39
Estimación: El proceso de estimación en inferencia estadística puede ser descrito como el proceso de estimar un parámetro a partir del estadístico correspondiente, tal como usar una media muestral (Estadístico) para estimar la media poblacional, (parámetro). La estimación de parámetros puede ser: Puntual o Por Punto. Por Intervalo. Estimación Puntual: Objetivo. Dar un valor numérico que aproxime en forma muy cercana al parámetro poblacional. La estimación puntual de un parámetro de una población es un solo valor numérico de un estadístico que corresponde a este parámetro. Un estadístico utilizado para aproximar a un parámetro de una población se denomina Estimador del Parámetro . El número obtenido cuando se evalúa el estimador para una muestra particular, se denomina Estimación del Parámetro. Sea X una variable aleatoria de interés con distribución de probabilidad f (x). θ : Parámetro Desconocido. : f (X 1 , X 2 , X 3 ,…,Xn) m. a. de tamaño n. Estadístico. 1

Estimación de parámetros

Embed Size (px)

Citation preview

Page 1: Estimación de parámetros

Estimación:

El proceso de estimación en inferencia estadística puede ser descrito como el proceso de estimar un parámetro a partir del estadístico correspondiente, tal como usar una media muestral (Estadístico) para estimar la media poblacional, (parámetro).

La estimación de parámetros puede ser:

Puntual o Por Punto. Por Intervalo.

Estimación Puntual:

Objetivo.

Dar un valor numérico que aproxime en forma muy cercana al parámetro poblacional.

La estimación puntual de un parámetro de una población es un solo valor numérico de un estadístico que corresponde a este parámetro.

Un estadístico utilizado para aproximar a un parámetro de una población se denomina Estimador del Parámetro. El número obtenido cuando se evalúa el estimador para una muestra particular, se denomina Estimación del Parámetro.

Sea X una variable aleatoria de interés con distribución de probabilidad f (x).

θ : Parámetro Desconocido.

: f (X1, X2, X3,…,Xn)

m. a. de tamaño n.

Estadístico.

Estimador.

Por ejemplo: es un posible estimador de µ.

µ = θ

1

Page 2: Estimación de parámetros

: : Estimador puntual de µ, porque al evaluarlo para una muestra es concreto, da un solo numero o punto.

: Estimación puntual de µ.

Otros Parámetros de Interés:

P: Proporción Poblacional (proporción binomial).

“Proporción de elementos con cierta característica de interés en un universo dado.”

= Estimador puntual de P.

X: Nº de elementos en la muestra con característica de interés.

σ2 : Varianza Poblacional.

Estadístico: Estimador puntual de σ2.

σ : Desviación estándar de una población.

Estimador puntual de σ.

µ1 - µ2: Diferencia de dos medias poblacionales.

Estimador puntual de µ1 - µ2.

Diferencia entre las medias de dos muestras aleatorias independientes.

P1 – P2

2

Page 3: Estimación de parámetros

Estimador puntual para P1 – P2

Diferencia entre dos proporciones muéstrales, basadas en dos muestras aleatorias independientes.

Razón de dos varianzas poblacionales.

Estimador puntual de

Sea X una variable aleatoria con media µ desconocida y varianza σ2.

X1, X2,…, Xn m. a. de tamaño n.

θ = µ

= f (X1, X2,…, Xn)

Estimadores posibles para µ

¿Cuál es el mejor?

Antes de responder a esta pregunta debemos decidir que propiedades son deseables en un estimador puntual.

Obviamente queremos que el estimador produzca estimaciones que puedan esperarse sean próximas en valor al parámetro que se esta estimando.

3

Page 4: Estimación de parámetros

Propiedades De Los Estimadores Puntuales:

Insesgabilidad

Eficiencia

Consistencia

Suficiencia

Estimador In sesgado:

Sea un estimador puntual de un parámetro θ, entonces es un estimador insesgado

si E ( ) = θ. De lo contrario se dice que es sesgado.

Distribución muestral de un estimador insesgado.

Distribución muestral de un estimador sesgado positivamente, para el cual

Si el estimador es sesgado, la magnitud del sesgo es:

4

Page 5: Estimación de parámetros

Sesgo =

Suponga que X es una variable aleatoria con media µ y varianza σ2, sea X1, X2, X3, X4,…, Xn una m. a. de tamaño n de X. Es posible probar que la media muestral y la varianza muestral S2 son estimadores insesgados de µ y σ2 respectivamente.

Sin embargo S1 (Desviación estándar muestral) es un estimador sesgado de σ. (σ: Desviación estándar poblacional).

