal cerrada el error lineal de cierre debe distribuirse entre todo

el polígono para cerrar la figura. Hay cinco métodos para el ajuste de poligonales

cerradas: 1) el método arbitrario, 2) la regla del tránsito, 3) la regla de la brújula (o de

Bowditch), 4) el método de Crandall y 5) el método de mínimos cuadrados.

2.4.1. Método arbitrario: El método arbitrario de compensación de poligonales no se

conforma a reglas fijas ni a ecuaciones. Más bien se distribuye el error lineal de cierre

arbitrariamente, de acuerdo con el análisis del topógrafo acerca de las condiciones que

prevalecieron en el campo.

Por ejemplo, los lados medidos con cinta sobre terreno quebrado y que necesitaron

frecuente aplome y división de la medida con cinta, tendrán probabilidades de contener

errores más grandes que los lados medidos sobre terreno a nivel; por tanto, se les

asignan correcciones mayores. El error total de cierre se distribuye así en forma

discrecional para cerrar matemáticamente la figura, es decir, hacer que la suma

algebraica de las proyecciones y la suma algebraica de las proyecciones X, sean iguales

a cero.

2.4.2. Regla o método del teodolito: La corrección que se debe de aplicar a una latitud

o longitud de una alineación es la corrección total por longitud y latitud. Esta regla es

teóricamente mejor para los levantamientos con teodolito en los que se miden los

ángulos con mayor precisión que las distancias, como en los levantamientos hechos

con estadía, pero raras veces se emplea en la practica porque se obtienen diferentes

resultados para cada meridiano posible Esta regla se fundamenta en dos aspectos:

Todos los errores cometidos en la poligonal son accidentales.

Las mediciones angulares son más precisas que las lineales.

Las correcciones se calculan por las fórmulas siguientes:

Proyección en latitud (Proyecciones Norte – Sur)

Correccion en Latitud.- se emplea la siguiente formula:

𝐶𝑙𝑎𝑡 = 𝑃𝑦 × 1 ±∆𝑦

∑𝑃𝑛 − ∑𝑃𝑠

Page 3: Metodo de compensacion de poligonos

Donde:

Clat: es la corrección de proy. Y de una línea

Py: Indica la proyección que se va a corregir

∆y: Es el error de cierre en proyecciones Y

∑PN-∑PS: Es la suma aritmética de las proyecciones Y, en ellas no se considerará

el signo sino que se sumaran siempre.

Proyección en Longitud (Proyecciones Este – Oeste)

Corrección en Longitud

𝐶𝑙𝑜𝑛𝑔 = 𝑃𝑦 × 1 ±∆𝑥

∑𝑃𝑒 − ∑𝑃𝑤

Donde:

C Long: es la corrección de proyección X de una línea

Py: Indica la proyección que se va a corregir

∆X: Es el error de cierre en proyecciones X

∑PE-∑PW: Es la suma aritmética de las proyecciones X, en ellas no se considerará

el signo, sino que se sumaran siempre.

2.4.3. Regla de la brújula (o de Bowditch)

Este método, propuesto por Nathaniel Bowditch alrededor de 1800, es el método más

comun. El método asume que:

Los ángulos y las distancias son medidos con igual precisión

El error ocurre en proporción directa a la distancia

Las proyecciones se corrigen proporcionalmente a la longitud de los lados

Matemáticamente tenemos,

CpNi = −(ε∆N

∑Li) Li

CpEi = −(ε∆N

∑Li) Li

CpNi = corrección parcial sobre la proyección norte-sur del lado i

CpEi = corrección parcial sobre la proyección este-oeste del lado i

Li = longitud del lado i

El signo negativo es debido a que la corrección es de signo contrario al error

utilizado en los trabajos normales de topografía.

2.4.4. Método de crandall: En este método de compensación de polígonos, se

distribuye primero el error de cierre angular en partes iguales entre todos los ángulos

medidos. Luego se mantienen fijos los ángulos ajustados y se asignan todas las

correcciones restantes a las medidas lineales, siguiendo un procedimiento de

Page 4: Metodo de compensacion de poligonos

mínimos cuadrados pesados o ponderados. El método de Crandall es más lento que

los procedimientos de la regla del teodolito o de la brújula, pero es adecuado para

ajustar polígonos en que las medidas lineales tienen errores aleatorios más grandes

que las medidas angulares, como por ejemplo en poligonales trazadas por estadía.

