22
Introduction Schrödinger equation Timoshenko system Trapped modes for an infinite nonhomogeneous Timoshenko beam Hugo Aya 1 Ricardo Cano 2 Peter Zhevandrov 2 1 Universidad Distrital 2 Universidad de La Sabana H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

Ponencia en el ICAMI

  • Upload
    rcanom

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

IntroductionSchrödinger equation

Timoshenko system

Trapped modes for an infinite nonhomogeneousTimoshenko beam

Hugo Aya1 Ricardo Cano2 Peter Zhevandrov2

1Universidad Distrital

2Universidad de La Sabana

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

Outline

1 IntroductionWaveguidesTimoshenko system

2 Schrödinger equation

3 Timoshenko systemGreen matrixOutgoing solutionTrapped modes

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

WaveguidesTimoshenko system

Embedded modes in waveguides

∆φ+ ω2φ = 0, φy|y=±d = 0, φn|r=a = 0

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

WaveguidesTimoshenko system

Waveguides

Antisymmetric modes

ω1 =π

2d, ω2 =

3π2d

a ≈ 0,352d

Linton, McIver, Wave Motion, 45(2007), 16–29

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

WaveguidesTimoshenko system

Timoshenko beam

Hagedorn, DasGupta, Vibrations and waves..., Wiley, 2007

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

WaveguidesTimoshenko system

Timoshenko

{ψ′′ + kGA(y′ − ψ) + ω2ρIψ = 0,

kGA(y′′ − ψ′) + ω2ρAy = 0.(1)

Here ω is the frequency, A is the area of the cross-section, I is itssecond moment, G is the shear modulus, k is the Timoshenko shearcoefficient. We assume that the density ρ has the form

ρ = ρ0(1 + εf (x)

),−∞ < x <∞, ε� 1,

and f (x) (the perturbation) belongs to C[−1, 1].We can assume kG ≡ G, ρ0 ≡ 1.

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

WaveguidesTimoshenko system

Spectrum Timoshenko

ω20 = GA/I

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

WaveguidesTimoshenko system

Spectrum Timoshenko

Second branch: ω > ω0 :(ψy

)∝ e±ik1,2x

k21,2 =

12

(I +

1G

)ω2 ±

√14ω4

(I − 1

G

)2

+ ω2A

First branch: 0 < ω < ω0 :(ψy

)∝ e±imx, e±lx

ω2 = ω20 − β2, 0 < β � 1

m = γ√

A + O(β2), l = β/γ + O(β3), γ =

√G +

1I

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

Shallow potential well

−ψ′′ + εV(x)ψ = Eψ, ε� 1

Landau-Lifshitz 1948, Simon 1976

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

Spectrum

Eigenvalue E = −β2, β ∼ ε, β > 0Eigenfunction: ψ ∼ e−β|x|, |x| � 1

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

The Green function

G(x, ξ) =1

2βe−β|x−ξ|

Look for the solution in the form:

ψ =∫

G(x, ξ)A(ξ) dξ

For A we obtain:

A(x) = −εV(x)∫

G(x, ξ)A(ξ) dξ

= −εV(x)∫

Gr(x, ξ)A(ξ) dξ − ε

2βA0V(x)

A0 =∫

A(ξ) dξ, Gr = G− 12β

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

Eigenfunction

Integral equation: (1 + εT̂)A = − ε

2βA0V(x),

T̂A = V∫

Gr(x, ξ)A(ξ) dξ, ‖T̂‖C[−1,1] ≤ const

Neumann series: A = (1 + εT̂)−1[− ε

2βA0V(x)

]Integrating and multiplying by β, we have

β = − ε2

∫V(x) dx + O(ε2).

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

Green matrixOutgoing solutionTrapped modes

Outgoing Green matrix

G(x, ξ) =1

2(l2 + m2)×(

−a−1e−l|x−ξ| − ib−1eim|x−ξ| sgn(x− ξ)(−e−l|x−ξ| + eim|x−ξ|)

sgn(x− ξ)(e−l|x−ξ| − eim|x−ξ|) ae−l|x−ξ| − ibeim|x−ξ|

)

a =Iβ2 − l2

GAl= β

IγA

+ O(β3),

b =Iβ2 + m2

GAm=

γ

G√

A+ O(β2),

γ =

√G +

1I

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

Green matrixOutgoing solutionTrapped modes

Green matrix

L̂G = δ(x− ξ)E

L̂ =(∂2

x − GA + Iω2 GA∂x

−GA∂x GA∂2x + Aω2

), E =

(1 00 1

)Rewrite system (1) as

L̂Ψ = −εω2f (x)JΨ, J =(

I 00 A

), Ψ =

(ψy

)

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

Green matrixOutgoing solutionTrapped modes

Solution

Look for the solution in the form

Ψ =∫

G(x, ξ)A(ξ) dξ, A =(

BD

)(2)

We obtain for A the equation

A = −εω2fJ∫

Gr(x, ξ)A(ξ) dξ +ε

2βω2fγ−1B0

(10

),

where B0 =∫

B(x) dx, Gr = G +1

( 1γI 00 0

)

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

Green matrixOutgoing solutionTrapped modes

Solution

This can be rewritten as

(1 + εT̂)A =ε

2βω2fγ−1B0

(10

), ‖T̂‖C[−1,1] ≤ const

The solution: Neumann series

A = (1 + εT̂)−1[ε

2βω2fγ−1B0

(10

)]≡ ε

βB0

(UV

)(3)

Integrating and multiplying by β, we have

β = ε

∫U(x) dx =

ε

2ω2

0γ−1∫

f (x) dx + O(ε2) (4)

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

Green matrixOutgoing solutionTrapped modes

Trapped modes

Assume f (x) even and take G := ReG.

We have G =(

G11 G12G21 G22

)where G11 and G22 are even and G12 and G21 are odd. Repeating thesame procedure we obtain

A =(

BD

)where B is even and D is odd. The solution Ψ is defined as above. For|x| → ∞, its components are proportional to

sin mxW(m), W(m) =(

b−1∫

B(ξ) cos mξ dξ −∫

D(ξ) sin mξ dξ)

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

Green matrixOutgoing solutionTrapped modes

Trapped modes

We putW(m) = 0 (5)

and this guarantees that Ψ ∈ L2(−∞,∞). In the leading term thismeans ∫

f (ξ) cos mξ dξ + O(ε) = 0

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

Green matrixOutgoing solutionTrapped modes

Main result

Theorem

Let f (x) be even,∫

f (x) dx > 0. Let

A =(

BD

)be given by (3) and

Ψ =(ψy

)be given by (2). Let β > 0 be a solution of (4) and m be a solution of(5). Then Ψ is a finite energy solution os system (1).

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

Green matrixOutgoing solutionTrapped modes

Example 1: “square bump”

f =

{1, |x| < 10, |x| > 1

sin m + O(ε) = 0, m = nπ + O(ε), n = 1, 2, . . .

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

Green matrixOutgoing solutionTrapped modes

Example 2: “parabolic bump”

f =

{1− x2, |x| < 10, |x| > 1

tan m + O(ε) = m

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam

IntroductionSchrödinger equation

Timoshenko system

Green matrixOutgoing solutionTrapped modes

Example 3: Gaussian

f = exp(−x2/2)∫f (x) cos mx dx =

√2π exp(−m2/2) 6= 0

NO trapped modes!

H. Aya, R. Cano and P. Zhevandrov Timoshenko beam