26
ENLACES Y COMPUESTOS QUÍMICOS INORGÁNICOS Objetivo: El alumno será capaz de identificar en una reacción química que elemento se libera. INTRODUCCION: Los elementos químicos se combinan de diferentes maneras para formar toda una variedad de compuestos inorgánicos y orgánicos. Hay compuestos gaseosos, líquidos y sólidos, los hay tóxicos e inocuos, y otros benéficos para la salud. Las propiedades de cada compuesto dependen del tipo de elemento químico que lo forman, el modo cómo se enlazan (tipo de enlace químico), la forma y geometría de los agregados atómicos (moléculas) y de cómo estos interactúan entre sí. En 1916, el químico alemán Walther Kossel expuso que en las reacciones químicas ocurren pérdida y ganancia de electrones por parte de los átomos, y por ello estos adquieren la configuración electrónica de un gas noble. Sin duda Kossel se refería al enlace iónico, y por lo tanto a los compuestos iónicos. Posteriormente los químicos norteamericanos Gilbert Newton Lewis e Irving Langmuir, cada uno en forma independiente estudiaron los compuestos iónicos y no iónicos (covalentes), comprobando que los átomos al formar enlace químico adquieren en su mayoría la estructura atómica de un gas noble (8 electrones en el nivel externo), lo que hoy se llama Regla del Octeto. En 1923, G.N.Lewis plantea su teoría de enlace por pares de electrones y anuncia que el octeto se logra por medio de compartición de electrones. Entonces a Kossel lo podemos considerar como el padre del enlace iónico, y a Lewis el padre del enlace covalente. En 1926, Walter Heitler y Fritz London demostraron que el enlace covalente en la molécula de H 2 se podría explicar mediante la mecánica cuántica. La mecánica cuántica describe muy bien a los átomos y estructura electrónica de los mismos, ya que el aparato matemático es mucho

Practicas de laboratorio enlaces y compuestos quimicos inorganicos

  • Upload
    nacq

  • View
    136

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

ENLACES Y COMPUESTOS QUÍMICOS INORGÁNICOS

Objetivo:

El alumno será capaz de identificar en una reacción química que elemento se libera.

INTRODUCCION:

Los elementos químicos se combinan de diferentes maneras para formar toda una variedad de compuestos inorgánicos y orgánicos. Hay compuestos gaseosos, líquidos y sólidos, los hay tóxicos e inocuos, y otros benéficos para la salud. Las propiedades de cada compuesto dependen del tipo de elemento químico que lo forman, el modo cómo se enlazan (tipo de enlace químico), la forma y geometría de los agregados atómicos (moléculas) y de cómo estos interactúan entre sí.

En 1916, el químico alemán Walther Kossel expuso que en las reacciones químicas ocurren pérdida y ganancia de electrones por parte de los átomos, y por ello estos adquieren la configuración electrónica de un gas noble. Sin duda Kossel se refería al enlace iónico, y por lo tanto a los compuestos iónicos.

Posteriormente los químicos norteamericanos Gilbert Newton Lewis e Irving Langmuir, cada uno en forma independiente estudiaron los compuestos iónicos y no iónicos (covalentes), comprobando que los átomos al formar enlace químico adquieren en su mayoría la estructura atómica de un gas noble (8 electrones en el nivel externo), lo que hoy se llama Regla del Octeto.

En 1923, G.N.Lewis plantea su teoría de enlace por pares de electrones y anuncia que el octeto se logra por medio de compartición de electrones. Entonces a Kossel lo podemos considerar como el padre del enlace iónico, y a Lewis el padre del enlace covalente.

En 1926, Walter Heitler y Fritz London demostraron que el enlace covalente en la molécula de H2 se podría explicar mediante la mecánica cuántica.

La mecánica cuántica describe muy bien a los átomos y estructura electrónica de los mismos, ya que el aparato matemático es mucho más difícil de formular y los resultados menos fáciles de obtener e interpretar.

CONCEPTO DE ENLASE QUIMICO

El enlace químico es la fuerza que mantiene unidos a los átomos (enlace interatómico) para formar moléculas o formar sistemas cristalinos (iónicos, metálicos o covalentes) y moléculas (enlace intermolecular) para formar los estados condensados de la materia (sólido y líquido), dicha fuerza es de naturaleza electromagnética (eléctrica y magnética), predominante fuerza eléctrica.