2.4.5. Método de mínimos cuadrados: El método de los mínimos cuadrados, basado

en la teoría de las probabilidades, compensa simultáneamente las medidas angulares

y las lineales, de modo de hacer mínima la suma de los cuadrados de los residuos.

Este método es válido para cualquier tipo de poligonal, sin importar la precisión

relativa de las medidas de los ángulos y las distancias, en vista de que a cada cantidad

medida se le puede asignar un peso relativo.

Una aplicación clásica de las proyecciones es en el cálculo de coordenadas de

poligonales, las que a su vez servirán para el cálculo de distancias y rumbos.

2.5. CASOS PARTICULARES a) Si desde los extremos se ha observado un único punto de coordenadas conocidas,

esto es si P y Q coinciden siguen vigentes las condiciones de cierre lineal, el cierre

angular, (2) tomará la siguiente forma:

( An P) ( A1P) (n 1)180º

P(XP ,

YP)

X

(A1

P)

n-1

l1 A1

l3 n

(X1 ,

Y1) l2

A

2

A3

A4 An-1 ln-1 An

(Xn , Yn)

O Y

b) Si coinciden A n con P y Q con A1 como puede convenir cuando los extremos

sean intervisibles, subsisten las condiciones de cierre lineal.

El cierre angular, (2) toma la forma: (An A1) (A1 An) (n 1)180º y recordando que

(An A1) y (A1 An) son rumbos recíprocos que difieren en 180º y que la ecuación de

condición es verdadera a menos de un numero entero de veces 180º, se llega a uno

de los teoremas de la geometría plana que expresan que la suma de los ángulos

internos o externos de un polígono cerrado es igual a:

Page 5: Metodo de compensacion de poligonos

i 180º (n 2) e

180º (n 2)

2.6. POLIGONAL DOBLEMENTE VINCULADA Y SIMPLEMENTE

ORIENTADA Cuando desde A1 se ha observado un punto conocido P, pero desde A n no se ha

observado algún punto conocido, entonces falta la condición angular (2). En tal caso

se calculan directamente las coordenadas con los rumbos provenientes de los

medidos y luego se opera como se ha visto en el caso general. En este caso sigue existiendo la ecuación de cierre lineal, por lo tanto es posible

calcular, pero si este valor es mayor que la tolerancia establecida, no es posible

saber si el error se cometió al medir lados ó ángulos, habrá que medir nuevamente

todos los elementos. Resumiendo: No hay ecuación de cierre angular, hay control y compensación

lineal.

X

P(XP ,

YP)

(A1 P)

n-1

An

A1 l1

n-1

ln-1

l3

A

(Xn , Yn)

(X1 ,

Y1)

A

2

l

2

A4

A3

O Y

2.7. POLIGONAL DOBLEMENTE VINCULADA Y NO ORIENTADA: Cuando desde A1 y An no se han observado puntos fijos, no es posible calcular directamente los rumbos de los sucesivos lados ya que falta la orientación del primer lado respecto a una

dirección de referencia conocida. Para la determinación de las coordenadas de los

vértices se hará lo siguiente:

Se asigna un valor arbitrario al rumbo del primer lado, se calculan los rumbos de

los lados sucesivos: R'2 , R'

3 ,........., Rn' 1 y a continuación se obtienen las

coordenadas X'2 Y2

' , X'3 Y3

' ,........, Xn' Yn

' de las posiciones provisorias A'2 , A'

3

,........., An' de los vértices.

Page 6: Metodo de compensacion de poligonos

An (Xn,Yn)

R(A1 An)

A1

(X1,Y1)

A'n

(X'n,Y'n)

R'1

A'1

A'3

A'2

Luego con: tg (A A )

Y - Y

; tg (A A' )

Y' - Y

n 1 n 1

Xn - X1 X'n - X1

1 n 1 n

se calculan los rumbos (A1An ) y (A1A'n ) , obteniendo

(A1An ) - (A1A'

n )

Si se rota la figura provisoria alrededor de A1 hasta hacer coincidir (A1An' ) con

(A1An ) , todos los

puntos de esa figura girarán alrededor de A1 el ángulo , entonces los verdaderos

rumbos de los lados de la poligonal serán:

R1 R1'

R2 R2'

...................