Error estándar de un estimador de un parámetro θ.

Medida usual de la precisión de una estimación puntual.

Error cuadrado medio (ECM) de un estimador .

Se puede demostrar que:

Si es un estimador puntual insesgado de θ; entonces:

Ya que el sesgo

Varianza de

Error de estimación.

5

Page 6: Estimación de parámetros

El error de estimación Є es la distancia entre el estimador y su parámetro. Es decir;

= f (X1, X2,…, Xn)

m. a.

Є Cantidad aleatoria.

Nota: La condición de que es insesgado, supone que el valor promedio de

(promedio de los valores de ) es exactamente correcto. No dice que un solo valor sea

exactamente correcto.

Eficiencia Relativa:

La eficiencia relativa entre dos estimadores y de un parámetro θ, con ECM

respectivos ECM ( ) y ECM ( ) se define como:

Si la eficiencia relativa es menor que 1 entonces concluimos que es un mejor

estimador de θ que

Si y son dos estimadores insesgados de θ, entonces:

Eficiencia Relativa =

Si consideramos todos los posibles estimadores insesgados de algún parámetro θ, el de menor varianza se llama Estimador mas Eficiente de θ .

Estimador Consistente:

6

Page 7: Estimación de parámetros

Si es un estimador insesgado de θ, basado en una m. a. de tamaño n, decimos que es consistente para θ, si:

La consistencia es una propiedad de muestras grandes.

Los estimadores cuyo ECM (o varianza si el estimador es insesgado) tiende a cero cuando el tamaño de la muestra tiende al infinito, son consistentes.

Por ejemplo:

Si X N (µ, σ2) y X1, X2,…, Xn

Es una muestra aleatoria de tamaño n de X, entonces es un estimador consiente de µ.

Es un estimador insesgado de µ.

Estimación Por Intervalo.

7

Page 8: Estimación de parámetros

Un estimador por intervalo es una regla que especifica un método que utiliza las mediciones de la muestra para calcular dos números que forman los extremos del intervalo.

Objetivo:

Encontrar un estimador por intervalo que genere intervalos angostos que contengan a θ (parámetro) con una alta probabilidad.

Los estimadores por intervalo se denominan comúnmente intervalos de confianza.

Un intervalo de confianza de θ, es un intervalo [L, U] que incluye a θ con un grado de certidumbre establecido.

L y U se denominan extremos inferior y superior del intervalo de confianza.

L: Limite inferior de confianza.U: Limite de confianza superior.

L, U: Estadísticos (variables aleatorias).

Para construir un estimador por intervalo del parámetro θ desconocido, debemos encontrar L y U tal que:

P (L ≤ θ ≤ U) = 1 – α

La probabilidad 1 – α se le llama Coeficiente de Confianza. Usualmente, se expresa en porcentaje: 100 (1 – α) %.

1 – α es la probabilidad de que el intervalo contenga al parámetro.

0 < α < 1

El intervalo resultante:

L ≤ θ ≤ U

Se llama intervalo de confianza del 100 (1 – α) % para el parámetro θ. (Intervalo de confianza de dos lados).

En ocasiones un intervalo de confianza de un lado podría ser útil.

L ≤ θ Intervalo de confianza inferior del 100 (1 – α) %.θ ≤ U Intervalo de confianza superior del 100 (1 – α) %

Donde U se elige de modo que:P (θ ≤ U) = 1 - α

Estimación Por Intervalo de µ.

8

Page 9: Estimación de parámetros

Intervalo de confianza sobre la media (µ), conocida la varianza (σ2).

Construir un intervalo de confianza del 100 (1 – α) % para la media µ de una población denotada por X, con varianza σ2 conocida a partir de una muestra aleatoria (m. a.) X1, X2, X3,…, Xn de tamaño n.

Si usamos como estimador puntuales de µ.

Distribución de .

Si la muestra es seleccionada de una población normal.

De donde:

A falta de esta (De población normal), si n es suficiente grande:

* Si se cumplen las condiciones del TLC.

Aproximadamente.

Aproximadamente.

Para construir un intervalo de confianza de µ, primero hallaremos una variable aleatoria (v. a.) cuya expresión contenga a µ y cuya distribución se conozca al menos aproximadamente.

Nótese que la v. a. Contiene al parámetro µ y su distribución es normal

estándar (o al menos aproximadamente normal estándar).

Queremos determinar L y U de forma que P (L ≤ θ ≤ U) = 1 – α

Consideremos la participación de la curva normal estándar.

(I)

9

Page 10: Estimación de parámetros

Formula exacta cuando la población muestreada tiene distribución normal y varianza σ2

conocida.