Son las fuerzas que mantienen unidos a los átomos entre sí para formar moléculas o iones.

Son de tipo eléctrico Y Al formarse un enlace se desprende energía. La distancia a la que se colocan los átomos es a la que se desprende mayor

energía produciéndose la máxima estabilidad.

Page 2: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

Los átomos se unen pues, porque así tienen una menor energía y mayor estabilidad que estando separado

CLASIFICACIÓN DE LOS ENLACES QUÍMICOS

Iónico: unen iones entre sí.Atómicos: unen átomos neutros entre sí.

• Covalente y Metálico

Intermolecular: unen unas moléculas a otras.

ENLACE IÓNICO

• Se da entre metales y no-metales.

• Enlace iónico: se da por la atracción electrostática entre cargas de distinto signo, formando una estructura cristalina.

ENLACE COVALENTE

• Se da entre dos átomos no-metálicos por compartición de e– de valencia.La pareja de e– (generalmente un e– de cada átomo) pasa a girar alrededor de ambos átomos en un orbital molecular y pueden ser;

• Enlace covalente simple: Se comparten una pareja de electrones.

• Enlace covalente doble: Se comparten dos parejas de electrones.

• Enlace covalente triple: Se comparten tres parejas de electrones.

• No es posible un enlace covalente cuádruple entre dos átomos por razones geométricas.

Tipos de enlace covalente

• Enlace covalente puro

• Se da entre dos átomos iguales.

• Enlace covalente polar

• Se da entre dos átomos distintos.

• Es un híbrido entre el enlace covalente puro y el enlace iónico

ENLACE METÁLICO

• Se da entre átomos metálicos.

• Todos tienden a ceder e–.

• Los cationes forman una estructura cristalina, y los e– ocupan los intersticios que quedan libres en ella sin estar fijados a ningún catión concreto (mar de e–)

Page 3: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

• Compuestos químicos inorgánicos: Las sustancias químicas son el componente único de toda materia viva e inerte. Ciertos autores apuntan que el universo de las sustancias es de 12 millones, de las cuales cien mil circulan en el comercio internacional y un ínfimo porcentaje son dañinas para todo organismo. Ciertas sustancias se encuentran en estado natural, como el petróleo; otras son derivadas, como los combustibles; y algunas son obtenidas en laboratorios, como medicamentos y algunos elementos químicos.

Son las sustancias contenidas o provenientes de los organismos vivos, y se caracterizan por contener principalmente el elemento químico carbono (enlaces de carbono-carbono), como por ejemplo petróleo, combustibles, madera, alcohol, carbón, azúcar y otras, que son estudiadas por la Química orgánica. He aquí otros ejemplos de este tipo de compuestos: gas natural, alcohol etílico, ácido cítrico, cafeína, nicotina, glucosa, ácidos dos grasos (ácido esteárico), aminoácidos (valina, leucina, etc.), nucleótidos (timina, guanina adenina), fructosa, etc.

FORMACIÓN DE LOS COMPUESTOS QUÍMICOS INORGÁNICOS

Hay dos sustancias simples (hidrogeno y oxigeno), y una sustancia compuesta (agua) a partir de las cuales se pueden formar compuestos inorgánicos. Así mismo, existen dos es quemas generales de cómo se obtienen o se forman estos compuestos.Mecánica de formación de óxidos, hidróxidos, ácidos y sales.

Mecánica de formación de hidruros e hidrácidos.

Page 4: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

a. FORMACION DE OXIDOS.Los Óxidos son compuestos químicos inorgánicos binarios, y se caracterizan por contener un elemento químico y oxígeno, y se clasifican en: óxidos básicos y óxidos ácidos.Ejemplos de los dos tipos de óxidos

OXIDOS BASICOS(óxidos metálicos)

OXIDOS ACIDOS(anhídridos, óxidos no-metálicos)

- Oxido de sodio (Na2O)- Oxido de magnesio (MgO)- Oxido de calcio (CaO)- Óxido de hierro (II) (FeO)- Oxido de aluminio (Al2O3)

- Monóxido de carbono (CO)- Dióxido de carbono (CO2)- Monóxido de azufre (SO)- Oxido de boro (B2O3)- Monóxido de nitrógeno (NO)

