15
El transistor, inventado en 1951, es el componente electrónico estrella, pues inició una auténtica revolución en la electrónica que ha superado cualquier previsión inicial. . LOS TRANSISTORES

Los transistores

Embed Size (px)

Citation preview

Page 1: Los transistores

El transistor, inventado en 1951, es el componente electrónico estrella, pues inició una auténtica revolución en la electrónica que ha superado

cualquier previsión inicial. .

LOS TRANSISTORES

Page 2: Los transistores

Con el transistor vino la miniaturización de los componentes y se llegó al descubrimiento de los circuitos integrados, en los que se colocan, en pocos milímetros cuadrados, miles de transistores. Estos circuitos constituyen el origen de los microprocesadores y, por lo tanto, de los ordenadores actuales.

Por otra parte, la sustitución en los

montajes electrónicos de las clásicas y antiguas válvulas de vacío por los transistores, reduce al máximo las pérdidas de calor de los equipos

Page 3: Los transistores

Un transistor es un componente que tiene, básicamente, dos funciones:

Deja pasar o corta señales eléctricas a

partir de una PEQUEÑA señal de mando.

Funciona como un elemento AMPLIFICADOR de señales.

¿Cómo es físicamente un transistor? Hay dos tipos básicos de transistor: Transistor bipolar o BJT (Bipolar

Junction Transistor) Transistor de efecto de campo, FET

(Field Effect Transistor) o unipolar

Page 4: Los transistores

Consta de tres cristales semiconductores (usualmente de silicio) unidos entre sí. Según como se coloquen los cristales hay dos tipos básicos de transistores bipolares.

Transistor NPN: en este caso un cristal P está situado

entre dos cristales N. Son los más comunes. Transistor PNP: en este caso un cristal N está situado

entre dos cristales P La capa de en medio es mucho más estrecha que las

otras dos. En cada uno de estos cristales se realiza un contacto

metálico, lo que da origen a tres terminales: Emisor (E): Se encarga de proporcionar portadores de

carga. Colector (C): Se encarga de recoger portadores de

carga. Base (B): Controla el paso de corriente a través del

transistor. Es el cristal de en medio. El conjunto se protege con una funda de plástico o

metal. Nos centraremos en el transistor NPN:

A) Transistor bipolar

Page 5: Los transistores

Se entiende por polarización del transistor las conexiones adecuadas que hay que realizar con corriente continua para que pueda funcionar correctamente.

Si se conectan dos baterías al transistor como

se ve en la figura, es decir, con la unión PN de la base-emisor polarizada directamente y la unión PN de la base-colector polarizado inversamente. Siempre que la tensión de la base-emisor supere 0,7 V, diremos que el transistor está polarizado, es decir, que funciona correctamente.

Este montaje se llama con emisor común. En este caso, el hecho de que el transistor esté

en funcionamiento significa que es capaz de conducir la corriente desde el terminal colector hasta el terminal emisor. Se cumplen dos expresiones para este caso:

B) Polarización del transistor

Page 6: Los transistores

La primera… IE= IB + IC

Donde… IE es la corriente que recorre el

terminal emisor. IC es la corriente que recorre el

terminal colector. IB es la corriente que recorre el

terminal base. Como la corriente de base resulta

siempre MUY PEQUEÑA, se puede decir que la corriente del colector y la del emisor prácticamente coinciden.

Page 7: Los transistores

La segunda expresión dice IE ≈ IC

IC= β·IB

Donde β es una constante que depende de cada

transistor llamado ganancia que puede valer entre 50 y 300 (algunos transistores llegan a 1000).

La ganancia de un transistor nos habla de la

capacidad que tiene para amplificar la corriente. Cuanto mayor es la ganancia de un transistor, más puede amplificar la corriente.

Se concluye que la corriente por el colector de un

transistor bipolar es proporcional a la corriente por la base, es decir, a mayor corriente en la base, mayor corriente en el colector.

En la práctica no se utilizan dos baterías, sino una sola.

Según estas dos expresiones el transistor bipolar puede tener tres estados distintos de funcionamiento:

Page 8: Los transistores

Corte: En este caso la corriente de base es nula (o casi), es decir, IB = 0, por lo tanto, IC= β·IB= β·0 = 0 IC= 0

En este caso, el transistor no conduce en absoluto. No está

funcionando. Se dice que el transistor se comporta como un interruptor

abierto. Activa: En este caso el transistor conduce

parcialmente siguiendo la segunda expresión (IC= β·IB). La corriente del colector es directamente proporcional a la corriente de la base. Ejemplo: Si β = 100, la corriente del colector es 100 veces la corriente de la base. Por eso se dice que el transistor amplifica la corriente.