Si σ2 no se conoce (y σ) reemplazar σ por S en (I). Buena aproximación, siempre que n sea grande (n ≥ 30).

Intervalo de confianza sobre la medida (μ), σ2 desconocida, muestra pequeña.

Suponer: Población normal con medida μ y σ2 (varianza) desconocida.

X N (μ, σ2)

Muestra aleatoria de tamaño n.

X1, X2,… Xn

Media Muestral

Varianza Muestral

n pequeña (< 30).

Construir un intervalo de confianza del 100 (1 – α) % para μ.

Estimador puntual de μ

10

Page 11: Estimación de parámetros

Reacomodando:

P (L ≤ θ ≤ U) = 1 – α

Intervalo de confianza de dos lados del 100 (1 – α) % para μ.

11

Page 12: Estimación de parámetros

Donde es el valor t con n – 1 grados de libertad que deja una área de a la derecha.

A la formula anterior a menudo se le denomina formula del intervalo de confianza para la media en muestras pequeñas, aunque es valido para muestras de cualquier tamaño.

Intervalo de confianza de un lado del100 (1 – α) % en μ.

12

Page 13: Estimación de parámetros

Estimación de σ2.

Suponga que una m. a. de tamaño n es seleccionada de una población normal con media μ y varianza σ2 desconocidas.

X N (μ, σ2)

X1, X2,…, Xn.

m. a.

Estimador puntual de µ.

Estimador puntual de σ2.

Son estadísticos.

Construir un intervalo de confianza del 100 (1 – α) % para σ2.

Va a utilizar para construir el intervalo de confianza para σ2.

13

Page 14: Estimación de parámetros

Reacomodando:

P (L ≤ θ ≤ U) = 1- α

Limite de confianza

Donde son los valores X2 con n-1 grados de libertad que

dejan áreas de α/2, 1- α/2, respectivamente a la derecha.

Intervalos de confianza bilaterales del 100 (1-α) % para σ2.

14

Page 15: Estimación de parámetros

Extrayendo Raíz Cuadrada

Intervalos de Confianza bilateral del 100 (1-α) % para σ

Intervalo De Confianza Para Una Proporción P

Supóngase que estamos interesados en estimar la proporción P de elementos que presentan la característica de interés en un universo dado. Una muestra aleatoria de tamaño n es seleccionada al azar y se observa el numero de elementos X (x≤n) en la muestra que tiene la característica de interés.

Sabemos que:

Cuando n es grande (?)

Aproximadamente.

Estandarizando:

Aproximadamente.

15

Page 16: Estimación de parámetros

Dividiendo numerador y denominador entre n, tenemos:

Estimador puntual de P

Es un estimador integrado de P.

V.a a utilizar para construir el intervalo de confianza del 100 (1-α) % para P

Considerando la partición de la curva normal estándar, tenemos:

16

Page 17: Estimación de parámetros

Pero:

Reacomodando:

Al sustituir P por en el error estándar (lo que resulta un error estándar estimado) tenemos que: El intervalo de coeficiente bilateral del 100 (1 – α) % aproximado en P es:

Estimación De La Diferencia Entre Dos Medias.

Puntual. Por intervalo.

17

Page 18: Estimación de parámetros

Considérese dos poblaciones con medias μ1 y μ2 y varianzas σ12 y σ2

2 (conocidas) respectivamente. Dos muestras aleatorias independientes de tamaño n1 y n2 son seleccionadas, una de dada población.

Un estimador lógico de μ1- μ2 es donde son las medidas muéstrales.

X11, X12,.......X1n1 m.a de tamaño n1 de X1.

X21, X22,…X2n2 m.a de tamaño n2 de X2.

X1 y X2 denotan las poblaciones de interés.

;

Estimador puntual de μ1- μ2.

El valor numérico es la estimulación puntual de μ1- μ2.

La distribución maestral de es normal si X1 y X2 están distribuidas de forma normal o aproximadamente normal si se completa las condiciones del TLC.

La distribución de la v.a Z es normal estimada; si X1 y X2 son normales o aprox. Normal estándar si n1 y n2 son grandes (TLC).

18

Page 19: Estimación de parámetros

De donde:

Sustituyendo Z:

Aislar algebraicamente μ1- μ2 del centro de la desigualdad:

De donde:

19

Page 20: Estimación de parámetros

*intervalo de confianza aproximado a menos que las dos poblaciones sean normales.

La forma del intercambio anterior se aplica si se conocen σ12 y σ2

2. Si las varianzas no se conocen y las dos poblaciones son normales, la distribución t resulta implicada como en el caso de una muestra. Si no esta dispuesto a suponer normalidad muestras grandes (≥ 30) permitirán el uso de S1

2 y S22 respectivamente.