Óxidos básicos. Son llamados también óxidos metálicos, y resultan de la combinación del oxí- geno con un metal, mediante enlace iónico. Para nombrarlos se usa la nomenclatura de Stock(la valencia del metal se escribe en números romanos y entre paréntesis).Al combinar 2 o más sustancias simples, o bien compuestas, luego sucede una reacción química entre ellas, es decir, los átomos de las sustancias combinadas se reacomodan entre si y se o- rigina una nueva sustancia. Esta reacción no es visible, pero puede explicarse o representarse gráficamente por medio de una ecuación química; así, cuando se combina el oxígeno con una e- lemento metal sucede una reacción química, que se representa mediante la ecuación siguiente:

La mecánica de formación es la siguiente:

En la ecuación anterior existen dos grupos de sustancias: los reactivos, que son las sustantancias que están antes de la flecha, y los productos, que están después de la flecha. En este producto, CaO, primero va colocado el símbolo del metal y después el del oxígeno; así mismo, el nombre de estas sustancias siempre lleva la palabra oxido de por delante, acompañada del nombre del metal.Óxidos ácidos. Se les conoce también como anhídridos y óxidos no-metálicos, y resultan de la combinación del oxígeno (O) con un no-metal (NM), mediante enlace covalente.

b. FORMACION DE HIDROXIDOS.Conocidos también como bases. Estas sustancias son ternarias y resultan de combinar un oxido básico con agua; se caracterizan por llevar siempre, además del elemento metal, una molécula llamada ion hidroxilo u oxidrilo, formada por el oxígeno e hidrogeno (OH)-; se nombran usando la nomenclatura de Stock. A continuación algunos ejemplos de estos compuestos y su concepto:

Page 5: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

c. FORMACION DE ACIDOS

El hidrogeno es el elemento químico fundamental de los ácidos inorgánicos o ácidos minerales, y existen dos grupos: oxácidos e hidrácidos.Oxácidos. Llamados también ácidos oxigenados, por contener siempre este elemento, y resultan de combinar un oxido acido con agua. Cuando se combina un elemento no-metal conoxigeno resulta una sustancia llamada oxido acido, y si a esta se le agrega agua luego se obtiene un tipo de ácido denominado oxácido; asi, estas sustancias están formadas por hidrogeno, un no-metal y oxígeno, en este orden, por lo que son sustancias ternarias y su ecuación general es:

Hidrácidos. Son llamados también ácidos no-oxigenados, ya que no contienen oxigeno sino que tan solo hidrogeno y un no-metal. Existen dos pasos para obtener un

Page 6: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

hidrácido: primero obtener el hidruro y después su respectivo Hidrácido (disolver el hidruro en agua).- Obtención del hidruro: el hidrogeno es un elemento químico que puede combinarse directamente con algunos metales y no-metales; así, existen hidruros metálicos (HM) e hidruros no-metálicos, y estos últimos se clasifican en hidruros no-metálicos especiales(HNME) e hidruros no-metálicos ácidos(HNMA), siendo estos últimos los que originan los hidrácidos. Todos son sustancias binarias.

Clasificación de los hidrurosLos hidruros metálicos (HM) resultan de combinar hidrogeno (H) con metales (M) de los grupos I y II-A. El hidrogeno actúa como no-metal con valencia – 1, y la ecuación general es:

Los hidruros especiales se nombran tal como los hidruros metálicos; los hidruros ácidos se nombran mencionando primero el nombre del no-metal, con terminación uro, y luego las palabras de hidrogeno; la mayoría de estos últimos son gases.- Obtención del Hidrácido: los Hidruros no-metálicos ácidos (HNMA) son los que interesan para formar u obtener los Hidrácidos. Al colocar estos hidruros en agua entonces se disuelven y forma el respectivo Hidrácido; para el caso, cuando el hidruro no-metálico acido llamado Fluo- ruro de Hidrogeno se coloca en agua luego se disuelve y forma el ácido fluorhídrico. Los hidrá - cidos se presentan en estado líquido y su formación es la siguiente (ver cuadro abajo):

Page 7: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

Observe que el nombre del Hidrácido se forma poniendo primero la palabra acido, seguida del nombre del no-metal junto con el sufijo hídrico. Se deduce que tan solo existen cinco hidrácidos, los que se diferencian de los oxácidos por no contener oxígeno.d. FORMACION DE SALES.Las sales son cristales y solubles en agua, por lo general. Son sustancias binarias, ternarias y cuaternarias. Existen 2 tipos principales de ellas:

a. Sales haloideas. b. Sales oxisales. Estas se clasifican en 4 tipos: sales neutras, ácidas, básicas y sales

dobles.Las diferentes sales resultan de la reacción entre un ácido y una base, siendo esta reacción de neutralización completa o bien parcial, y en todos los casos se produce también agua (4).