Rn Rn' 1

Con estos valores se procede a calcular las coordenadas utilizando el método ya c

conocido. Si se ha cometido algún error (ya sea en la medida de lados ó ángulos) es imposible

saberlo al no existir ningún tipo de control, por lo tanto será necesario extremar las

precauciones al realizar las medidas de los elementos poligonales. En cuanto a la

compensación, se reduce a la lineal ya vista.

2.8. POLIGONAL SIMPLEMENTE VINCULADA Cuando desde A1 (de coordenadas conocidas) no se ha observado algún punto

conocido y de An se desconocen sus coordenadas existirán infinitas posiciones

posibles de los vértices de acuerdo a los valores arbitrarios que se le asigne al

rumbo de partida R1, quedando indeterminada la orientación de la poligonal. Por

lo tanto no hay controles ni compensación.

2.9. POLIGONAL AISLADA (NO VINCULADA Y NO ORIENTADA) Si la poligonal no está vinculada (no se referencia a puntos de coordenadas

conocidas), para el cálculo se asume un sistema arbitrario de ejes rectangulares.

Page 7: Metodo de compensacion de poligonos

2.10. POLIGONAL CERRADA Cuando la poligonal es cerrada ( An coincide con A1) siempre se tiene la

condición de cierre angular: i 180º (n 2) ó e 180º (n 2)

La corrección de los ángulos se efectúa repartiendo el residuo < tolerancia en partes

iguales entre ellos y de modo que la condición misma venga satisfecha. También se tienen las condiciones de cierre lineal, pero siendo Xn X1 y Yn Y1

se transforman en:

l.cos R 0 a repartir respectivamente entre

los

l.cos R

si

2 2 <

Tolerancia

l.senR 0 l.senR

X Y

en la forma ya vista. Luego para el cálculo de las coordenadas de los vértices se

procede en la manera usual, o bien conociendo el rumbo del lado de partida o dando

un rumbo arbitrario. De todo lo visto se concluye que una POLIGONAL CERRADA es siempre más

ventajosa que una poligonal abierta que no se apoya en vértices conocidos.

2.11. RESUMEN DE OPERACIONES A REALIZAR EN POLIGONACIÓN Con el fin de cumplimentar los objetivos propuestos por una poligonal se debe

seguir una secuencia lógica de tareas que con fines docentes les llamaremos:

experiencias de aprendizaje las cuales se refieren alternativamente a experiencias

de gabinete, de campaña y nuevamente de gabinete. 1) Búsqueda de antecedentes: consiste en obtener de las instituciones técnicas de

Jurisdicción Municipal, Provincial ó Nacional dedicadas a estudios

Topográficos, por ejemplo: I.G.M.A., Dirección de Catastro, de Minería y

Geología, etc., las informaciones relacionadas entre otras a: características

topográficas de la zona (accidentada, de pendientes suaves, llanas, etc.),

caminos principales y secundarios, huellas, etc., que permiten el acceso a la

zona de trabajo, ubicación de asentamientos poblacionales, puntos de

coordenadas conocidas a los cuales se podría vincular el trabajo de

poligonación, tipos de suelos (para seleccionar las marcas a usar), etc. Todas

estas informaciones nos permitirán elegir además el equipo de instrumentos a

usar, precisiones a exigir, etc.

2) Reconocimiento del Terreno: consiste en recorrer con detenimiento la zona de

trabajo, para ir eligiendo la ubicación de los vértices y eventualmente visualizar

los detalles a levantar.