Intervalo De Confianza Para μ1- μ2 Con Varianza Desconocida.

Suposiciones: Poblaciones normales

Varianza desconocida, pero iguales.

Muestra aleatoria undipendientes de tamaños n1 y n2

20

Page 21: Estimación de parámetros

Muestras pequeñas.

X11, X12,…, X1n, X21, X22,…, X2n2

Con la suposición de σ12 = σ2

2 un intervalo de confianza para μ1 - μ2 basado en la v.a T se puede construir.

21

Page 22: Estimación de parámetros

Sustituyendo T

Reareglando:

De donde:

Intervalo de confianza del 100 (1 – α) % paraμ1 - μ2, σ1

2= σ22 pero desconocidas.

A la forma anterior a menudo se le denomina formula del intervalo de confianza para μ1 - μ2 en muestras pequeñas, aunque es valida para muestras de cualquier tamaño y funciona satisfactoriamente cuando la población no es normal, mientras que la desviación de la normalidad no se exceda.

Cuando no es razonable suponer que σ12= σ2

2, un intervalo de confianza de dos lados de100 (1 – α) % aproximado en μ1 - μ2 es:

22

Page 23: Estimación de parámetros

De donde

La construcción del intervalo de confianza anterior se bazo en la variable aleatoria:

Intervalo de confianza para μ1 - μ2

Observaciones pareadas

Suponer:

Poblaciones normales

Muestras aleatorias dependientes.

X11, X12,…, X1n,

X21, X22,…, X2n2

23

Page 24: Estimación de parámetros

-n1=n2=n n pequeña.

D: denota una población de diferencia.

Se puede construir un intervalo de confianza para μ1 - μ2 con solo encontrar un intervalo de confianza para μD.

24

Page 25: Estimación de parámetros

Uso de distribución t.

Sustituyendo y reacomodando tenemos:

Intervalo de confianza de dos lados del 100 (1 – α) % en

Intervalo de confianza sobre la razón de Varianzas de dos poblaciones normales

Suponer:

Poblaciones normales.

μ1 - μ2, σ12 y σ2

2 no se conocen

Muestras aleatorias independientes.

X11, X12,…, X1n,

X21, X22,…, X2n2

25

Page 26: Estimación de parámetros

La forma mas lógica de estimar (estimador puntual) la razón de dos varianzas, es estimar cada

una por separado como se vio anteriormente y después estimar que es la razón de estas

estimaciones.

Estimador puntual de σ12.

Estimador puntual de σ22.

Si σ12 y σ2

2 son las varianzas de dos poblaciones normales, podemos construir un intervalo de confianza basándonos en la variable aleatoria F.

26

Page 27: Estimación de parámetros

Variable aleatoria a utilizar para construir el intervalo de confianza de 100 (1 - α) %.

De la figura tenemos:

27

Page 28: Estimación de parámetros

Reareglando:

De donde:

Donde es un valor f con grados

de libertad que deja un área a la derecha de . es un valor de f similar

con grados de libertad (g. l.)

Intervalo de confianza de dos lados (Bilateral) del 100 (1 – α) % para .

28

Page 29: Estimación de parámetros

Intervalo De Confianza Para La Diferencia De Dos Proporciones P1 – P2.

P1 – P2 Parámetro.

P1: Proporción de elementos con la característica de interés en un universo dado.

P2: Proporción de elementos con la característica de interés en otro universo dado.

Si bien se trata de dos universos diferentes, la característica de interés deberá ser la misma.

P1 y P2 son parámetros binomiales.

Si toman muestras aleatorias independientes de tamaño n1 y n2 respectivamente.

X1: Nº de elementos en la muestra 1 con la característica de interés.

X2: Nº de elementos en la muestra 2 con la característica de interés.

Un estimador lógico de P1 – P2 es:

Es posible probar que:

29

Page 30: Estimación de parámetros

Se puede construir un intervalo de confianza para P1 – P2 considerando la distribución

muestral de :

Distribución muestral de :

Para n1 y n2 grandes.

De donde:

30

Page 31: Estimación de parámetros

De la curva normal estándar podemos escribir:

Sustituyendo para Z.

Reareglando:

31

Page 32: Estimación de parámetros

De donde un intervalo de confianza de dos lados del 100 (1 – α) % aproximado para P1 – P2 es:

La construcción del intervalo de confianza para P1 – P2 se basa en la aproximación normal a la binomial que es adecuada para n1 y n2 grandes. ¿ ?

32