Page 8: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

Ejemplos para cada tipo de sal inorgánica

Sales haloides. Llamadas también sales haloideas y no-oxigenadas. Este tipo de sustancias se forman por una reacción de neutralización entre un hidrácido y un hidróxido o base, sobrando agua. Son compuestos binarios pues la sal contiene un metal y un no-metal halógeno o bien azufre.

b. Sal ácida. Esta resulta de combinar un oxácido con un hidróxido, y está formada por un metal (del hidróxido), un hidrogeno, un no-metal y oxigeno (del oxácido), en ese orden.Estas sales se diferencian de las anteriores en que llevan además hidrogeno, el que les da el carácter de acidas; los metales del Hidróxido sustituyen parcialmente a los Hidrógenos del oxácido. El ácido debe tener más de 1 hidrogeno (H2SO4, H2CO3) y el metal ser monovalenteSe nombran como las anteriores sales, agregando la palabra ácido entre la sal y el metal.

c. Sal básica. Resulta también de la combinación de un hidróxido con un oxácido, y está formada por un metal y un ion oxidrilo (OH), que provienen del hidróxido, y por un no-metal y oxígeno, que provienen del oxácido, en ese orden.

c. Sal doble. Recuerde que la sal acida contiene un hidrogeno; sin embargo, en la sal doble este hidrogeno es sustituido por otro metal (catión) proveniente de un segundo Hidróxido. Esto significa que para formar una sal doble es necesario combinar 2 diferentes hidróxidos con un solo oxácido; así pues, este tipo de sal está formada por dos metales diferentes, un no-metal y el oxígeno (no siempre), en ese orden, sobrando siempre agua; esta última se forma a partir de la unión de los 2 iones oxidrilos (OH), que provienen de los Hidróxidos, más los hidrógenos del oxácido.

Page 9: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

DESARROLLO

REACTIVOS:

Hidróxido de mercurio HgO

MATERIALES:

Tubo de ensaye

Mechero de bunsen

Pinzas

El Óxido de mercurio HgO (en forma de polvo sólido) cambia de color cuando lo calentamos, percibiéndose un olor un poco desagradable. Cuando se calienta se observan tres fases de colores; primero su color inicial es anaranjado después al ponerlo en la flama presenta un color morado pero al estar más tiempo calentándose se observa un color negro muy obscuro.

Cuando se introdujo la astilla de madera con punto de ignición dentro del tubo que contiene el Óxido de mercurio y que se está calentando, se observa que la astilla de madera brilla más esto es porque al aplicar calor al Óxido de mercurio este se descompone.

En este proceso se realizó la siguiente reacción.

Page 10: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

Conclusión;

Se comprendió y visualizo que en una reacción de descomposición un compuesto (sustancias) se descompone para producir dos o más compuestos (sustancias) diferentes.

Además que en una reacción de descomposición para que se pueda descomponer casi siempre necesita de calor; puesto que en este experimento si se aplicó calor a las sustancias.

También dentro del experimento donde se agregó Oxido de mercurio II colocando la astilla de madera con punto de ignición, que el cambio de color que se observa en el HgO(s) es debido a la oxidación del mercurio puesto que al oxidarse tiende a perder electrones.

Page 11: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

REACCIONES QUÍMICAS EN ESTEQUIOMETRIA

Objetivo:

El alumno será capaz de dar a conocer cada una de las reacciones químicas.

INTRODUCCIÓN

En química, la estequiometria es el cálculo de las relaciones cuantitativas entre los

reactivos y productos en el transcurso de una reacción química.1 Estas relaciones se

pueden deducir a partir de la teoría atómica, aunque históricamente se enunciaron sin

hacer referencia a la composición de la materia, según distintas leyes y principios.

El primero que enunció los principios de la estequiometria fue Jeremías Benjamín

Richter (1762-1807), en 1792, quien describió la estequiometria de la siguiente

manera:

«La estequiometria es la ciencia que mide las proporciones cuantitativas o relaciones de masa de los elementos químicos que están implicados (en una reacción química)».

También estudia la proporción de los distintos elementos en un compuesto químico y

la composición de mezclas químicas.