3) Elección de los vértices de la poligonal: del reconocimiento ejecutado se eligen

las ubicaciones de los vértices teniendo en cuenta: Intervisibilidad entre los vértices de la poligonal y visión cómoda y clara de los

detalles a levantar. Que las marcas sean fáciles de colocar, que no se destruyan por la acción de

máquinas o por fenómenos naturales, que sean fáciles de encontrar o reponer. Que no hayan obstáculos en el terreno que hay entre dos vértices y a los detalles,

para poder medir las distancias con el método directo o indirecto ya elegido

según la precisión prevista. Que sean fáciles de abalizar, es decir, referir la marca a hechos existentes por

medio de distancias, con el objeto de: poder reponerla en caso de destrucción,

encontrarlas luego de pasado algún tiempo. Si es necesario se colocarán estacas

Page 8: Metodo de compensacion de poligonos

en lugares donde no se destruyan para referir a ellas las principales. Elegidos los vértices, debe hacerse un croquis indicando el Norte.

Estaca

1 6 .

2 0

m

12

Arbol N

.4

7

m

5

1

Page 9: Metodo de compensacion de poligonos

12

Ai

12

m

0

3

.

0

1

Poste de Hº

4) Marcación: en caso de que los vértices no coincidan con marcas existentes, se

deberán colocar en el terreno, estacas, bulones de hierro, mojones, etc.,

5) Señalización: según la “topografía” del terreno, la distancia entre vértices, la

precisión del trabajo, etc., serán los elementos a usar para la señalización:

fichas, jalones con trípodes, etc. 6) Medición de los elementos de la Poligonal: ángulos y longitud de lados.

Es recomendable organizar en planillas secuenciadas para anotar los resultados

de las experiencias de patio o de campo. En estas planillas se anota en campaña

los resultados, con lápiz en forma clara y concisa, es preferible borrar ó tachar

antes que enmendar los números que provocan confusiones y errores.

7) Reducciones de los datos: en las planillas ya elaboradas se calculan los ángulos

y distancias (cuando se deban reducir al horizonte). En caso de una poligonal

cerrada se controla en el campo la condición de cierre angular, para comprobar

si cumplen las tolerancias angulares impuestas. 8) Compensación y cálculo de la poligonal: La obtención de las coordenadas de

los vértices de la poligonal ya ha sido explicado con detalle en este apunte.

9) Representación y compensación gráfica

EJEMPLO DE CÁLCULO Y COMPENSACIÓN DE UNA POLIGONAL

CERRADA Supongamos haber medido una poligonal semi-urbana ABCD, los lados y ángulos

medidos en campaña son los siguientes: LADOS

(mts.) AB = 324.99

BC = 301.77

CD = 245.86

DA = 276.67 = 1149.29

ÁNGULOS

A = 80º 15’ 00”

B = 83º 32’

20

C = 90º 05’

30

” D = 106º 05’

30” = 359º 58’ 20”

A B

D

Page 10: Metodo de compensacion de poligonos

C

Se comprobará primeramente que el error de cierre angular es menor que la tolerancia

establecida:

T 60" n 60" 4 120" ; (n - 2)180º (4 - 2)180º 360º 359º58'20" 360º

0º01'40" 100" T Por lo tanto es posible compensar, para ello se efectúa el cociente:

Corrección angular 100" 25" 4 4 Luego, el valor compensado de los ángulos será: Angulo compensado = Angulo observado – Corrección

angular Como control: Sumatoria de ángulos

compensados = 360º Fijamos un sistema arbitrario de coordenadas dándole rumbo a un lado y coordenadas a

un vértice: xA = 1000 ; yA = 1000 ; (AB) = 0º00’00” A continuación se calculan los rumbos de los lados de la poligonal y luego los x , y , para poder obtener las coordenadas. Se comprueba el error de cierre lineal cometido, esto es:

( x)2 ( y)2 Establecemos como tolerancia por

ej.: que T, se podrá compensar,

entonces T

T = 0.00015 L + 0.06 mts. , si el error de cierre lineal es

menor 0.23 mts.

cx x

; cy y

L L

Se calculan las coordenadas (con los x , y corregidos), con éstas se determinan los lados y ángulos interiores definitivos (compensados) y por último se calcula la superficie del polígono.

Page 11: Metodo de compensacion de poligonos

Con el objeto de agilizar y ordenar el cálculo y compensación, se recomienda el uso de las

siguientes planillas:

Page 12: Metodo de compensacion de poligonos