Saturación: En este caso, el transistor conduce

totalmente y se comporta como un interruptor cerrado. Este estado se alcanza cuando la corriente por la base (IB) alcanza un valor alto. En este caso la expresión (IC= β·IB) ya no tiene sentido pues, por mucho que aumente el valor de la corriente de base (IB), no aumenta el valor de la corriente de colector.

Page 9: Los transistores

Cuando seleccionamos un transistor tendremos que conocer el tipo de encapsulado, así como el esquema de identificación de los terminales. También tendremos que conocer una serie de valores máximos de tensiones, corrientes y potencias que no debemos sobrepasar para no destruir el dispositivo. El parámetro de la potencia disipada por el transistor es especialmente crítico con la temperatura, de modo que esta potencia disminuye a medida que crece el valor de la temperatura, siendo a veces necesario la instalación de un radiador o aleta refrigeradora. Todos estos valores críticos los proporcionan los fabricantes en las hojas de características de los distintos dispositivos.Una forma de identificar un transistor NPN o PNP es mediante un polímetro: Este dispone de dos orificios para insertar el transistor, uno para un NPN y otro para el PNP. Para obtener la medida de la ganancia es necesario insertarlo en su orificio apropiado, con lo que queda determinado si es un NPN o un PNP.

TRANSISTOR BJT

Page 10: Los transistores

Zonas de funcionamiento del transistor bipolar ACTIVA DIRECTA: El transistor sólo amplifica en esta zona, y se comporta

como una fuente de corriente constante controlada por la intensidad de base (ganancia de corriente).Este parámetro lo suele proporcionar el fabricante dándonos un máximo y un mínimo para una corriente de colector dada (Ic); además de esto, suele presentar una variación acusada con la temperatura y con la corriente de colector, por lo que en principio no podemos conocer su valor. Algunos polímetros son capaces de medir este parámetro pero esta medida hay que tomarla solamente como una indicación, ya que el polímetro mide este parámetro para un valor de corriente de colector distinta a la que circulará por el BJT una vez en el circuito.

SATURACIÓN: En esta zona el transistor es utilizado para aplicaciones

de conmutación (potencia, circuitos digitales, etc.), y lo podemos considerar como un cortocircuito entre el colector y el emisor.

CORTE: El transistor es utilizado para aplicaciones de

conmutación (potencia, circuitos digitales, etc.), y podemos considerar las corrientes que lo atraviesan prácticamente nulas (y en especial Ic).

ACTIVA INVERSA: Esta zona se puede considerar como carente de interés.

Page 11: Los transistores

El transistor PNP es complemento del NPN de forma que todos los voltajes y corrientes son opuestos a los del transistor NPN.

Para encontrar el circuito PNP complementario:

1. Se sustituye el transistor NPN por un PNP.2. Se invierten todos los voltajes y corrientes.

Page 12: Los transistores

Cuando seleccionamos un transistor tendremos que conocer el tipo de encapsulado, así como el esquema de identificación de los terminales. También tendremos que conocer una serie de valores máximos de tensiones, corrientes y potencias que no debemos sobrepasar para no destruir el dispositivo. El parámetro de la potencia disipada por el transistor es especialmente crítico con la temperatura, de modo que esta potencia decrece a medida que aumenta el valor de la temperatura, siendo a veces necesario la instalación de un radiador o aleta refrigeradora. Todos estos valores críticos los proporcionan los fabricantes en las hojas de características de los distintos dispositivos.

TRANSISTOR FET (JFET)

Page 13: Los transistores

Zonas de funcionamiento del transistor de efecto de campo (FET)

ZONA ÓHMICA o LINEAL: En esta zona el transistor se comporta

como una resistencia variable dependiente del valor de VGS.Un parámetro que aporta el fabricante es la resistencia que presenta el dispositivo para VDS=0 (rds on), y distintos valores de VGS.

ZONA DE SATURACIÓN: En esta zona es donde el transistor

amplifica y se comporta como una fuente de corriente gobernada por VGS

ZONA DE CORTE: La intensidad de drenador es nula (ID=0).

Page 14: Los transistores

A diferencia del transistor BJT, los terminales drenador y surtidor del FET pueden intercambiar sus papeles sin que se altere apreciablemente la característica V-I (se trata de un dispositivo simétrico).

La operación de un FET de CANAL P es complementaria a la de un FET de CANAL N, lo que significa que todos los voltajes y corrientes son de sentido contrario.

Page 15: Los transistores

GRACIAS

Realizado por:

Gian Franco Ticona Tapia

IV Ciclo de Ingeniería de Sistemas e Informática

Física Electrónica

Tutor

Roberto Rodríguez Cahuana