Una reacción química se produce cuando hay una modificación en la identidad

química de las sustancias intervinientes; esto significa que no es posible identificar a

las mismas sustancias antes y después de producirse la reacción química,

los reactivos se consumen para dar lugar a los productos.

A escala microscópica una reacción química se produce por la colisión de las

partículas que intervienen ya sean moléculas, átomos o iones, aunque puede

producirse también por el choque de algunos átomos o moléculas con otros tipos de

partículas, tales como electrones o fotones. Este choque provoca que las uniones que

existían previamente entre los átomos se rompan y se facilite que se formen nuevas

uniones. Es decir que, a escala atómica, es un reordenamiento de los enlaces entre

los átomos que intervienen. Este reordenamiento se produce por desplazamientos

de electrones: unos enlaces se rompen y otros se forman, sin embargo los átomos

implicados no desaparecen, ni se crean nuevos átomos. Esto es lo que se conoce

como ley de conservación de la masa, e implica los dos principios siguientes:

El número total de átomos antes y después de la reacción química no cambia.

El número de átomos de cada tipo es igual antes y después de la reacción.

En el transcurso de las reacciones químicas las partículas subatómicas tampoco

desaparecen, el número total de protones, neutrones y electrones permanece

constante. Y como los protones tienen carga positiva y los electrones tienen carga

negativa, la suma total de cargas no se modifica. Esto es especialmente importante

tenerlo en cuenta para el caso de los electrones, ya que es posible que durante el

Page 12: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

transcurso de una reacción química salten de un átomo a otro o de una molécula a

otra, pero el número total de electrones permanece constante.

Esto que es una consecuencia natural de la ley de conservación de la masa se

denomina ley de conservación de la carga e implica que:

La suma total de cargas antes y después de la reacción química permanece

constante.

Las relaciones entre las cantidades de reactivos consumidos y productos formados

dependen directamente de estas leyes de conservación, y por lo tanto pueden ser

determinadas por una ecuación (igualdad matemática) que las describa. A esta

igualdad se le llama ecuación estequiometria.

Una ecuación química es una representación escrita de una reacción química. Se

basa en el uso de símbolos químicos que identifican a los átomos que intervienen y

como se encuentran agrupados antes y después de la reacción. Cada grupo de

átomos se encuentra separado por símbolos (+) y representa a las moléculas que

participan, cuenta además con una serie de números que indican la cantidad de

átomos de cada tipo que las forman y la cantidad de moléculas que intervienen, y con

una flecha que indica la situación inicial y la final de la reacción. Así por ejemplo en la

reacción:

Coeficiente estequiométrico

Es un número que funciona en cierta forma como un multiplicador indicando el número

de moléculas de un determinado tipo que participa en una ecuación química dada. En

el ejemplo anterior:

 

BALANCE DE MATERIA

Se dice que una ecuación química se encuentra ajustada, equilibrada o balanceada

cuando respeta la ley de conservación de la materia, según la cual la cantidad de

átomos de cada elemento debe ser igual del lado de los reactivos (antes de la flecha) y

en lado de los productos de la reacción (después de la flecha).

Para balancear una ecuación, se deben ajustar los coeficientes, y no los subíndices.

Esto es así porque cada tipo de molécula tiene siempre la misma composición, es

decir se encuentra siempre formada por la misma cantidad de átomos, si modificamos

los subíndices estamos nombrando a sustancias diferentes:

Método de balanceo por tanteo

Page 13: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

El método de tanteo se basa simplemente en modificar los coeficientes de uno y otro

lado de la ecuación hasta que se cumplan las condiciones de balance de masa.

No es un método rígido, aunque tiene una serie de delineamientos principales que

pueden facilitar el encontrar rápidamente la condición de igualdad.

Se comienza igualando el elemento que participa con mayor estado de

oxidación en valor absoluto.

Se continúa ordenadamente por los elementos que participan con menor estado

de oxidación.

Si la ecuación contiene oxígeno, conviene balancear el oxígeno en segunda

instancia.

Si la ecuación contiene hidrógeno, conviene balancear el hidrógeno en última

instancia.

Balanceo de las ecuaciones Redox

Las reacciones electroquímicas se pueden balancear por el método ion-electrón donde

la reacción global se divide en dos semirreacciones (una de oxidación y otra de

reducción), se efectúa el balance de carga y elemento,

agregando H+, OH−, H2O y/o electrones para compensar los cambios de oxidación.

Antes de empezar a balancear se tiene que determinar en qué medio ocurre la

reacción, debido a que se procede de una manera en particular para cada medio.

DESARROLLO

Reactivos: Clorato de potasio KClO3

Óxido de manganeso MnO2

Materiales: Tubo de ensaye Mechero de bunsen

Pinzas

Page 14: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

Se pone clorato de potasio y oxido de manganeso en un tubo de ensayo tomándolo

con las pinzas se coloca en el fuego , se introduce una astilla con punto de ignición en

él tuvo y se observa que comienza a brillar más por el oxígeno que se desprende , ya

que el cloruro al aplicarle calor se descompone dando como residuo KCl y O2

desprendido 

El MnO2 solo se usa como catalizador para asegurarse como la reacción sea

completa 

ahora la fórmula estequiometria es la siguiente: 

K2ClO3 + MnO2 ---> MnClO3 + K2O 

como se ve es una reacción de doble desplazamiento, en la que el anión que es la

parte negativa, es decir, el clorato o ClO3 se une con la parte positiva o catión, que es

el manganeso o Mn dando como resultado el clorato de manganeso y el monóxido de

potasio.

El MnO2 iría encima de la flecha simplemente para indicar que actúa como catalizador. 

CONCLUCION:

A partir de esto podemos decir que como esta reacción es una reacción estequiometria y uno de los resultantes es O2 , es el causante de que la la astilla con ignición brille más por el oxígeno ,con lo cual en este tipo de reacciones se necesita un catalizador y el otro será en el cual se producirán cambios y transformaciones.

Page 15: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

DETERMINACIÓN DE PH

Objetivo: El alumno será capaz de observar y entender el grado de ph de las diferentes muestras proporcionadas.

INTRODUCCIÓN

¿Qué es el pH y por qué es importante? Desde una aproximación simplificada, el ph puede definirse como una medida que expresa el grado de acidez o basicidad de una solución en una escala que varía entre 0 y14 la acidez aumenta cuando el ph disminuye una solución con un ph menor a 7 se dice que es ácida, mientras que si es mayor a 7 se clasifica como básica. Una solución con ph 7 será neutra el valor de ph representa el menos logaritmo en base diez de la concentración de iones hidrógeno [h. como la escala es logarítmica, la caída en una unidad de ph es equivalente a un aumento de 10 veces en la concentración de h+ entonces, una muestra de agua con un ph de 5 tiene 10 veces más h+que una de ph 6 y 100 veces más que una de ph 7 los cambios en la acidez pueden ser causados por la actividad propia de los organismos, deposición atmosférica (lluvia ácida), características geológicas de la cuenca y descargas de aguas de desecho. El ph afecta procesos químicos y biológicos en el agua. la mayor parte de los organismos acuáticos prefieren un rango entre 6,5 y 8,5. PH por fuera de este rango suele determinar disminución en la diversidad, debido al estrés generado en los organismos no adaptados. bajos phs también pueden hacer que sustancias tóxicas se movilicen o hagan disponibles para los animales.

Reacción ácido-base

Una reacción ácido-base o reacción de neutralización es una reacción química que ocurre entre un ácido y una base produciendo una sal y agua. La palabra "sal" describe cualquier compuesto iónico cuyo catión provenga de una base (na+ del naoh) y cuyo anión provenga de un ácido (cl- del hcl). Las reacciones de neutralización son generalmente exotérmicas, lo que significa que desprenden energía en forma de calor. se les suele llamar de neutralización porque al reaccionar un ácido con una base, estos neutralizan sus propiedades mutuamente. Existen varios conceptos que proporcionan definiciones alternativas para los mecanismos de reacción involucrados en estas reacciones, y su aplicación en problemas en disolución relacionados con ellas. A pesar de las diferencias en las definiciones, su importancia se pone de manifiesto en los diferentes métodos de análisis, cuando se aplica a reacciones ácido-base de especies gaseosas o líquidas, o cuando el carácter ácido o básico puede ser algo menos evidente. el primero de estos conceptos científicos de ácidos y bases fue proporcionado por el químico francés antoine lavoisier, alrededor de 1776.

Page 16: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

IMPORTANCIA DE LAS REACCIONES DE NEUTRALIZACIÓN COMO TÉCNICAS DE ANÁLISIS

Este tipo de reacciones son especialmente útiles como técnicas de análisis cuantitativo en análisis volumétrico y se conocen como valoraciones ácido-base, en este caso se puede usar una disolución indicadora para conocer el punto en el que se ha alcanzado la neutralización completa. Algunos indicadores son la fenolftaleína (si las sustancias reaccionantes son ácido clorhídrico e hidróxido de sodio), azul de safranina, el azul de metileno, etc. existen también métodos electroquímicos para lograr este propósito como el uso de un ph-metro o la conductimetría. Reacción de neutralización entre una base fuerte y un ácido débil. El anión del ácido sufre una hidrólisis produciéndose aniones hidróxido, por lo que el ph es > 7.reacción de neutralización entre una base débil y un ácido fuerte. El catión de la base sufre una hidrólisis produciéndose cationes hidronio, por lo que el ph es < 7.reacción de neutralización entre entre una base débil y un ácido débil. El anión del ácido sufre una hidrólisis al igual que el catión de la base, por lo que el ph es < 7 si es más débil la base y es >7 si es más débil el ácido. La elección del indicador adecuado para determinar el punto de equivalencia dependerá del ph final, que tiene que estar dentro del intervalo en el que el indicador sufre el cambio de color.

Ejemplos:

Hidróxido de sodio con ácido carbónico que forma carbonato de sodio y agua:

Ácido nítrico con hidróxido de aluminio que forma nitrato de aluminio y agua:

Page 17: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

DESARROLLO

Reactivos: leche natural Material: potenciómetro

Leche industrializada 4 vasos precipitados

Coca-Cola Frasco lavador

Jugo de naranja

Jugo de naranja industrializado

Fenolftaleína (c20h14o4)

Hidróxido de sodio (na oh )

Primer muestra: Se comienza con poner leche industrializada en un vaso precipitado, a continuación se introduce el potenciómetro para determinar el ph de esta muestra, el valor arrojado es 7 que es un valor neutro.

Segunda muestra: Se vierte leche natural en el vaso precipitado, se introduce el potenciómetro para tomar lectura y su valor que arroja es de 6.4, para este tipo de leche su valor va de 5-6.

Tercera muestra: Se vierte jugo de naranja natural en el vaso precipitado y a continuación se introduce el potenciómetro para determinar su lectura, el cual nos arroja un valor de 3.9, que este valor es acido.

Cuarta muestra: Se vierte el jugo de naranja industrializado en el vaso precipitado, se introduce el potenciómetro para determinar su ph y arroja un valor de 2.8 el cual en comparación con el del jugo natural es muy acido por el ácido cítrico agregado a este.

Quinta muestra: Se vierte Coca-Cola en el vaso precipitado, se introduce el potenciómetro para tomar lectura y este arroja un valor de 2.4 este valor es muy acido, y se encuentra entre los valores de más altos entre los productos industrializados para el consumo humano.

nota se tiene que lavar el potenciómetro entre cada medición para evitar errores y la contaminación de las muestras, rociándolo con agua por medio de un frasco lavador.

Conclusión

A partir de la escala y un potenciómetro, podemos determinar el ph de un sinfín de muestras y darnos cuenta que tan acida o básica puede ser, y así darnos cuenta el perjuicio que nos hará al organismo sin un uso racional y adecuado.

Page 18: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

DETERMINACIÓN DE ACIDES TITULABLE

Objetivo: el alumno será capaz de identificar cuáles de las muestras se neutralizan y por qué.

.INTRODUCCIÓN

¿Qué es el pH y por qué es importante? Desde una aproximación simplificada, el ph puede definirse como una medida que expresa el grado de acidez o basicidad de una solución en una escala que varía entre 0 y14 la acidez aumenta cuando el ph disminuye una solución con un ph menor a 7 se dice que es ácida, mientras que si es mayor a 7 se clasifica como básica. Una solución con ph 7 será neutra el valor de ph representa el menos logaritmo en base diez de la concentración de iones hidrógeno [h. como la escala es logarítmica, la caída en una unidad de ph es equivalente a un aumento de 10 veces en la concentración de h+ entonces, una muestra de agua con un ph de 5 tiene 10 veces más h+que una de ph 6 y 100 veces más que una de ph 7 los cambios en la acidez pueden ser causados por la actividad propia de los organismos, deposición atmosférica (lluvia ácida), características geológicas de la cuenca y descargas de aguas de desecho. El ph afecta procesos químicos y biológicos en el agua. la mayor parte de los organismos acuáticos prefieren un rango entre 6,5 y 8,5. PH por fuera de este rango suele determinar disminución en la diversidad, debido al estrés generado en los organismos no adaptados. bajos phs también pueden hacer que sustancias tóxicas se movilicen o hagan disponibles para los animales.

Reacción ácido-base

Una reacción ácido-base o reacción de neutralización es una reacción química que ocurre entre un ácido y una base produciendo una sal y agua. La palabra "sal" describe cualquier compuesto iónico cuyo catión provenga de una base (na+ del naoh) y cuyo anión provenga de un ácido (cl- del hcl). Las reacciones de neutralización son generalmente exotérmicas, lo que significa que desprenden energía en forma de calor, se les suele llamar de neutralización porque al reaccionar un ácido con una base, estos neutralizan sus propiedades mutuamente. Existen varios conceptos que proporcionan definiciones alternativas para los mecanismos de reacción involucrados en estas reacciones, y su aplicación en problemas en disolución relacionados con ellas. A pesar de las diferencias en las definiciones, su importancia se pone de manifiesto en los diferentes métodos de análisis, cuando se aplica a reacciones ácido-base de especies gaseosas o líquidas, o cuando el carácter ácido o básico puede ser algo menos evidente. el primero de estos conceptos científicos de ácidos y bases fue proporcionado por el químico francés antoine lavoisier, alrededor de 1776.

Page 19: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

IMPORTANCIA DE LAS REACCIONES DE NEUTRALIZACIÓN COMO TÉCNICAS DE ANÁLISIS

Este tipo de reacciones son especialmente útiles como técnicas de análisis cuantitativo en análisis volumétrico y se conocen como valoraciones ácido-base, en este caso se puede usar una disolución indicadora para conocer el punto en el que se ha alcanzado la neutralización completa. Algunos indicadores son la fenolftaleína (si las sustancias reaccionantes son ácido clorhídrico e hidróxido de sodio), azul de safranina, el azul de metileno, etc. existen también métodos electroquímicos para lograr este propósito como el uso de un ph-metro o la conductimetría. Reacción de neutralización entre una base fuerte y un ácido débil. El anión del ácido sufre una hidrólisis produciéndose aniones hidróxido, por lo que el ph es > 7.reacción de neutralización entre una base débil y un ácido fuerte. El catión de la base sufre una hidrólisis produciéndose cationes hidronio, por lo que el ph es < 7.reacción de neutralización entre una base débil y un ácido débil. El anión del ácido sufre una hidrólisis al igual que el catión de la base, por lo que el ph es < 7 si es más débil la base y es >7 si es más débil el ácido. La elección del indicador adecuado para determinar el punto de equivalencia dependerá del ph final, que tiene que estar dentro del intervalo en el que el indicador sufre el cambio de color.

Ejemplos:

Hidróxido de sodio con ácido carbónico que forma carbonato de sodio y agua:

Ácido nítrico con hidróxido de aluminio que forma nitrato de aluminio y agua:

Page 20: Practicas de laboratorio enlaces y compuestos quimicos inorganicos

DESARROLLO:

Reactivos:

Leche natural

Leche industrializada

Coca-Cola

Agua

Jugo de naranja

Jugo de naranja industrializado

Fenolftaleína (c20h14o4)

Hidróxido de sodio (na oh )

Material:

Potenciómetro

4 vasos precipitados

Se vierte jugo de naranja en un vaso precipitado y se la vierten 3 gotas de fenolftaleína, y una solución de hidróxido de sodio que es básica esta se agregara gota a gota, al caer el hidróxido de sodio la muestra cambia a color rojizo la cual cambio de ser acida a básica, esto se repetirá con las otras muestras y sucederá lo mismo, en el caso de Coca-Cola necesita más solución de hidróxido de sodio ya que es muy acida.

Ahora a estas muestras se les agregara una solución de ácido clorhídrico (hcl), para neutralizar la base, así regresaran a su acides original al igual que el color del jugo de naranja que cambio de naranja a rojizo ahora cambiara de rojizo a naranja como originalmente era.

CONCLUSIÓN

En el estudio de óxidos y bases se dice que una base neutraliza a un ácido y una base a un ácido y con lo hecho anteriormente se observó que si se cumple con esto, ahora los alimentos industrializados son manipulados no con este reactivo sino con ácido cítrico c6h8o7 y ácido ascórbico c6h8o6.